1
|
Medwid S, Schwarz UI, Choi YH, Keller D, Ross C, Kim RB. Solanidine Metabolites as Diet-Derived Biomarkers of CYP2D6-Mediated Tamoxifen Metabolism in Breast Cancer Patients. Clin Pharmacol Ther 2024; 116:1269-1277. [PMID: 39039708 DOI: 10.1002/cpt.3380] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 07/08/2024] [Indexed: 07/24/2024]
Abstract
Tamoxifen is an important antiestrogen for the treatment of hormone receptor-positive breast cancer and undergoes bioactivation by CYP2D6 to its active metabolite endoxifen. Genetic variation in CYP2D6 has been linked to endoxifen levels during tamoxifen therapy. Recent studies have suggested solanidine, a glycoalkaloid phytochemical in potatoes, undergoes CYP2D6-mediated metabolism to 4-OH-solanidine (m/z 414) and 3,4-seco-solanidine-3,4-dioic acid (SSDA; m/z 444). Using a retrospective cohort of 1,032 breast cancer patients on tamoxifen therapy, we examined the association of solanidine metabolites with CYP2D6 activity and its correlation with tamoxifen metabolism. Solanidine, 4-OH-solanidine, or SSDA was detected in 99.7% (N = 1,029) of plasma samples. Decreased solanidine metabolite ratios were found in CYP2D6 intermediate and poor metabolizers (P < 0.0001). Patients on CYP2D6 strong inhibitors had a 77.6% and 94.2% decrease in 4-OH-solandine/solanidine (P < 0.0001) and SSDA/solanidine (P < 0.0001), respectively. The ratio of endoxifen to tamoxifen was highly correlated with both 4-OH-solandine/solanidine (ρ = 0.3207, P < 0.0001) and SSDA/solanidine (ρ = 0.5022, P < 0.0001) ratios. Logistic regression modeling was used to determine that 4-OH-solanidine/solanidine and SSDA/solanidine ratios below 2.1 and 0.8, respectively, predicted endoxifen concentrations of <16 nM. In conclusion, solanidine, 4-OH-solanidine, and SSDA are diet-derived biomarkers of CYP2D6 activity. Moreover, in patients on tamoxifen therapy, 4-OH-solanidine/solanidine and SSDA/solanidine predicted endoxifen levels including the inhibitory effects of concomitantly prescribed CYP2D6-interacting medications. Accordingly, 4-OH-solanidine/solanidine or SSDA/solanidine ratio has the potential to be particularly useful prior to initiation of tamoxifen or for determining the impact of CYP2D6 drug interactions, as well as prior to switching from an aromatase inhibitor to tamoxifen.
Collapse
Affiliation(s)
- Samantha Medwid
- Department of Medicine, Western University, London, Ontario, Canada
| | - Ute I Schwarz
- Department of Medicine, Western University, London, Ontario, Canada
- Department of Physiology and Pharmacology, Western University, London, Ontario, Canada
| | - Yun-Hee Choi
- Department of Epidemiology and Biostatistics, Western University, London, Ontario, Canada
| | - Denise Keller
- London Health Sciences Centre, London, Ontario, Canada
| | - Cameron Ross
- Department of Medicine, Western University, London, Ontario, Canada
| | - Richard B Kim
- Department of Medicine, Western University, London, Ontario, Canada
- Department of Physiology and Pharmacology, Western University, London, Ontario, Canada
- London Health Sciences Centre, London, Ontario, Canada
- Lawson Health Research Institute, London, Ontario, Canada
| |
Collapse
|
2
|
Wollmann BM, Smith RL, Kringen MK, Ingelman-Sundberg M, Molden E, Størset E. Evidence for solanidine as a dietary CYP2D6 biomarker: Significant correlation with risperidone metabolism. Br J Clin Pharmacol 2024; 90:740-747. [PMID: 36960588 DOI: 10.1111/bcp.15721] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/28/2023] [Accepted: 03/18/2023] [Indexed: 03/25/2023] Open
Abstract
AIMS The extensive variability in cytochrome P450 2D6 (CYP2D6) metabolism is mainly caused by genetic polymorphisms. However, there is large, unexplained variability in CYP2D6 metabolism within CYP2D6 genotype subgroups. Solanidine, a dietary compound found in potatoes, is a promising phenotype biomarker predicting individual CYP2D6 metabolism. The aim of this study was to investigate the correlation between solanidine metabolism and the CYP2D6-mediated metabolism of risperidone in patients with known CYP2D6 genotypes. METHODS The study included therapeutic drug monitoring (TDM) data from CYP2D6-genotyped patients treated with risperidone. Risperidone and 9-hydroxyrisperidone levels were determined during TDM, and reprocessing of the respective TDM full-scan high-resolution mass spectrometry files was applied for semi-quantitative measurements of solanidine and five metabolites (M402, M414, M416, M440 and M444). Spearman's tests determined the correlations between solanidine metabolic ratios (MRs) and the 9-hydroxyrisperidone-to-risperidone ratio. RESULTS A total of 229 patients were included. Highly significant, positive correlationswere observed between all solanidine MRs and the 9-hydroxyrisperidone-to-risperidone ratio (ρ > 0.6, P < .0001). The strongest correlation was observed for the M444-to-solanidine MR in patients with functional CYP2D6 metabolism, i.e., genotype activity scores of 1 and 1.5 (ρ 0.72-0.77, P < .0001). CONCLUSION The present study shows strong, positive correlations between solanidine metabolism and CYP2D6-mediated risperidone metabolism. The strong correlation within patients carrying CYP2D6 genotypes encoding functional CYP2D6 metabolism suggests that solanidine metabolism may predict individual CYP2D6 metabolism, and hence potentially improve personalized dosing of drugs metabolized by CYP2D6.
Collapse
Affiliation(s)
| | - Robert L Smith
- Center for Psychopharmacology, Diakonhjemmet Hospital, Oslo, Norway
- NORMENT, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Marianne Kristiansen Kringen
- Center for Psychopharmacology, Diakonhjemmet Hospital, Oslo, Norway
- Department of Life Science and Health, OsloMet - Oslo Metropolitan University, Oslo, Norway
| | - Magnus Ingelman-Sundberg
- Department of Physiology and Pharmacology, Section of Pharmacogenetics, Karolinska Institutet, Stockholm, Sweden
| | - Espen Molden
- Center for Psychopharmacology, Diakonhjemmet Hospital, Oslo, Norway
- Department of Pharmacy, University of Oslo, Oslo, Norway
| | - Elisabet Størset
- Center for Psychopharmacology, Diakonhjemmet Hospital, Oslo, Norway
| |
Collapse
|
3
|
Kiiski JI, Neuvonen M, Kurkela M, Hirvensalo P, Hämäläinen K, Tarkiainen EK, Sistonen J, Korhonen M, Khan S, Orpana A, Filppula AM, Lehtonen M, Niemi M. Solanidine is a sensitive and specific dietary biomarker for CYP2D6 activity. Hum Genomics 2024; 18:11. [PMID: 38303026 PMCID: PMC10835938 DOI: 10.1186/s40246-024-00579-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 01/24/2024] [Indexed: 02/03/2024] Open
Abstract
BACKGROUND Individual assessment of CYP enzyme activities can be challenging. Recently, the potato alkaloid solanidine was suggested as a biomarker for CYP2D6 activity. Here, we aimed to characterize the sensitivity and specificity of solanidine as a CYP2D6 biomarker among Finnish volunteers with known CYP2D6 genotypes. RESULTS Using non-targeted metabolomics analysis, we identified 9152 metabolite features in the fasting plasma samples of 356 healthy volunteers. Machine learning models suggested strong association between CYP2D6 genotype-based phenotype classes with a metabolite feature identified as solanidine. Plasma solanidine concentration was 1887% higher in genetically poor CYP2D6 metabolizers (gPM) (n = 9; 95% confidence interval 755%, 4515%; P = 1.88 × 10-11), 74% higher in intermediate CYP2D6 metabolizers (gIM) (n = 89; 27%, 138%; P = 6.40 × 10-4), and 35% lower in ultrarapid CYP2D6 metabolizers (gUM) (n = 20; 64%, - 17%; P = 0.151) than in genetically normal CYP2D6 metabolizers (gNM; n = 196). The solanidine metabolites m/z 444 and 430 to solanidine concentration ratios showed even stronger associations with CYP2D6 phenotypes. Furthermore, the areas under the receiver operating characteristic and precision-recall curves for these metabolic ratios showed equal or better performances for identifying the gPM, gIM, and gUM phenotype groups than the other metabolites, their ratios to solanidine, or solanidine alone. In vitro studies with human recombinant CYP enzymes showed that solanidine was metabolized mainly by CYP2D6, with a minor contribution from CYP3A4/5. In human liver microsomes, the CYP2D6 inhibitor paroxetine nearly completely (95%) inhibited the metabolism of solanidine. In a genome-wide association study, several variants near the CYP2D6 gene associated with plasma solanidine metabolite ratios. CONCLUSIONS These results are in line with earlier studies and further indicate that solanidine and its metabolites are sensitive and specific biomarkers for measuring CYP2D6 activity. Since potato consumption is common worldwide, this biomarker could be useful for evaluating CYP2D6-mediated drug-drug interactions and to improve prediction of CYP2D6 activity in addition to genotyping.
Collapse
Affiliation(s)
- Johanna I Kiiski
- Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Clinical Pharmacology, University of Helsinki, Helsinki, Finland
| | - Mikko Neuvonen
- Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Clinical Pharmacology, University of Helsinki, Helsinki, Finland
| | - Mika Kurkela
- Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Clinical Pharmacology, University of Helsinki, Helsinki, Finland
| | - Päivi Hirvensalo
- Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Clinical Pharmacology, University of Helsinki, Helsinki, Finland
| | - Kreetta Hämäläinen
- Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Clinical Pharmacology, University of Helsinki, Helsinki, Finland
| | - E Katriina Tarkiainen
- Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Clinical Pharmacology, University of Helsinki, Helsinki, Finland
- Department of Clinical Pharmacology, HUS Diagnostic Center, Helsinki University Hospital, Helsinki, Finland
| | - Johanna Sistonen
- Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Clinical Pharmacology, University of Helsinki, Helsinki, Finland
- Genetics Laboratory, HUS Diagnostic Center, Helsinki University Hospital, Helsinki, Finland
| | - Mari Korhonen
- Genetics Laboratory, HUS Diagnostic Center, Helsinki University Hospital, Helsinki, Finland
| | - Sofia Khan
- Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Clinical Pharmacology, University of Helsinki, Helsinki, Finland
- Genetics Laboratory, HUS Diagnostic Center, Helsinki University Hospital, Helsinki, Finland
| | - Arto Orpana
- Genetics Laboratory, HUS Diagnostic Center, Helsinki University Hospital, Helsinki, Finland
| | - Anne M Filppula
- Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Clinical Pharmacology, University of Helsinki, Helsinki, Finland
- Pharmaceutical Sciences Laboratory, Åbo Akademi University, Turku, Finland
| | - Marko Lehtonen
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Mikko Niemi
- Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
- Department of Clinical Pharmacology, University of Helsinki, Helsinki, Finland.
