1
|
Eap CB, Gründer G, Baumann P, Ansermot N, Conca A, Corruble E, Crettol S, Dahl ML, de Leon J, Greiner C, Howes O, Kim E, Lanzenberger R, Meyer JH, Moessner R, Mulder H, Müller DJ, Reis M, Riederer P, Ruhe HG, Spigset O, Spina E, Stegman B, Steimer W, Stingl J, Suzen S, Uchida H, Unterecker S, Vandenberghe F, Hiemke C. Tools for optimising pharmacotherapy in psychiatry (therapeutic drug monitoring, molecular brain imaging and pharmacogenetic tests): focus on antidepressants. World J Biol Psychiatry 2021; 22:561-628. [PMID: 33977870 DOI: 10.1080/15622975.2021.1878427] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Objectives: More than 40 drugs are available to treat affective disorders. Individual selection of the optimal drug and dose is required to attain the highest possible efficacy and acceptable tolerability for every patient.Methods: This review, which includes more than 500 articles selected by 30 experts, combines relevant knowledge on studies investigating the pharmacokinetics, pharmacodynamics and pharmacogenetics of 33 antidepressant drugs and of 4 drugs approved for augmentation in cases of insufficient response to antidepressant monotherapy. Such studies typically measure drug concentrations in blood (i.e. therapeutic drug monitoring) and genotype relevant genetic polymorphisms of enzymes, transporters or receptors involved in drug metabolism or mechanism of action. Imaging studies, primarily positron emission tomography that relates drug concentrations in blood and radioligand binding, are considered to quantify target structure occupancy by the antidepressant drugs in vivo. Results: Evidence is given that in vivo imaging, therapeutic drug monitoring and genotyping and/or phenotyping of drug metabolising enzymes should be an integral part in the development of any new antidepressant drug.Conclusions: To guide antidepressant drug therapy in everyday practice, there are multiple indications such as uncertain adherence, polypharmacy, nonresponse and/or adverse reactions under therapeutically recommended doses, where therapeutic drug monitoring and cytochrome P450 genotyping and/or phenotyping should be applied as valid tools of precision medicine.
Collapse
Affiliation(s)
- C B Eap
- Unit of Pharmacogenetics and Clinical Psychopharmacology, Center for Psychiatric Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.,Center for Research and Innovation in Clinical Pharmaceutical Sciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.,School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland.,Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland.,Institute of Pharmaceutical Sciences of Western Switzerland, University of Lausanne, Switzerland, Geneva, Switzerland
| | - G Gründer
- Department of Molecular Neuroimaging, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - P Baumann
- Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - N Ansermot
- Unit of Pharmacogenetics and Clinical Psychopharmacology, Center for Psychiatric Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - A Conca
- Department of Psychiatry, Health Service District Bolzano, Bolzano, Italy.,Department of Child and Adolescent Psychiatry, South Tyrolean Regional Health Service, Bolzano, Italy
| | - E Corruble
- INSERM CESP, Team ≪MOODS≫, Service Hospitalo-Universitaire de Psychiatrie, Universite Paris Saclay, Le Kremlin Bicetre, France.,Service Hospitalo-Universitaire de Psychiatrie, Hôpital Bicêtre, Assistance Publique Hôpitaux de Paris, Le Kremlin Bicêtre, France
| | - S Crettol
- Unit of Pharmacogenetics and Clinical Psychopharmacology, Center for Psychiatric Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - M L Dahl
- Division of Clinical Pharmacology, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - J de Leon
- Eastern State Hospital, University of Kentucky Mental Health Research Center, Lexington, KY, USA
| | - C Greiner
- Bundesinstitut für Arzneimittel und Medizinprodukte, Bonn, Germany
| | - O Howes
- King's College London and MRC London Institute of Medical Sciences (LMS)-Imperial College, London, UK
| | - E Kim
- Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, South Korea.,Department of Psychiatry, Seoul National University College of Medicine, Seoul, South Korea
| | - R Lanzenberger
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - J H Meyer
- Campbell Family Mental Health Research Institute, CAMH and Department of Psychiatry, University of Toronto, Toronto, Canada