- Department of Clinical Pharmacology, HUS Diagnostic Center, Helsinki University Hospital, Helsinki, Finland.
| |
Collapse
|
4
|
Müller JP, Sarömba J, Ziegler P, Tremmel R, Rengelshausen J, Schaeffeler E, Just KS, Schwab M, Kraus T, Stingl JC. Nutrimetric Validation of Solanidine as Dietary-Derived CYP2D6 Activity Marker In Vivo. Clin Pharmacol Ther 2024; 115:309-317. [PMID: 37971251 DOI: 10.1002/cpt.3106] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 11/01/2023] [Indexed: 11/19/2023]
Abstract
CYP2D6 is involved in the metabolism of many drugs. Its activity is affected by pharmacogenetic variability leading to highly polymorphic phenotypes between individuals, affecting safety and efficacy of drugs. Recently, solanidine, a steroidal alkaloid from potatoes, and its metabolites, has been identified as a dietary-derived activity marker for CYP2D6. The intraday variability in plasma within individuals has not been studied yet in healthy subjects. As part of a CYP phenotyping cocktail study with 20 healthy participants, plasma concentrations of solanidine, 4-OH-solanidine and 3,4-secosolanidine-3,4-dioic acid (SSDA) were determined using a sensitive liquid chromatography-mass spectrometry method in urine and in plasma at timepoints 0, 2.5, 5, 8, and 24 hours after intake of test substances. The participants were phenotyped for CYP2D6 with oral metoprolol (12.5 mg) with 15 plasma sampling points over 24 hours (DRKS00028922). Metabolic ratios (MRs) of metabolite to parent plasma concentrations were formed from single timepoints and the area under the curve (AUC). All participants were genotyped for CYP2D6. The intra-individual variability of the CYP2D6 metabolite SSDA was highly stable with a median SD of 11.62% over 24 hours. MR SSDA/solanidine was more variable (median SD 31.90%) but correlated significantly at all measured timepoints with AUC MR α-OH-metoprolol/metoprolol. The AUC MR SSDA/solanidine showed a significant linear relationship with the genetically predicted CYP2D6 activity score. This study substantiates the MR SSDA/solanidine as CYP2D6 activity marker. The high correlation with metoprolol MR indicates a valid prediction of the CYP2D6 phenotype at any timepoint during the study day.
Collapse
Affiliation(s)
- Julian Peter Müller
- Institute of Clinical Pharmacology, University Hospital of RWTH Aachen, Aachen, Germany
| | - Jens Sarömba
- Institute of Clinical Pharmacology, University Hospital of RWTH Aachen, Aachen, Germany
| | - Patrick Ziegler
- Institute for Occupational, Social and Environmental Medicine, University Hospital of RWTH Aachen, Aachen, Germany
| | - Roman Tremmel
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart and University of Tuebingen, Tuebingen, Germany
| | - Jens Rengelshausen
- Institute for Occupational, Social and Environmental Medicine, University Hospital of RWTH Aachen, Aachen, Germany
| | - Elke Schaeffeler
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart and University of Tuebingen, Tuebingen, Germany
| | - Katja S Just
- Institute of Clinical Pharmacology, University Hospital of RWTH Aachen, Aachen, Germany
| | - Matthias Schwab
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart and University of Tuebingen, Tuebingen, Germany
- Departments of Clinical Pharmacology, and Pharmacy and Biochemistry, University of Tuebingen, Tuebingen, Germany
| | - Thomas Kraus
- Institute for Occupational, Social and Environmental Medicine, University Hospital of RWTH Aachen, Aachen, Germany
| | - Julia C Stingl
- Institute of Clinical Pharmacology, University Hospital of RWTH Aachen, Aachen, Germany
| |
Collapse
|
5
|
Tremmel R, Hofmann U, Haag M, Schaeffeler E, Schwab M. Circulating Biomarkers Instead of Genotyping to Establish Metabolizer Phenotypes. Annu Rev Pharmacol Toxicol 2024; 64:65-87. [PMID: 37585662 DOI: 10.1146/annurev-pharmtox-032023-121106] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
Pharmacogenomics (PGx) enables personalized treatment for the prediction of drug response and to avoid adverse drug reactions. Currently, PGx mainly relies on the genetic information of absorption, distribution, metabolism, and excretion (ADME) targets such as drug-metabolizing enzymes or transporters to predict differences in the patient's phenotype. However, there is evidence that the phenotype-genotype concordance is limited. Thus, we discuss different phenotyping strategies using exogenous xenobiotics (e.g., drug cocktails) or endogenous compounds for phenotype prediction. In particular, minimally invasive approaches focusing on liquid biopsies offer great potential to preemptively determine metabolic and transport capacities. Early studies indicate that ADME phenotyping using exosomes released from the liver is reliable. In addition, pharmacometric modeling and artificial intelligence improve phenotype prediction. However, further prospective studies are needed to demonstrate the clinical utility of individualized treatment based on phenotyping strategies, not only relying on genetics. The present review summarizes current knowledge and limitations.
Collapse
Affiliation(s)
- Roman Tremmel
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany;
- University of Tuebingen, Tuebingen, Germany
| | - Ute Hofmann
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany;
- University of Tuebingen, Tuebingen, Germany
| | - Mathias Haag
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany;
- University of Tuebingen, Tuebingen, Germany
| | - Elke Schaeffeler
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany;
- University of Tuebingen, Tuebingen, Germany
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies," University of Tuebingen, Tuebingen, Germany
| | - Matthias Schwab
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany;
- University of Tuebingen, Tuebingen, Germany
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies," University of Tuebingen, Tuebingen, Germany
- Departments of Clinical Pharmacology, and Pharmacy and Biochemistry, University of Tuebingen, Tuebingen, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center Heidelberg (DKFZ), Partner Site, Tübingen, Germany
| |
Collapse
|
6
|
Wollmann BM, Størset E, Kringen MK, Molden E, Smith RL. Prediction of CYP2D6 poor metabolizers by measurements of solanidine and metabolites-a study in 839 patients with known CYP2D6 genotype. Eur J Clin Pharmacol 2023; 79:523-531. [PMID: 36806969 PMCID: PMC10038974 DOI: 10.1007/s00228-023-03462-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 01/26/2023] [Indexed: 02/23/2023]
Abstract
PURPOSE Poor metabolizers (PMs) of the highly polymorphic enzyme CYP2D6 are usually at high risk of adverse effects during standard recommended dosing of CYP2D6-metabolized drugs. We studied if the metabolism of solanidine, a dietary compound found in potatoes, could serve as a biomarker predicting the CYP2D6 PM phenotype for precision dosing. METHODS The study included 839 CYP2D6-genotyped patients who were randomized by a 4:1 ratio into test or validation cohorts. Full-scan high-resolution mass spectrometry data files of previously analyzed serum samples were reprocessed for identification and quantification of solanidine and seven metabolites. Metabolite-to-solanidine ratios (MRs) of the various solanidine metabolites were calculated prior to performing receiver operator characteristic (ROC) and multiple linear regression analyses on the test cohort. The MR thresholds obtained from the ROC analyses were tested for the prediction of CYP2D6 PMs in the validation cohort. RESULTS In the test cohort, the M414-to-solanidine MR attained the highest sensitivity and specificity parameters from the ROC analyses (0.98 and 1.00) and highest explained variance from the linear models (R2 = 0.68). Below these thresholds, CYP2D6 PM predictions were tested in the validation cohort providing positive and negative predictive values of 100% for the MR of M414, while similar values for the other MRs ranged from 20.5 to 73.3% and 96.7 to 99.3%, respectively. CONCLUSION The M414-to-solanidine MR is an excellent predictor of the CYP2D6 PM phenotype. By measuring solanidine and metabolites using liquid chromatography-mass spectrometry in patient serum samples, CYP2D6 PMs can easily be identified, hence facilitating the implementation of precision dosing in clinical practice.
Collapse
Affiliation(s)
- Birgit M Wollmann
- Center for Psychopharmacology, Diakonhjemmet Hospital, PO Box 23 Vinderen, 0319, Oslo, Norway.
| | - Elisabet Størset
- Center for Psychopharmacology, Diakonhjemmet Hospital, PO Box 23 Vinderen, 0319, Oslo, Norway
| | - Marianne Kristiansen Kringen
- Center for Psychopharmacology, Diakonhjemmet Hospital, PO Box 23 Vinderen, 0319, Oslo, Norway
- Department of Life Science and Health, OsloMet - Oslo Metropolitan University, Oslo, Norway
| | - Espen Molden
- Center for Psychopharmacology, Diakonhjemmet Hospital, PO Box 23 Vinderen, 0319, Oslo, Norway
- Department of Pharmacy, University of Oslo, Oslo, Norway
| | - Robert L Smith
- Center for Psychopharmacology, Diakonhjemmet Hospital, PO Box 23 Vinderen, 0319, Oslo, Norway
- NORMENT, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
7
|
Chaichana J, Khamenkhetkarn M, Sastraruji T, Monum T, O’Brien TE, Amornlertwatana Y, Jaikang C. Categorization of Cytochrome P4502D6 Activity Score by Urinary Amphetamine/Methamphetamine Ratios. Metabolites 2022; 12:metabo12121174. [PMID: 36557212 PMCID: PMC9788588 DOI: 10.3390/metabo12121174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/14/2022] [Accepted: 11/23/2022] [Indexed: 11/26/2022] Open
Abstract
Methamphetamine (MA) level in urine has been used for judgment in MA consumption. Metabolism and intoxication of MA are correlated with the activity of cytochrome P450 2D6 (CYP2D6). The activity score (AS) is a potential tool for predicting exposure and personalized dose of drugs metabolized by CYP2D6. Prediction of the CYP2D6 activity score might be described as MA intoxication. The objective of this study was to categorize the CYP2D6 activity score using the urinary amphetamine (AM)/MA ratio. Urine samples (n = 23,258) were collected. The levels of MA and AM were determined by a gas chromatography-nitrogen-phosphorus detector. The log AS was calculated by an AM/MA ratio and classified into four groups following the percentile position: lower than the 2.5th, the 2.5th-the 50th, the 50th-97.5th, and greater than the 97.5th percentile, respectively. The AS value for males presented was less than 0.024, 0.024-0.141, 0.141-0.836, and greater than 0.836. Meanwhile, the AS values were revealed to be lower than 0.023, 0.023-0.148, 0.148-0.850, and higher than 0.850 for females. The AS value of CYP2D6 can be applied to describe the toxicity of MA in forensic crime scenes and relapse behavior.
Collapse
Affiliation(s)
- Jatuporn Chaichana
- Toxicology Section, Regional Medical Science Center 1 Chiang Mai 191 Tumbon Don Keaw, Ampher Mae Rim, Chiang Mai 50180, Thailand
| | - Manee Khamenkhetkarn
- Toxicology Section, Regional Medical Science Center 1 Chiang Mai 191 Tumbon Don Keaw, Ampher Mae Rim, Chiang Mai 50180, Thailand
- Correspondence: (M.K.); (C.J.); Tel.:+66-53112188 (M.K.); +66-53935432 (C.J.)
| | | | - Tawachai Monum
- Department of Forensic Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Timothy E. O’Brien
- Department of Mathematics and Statistics, Loyola University Chicago, 1032 W.Sheridan Road, Chicago, IL 60660-1537, USA
| | - Yutti Amornlertwatana
- Department of Forensic Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Churdsak Jaikang
- Department of Forensic Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Correspondence: (M.K.); (C.J.); Tel.:+66-53112188 (M.K.); +66-53935432 (C.J.)
| |
Collapse
|
8
|
van Groen BD, Allegaert K, Tibboel D, de Wildt SN. Innovative approaches and recent advances in the study of ontogeny of drug metabolism and transport. Br J Clin Pharmacol 2022; 88:4285-4296. [PMID: 32851677 PMCID: PMC9545189 DOI: 10.1111/bcp.14534] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 08/10/2020] [Accepted: 08/16/2020] [Indexed: 11/30/2022] Open
Abstract
The disposition of a drug is driven by various processes, such as drug metabolism, drug transport, glomerular filtration and body composition. These processes are subject to developmental changes reflecting growth and maturation along the paediatric continuum. However, knowledge gaps exist on these changes and their clinical impact. Filling these gaps may aid better prediction of drug disposition and creation of age-appropriate dosing guidelines. We present innovative approaches to study these developmental changes in relation to drug metabolism and transport. First, analytical methods such as including liquid chromatography-mass spectrometry for proteomic analyses allow quantitation of the expressions of a wide variety of proteins, e.g. membrane transporters, in a small piece of organ tissue. The latter is specifically important for paediatric research, where tissues are scarcely available. Second, innovative study designs using radioactive labelled microtracers allowed study-without risk for the child-of the oral bioavailability of compounds used as markers for certain drug metabolism pathways. Third, the use of modelling and simulation to support dosing recommendations for children is supported by both the European Medicines Agency and the US Food and Drug Administration. This may even do away with the need for a paediatric trial. Physiologically based pharmacokinetics models, which include age-specific physiological information are, therefore, increasingly being used, not only to aid paediatric drug development but also to improve existing drug therapies.
Collapse
Affiliation(s)
- Bianca D. van Groen
- Intensive Care and Department of Pediatric Surgery, Erasmus MC‐Sophia Children's HospitalRotterdamthe Netherlands
| | - Karel Allegaert
- Department of Development and Regeneration, KU LeuvenLeuvenBelgium
- Department of Pharmacy and Pharmaceutical Sciences, KU LeuvenLeuvenBelgium
- Department of Clinical Pharmacy, Erasmus MCRotterdamthe Netherlands
| | - Dick Tibboel
- Intensive Care and Department of Pediatric Surgery, Erasmus MC‐Sophia Children's HospitalRotterdamthe Netherlands
| | - Saskia N. de Wildt
- Intensive Care and Department of Pediatric Surgery, Erasmus MC‐Sophia Children's HospitalRotterdamthe Netherlands
- Department of Pharmacology and ToxicologyRadboud Institute of Health Sciences, Radboud University Medical CenterNijmegenthe Netherlands
| |
Collapse
|
9
|
Behrle AC, Douglas J, Leeder JS, van Haandel L. Isolation and Identification of 3,4-Seco-Solanidine-3,4-dioic acid (SSDA) as a Urinary Biomarker of Cytochrome P450 2D6 (CYP2D6) Activity. Drug Metab Dispos 2022; 50:DMD-AR-2022-000957. [PMID: 35878926 PMCID: PMC9513856 DOI: 10.1124/dmd.122.000957] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/24/2022] [Accepted: 06/29/2022] [Indexed: 11/22/2022] Open
Abstract
Cytochrome P450 2D6 (CYP2D6), is responsible for the metabolism and elimination of approximately 25% of clinically used drugs, including antidepressants and antipsychotics, and its activity varies considerably on a population basis primary due to genetic variation. CYP2D6 phenotype can be assessed in vivo following administration of an exogenous probe compound, such as dextromethorphan or debrisoquine, but use of a biomarker that does not require administration of an exogenous compound (i.e., drug) has considerable appeal for assessing CYP2D6 activity in vulnerable populations, such as children. The goal of this study was to isolate, purify and identify an "endogenous" urinary biomarker (M1; m/z 444.3102) of CYP2D6 activity reported previously. Several chromatographic separation techniques (reverse phase HPLC, cation exchange and analytical reverse phase UPLC) were used to isolate and purify 96 μg of M1 from 40 L of urine. Subsequently, 1D and 2D NMR, and functional group modification reactions were used to elucidate its structure. Analysis of mass spectrometry and NMR data revealed M1 to have similar spectroscopic features to the nitrogen-containing steroidal alkaloid, solanidine. 2D NMR characterization by HMBC, COSY, TOCSY, and HSQC-TOCSY proved to be invaluable in the structural elucidation of M1; derivatization of M1 revealed the presence of two carboxylic acid moieties. M1 was determined to be a steroidal alkaloid with a solanidine backbone that had undergone C-C bond scission to yield 3,4-seco-solanidine-3,4-dioic acid (SSDA). SSDA may have value as a dietary biomarker of CYP2D6 activity in populations where potato consumption is common. Significance Statement Endogenous biomarkers of processes involved in drug disposition and response may allow improved individualization of drug treatment, especially in vulnerable populations, such as children. Given that several CYP2D6 substrates are commonly used in pediatrics and the ubiquitous nature of potato consumption in western diets, SSDA has considerable appeal as non-invasive biomarker of CYP2D6 activity to guide treatment with CYP2D6 substrates in children and adults.
Collapse
Affiliation(s)
- Andrew C Behrle
- Clinical Pharmacology, Toxicology and Therapeutic Innovation, Children's Mercy Kansas City, United States
| | - Justin Douglas
- NMR Core Laboratory, University of Kansas, United States
| | - J Steven Leeder
- Children's Mercy Res Inst, Children's Mercy Kansas City, United States
| | - Leon van Haandel
- Clinical Pharmacology, Toxicology and Therapeutic Innovation, Children's Mercy Kansas City, United States
| |
Collapse
|
10
|
Windley HR, Starrs D, Stalenberg E, Rothman JM, Ganzhorn JU, Foley WJ. Plant secondary metabolites and primate food choices: A meta-analysis and future directions. Am J Primatol 2022; 84:e23397. [PMID: 35700311 DOI: 10.1002/ajp.23397] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 05/06/2022] [Accepted: 05/11/2022] [Indexed: 11/07/2022]
Abstract
The role of plant secondary metabolites (PSMs) in shaping the feeding decisions, habitat suitability, and reproductive success of herbivorous mammals has been a major theme in ecology for decades. Although primatologists were among the first to test these ideas, studies of PSMs in the feeding ecology of non-human primates have lagged in recent years, leading to a recent call for primatologists to reconnect with phytochemists to advance our understanding of the primate nutrition. To further this case, we present a formal meta-analysis of diet choice in response to PSMs based on field studies on wild primates. Our analysis of 155 measurements of primate feeding response to PSMs is drawn from 53 studies across 43 primate species which focussed primarily on the effect of three classes of PSMs tannins, phenolics, and alkaloids. We found a small but significant effect of PSMs on the diet choice of wild primates, which was largely driven by the finding that colobine primates showed a moderate aversion to condensed tannins. Conversely, there was no evidence that PSMs had a significant deterrent effect on food choices of non-colobine primates when all were combined into a single group. Furthermore, within the colobine primates, no other PSMs influenced feeding choices and we found no evidence that foregut anatomy significantly affected food choice with respect to PSMs. We suggest that methodological improvements related to experimental approaches and the adoption of new techniques including metabolomics are needed to advance our understanding of primate diet choice.
Collapse
Affiliation(s)
- Hannah R Windley
- Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia.,Wildlife Ecology Laboratory, Department of Wildlife Biology, Forestry and Forest Products Research Institute, Tsukuba, Ibaraki, Japan
| | - Danswell Starrs
- Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Eleanor Stalenberg
- Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia.,Hawkesbury Institute of the Environment, Western Sydney University, Richmond, New South Wales, Australia
| | - Jessica M Rothman
- Department of Anthropology, Hunter College of the City University of New York, and New York Consortium in Evolutionary Primatology, New York, New York, USA
| | - Joerg U Ganzhorn
- Animal Ecology and Conservation, Universität Hamburg, Hamburg, Germany
| | - William J Foley
- Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia.,Animal Ecology and Conservation, Universität Hamburg, Hamburg, Germany
| |
Collapse
|
11
|
Silveira AMR, Duarte GHB, Fernandes AMADP, Garcia PHD, Vieira NR, Antonio MA, Carvalho PDO. Serum Predose Metabolic Profiling for Prediction of Rosuvastatin Pharmacokinetic Parameters in Healthy Volunteers. Front Pharmacol 2021; 12:752960. [PMID: 34867363 PMCID: PMC8633954 DOI: 10.3389/fphar.2021.752960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 10/13/2021] [Indexed: 11/23/2022] Open
Abstract
Rosuvastatin is a well-known lipid-lowering agent generally used for hypercholesterolemia treatment and coronary artery disease prevention. There is a substantial inter-individual variability in the absorption of statins usually caused by genetic polymorphisms leading to a variation in the corresponding pharmacokinetic parameters, which may affect drug therapy safety and efficacy. Therefore, the investigation of metabolic markers associated with rosuvastatin inter-individual variability is exceedingly relevant for drug therapy optimization and minimizing side effects. This work describes the application of pharmacometabolomic strategies using liquid chromatography coupled to mass spectrometry to investigate endogenous plasma metabolites capable of predicting pharmacokinetic parameters in predose samples. First, a targeted method for the determination of plasma concentration levels of rosuvastatin was validated and applied to obtain the pharmacokinetic parameters from 40 enrolled individuals; then, predose samples were analyzed using a metabolomic approach to search for associations between endogenous metabolites and the corresponding pharmacokinetic parameters. Data processing using machine learning revealed some candidates including sterols and bile acids, carboxylated metabolites, and lipids, suggesting the approach herein described as promising for personalized drug therapy.