| | - R Moessner
- Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany
| | - H Mulder
- Department of Clinical Pharmacy, Wilhelmina Hospital Assen, Assen, The Netherlands.,GGZ Drenthe Mental Health Services Drenthe, Assen, The Netherlands.,Department of Pharmacotherapy, Epidemiology and Economics, Department of Pharmacy and Pharmaceutical Sciences, University of Groningen, Groningen, The Netherlands.,Department of Psychiatry, Interdisciplinary Centre for Psychopathology and Emotion Regulation, University of Groningen, Groningen, The Netherlands
| | - D J Müller
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada.,Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - M Reis
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden.,Clinical Chemistry and Pharmacology, Skåne University Hospital, Lund, Sweden
| | - P Riederer
- Center of Mental Health, Clinic and Policlinic for Psychiatry, Psychosomatics and Psychotherapy, University Hospital Würzburg, Würzburg, Germany.,Department of Psychiatry, University of Southern Denmark Odense, Odense, Denmark
| | - H G Ruhe
- Department of Psychiatry, Radboudumc, Nijmegen, the Netherlands.,Donders Institute for Brain, Cognition and Behavior, Radboud University, Nijmegen, Netherlands
| | - O Spigset
- Department of Clinical Pharmacology, St. Olav University Hospital, Trondheim, Norway.,Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - E Spina
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - B Stegman
- Institut für Pharmazie der Universität Regensburg, Regensburg, Germany
| | - W Steimer
- Institute for Clinical Chemistry and Pathobiochemistry, Technical University of Munich, Munich, Germany
| | - J Stingl
- Institute for Clinical Pharmacology, University Hospital of RWTH Aachen, Germany
| | - S Suzen
- Department of Toxicology, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - H Uchida
- Department of Neuropsychiatry, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - S Unterecker
- Department of Psychiatry, Psychosomatics and Psychotherapy, University Hospital of Würzburg, Würzburg, Germany
| | - F Vandenberghe
- Unit of Pharmacogenetics and Clinical Psychopharmacology, Center for Psychiatric Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - C Hiemke
- Department of Psychiatry and Psychotherapy, University Medical Center Mainz, Mainz, Germany
| |
Collapse
|
2
|
Fortinguerra S, Sorrenti V, Giusti P, Zusso M, Buriani A. Pharmacogenomic Characterization in Bipolar Spectrum Disorders. Pharmaceutics 2019; 12:E13. [PMID: 31877761 PMCID: PMC7022469 DOI: 10.3390/pharmaceutics12010013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 12/14/2019] [Accepted: 12/19/2019] [Indexed: 12/15/2022] Open
Abstract
The holistic approach of personalized medicine, merging clinical and molecular characteristics to tailor the diagnostic and therapeutic path to each individual, is steadily spreading in clinical practice. Psychiatric disorders represent one of the most difficult diagnostic challenges, given their frequent mixed nature and intrinsic variability, as in bipolar disorders and depression. Patients misdiagnosed as depressed are often initially prescribed serotonergic antidepressants, a treatment that can exacerbate a previously unrecognized bipolar condition. Thanks to the use of the patient's genomic profile, it is possible to recognize such risk and at the same time characterize specific genetic assets specifically associated with bipolar spectrum disorder, as well as with the individual response to the various therapeutic options. This provides the basis for molecular diagnosis and the definition of pharmacogenomic profiles, thus guiding therapeutic choices and allowing a safer and more effective use of psychotropic drugs. Here, we report the pharmacogenomics state of the art in bipolar disorders and suggest an algorithm for therapeutic regimen choice.
Collapse
Affiliation(s)
- Stefano Fortinguerra
- Maria Paola Belloni Center for Personalized Medicine, Data Medica Group (Synlab Limited), 35131 Padova, Italy; (S.F.); (V.S.)
- Department of Pharmaceutical & Pharmacological Sciences, University of Padova, 35131 Padova, Italy; (P.G.); (M.Z.)
| | - Vincenzo Sorrenti
- Maria Paola Belloni Center for Personalized Medicine, Data Medica Group (Synlab Limited), 35131 Padova, Italy; (S.F.); (V.S.)
- Department of Pharmaceutical & Pharmacological Sciences, University of Padova, 35131 Padova, Italy; (P.G.); (M.Z.)