Collapse
Affiliation(s)
| | | | | | | | - Nelson Rogerio Vieira
- Integrated Unit of Pharmacology and Gastroenterology (UNIFAG), São Francisco University-USF, Bragança Paulista, Brazil
| | - Marcia Aparecida Antonio
- Integrated Unit of Pharmacology and Gastroenterology (UNIFAG), São Francisco University-USF, Bragança Paulista, Brazil
| | | |
Collapse
|
12
|
Darney K, Lautz LS, Béchaux C, Wiecek W, Testai E, Amzal B, Dorne JLCM. Human variability in polymorphic CYP2D6 metabolism: Implications for the risk assessment of chemicals in food and emerging designer drugs. ENVIRONMENT INTERNATIONAL 2021; 156:106760. [PMID: 34256299 DOI: 10.1016/j.envint.2021.106760] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 07/03/2021] [Accepted: 07/04/2021] [Indexed: 06/13/2023]
Abstract
The major human cytochrome P450 CYP2D6 isoform enzyme plays important roles in the liver and in the brain with regards to xenobiotic metabolism. Xenobiotics as CYP2D6 substrates include a whole range of pharmaceuticals, pesticides and plant alkaloids to cite but a few. In addition, a number of endogenous compounds have been shown to be substrates of CYP2D6 including trace amines in the brain such as tyramine and 5-methoxytryptamine as well as anandamide and progesterone. Because of the polymorphic nature of CYP2D6, considerable inter-phenotypic and inter-ethnic differences in the pharmaco/toxicokinetics (PK/TK) and metabolism of CYP2D6 substrates exist with potential consequences on the pharmacology and toxicity of chemicals. Here, large extensive literature searches have been performed to collect PK data from published human studies for a wide range of pharmaceutical probe substrates and investigate human variability in CYP2D6 metabolism. The computed kinetic parameters resulted in the largest open source database, quantifying inter-phenotypic differences for the kinetics of CYP2D6 probe substrates in Caucasian and Asian populations, to date. The database is available in supplementary material (CYPD6 DB) and EFSA knowledge junction (DOI to added). Subsequently, meta-analyses using a hierarchical Bayesian model for markers of chronic oral exposure (oral clearance, area under the plasma concentration time curve) and acute oral exposure (maximum plasma concentration (Cmax) provided estimates of inter-phenotypic differences and CYP2D6-related uncertainty factors (UFs) for chemical risk assessment in Caucasian and Asian populations classified as ultra-rapid (UM), extensive (EMs), intermediate (IMs) and poor metabolisers (PMs). The model allowed the integration of inter-individual (i.e. inter-phenotypic and inter-ethnic), inter-compound and inter-study variability together with uncertainty in each PK parameter. Key findings include 1. Higher frequencies of PMs in Caucasian populations compared to Asian populations (>8% vs 1-2%) for which EM and IM were the most frequent phenotype. 2. Large inter-phenotypic differences in PK parameters for Caucasian EMs (coefficients of variation (CV) > 50%) compared with Caucasian PMs and Asian EMs and IMs (i.e CV < 40%). 3. Inter-phenotypic PK differences between EMs and PMs in Caucasian populations increase with the quantitative contribution of CYP2D6 for the metabolism (fm) for a range of substrates (fmCYP2D6 range: 20-95% of dose) (range: 1-54) to a much larger extent than those for Asian populations (range: 1-4). 4. Exponential meta-regressions between FmCYP2D6 in EMs and inter-phenotypic differences were also shown to differ between Caucasian and Asian populations as well as CYP2D6-related UFs. Finally, implications of these results for the risk assessment of food chemicals and emerging designer drugs of public health concern, as CYP2D6 substrates, are highlighted and include the integration of in vitro metabolism data and CYP2D6-variability distributions for the development of quantitative in vitro in vivo extrapolation models.
Collapse
Affiliation(s)
- K Darney
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), 14 rue Pierre et Marie Curie, 94701 Maisons-Alfort, France
| | - L S Lautz
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), 14 rue Pierre et Marie Curie, 94701 Maisons-Alfort, France
| | - C Béchaux
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), 14 rue Pierre et Marie Curie, 94701 Maisons-Alfort, France
| | - W Wiecek
- Certara UK Ltd, Audrey House, 5th Floor, 16-20 Ely Place, London EC1N 6SN, United Kingdom
| | - E Testai
- Istituto Superior di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - B Amzal
- Quinten Health, 75017 Paris, France
| | - J L C M Dorne
- European Food Safety Authority, Via Carlo Magno,1A, 43126 Parma, Italy.
| |
Collapse
|
13
|
Magliocco G, Desmeules J, Matthey A, Quirós-Guerrero LM, Bararpour N, Joye T, Marcourt L, F Queiroz E, Wolfender JL, Gloor Y, Thomas A, Daali Y. METABOLOMICS REVEALS BIOMARKERS IN HUMAN URINE AND PLASMA TO PREDICT CYP2D6 ACTIVITY. Br J Pharmacol 2021; 178:4708-4725. [PMID: 34363609 PMCID: PMC9290485 DOI: 10.1111/bph.15651] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 06/30/2021] [Accepted: 08/02/2021] [Indexed: 12/01/2022] Open
Abstract
Background and Purpose Individualized assessment of cytochrome P450 2D6 (CYP2D6) activity is usually performed through phenotyping following administration of a probe drug to measure the enzyme's activity. To avoid any iatrogenic harm (allergic drug reaction, dosing error) related to the probe drug, the development of non‐burdensome tools for real‐time phenotyping of CYP2D6 could significantly contribute to precision medicine. This study focuses on the identification of markers of the CYP2D6 enzyme in human biofluids using an LC‐high‐resolution mass spectrometry‐based metabolomic approach. Experimental Approach Plasma and urine samples from healthy volunteers were analysed before and after intake of a daily dose of paroxetine 20 mg over 7 days. CYP2D6 genotyping and phenotyping, using single oral dose of dextromethorphan 5 mg, were also performed in all participants. Key Results We report four metabolites of solanidine and two unknown compounds as possible novel CYP2D6 markers. Mean relative intensities of these features were significantly reduced during the inhibition session compared with the control session (n = 37). Semi‐quantitative analysis showed that the largest decrease (−85%) was observed for the ion m/z 432.3108 normalized to solanidine (m/z 398.3417). Mean relative intensities of these ions were significantly higher in the CYP2D6 normal–ultrarapid metabolizer group (n = 37) compared with the poor metabolizer group (n = 6). Solanidine intensity was more than 15 times higher in CYP2D6‐deficient individuals compared with other volunteers. Conclusion and Implications The applied untargeted metabolomic strategy identified potential novel markers capable of semi‐quantitatively predicting CYP2D6 activity, a promising discovery for personalized medicine.
Collapse
Affiliation(s)
- Gaëlle Magliocco
- Division of Clinical Pharmacology and Toxicology, Geneva University Hospitals, Geneva, Switzerland.,School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland.,Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland
| | - Jules Desmeules
- Division of Clinical Pharmacology and Toxicology, Geneva University Hospitals, Geneva, Switzerland.,School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland.,Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland.,Clinical Research Center, Geneva University Hospitals, Geneva, Switzerland
| | - Alain Matthey
- Division of Clinical Pharmacology and Toxicology, Geneva University Hospitals, Geneva, Switzerland.,Clinical Research Center, Geneva University Hospitals, Geneva, Switzerland
| | - Luis M Quirós-Guerrero
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland.,Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland
| | - Nasim Bararpour
- Forensic Toxicology and Chemistry Unit, CURML, Lausanne University Hospital, Geneva University Hospitals, Lausanne, Geneva, Switzerland.,Faculty Unit of Toxicology, CURML, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Timothée Joye
- Forensic Toxicology and Chemistry Unit, CURML, Lausanne University Hospital, Geneva University Hospitals, Lausanne, Geneva, Switzerland.,Faculty Unit of Toxicology, CURML, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Laurence Marcourt
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland.,Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland
| | - Emerson F Queiroz
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland.,Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland
| | - Jean-Luc Wolfender
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland.,Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland
| | - Yvonne Gloor
- Division of Clinical Pharmacology and Toxicology, Geneva University Hospitals, Geneva, Switzerland
| | - Aurélien Thomas
- Forensic Toxicology and Chemistry Unit, CURML, Lausanne University Hospital, Geneva University Hospitals, Lausanne, Geneva, Switzerland.,Faculty Unit of Toxicology, CURML, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Youssef Daali
- Division of Clinical Pharmacology and Toxicology, Geneva University Hospitals, Geneva, Switzerland.,School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland.,Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland
| |
Collapse
|
14
|
Chapron BD, Chapron A, Leeder JS. Recent advances in the ontogeny of drug disposition. Br J Clin Pharmacol 2021; 88:4267-4284. [PMID: 33733546 DOI: 10.1111/bcp.14821] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 02/12/2021] [Accepted: 02/22/2021] [Indexed: 12/11/2022] Open
Abstract
Developmental changes that occur throughout childhood have long been known to impact drug disposition. However, pharmacokinetic studies in the paediatric population have historically been limited due to ethical concerns arising from incorporating children into clinical trials. As such, much of the early work in the field of developmental pharmacology was reliant on difficult-to-interpret in vitro and in vivo animal studies. Over the last 2 decades, our understanding of the mechanistic processes underlying age-related changes in drug disposition has advanced considerably. Progress has largely been driven by technological advances in mass spectrometry-based methods for quantifying proteins implicated in drug disposition, and in silico tools that leverage these data to predict age-related changes in pharmacokinetics. This review summarizes our current understanding of the impact of childhood development on drug disposition, particularly focusing on research of the past 20 years, but also highlighting select examples of earlier foundational research. Equally important to the studies reviewed herein are the areas that we cannot currently describe due to the lack of research evidence; these gaps provide a map of drug disposition pathways for which developmental trends still need to be characterized.
Collapse
Affiliation(s)
- Brian D Chapron
- Division of Clinical Pharmacology, Toxicology and Therapeutic Innovation, Department of Pediatrics, Children's Mercy Hospital, Kansas City, MO, USA
| | - Alenka Chapron
- Division of Clinical Pharmacology, Toxicology and Therapeutic Innovation, Department of Pediatrics, Children's Mercy Hospital, Kansas City, MO, USA
| | - J Steven Leeder
- Division of Clinical Pharmacology, Toxicology and Therapeutic Innovation, Department of Pediatrics, Children's Mercy Hospital, Kansas City, MO, USA.,Schools of Medicine and Pharmacy, University of Missouri-Kansas City, MO, USA
| |
Collapse
|
15
|
Taylor C, Crosby I, Yip V, Maguire P, Pirmohamed M, Turner RM. A Review of the Important Role of CYP2D6 in Pharmacogenomics. Genes (Basel) 2020; 11:E1295. [PMID: 33143137 PMCID: PMC7692531 DOI: 10.3390/genes11111295] [Citation(s) in RCA: 163] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 10/25/2020] [Accepted: 10/28/2020] [Indexed: 12/14/2022] Open
Abstract
Cytochrome P450 2D6 (CYP2D6) is a critical pharmacogene involved in the metabolism of ~20% of commonly used drugs across a broad spectrum of medical disciplines including psychiatry, pain management, oncology and cardiology. Nevertheless, CYP2D6 is highly polymorphic with single-nucleotide polymorphisms, small insertions/deletions and larger structural variants including multiplications, deletions, tandem arrangements, and hybridisations with non-functional CYP2D7 pseudogenes. The frequency of these variants differs across populations, and they significantly influence the drug-metabolising enzymatic function of CYP2D6. Importantly, altered CYP2D6 function has been associated with both adverse drug reactions and reduced drug efficacy, and there is growing recognition of the clinical and economic burdens associated with suboptimal drug utilisation. To date, pharmacogenomic clinical guidelines for at least 48 CYP2D6-substrate drugs have been developed by prominent pharmacogenomics societies, which contain therapeutic recommendations based on CYP2D6-predicted categories of metaboliser phenotype. Novel algorithms to interpret CYP2D6 function from sequencing data that consider structural variants, and machine learning approaches to characterise the functional impact of novel variants, are being developed. However, CYP2D6 genotyping is yet to be implemented broadly into clinical practice, and so further effort and initiatives are required to overcome the implementation challenges and deliver the potential benefits to the bedside.
Collapse
Affiliation(s)
- Christopher Taylor
- Wolfson Centre for Personalised Medicine, University of Liverpool, Liverpool L69 3BX, UK; (V.Y.); (M.P.); (R.M.T.)
- MC Diagnostics, St Asaph Business Park, Saint Asaph LL17 0LJ, UK; (I.C.); (P.M.)
| | - Ian Crosby
- MC Diagnostics, St Asaph Business Park, Saint Asaph LL17 0LJ, UK; (I.C.); (P.M.)
| | - Vincent Yip
- Wolfson Centre for Personalised Medicine, University of Liverpool, Liverpool L69 3BX, UK; (V.Y.); (M.P.); (R.M.T.)
| | - Peter Maguire
- MC Diagnostics, St Asaph Business Park, Saint Asaph LL17 0LJ, UK; (I.C.); (P.M.)
| | - Munir Pirmohamed
- Wolfson Centre for Personalised Medicine, University of Liverpool, Liverpool L69 3BX, UK; (V.Y.); (M.P.); (R.M.T.)
| | - Richard M. Turner
- Wolfson Centre for Personalised Medicine, University of Liverpool, Liverpool L69 3BX, UK; (V.Y.); (M.P.); (R.M.T.)
| |
Collapse
|
16
|
Magliocco G, Daali Y. Modern approaches for the phenotyping of cytochrome P450 enzymes in children. Expert Rev Clin Pharmacol 2020; 13:671-674. [PMID: 32500746 DOI: 10.1080/17512433.2020.1779057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- G Magliocco
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva , Geneva, Switzerland.,Division of Clinical Pharmacology and Toxicology, Geneva University Hospitals , Geneva, Switzerland
| | - Y Daali
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva , Geneva, Switzerland.,Division of Clinical Pharmacology and Toxicology, Geneva University Hospitals , Geneva, Switzerland.,Faculty of Medicine, University of Geneva , Geneva, Switzerland.,Swiss Center for Applied Human Toxicology , Geneva, Switzerland
| |
Collapse
|
17
|
Boone EC, Wang WY, Gaedigk R, Cherner M, Bérard A, Leeder JS, Miller NA, Gaedigk A. Long-Distance Phasing of a Tentative "Enhancer" Single-Nucleotide Polymorphism With CYP2D6 Star Allele Definitions. Front Pharmacol 2020; 11:486. [PMID: 32457600 PMCID: PMC7226225 DOI: 10.3389/fphar.2020.00486] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 03/27/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND The CYP2D6 gene locus has been extensively studied over decades, yet a portion of variability in CYP2D6 activity cannot be explained by known sequence variations within the gene, copy number variation, or structural rearrangements. It was proposed that rs5758550, located 116 kb downstream of the CYP2D6 gene locus, increases gene expression and thus contributes to variability in CYP2D6 activity. This finding has, however, not been validated. The purpose of the study was to address a major technological barrier, i.e., experimentally linking rs5758550, also referred to as the "enhancer" single-nucleotide polymorphism (SNP), to CYP2D6 haplotypes >100 kb away. To overcome this challenge is essential to ultimately determine the contribution of the "enhancer" SNP to interindividual variability in CYP2D6 activity. METHODS A large ethnically mixed population sample (n=3,162) was computationally phased to determine linkage between the "enhancer" SNP and CYP2D6 haplotypes (or star alleles). To experimentally validate predicted linkages, DropPhase2D6, a digital droplet PCR (ddPCR)-based method was developed. 10X Genomics Linked-Reads were utilized as a proof of concept. RESULTS Phasing predicted that the "enhancer" SNP can occur on numerous CYP2D6 haplotypes including CYP2D6*1, *2, *5, and *41 and suggested that linkage is incomplete, i.e., a portion of these alleles do not have the "enhancer" SNP. Phasing also revealed differences among the European and African ancestry data sets regarding the proportion of alleles with and without the "enhancer" SNP. DropPhase2D6 was utilized to confirm or refute the predicted "enhancer" SNP location for individual samples, e.g., of n=3 samples genotyped as *1/*41, rs5758550 was on the *41 allele of two samples and on the *1 allele of one sample. Our findings highlight that the location of the "enhancer" SNP must not be assigned by "default." Furthermore, linkage between the "enhancer" SNP and CYP2D6 star allele haplotypes was confirmed with 10X Genomics technology. CONCLUSIONS Since the "enhancer" SNP can be present on a portion of normal, decreased, or no function alleles, the phase of the "enhancer" SNP must be considered when investigating the impact of the "enhancer" SNP on CYP2D6 activity.
Collapse
Affiliation(s)
- Erin C. Boone
- Division of Clinical Pharmacology, Toxicology and Therapeutic Innovation, Children's Mercy Kansas City, Kansas City, MO, United States
| | - Wendy Y. Wang
- Division of Clinical Pharmacology, Toxicology and Therapeutic Innovation, Children's Mercy Kansas City, Kansas City, MO, United States
| | - Roger Gaedigk
- Division of Clinical Pharmacology, Toxicology and Therapeutic Innovation, Children's Mercy Kansas City, Kansas City, MO, United States
- School of Medicine, University of Missouri-Kansas City, Kansas City, MO, United States
| | - Mariana Cherner
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, United States
| | - Anick Bérard
- Faculty of Pharmacy, University of Montreal, Montreal, QC, Canada
- Research Center, CHU Sainte-Justine, Montreal, QC, Canada
| | - J. Steven Leeder
- Division of Clinical Pharmacology, Toxicology and Therapeutic Innovation, Children's Mercy Kansas City, Kansas City, MO, United States
- School of Medicine, University of Missouri-Kansas City, Kansas City, MO, United States
| | - Neil A. Miller
- School of Medicine, University of Missouri-Kansas City, Kansas City, MO, United States
- Center for Pediatric Genomic Medicine, Children's Mercy Kansas City, Kansas City, MO, United States
| | - Andrea Gaedigk
- Division of Clinical Pharmacology, Toxicology and Therapeutic Innovation, Children's Mercy Kansas City, Kansas City, MO, United States
- School of Medicine, University of Missouri-Kansas City, Kansas City, MO, United States
| |
Collapse
|
18
|
Zhang H, Basit A, Wolford C, Chen KF, Gaedigk A, Lin YS, Leeder JS, Prasad B. Normalized Testosterone Glucuronide as a Potential Urinary Biomarker for Highly Variable UGT2B17 in Children 7-18 Years. Clin Pharmacol Ther 2020; 107:1149-1158. [PMID: 31900930 DOI: 10.1002/cpt.1764] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 12/17/2019] [Indexed: 12/25/2022]
Abstract
UDP-glucuronosyltransferase 2B17 (UGT2B17) is a highly variable androgen-metabolizing and drug-metabolizing enzyme. UGT2B17 exhibits a unique ontogeny profile characterized by a dramatic increase in hepatic protein expression from prepubertal age to adulthood. Age, sex, copy number variation (CNV), and single nucleotide polymorphisms only explain 26% of variability in protein expression, highlighting the need for a phenotypic biomarker for predicting interindividual variability in glucuronidation of UGT2B17 substrates. Here, we propose testosterone glucuronide (TG) normalized by androsterone glucuronide (TG/AG) as a urinary UGT2B17 biomarker, and examine the associations among urinary TG/AG and age, sex, and CNV. We performed targeted metabolomics of 12 androgen conjugates with liquid-chromatography tandem mass spectrometry in 63 pediatric subjects ages 7-18 years followed over 7 visits in 3 years. Consistent with the reported developmental trajectory of UGT2B17 protein expression, urinary TG/AG is significantly associated with age, sex, and CNV. In conclusion, TG/AG shows promise as a phenotypic urinary UGT2B17 biomarker.
Collapse
Affiliation(s)
- Haeyoung Zhang
- Department of Pharmaceutics, University of Washington, Seattle, Washington, USA
| | - Abdul Basit
- Department of Pharmaceutics, University of Washington, Seattle, Washington, USA
| | - Chris Wolford
- Department of Pharmaceutics, University of Washington, Seattle, Washington, USA
| | - Kuan-Fu Chen
- Department of Pharmaceutics, University of Washington, Seattle, Washington, USA
| | - Andrea Gaedigk
- Division of Clinical Pharmacology, Toxicology, and Therapeutic Innovation, Department of Pediatrics, Children's Mercy Kansas City, University of Missouri-Kansas City, Kansas City, Missouri, USA
| | - Yvonne S Lin
- Department of Pharmaceutics, University of Washington, Seattle, Washington, USA
| | - J Steven Leeder
- Division of Clinical Pharmacology, Toxicology, and Therapeutic Innovation, Department of Pediatrics, Children's Mercy Kansas City, University of Missouri-Kansas City, Kansas City, Missouri, USA
| | - Bhagwat Prasad
- Department of Pharmaceutics, University of Washington, Seattle, Washington, USA
| |
Collapse
|
19
|
Toward precision medicine in pediatric population using cytochrome P450 phenotyping approaches and physiologically based pharmacokinetic modeling. Pediatr Res 2020; 87:441-449. [PMID: 31600772 DOI: 10.1038/s41390-019-0609-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 09/04/2019] [Accepted: 09/22/2019] [Indexed: 01/18/2023]
Abstract
The activity of drug-metabolizing enzymes (DME) shows high inter- and intra-individual variability. Genetic polymorphisms, exposure to drugs, and environmental toxins are known to significantly alter DME expression. In addition, the activity of these enzymes is highly age-dependent due to maturation processes that occur during development. Currently, there is a vast choice of phenotyping methods in adults using exogenous probes to characterize the activity of these enzymes. However, this can hardly be applied to children since it requires the intake of non-therapeutic xenobiotics. In addition, sampling may be challenging in the pediatric population for a variety of reasons: limited volume (e.g., blood), inappropriate sampling methods for age (e.g., urine), and metric requiring invasive or multiple blood samples. This review covers the main existing methods that can be used in the pediatric population to determine DME activity, with a particular focus on cytochrome P450 enzymes. Less invasive tools are described, including phenotyping using endogenous probes. Finally, the potential of pediatric model-informed precision dosing using physiologically based pharmacokinetic modeling is discussed.