- Bendessere™ Study Center, Solgar Italia Multinutrient S.p.A., 35131 Padova, Italy
| | - Pietro Giusti
- Department of Pharmaceutical & Pharmacological Sciences, University of Padova, 35131 Padova, Italy; (P.G.); (M.Z.)
| | - Morena Zusso
- Department of Pharmaceutical & Pharmacological Sciences, University of Padova, 35131 Padova, Italy; (P.G.); (M.Z.)
| | - Alessandro Buriani
- Maria Paola Belloni Center for Personalized Medicine, Data Medica Group (Synlab Limited), 35131 Padova, Italy; (S.F.); (V.S.)
- Department of Pharmaceutical & Pharmacological Sciences, University of Padova, 35131 Padova, Italy; (P.G.); (M.Z.)
| |
Collapse
|
3
|
Chronic treatment with a metabotropic mGlu2/3 receptor agonist diminishes behavioral response to a phenethylamine hallucinogen. Psychopharmacology (Berl) 2019; 236:821-830. [PMID: 30448990 PMCID: PMC6778591 DOI: 10.1007/s00213-018-5118-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 11/08/2018] [Indexed: 01/15/2023]
Abstract
BACKGROUND There is evidence that mGlu2/3 receptors regulate 5-HT2A signaling, interactions that have been theorized to play a role in the antipsychotic-like effects of mGlu2/3 agonists as well as the hallucinogenic effects of 5-HT2A agonists. One approach to unraveling this interaction is through the chronic administration of agonists at the two receptors, which should influence the functional properties of the targeted receptor due to receptor downregulation or desensitization and thereby alter crosstalk between the two receptors. In this study, we investigated whether chronic treatment with the mGlu2/3 agonist LY379268 would alter the behavioral response to a phenethylamine hallucinogen, 25CN-NBOH, which acts as a selective 5-HT2A agonist. METHODS We first conducted a dose response of 25CN-NBOH (0.1, 0.3, 1, 3, or 10 mg/kg) to confirm the effects on head-twitch response (HTR) and then blockade studies with either the M100907 (0.1 mg/kg) or SB242084 (0.1, 0.3, or 1 mg/kg) to determine the contribution of 5-HT2A and 5-HT2C to 25CN-NBOH-induced HTR, respectively. To determine whether an mGlu2/3 agonist could block 25CN-NBOH-induced HTR, mice were pretreated with vehicle or LY379268 (0.1, 1, or 10 mg/kg) prior to 25CN-NBOH, and HTR was assessed. The effects of chronic LY379268 on 5-HT2A agonist-induced HTR were evaluated by treating mice with either vehicle or LY379268 (10 mg/kg) for 21 days and measuring 25CN-NBOH-induced HTR 48 h after the final LY379268 treatment. The following day (72 h after the final LY379268 treatment), the ability of acute LY379268 to block PCP-induced locomotor activity was assessed. RESULTS 25CN-NBOH dose-dependently increased the HTR, a 5-HT2A-mediated behavior, in mice. The selective 5-HT2A antagonist M100907 completely blocked the HTR induced by 25CN-NBOH, whereas the selective 5-HT2C antagonist SB242084 had no effect on the HTR. Administration of LY379268 (10 mg/kg SC) attenuated the HTR induced by 1 mg/kg 25CN-NBOH by ~ 50%. Chronic treatment (21 days) with LY379268 also attenuated the HTR response to 25CN-NBOH when tested 48 h after the last dose of LY379268. In locomotor tests, acute LY379268 significantly attenuated PCP-induced locomotor activity in the chronic vehicle treatment group; by contrast, there was only a trend for an overall interaction in the chronic LY379268 group, with LY379268 blocking the locomotor-stimulating effects of PCP only during the last 20 min. CONCLUSIONS These data are consistent with a functional interaction between mGlu2/3 and 5-HT2A receptors, although the specific mechanism for the interaction is not known. These data support the hypothesis that mGlu2/3 receptors play a prominent role in modulating the behavioral response to 5-HT2A receptor activation.