Collapse
|
20
|
Phenotyping of Human CYP450 Enzymes by Endobiotics: Current Knowledge and Methodological Approaches. Clin Pharmacokinet 2019; 58:1373-1391. [DOI: 10.1007/s40262-019-00783-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
21
|
Pu X, Gao Y, Li R, Li W, Tian Y, Zhang Z, Xu F. Biomarker Discovery for Cytochrome P450 1A2 Activity Assessment in Rats, Based on Metabolomics. Metabolites 2019; 9:metabo9040077. [PMID: 31003543 PMCID: PMC6523085 DOI: 10.3390/metabo9040077] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 04/15/2019] [Accepted: 04/15/2019] [Indexed: 12/17/2022] Open
Abstract
Cytochrome P450 1A2 (CYP1A2) is one of the major CYP450 enzymes (CYPs) in the liver, and participates in the biotransformation of various xenobiotics and endogenous signaling molecules. The expression and activity of CYP1A2 show large individual differences, due to genetic and environmental factors. In order to discover non-invasive serum biomarkers associated with hepatic CYP1A2, mass spectrometry-based, untargeted metabolomics were first conducted, in order to dissect the metabolic differences in the serum and liver between control rats and β-naphthoflavone (an inducer of CYP1A2)-treated rats. Real-time reverse transcription polymerase chain reaction and pharmacokinetic analysis of phenacetin and paracetamol were performed, in order to determine the changes of mRNA levels and activity of CYP1A2 in these two groups, respectively. Branched-chain amino acids phenylalanine and tyrosine were ultimately focalized, as they were detected in both the serum and liver with the same trends. These findings were further confirmed by absolute quantification via a liquid chromatography–tandem mass spectrometry (LC-MS/MS)-based targeted metabolomics approach. Furthermore, the ratio of phenylalanine to tyrosine concentration was also found to be highly correlated with CYP1A2 activity and gene expression. This study demonstrates that metabolomics can be a potentially useful tool for biomarker discovery associated with CYPs. Our findings contribute to explaining interindividual variations in CYP1A2-mediated drug metabolism.
Collapse
Affiliation(s)
- Xiao Pu
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing 210009, China.
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China.
| | - Yiqiao Gao
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing 210009, China.
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China.
| | - Ruiting Li
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing 210009, China.
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China.
| | - Wei Li
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing 210009, China.
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China.
| | - Yuan Tian
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing 210009, China.
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China.
| | - Zunjian Zhang
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing 210009, China.
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China.
| | - Fengguo Xu
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing 210009, China.
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
22
|
Baker MG, Lin YS, Simpson CD, Shireman LM, Searles Nielsen S, Racette BA, Seixas N. The reproducibility of urinary ions in manganese exposed workers. J Trace Elem Med Biol 2019; 51:204-211. [PMID: 30466932 PMCID: PMC6291012 DOI: 10.1016/j.jtemb.2018.11.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 10/30/2018] [Accepted: 11/01/2018] [Indexed: 12/27/2022]
Abstract
PURPOSE Manganese (Mn) is found in environmental and occupational settings, and can cause cognitive and motor impairment. Existing Mn exposure studies have not reached consensus on a valid and reproducible biomarker for Mn exposure. METHODS Previously, global metabolomics data was generated from urine collected in October 2014 using mass spectrometry (MS). Nine ions were found to be different between persons exposed and unexposed to Mn occupationally, though their identity was not able to be determined. Here, we investigated these nine ions in a follow-up set of urine samples taken from the same cohort in January 2015, and in urine samples from a separate Mn-exposed cohort from Wisconsin. We fit an elastic net model fit using the nine ions found in the October 2014 data. RESULTS The elastic net correctly predicted exposure status in 72% of the follow-up samples collected in January 2015, and the area under the curve of the receiver operating characteristic (ROC) curve was 0.8. In the Wisconsin samples, the elastic net performed no better than chance in predicting exposure, possibly due to differences in Mn exposure levels, or unmeasured occupational or environmental co-exposures. CONCLUSIONS This work underscores the importance of taking repeat samples for replication studies when investigating the human urine metabolome, as both within- and between-person variances were observed. Validating and identifying promising results remains a challenge in harnessing global metabolomics for biomarker discovery in occupational cohorts.
Collapse
Affiliation(s)
- Marissa G Baker
- Department of Environmental and Occupational Health Sciences, 4225 Roosevelt Way NE Suite 100, University of Washington, Seattle, WA, 98105, USA.
| | - Yvonne S Lin
- Department of Pharmaceutics, 1959 NE Pacific St H-272, University of Washington, Seattle, WA, 98195, USA
| | - Christopher D Simpson
- Department of Environmental and Occupational Health Sciences, 4225 Roosevelt Way NE Suite 100, University of Washington, Seattle, WA, 98105, USA
| | - Laura M Shireman
- Department of Pharmaceutics, 1959 NE Pacific St H-272, University of Washington, Seattle, WA, 98195, USA
| | - Susan Searles Nielsen
- Department of Neurology, 660 S Euclid, Washington University, St. Louis, MO, 63110, USA
| | - Brad A Racette
- Department of Neurology, 660 S Euclid, Washington University, St. Louis, MO, 63110, USA
| | - Noah Seixas
- Department of Environmental and Occupational Health Sciences, 4225 Roosevelt Way NE Suite 100, University of Washington, Seattle, WA, 98105, USA
| |
Collapse
|
23
|
Peters FT, Steuer AE. Antemortem and postmortem influences on drug concentrations and metabolite patterns in postmortem specimens. ACTA ACUST UNITED AC 2018. [DOI: 10.1002/wfs2.1297] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Frank T. Peters
- Institute of Forensic Medicine Jena University Hospital Jena Germany
| | - Andrea E. Steuer
- Department of Forensic Pharmacology and Toxicology, Zurich Institute of Forensic Medicine University of Zurich Zurich Switzerland
| |
Collapse
|
24
|
Review: Using physiologically based models to predict population responses to phytochemicals by wild vertebrate herbivores. Animal 2018; 12:s383-s398. [PMID: 30251623 DOI: 10.1017/s1751731118002264] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
To understand how foraging decisions impact individual fitness of herbivores, nutritional ecologists must consider the complex in vivo dynamics of nutrient-nutrient interactions and nutrient-toxin interactions associated with foraging. Mathematical modeling has long been used to make foraging predictions (e.g. optimal foraging theory) but has largely been restricted to a single currency (e.g. energy) or using simple indices of nutrition (e.g. fecal nitrogen) without full consideration of physiologically based interactions among numerous co-ingested phytochemicals. Here, we describe a physiologically based model (PBM) that provides a mechanistic link between foraging decisions and demographic consequences. Including physiological mechanisms of absorption, digestion and metabolism of phytochemicals in PBMs allows us to estimate concentrations of ingested and interacting phytochemicals in the body. Estimated phytochemical concentrations more accurately link intake of phytochemicals to changes in individual fitness than measures of intake alone. Further, we illustrate how estimated physiological parameters can be integrated with the geometric framework of nutrition and into integral projection models and agent-based models to predict fitness and population responses of vertebrate herbivores to ingested phytochemicals. The PBMs will improve our ability to understand the foraging decisions of vertebrate herbivores and consequences of those decisions and may help identify key physiological mechanisms that underlie diet-based ecological adaptations.
Collapse
|
25
|
Fuhr U, Hsin CH, Li X, Jabrane W, Sörgel F. Assessment of Pharmacokinetic Drug-Drug Interactions in Humans: In Vivo Probe Substrates for Drug Metabolism and Drug Transport Revisited. Annu Rev Pharmacol Toxicol 2018; 59:507-536. [PMID: 30156973 DOI: 10.1146/annurev-pharmtox-010818-021909] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Pharmacokinetic parameters of selective probe substrates are used to quantify the activity of an individual pharmacokinetic process (PKP) and the effect of perpetrator drugs thereon in clinical drug-drug interaction (DDI) studies. For instance, oral caffeine is used to quantify hepatic CYP1A2 activity, and oral dagibatran etexilate for intestinal P-glycoprotein (P-gp) activity. However, no probe substrate depends exclusively on the PKP it is meant to quantify. Lack of selectivity for a given enzyme/transporter and expression of the respective enzyme/transporter at several sites in the human body are the main challenges. Thus, a detailed understanding of the role of individual PKPs for the pharmacokinetics of any probe substrate is essential to allocate the effect of a perpetrator drug to a specific PKP; this is a prerequisite for reliably informed pharmacokinetic models that will allow for the quantitative prediction of perpetrator effects on therapeutic drugs, also in respective patient populations not included in DDI studies.
Collapse
Affiliation(s)
- Uwe Fuhr
- Department I of Pharmacology, University Hospital Cologne, 50931 Cologne, Germany;
| | - Chih-Hsuan Hsin
- Department I of Pharmacology, University Hospital Cologne, 50931 Cologne, Germany;
| | - Xia Li
- Department I of Pharmacology, University Hospital Cologne, 50931 Cologne, Germany;
| | - Wafaâ Jabrane
- Department I of Pharmacology, University Hospital Cologne, 50931 Cologne, Germany;
| | - Fritz Sörgel
- Institute for Biomedical and Pharmaceutical Research, 90562 Nürnberg-Heroldsberg, Germany
| |
Collapse
|
26
|
Abstract
Multiple diseases have a strong metabolic component, and metabolomics as a powerful phenotyping technology, in combination with orthogonal biological and clinical approaches, will undoubtedly play a determinant role in accelerating the understanding of mechanisms that underlie these complex diseases determined by a set of genetic, lifestyle, and environmental exposure factors. Here, we provide several examples of valuable findings from metabolomics-led studies in diabetes and obesity metabolism, neurodegenerative disorders, and cancer metabolism and offer a longer term vision toward personalized approach to medicine, from population-based studies to pharmacometabolomics.
Collapse
Affiliation(s)
- Julijana Ivanisevic
- Metabolomics Platform, Faculty of Biology and Medicine, University of Lausanne, Rue du Bugnon 19, 1005, Lausanne, Switzerland.
| | - Aurelien Thomas
- Unit of Toxicology, CURML, CHUV Lausanne University Hospital, HUG Geneva University Hospitals, Vulliette 04, 1000, Lausanne, Switzerland.
- Faculty of Biology and Medicine, University of Lausanne, Vulliette 04, 1000, Lausanne, Switzerland.
| |
Collapse
|
27
|
Sychev DA, Zastrozhin MS, Miroshnichenko II, Baymeeva NV, Smirnov VV, Grishina EA, Ryzhikova KA, Mirzaev KB, Markov DD, Skryabin VY, Snalina NE, Nosikova PG, Savchenko LM, Bryun EA. Genotyping and phenotyping of CYP2D6 and CYP3A isoenzymes in patients with alcohol use disorder: correlation with haloperidol plasma concentration. Drug Metab Pers Ther 2017; 32:129-136. [PMID: 28787271 DOI: 10.1515/dmpt-2017-0021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 07/13/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Haloperidol is used for the treatment of alcohol use disorders in patients with signs of alcohol-related psychosis. Haloperidol therapy poses a high risk of adverse drug reactions (ADR). Contradictory data, which include the effects of genetic polymorphisms in genes encoding the elements of haloperidol biotransformation system on haloperidol metabolism rate and plasma drug concentration ratio, are described in patients with different genotypes. The primary objective of this study was to investigate the effects of CYP2D6 and CYP3A5 genetic polymorphisms on haloperidol equilibrium concentration in patients with alcohol use disorder. METHODS The study included 69 male patients with alcohol use disorder. Genotyping was performed using the allele-specific real-time PCR. CYP2D6 and CYP3A were phenotyped with HPLC-MS using the concentration of endogenous substrate of the enzyme and its urinary metabolites [6-hydroxy-1,2,3,4-tetrahydro-β-carboline(6-HO-THBC) to pinoline ratio for CYP2D6 and 6-β-hydroxycortisol to cortisol ratio for CYP3A]. The equilibrium plasma concentration was determined using LC-MS-MS. RESULTS Results indicated that both C/D indexes and equilibrium concentration levels depend on CYP2D6 genetic polymorphism, but only in patients receiving haloperidol intramuscular injections [0.26 (0.09; 0.48) vs. 0.54 (0.44; 0.74), p=0.037]. CONCLUSIONS The study demonstrates that CYP2D6 genetic polymorphism (1846G>A) can affect haloperidol concentration levels in patients with alcohol use disorder.
Collapse
|
28
|
Muhrez K, Largeau B, Emond P, Montigny F, Halimi JM, Trouillas P, Barin-Le Guellec C. Single nucleotide polymorphisms of ABCC2 modulate renal secretion of endogenous organic anions. Biochem Pharmacol 2017; 140:124-138. [DOI: 10.1016/j.bcp.2017.05.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 05/17/2017] [Indexed: 01/11/2023]
|
29
|
Baker MG, Simpson CD, Lin YS, Shireman LM, Seixas N. The Use of Metabolomics to Identify Biological Signatures of Manganese Exposure. Ann Work Expo Health 2017; 61:406-415. [PMID: 28355443 PMCID: PMC6075188 DOI: 10.1093/annweh/wxw032] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 12/06/2016] [Accepted: 12/21/2016] [Indexed: 01/20/2023] Open
Abstract
Objectives Manganese (Mn) is a known neurotoxicant, and given its health effects and ubiquitous nature in metal-working settings, identification of a valid and reproducible biomarker of Mn exposure is of interest. Here, global metabolomics is utilized to determine metabolites that differ between groups defined by Mn exposure status, with the goal being to help inform a potential metabolite biomarker of Mn exposure. Methods Mn exposed subjects were recruited from a Mn steel foundry and Mn unexposed subjects were recruited from crane operators at a metal recycling facility. Over the course of a work day, each subject wore a personal inhalable dust sampler (IOM), and provided an end of shift urine sample that underwent global metabolomics profiling. Both exposed and unexposed subjects were divided into a training set and demographically similar validation set. Using a two-sided adjusted t-test, relative abundances of all metabolites found were compared between Mn exposed and unexposed training sets, and those with a false discovery rates (FDR) <0.1 were further tested in the validation sets. Results Fifteen ions were found to be significantly different (FDR < 0.1) between the exposed and unexposed training sets, and nine of these ions remained significantly different between the exposed and unexposed validation set as well. When further dividing exposure status into 'lower exposure' and 'higher exposure', several of these nine ions exhibited an apparent exposure-response relationship. Conclusions This is the first time that metabolomics has been used to distinguish between Mn exposure status in an occupational cohort, though additional work should be done to replicate these findings with a larger cohort. With metabolite identification by name, empirical formula, or pathway, a better understanding of the relationship between Mn exposure and neurotoxic effects could be elucidated, and a potential metabolite biomarker of Mn exposure could be determined.
Collapse
Affiliation(s)
- Marissa G Baker
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - Christopher D Simpson
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - Yvonne S Lin
- Department of Pharmaceutics, University of Washington, Seattle WA, USA
| | - Laura M Shireman
- Department of Pharmaceutics, University of Washington, Seattle WA, USA
| | - Noah Seixas
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| |
Collapse
|
30
|
Mooij MG, Nies AT, Knibbe CAJ, Schaeffeler E, Tibboel D, Schwab M, de Wildt SN. Development of Human Membrane Transporters: Drug Disposition and Pharmacogenetics. Clin Pharmacokinet 2016; 55:507-24. [PMID: 26410689 PMCID: PMC4823323 DOI: 10.1007/s40262-015-0328-5] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Membrane transporters play an essential role in the transport of endogenous and exogenous compounds, and consequently they mediate the uptake, distribution, and excretion of many drugs. The clinical relevance of transporters in drug disposition and their effect in adults have been shown in drug–drug interaction and pharmacogenomic studies. Little is known, however, about the ontogeny of human membrane transporters and their roles in pediatric pharmacotherapy. As they are involved in the transport of endogenous substrates, growth and development may be important determinants of their expression and activity. This review presents an overview of our current knowledge on human membrane transporters in pediatric drug disposition and effect. Existing pharmacokinetic and pharmacogenetic data on membrane substrate drugs frequently used in children are presented and related, where possible, to existing ex vivo data, providing a basis for developmental patterns for individual human membrane transporters. As data for individual transporters are currently still scarce, there is a striking information gap regarding the role of human membrane transporters in drug therapy in children.
Collapse
Affiliation(s)
- Miriam G Mooij
- Intensive Care and Department of Pediatric Surgery, Erasmus MC-Sophia Children's Hospital, Room Sp-3458, Wytemaweg 80, PO-box 2060, 3000 CB, Rotterdam, The Netherlands
| | - Anne T Nies
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany.,University of Tuebingen, Tuebingen, Germany
| | - Catherijne A J Knibbe
- Faculty of Science, Leiden Academic Centre for Research, Pharmacology, Leiden, The Netherlands.,Hospital Pharmacy and Clinical Pharmacology, St. Antonius Hospital, Nieuwegein, The Netherlands
| | - Elke Schaeffeler
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany.,University of Tuebingen, Tuebingen, Germany
| | - Dick Tibboel
- Intensive Care and Department of Pediatric Surgery, Erasmus MC-Sophia Children's Hospital, Room Sp-3458, Wytemaweg 80, PO-box 2060, 3000 CB, Rotterdam, The Netherlands
| | - Matthias Schwab
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany.,Department of Clinical Pharmacology, University Hospital Tuebingen, Tuebingen, Germany
| | - Saskia N de Wildt
- Intensive Care and Department of Pediatric Surgery, Erasmus MC-Sophia Children's Hospital, Room Sp-3458, Wytemaweg 80, PO-box 2060, 3000 CB, Rotterdam, The Netherlands.
| |
Collapse
|
31
|
Kantae V, Krekels EHJ, Esdonk MJV, Lindenburg P, Harms AC, Knibbe CAJ, Van der Graaf PH, Hankemeier T. Integration of pharmacometabolomics with pharmacokinetics and pharmacodynamics: towards personalized drug therapy. Metabolomics 2016; 13:9. [PMID: 28058041 PMCID: PMC5165030 DOI: 10.1007/s11306-016-1143-1] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 11/26/2016] [Indexed: 02/05/2023]
Abstract
Personalized medicine, in modern drug therapy, aims at a tailored drug treatment accounting for inter-individual variations in drug pharmacology to treat individuals effectively and safely. The inter-individual variability in drug response upon drug administration is caused by the interplay between drug pharmacology and the patients' (patho)physiological status. Individual variations in (patho)physiological status may result from genetic polymorphisms, environmental factors (including current/past treatments), demographic characteristics, and disease related factors. Identification and quantification of predictors of inter-individual variability in drug pharmacology is necessary to achieve personalized medicine. Here, we highlight the potential of pharmacometabolomics in prospectively informing on the inter-individual differences in drug pharmacology, including both pharmacokinetic (PK) and pharmacodynamic (PD) processes, and thereby guiding drug selection and drug dosing. This review focusses on the pharmacometabolomics studies that have additional value on top of the conventional covariates in predicting drug PK. Additionally, employing pharmacometabolomics to predict drug PD is highlighted, and we suggest not only considering the endogenous metabolites as static variables but to include also drug dose and temporal changes in drug concentration in these studies. Although there are many endogenous metabolite biomarkers identified to predict PK and more often to predict PD, validation of these biomarkers in terms of specificity, sensitivity, reproducibility and clinical relevance is highly important. Furthermore, the application of these identified biomarkers in routine clinical practice deserves notable attention to truly personalize drug treatment in the near future.
Collapse
Affiliation(s)
- Vasudev Kantae
- Division of Analytical Biosciences, Systems Pharmacology Cluster, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Elke H. J. Krekels
- Division of Pharmacology, Systems Pharmacology Cluster, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Michiel J. Van Esdonk
- Division of Pharmacology, Systems Pharmacology Cluster, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Peter Lindenburg
- Division of Analytical Biosciences, Systems Pharmacology Cluster, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Amy C. Harms
- Division of Analytical Biosciences, Systems Pharmacology Cluster, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Catherijne A. J. Knibbe
- Division of Pharmacology, Systems Pharmacology Cluster, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Piet H. Van der Graaf
- Division of Pharmacology, Systems Pharmacology Cluster, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
- Certara QSP, Canterbury Innovation Centre, Canterbury, UK
| | - Thomas Hankemeier
- Division of Analytical Biosciences, Systems Pharmacology Cluster, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| |
Collapse
|
32
|
Lin YS, Kerr SJ, Randolph T, Shireman LM, Senn T, McCune JS. Prediction of Intravenous Busulfan Clearance by Endogenous Plasma Biomarkers Using Global Pharmacometabolomics. Metabolomics 2016; 12:161. [PMID: 28827982 PMCID: PMC5562150 DOI: 10.1007/s11306-016-1106-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
INTRODUCTION High-dose busulfan (busulfan) is an integral part of the majority of hematopoietic cell transplantation conditioning regimens. Intravenous (IV) busulfan doses are personalized using pharmacokinetics (PK)-based dosing where the patient's IV busulfan clearance is calculated after the first dose and is used to personalize subsequent doses to a target plasma exposure. PK-guided dosing has improved patient outcomes and is clinically accepted but highly resource intensive. OBJECTIVE We sought to discover endogenous plasma biomarkers predictive of IV busulfan clearance using a global pharmacometabolomics-based approach. METHODS Using LC-QTOF, we analyzed 59 (discovery) and 88 (validation) plasma samples obtained before IV busulfan administration. RESULTS In the discovery dataset, we evaluated the association of the relative abundance of 1885 ions with IV busulfan clearance and found 21 ions that were associated with IV busulfan clearance tertiles (r2 ≥ 0.3). Identified compounds were deoxycholic acid and/or chenodeoxycholic acid, and linoleic acid. We used these 21 ions to develop a parsimonious seven-ion linear predictive model that accurately predicted IV busulfan clearance in 93% (discovery) and 78% (validation) of samples. CONCLUSION IV busulfan clearance was significantly correlated with the relative abundance of 21 ions, seven of which were included in a predictive model that accurately predicted IV busulfan clearance in the majority of the validation samples. These results reinforce the potential of pharmacometabolomics as a critical tool in personalized medicine, with the potential to improve the personalized dosing of drugs with a narrow therapeutic index such as busulfan.