Collapse
|
4
|
Michaelovsky E, Carmel M, Frisch A, Salmon-Divon M, Pasmanik-Chor M, Weizman A, Gothelf D. Risk gene-set and pathways in 22q11.2 deletion-related schizophrenia: a genealogical molecular approach. Transl Psychiatry 2019; 9:15. [PMID: 30710087 PMCID: PMC6358611 DOI: 10.1038/s41398-018-0354-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 12/05/2018] [Accepted: 12/10/2018] [Indexed: 11/15/2022] Open
Abstract
The 22q11.2 deletion is a strong, but insufficient, "first hit" genetic risk factor for schizophrenia (SZ). We attempted to identify "second hits" from the entire genome in a unique multiplex 22q11.2 deletion syndrome (DS) family. Bioinformatic analysis of whole-exome sequencing and comparative-genomic hybridization array identified de novo and inherited, rare and damaging variants, including copy number variations, outside the 22q11.2 region. A specific 22q11.2-haplotype was associated with psychosis. The interaction of the identified "second hits" with the 22q11.2 haploinsufficiency may affect neurodevelopmental processes, including neuron projection, cytoskeleton activity, and histone modification in 22q11.2DS-ralated psychosis. A larger load of variants, involved in neurodevelopment, in combination with additional molecular events that affect sensory perception, olfactory transduction and G-protein-coupled receptor signaling may account for the development of 22q11.2DS-related SZ. Comprehensive analysis of multiplex families is a promising approach to the elucidation of the molecular pathophysiology of 22q11.2DS-related SZ with potential relevance to treatment.
Collapse
Affiliation(s)
- Elena Michaelovsky
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
- Felsenstein Medical Research Center, Petah Tikva, Israel.
| | - Miri Carmel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Felsenstein Medical Research Center, Petah Tikva, Israel
| | - Amos Frisch
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Felsenstein Medical Research Center, Petah Tikva, Israel
| | | | - Metsada Pasmanik-Chor
- Bioinformatics Unit, G.S. Wise Faculty of Life Science, Tel Aviv University, Tel Aviv, Israel
| | - Abraham Weizman
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Felsenstein Medical Research Center, Petah Tikva, Israel
- Geha Mental Health Center, Petah Tikva, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Doron Gothelf
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- The Behavioral Neurogenetics Center, Sheba Medical Center, Tel Hashomer, Israel
| |
Collapse
|
5
|
Wierońska JM, Zorn SH, Doller D, Pilc A. Metabotropic glutamate receptors as targets for new antipsychotic drugs: Historical perspective and critical comparative assessment. Pharmacol Ther 2015; 157:10-27. [PMID: 26549541 DOI: 10.1016/j.pharmthera.2015.10.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In this review, we aim to present, discuss and clarify our current understanding regarding the prediction of possible antipsychotic effects of metabotropic glutamate (mGlu) receptor ligands. The number of preclinical trials clearly indicates, that this group of compounds constitutes an excellent alternative to presently used antipsychotic therapy, being effective not only to positive, but also negative and cognitive symptoms of schizophrenia. Although the results of clinical trials that were performed for the group of mGlu2/3 agonists were not so enthusiastic as in animal studies, they still showed that mGlu ligands do not induced variety of side effects typical for presently used antipsychotics, and were generally well tolerated. The lack of satisfactory effectiveness towards schizophrenia symptoms of mGlu2/3 activators in humans could be a result of variety of uncontrolled factors and unidentified biomarkers different for each schizophrenia patient, that should be taken into consideration in the future set of clinical trials. The subject is still open for further research, and the novel classes of mGlu5 or mGlu2/3 agonists/PAMs were recently introduced, including the large group of compounds from the third group of mGlu receptors, especially of mGlu4 subtype. Finally, more precise treatment based on simultaneous administration of minimal doses of the ligands for two or more receptors, seems to be promising in the context of symptoms-specific schizophrenia treatment.
Collapse
Affiliation(s)
- Joanna M Wierońska
- Institute of Pharmacology, Polish Academy of Sciences, 31-343 Krakow, Poland
| | | | | | - Andrzej Pilc
- Institute of Pharmacology, Polish Academy of Sciences, 31-343 Krakow, Poland.