Collapse
Affiliation(s)
- Yvonne S. Lin
- Department of Pharmaceutics, University of Washington, Seattle, WA
| | - Savannah J. Kerr
- Department of Pharmaceutics, University of Washington, Seattle, WA
| | | | | | - Tauri Senn
- Department of Pharmaceutics, University of Washington, Seattle, WA
| | - Jeannine S. McCune
- Department of Pharmaceutics, University of Washington, Seattle, WA
- Department of Pharmacy, University of Washington, Seattle, WA
- Fred Hutchinson Cancer Research Center, Seattle, WA
| |
Collapse
|
33
|
Shen H, Dai J, Liu T, Cheng Y, Chen W, Freeden C, Zhang Y, Humphreys WG, Marathe P, Lai Y. Coproporphyrins I and III as Functional Markers of OATP1B Activity: In Vitro and In Vivo Evaluation in Preclinical Species. J Pharmacol Exp Ther 2016; 357:382-93. [PMID: 26907622 DOI: 10.1124/jpet.116.232066] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 02/12/2016] [Indexed: 03/08/2025] Open
Abstract
Inhibition of organic anion-transporting polypeptide (OATP)1B function can lead to serious clinical drug-drug interactions, thus a thorough evaluation of the potential for this type of interaction must be completed during drug development. Therefore, sensitive and specific biomarkers for OATP function that could be used in conjunction with clinical studies are currently in demand. In the present study, preclinical evaluations were conducted to characterize the suitability of coproporphyrins (CPs) I and III as markers of hepatic OATP functional activity. Active uptake of CPs I and III was observed in human embryonic kidney (HEK) 293 cells singly expressing human OATP1B1 (hOATP1B1), hOATP1B3, cynomolgus monkey OATP1B1 (cOATP1B1), or cOATP1B3, as well as human and monkey hepatocytes. Cyclosporin A (100 mg/kg, oral) markedly increased the area under the curve (AUC) plasma concentrations of CPs I and III by 2.6- and 5.2-fold, while rifampicin (15 mg/kg, oral) increased the AUCs by 2.7- and 3.6-fold, respectively. As the systemic exposure increased, the excretion of both isomers in urine rose from 1.6- to 4.3-fold in monkeys. In agreement with this finding, the AUC of rosuvastatin (RSV) in cynomolgus monkeys increased when OATP1B inhibitors were coadministered. In Oatp1a/1b gene cluster knockout mice (Oatp1a/1b(-/-)), CPs in plasma and urine were significantly increased compared with wild-type animals (7.1- to 18.4-fold; P < 0.001), which were also in agreement with the changes in plasma RSV exposure (14.6-fold increase). We conclude that CPs I and III in plasma and urine are novel endogenous biomarkers reflecting hepatic OATP function, and the measurements have the potential to be incorporated into the design of early clinical evaluation.
Collapse
Affiliation(s)
- Hong Shen
- Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Company, Princeton, New Jersey
| | - Jun Dai
- Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Company, Princeton, New Jersey
| | - Tongtong Liu
- Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Company, Princeton, New Jersey
| | - Yaofeng Cheng
- Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Company, Princeton, New Jersey
| | - Weiqi Chen
- Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Company, Princeton, New Jersey
| | - Chris Freeden
- Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Company, Princeton, New Jersey
| | - Yingru Zhang
- Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Company, Princeton, New Jersey
| | - W Griffith Humphreys
- Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Company, Princeton, New Jersey
| | - Punit Marathe
- Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Company, Princeton, New Jersey
| | - Yurong Lai
- Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Company, Princeton, New Jersey
| |
Collapse
|
34
|
Tracy TS, Chaudhry AS, Prasad B, Thummel KE, Schuetz EG, Zhong XB, Tien YC, Jeong H, Pan X, Shireman LM, Tay-Sontheimer J, Lin YS. Interindividual Variability in Cytochrome P450-Mediated Drug Metabolism. Drug Metab Dispos 2016; 44:343-51. [PMID: 26681736 PMCID: PMC4767386 DOI: 10.1124/dmd.115.067900] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 12/16/2015] [Indexed: 12/24/2022] Open
Abstract
The cytochrome P450 (P450) enzymes are the predominant enzyme system involved in human drug metabolism. Alterations in the expression and/or activity of these enzymes result in changes in pharmacokinetics (and consequently the pharmacodynamics) of drugs that are metabolized by this set of enzymes. Apart from changes in activity as a result of drug-drug interactions (by P450 induction or inhibition), the P450 enzymes can exhibit substantial interindividual variation in basal expression and/or activity, leading to differences in the rates of drug elimination and response. This interindividual variation can result from a myriad of factors, including genetic variation in the promoter or coding regions, variation in transcriptional regulators, alterations in microRNA that affect P450 expression, and ontogenic changes due to exposure to xenobiotics during the developmental and early postnatal periods. Other than administering a probe drug or cocktail of drugs to obtain the phenotype or conducting a genetic analysis to determine genotype, methods to determine interindividual variation are limited. Phenotyping via a probe drug requires exposure to a xenobiotic, and genotyping is not always well correlated with phenotype, making both methodologies less than ideal. This article describes recent work evaluating the effect of some of these factors on interindividual variation in human P450-mediated metabolism and the potential utility of endogenous probe compounds to assess rates of drug metabolism among individuals.
Collapse
Affiliation(s)
- Timothy S Tracy
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky (T.S.T.); Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee (A.S.C., E.G.S.); Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington (B.P., K.E.T., L.M.S., J.T.-S., Y.S.L.); Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut (X.Z., Y.-C.T); and Departments of Pharmacy Practice and Biopharmaceutical Sciences, College of Pharmacy, University of Illinois, Chicago, Illinois (H.J., X.P.)
| | - Amarjit S Chaudhry
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky (T.S.T.); Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee (A.S.C., E.G.S.); Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington (B.P., K.E.T., L.M.S., J.T.-S., Y.S.L.); Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut (X.Z., Y.-C.T); and Departments of Pharmacy Practice and Biopharmaceutical Sciences, College of Pharmacy, University of Illinois, Chicago, Illinois (H.J., X.P.)
| | - Bhagwat Prasad
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky (T.S.T.); Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee (A.S.C., E.G.S.); Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington (B.P., K.E.T., L.M.S., J.T.-S., Y.S.L.); Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut (X.Z., Y.-C.T); and Departments of Pharmacy Practice and Biopharmaceutical Sciences, College of Pharmacy, University of Illinois, Chicago, Illinois (H.J., X.P.)
| | - Kenneth E Thummel
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky (T.S.T.); Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee (A.S.C., E.G.S.); Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington (B.P., K.E.T., L.M.S., J.T.-S., Y.S.L.); Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut (X.Z., Y.-C.T); and Departments of Pharmacy Practice and Biopharmaceutical Sciences, College of Pharmacy, University of Illinois, Chicago, Illinois (H.J., X.P.)
| | - Erin G Schuetz
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky (T.S.T.); Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee (A.S.C., E.G.S.); Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington (B.P., K.E.T., L.M.S., J.T.-S., Y.S.L.); Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut (X.Z., Y.-C.T); and Departments of Pharmacy Practice and Biopharmaceutical Sciences, College of Pharmacy, University of Illinois, Chicago, Illinois (H.J., X.P.)
| | - Xiao-Bo Zhong
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky (T.S.T.); Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee (A.S.C., E.G.S.); Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington (B.P., K.E.T., L.M.S., J.T.-S., Y.S.L.); Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut (X.Z., Y.-C.T); and Departments of Pharmacy Practice and Biopharmaceutical Sciences, College of Pharmacy, University of Illinois, Chicago, Illinois (H.J., X.P.)
| | - Yun-Chen Tien
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky (T.S.T.); Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee (A.S.C., E.G.S.); Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington (B.P., K.E.T., L.M.S., J.T.-S., Y.S.L.); Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut (X.Z., Y.-C.T); and Departments of Pharmacy Practice and Biopharmaceutical Sciences, College of Pharmacy, University of Illinois, Chicago, Illinois (H.J., X.P.)
| | - Hyunyoung Jeong
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky (T.S.T.); Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee (A.S.C., E.G.S.); Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington (B.P., K.E.T., L.M.S., J.T.-S., Y.S.L.); Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut (X.Z., Y.-C.T); and Departments of Pharmacy Practice and Biopharmaceutical Sciences, College of Pharmacy, University of Illinois, Chicago, Illinois (H.J., X.P.)
| | - Xian Pan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky (T.S.T.); Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee (A.S.C., E.G.S.); Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington (B.P., K.E.T., L.M.S., J.T.-S., Y.S.L.); Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut (X.Z., Y.-C.T); and Departments of Pharmacy Practice and Biopharmaceutical Sciences, College of Pharmacy, University of Illinois, Chicago, Illinois (H.J., X.P.)
| | - Laura M Shireman
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky (T.S.T.); Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee (A.S.C., E.G.S.); Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington (B.P., K.E.T., L.M.S., J.T.-S., Y.S.L.); Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut (X.Z., Y.-C.T); and Departments of Pharmacy Practice and Biopharmaceutical Sciences, College of Pharmacy, University of Illinois, Chicago, Illinois (H.J., X.P.)
| | - Jessica Tay-Sontheimer
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky (T.S.T.); Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee (A.S.C., E.G.S.); Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington (B.P., K.E.T., L.M.S., J.T.-S., Y.S.L.); Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut (X.Z., Y.-C.T); and Departments of Pharmacy Practice and Biopharmaceutical Sciences, College of Pharmacy, University of Illinois, Chicago, Illinois (H.J., X.P.)
| | - Yvonne S Lin
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky (T.S.T.); Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee (A.S.C., E.G.S.); Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington (B.P., K.E.T., L.M.S., J.T.-S., Y.S.L.); Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut (X.Z., Y.-C.T); and Departments of Pharmacy Practice and Biopharmaceutical Sciences, College of Pharmacy, University of Illinois, Chicago, Illinois (H.J., X.P.)
| |
Collapse
|
35
|
Rasmussen HB, Bjerre D, Linnet K, Jürgens G, Dalhoff K, Stefansson H, Hankemeier T, Kaddurah-Daouk R, Taboureau O, Brunak S, Houmann T, Jeppesen P, Pagsberg AK, Plessen K, Dyrborg J, Hansen PR, Hansen PE, Hughes T, Werge T. Individualization of treatments with drugs metabolized by CES1: combining genetics and metabolomics. Pharmacogenomics 2015; 16:649-65. [PMID: 25896426 DOI: 10.2217/pgs.15.7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
CES1 is involved in the hydrolysis of ester group-containing xenobiotic and endobiotic compounds including several essential and commonly used drugs. The individual variation in the efficacy and tolerability of many drugs metabolized by CES1 is considerable. Hence, there is a large interest in individualizing the treatment with these drugs. The present review addresses the issue of individualized treatment with drugs metabolized by CES1. It describes the composition of the gene encoding CES1, reports variants of this gene with focus upon those with a potential effect on drug metabolism and provides an overview of the protein structure of this enzyme bringing notice to mechanisms involved in the regulation of enzyme activity. Subsequently, the review highlights drugs metabolized by CES1 and argues that individual differences in the pharmacokinetics of these drugs play an important role in determining drug response and tolerability suggesting prospects for individualized drug therapies. Our review also discusses endogenous substrates of CES1 and assesses the potential of using metabolomic profiling of blood to identify proxies for the hepatic activity of CES1 that predict the rate of drug metabolism. Finally, the combination of genetics and metabolomics to obtain an accurate prediction of the individual response to CES1-dependent drugs is discussed.
Collapse
Affiliation(s)
- Henrik Berg Rasmussen
- Institute of Biological Psychiatry, Mental Health Centre Sct. Hans, Copenhagen University Hospital, 2 Boserupvej, DK-4000 Roskilde, Denmark
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|