| |
Collapse
|
8
|
Ramsey T, Brennan MD. Glucagon-like peptide 1 receptor (GLP1R) haplotypes correlate with altered response to multiple antipsychotics in the CATIE trial. Schizophr Res 2014; 160:73-9. [PMID: 25449714 PMCID: PMC4258179 DOI: 10.1016/j.schres.2014.09.038] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 09/23/2014] [Accepted: 09/25/2014] [Indexed: 11/29/2022]
Abstract
Glucagon-like peptide 1 receptor (GLP1R) signaling has been shown to have antipsychotic properties in animal models and to impact glucose-dependent insulin release, satiety, memory, and learning in man. Previous work has shown that two coding mutations (rs6923761 and rs1042044) are associated with altered insulin release and cortisol levels. We identified four frequently occurring haplotypes in Caucasians, haplotype 1 through haplotype 4, spanning exons 4-7 and containing the two coding variants. We analyzed response to antipsychotics, defined as predicted change in PANSS-Total (dPANSS) at 18 months, in Caucasian subjects from the Clinical Antipsychotic Trial of Intervention Effectiveness treated with olanzapine (n=139), perphenazine (n=78), quetiapine (n=14), risperidone (n=143), and ziprasidone (n=90). Haplotype trend regression analysis revealed significant associations with dPANSS for olanzapine (best p=0.002), perphenazine (best p=0.01), quetiapine (best p=0.008), risperidone (best p=0.02), and ziprasidone (best p=0.007). We also evaluated genetic models for the two most common haplotypes. Haplotype 1 (uniquely including the rs1042044 [Leu(260)] allele) was associated with better response to olanzapine (p=0.002), and risperidone (p=0.006), and worse response to perphenazine (p=.03), and ziprasidone (p=0.003), with a recessive genetic model providing the best fit. Haplotype 2 (uniquely including the rs6923761 [Ser(168)] allele) was associated with better response to perphenazine (p=0.001) and worse response to olanzapine (p=.02), with a dominant genetic model providing the best fit. However, GLP1R haplotypes were not associated with antipsychotic-induced weight gain. These results link functional genetic variants in GLP1R to antipsychotic response.
Collapse
|
9
|
Ramsey TL, Liu Q, Massey BW, Brennan MD. Genotypic variation in the SV2C gene impacts response to atypical antipsychotics the CATIE study. Schizophr Res 2013; 149:21-5. [PMID: 23886675 PMCID: PMC3845218 DOI: 10.1016/j.schres.2013.07.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 06/27/2013] [Accepted: 07/02/2013] [Indexed: 11/27/2022]
Abstract
Pharmacogenetic (PGx) predictors of response would improve outcomes in antipsychotic treatment. Based on both biological rationale and prior evidence of an impact on Parkinson's disease, we conducted an association study for 106 SNPs in the synaptic vesicle protein 2C (SV2C) gene using genetic and treatment response data from the Clinical Trial of Antipsychotic Intervention Effectiveness (CATIE). We examined response to the atypical antipsychotics for Caucasian subjects in the blinded phases, Phases 1A, 1B, and 2, of CATIE with sample sizes as follows: olanzapine (N=134), quetiapine (N=124), risperidone (N=134), and ziprasidone (N=74). Response was defined as change in the Positive and Negative Syndrome Scale (PANSS) score using a mixed model repeat measures approach. Subjects homozygous for the T allele of rs11960832 displayed significantly worse response to olanzapine treatment, the only finding with study-wide significance (p=2.94×10(-5); false discovery rate=2.18×10(-2)). These subjects also displayed worse response to quetiapine with nominal significance (p=4.56×10(-2)). While no other SNP achieved study-wide significance, one SNP (rs10214163) influencing Parkinson's disease displayed nominally significant association with olanzapine and quetiapine response, while the second such SNP (rs30196) showed a statistical trend toward correlating with olanzapine and quetiapine response. Furthermore, both coding SNPs examined (rs31244 and rs2270927) displayed nominally significant correlations with treatment response: one for olanzapine (rs227092), and one for quetiapine (rs31244). The fact that multiple SNPs in SV2C may impact response to atypical antipsychotics suggests that further evaluation of SNPs in this gene as PGx predictors of antipsychotic response is warranted.
Collapse
Affiliation(s)
- Timothy L. Ramsey
- SureGene, LLC, 600 Envoy Circle, suite 601, Louisville, KY 40299 United States
| | - Qian Liu
- SureGene, LLC, 600 Envoy Circle, suite 601, Louisville, KY 40299 United States
| | - Bill W. Massey
- SureGene, LLC, 600 Envoy Circle, suite 601, Louisville, KY 40299 United States
| | - Mark D. Brennan
- SureGene, LLC, 600 Envoy Circle, suite 601, Louisville, KY 40299 United States,Communicating author, Mark D. Brennan, SureGene, LLC, 600 Envoy Circle, suite 601, Louisville, KY 40299 United States, , Phone: 502-287-0899, Fax: 859-663-2984
| |
Collapse
|