1
|
Boxhammer E, Dienhart C, Rezar R, Hoppe UC, Lichtenauer M. Deciphering the Role of microRNAs: Unveiling Clinical Biomarkers and Therapeutic Avenues in Atrial Fibrillation and Associated Stroke-A Systematic Review. Int J Mol Sci 2024; 25:5568. [PMID: 38791605 PMCID: PMC11122365 DOI: 10.3390/ijms25105568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/16/2024] [Accepted: 05/18/2024] [Indexed: 05/26/2024] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNA molecules that regulate gene expression by binding to target messenger RNAs (mRNAs). miRNAs have been implicated in a variety of cardiovascular and neurological diseases, such as myocardial infarction, cardiomyopathies of various geneses, rhythmological diseases, neurodegenerative illnesses and strokes. Numerous studies have focused on the expression of miRNA patterns with respect to atrial fibrillation (AF) or acute ischemic stroke (AIS) However, only a few studies have addressed the expression pattern of miRNAs in patients with AF and AIS in order to provide not only preventive information but also to identify therapeutic potentials. Therefore, the aim of this review is to summarize 18 existing manuscripts that have dealt with this combined topic of AF and associated AIS in detail and to shed light on the most frequently mentioned miRNAs-1, -19, -21, -145 and -146 with regard to their molecular mechanisms and targets on both the heart and the brain. From this, possible diagnostic and therapeutic consequences for the future could be derived.
Collapse
Affiliation(s)
- Elke Boxhammer
- Department of Internal Medicine II, Division of Cardiology, Paracelsus Medical University of Salzburg, 5020 Salzburg, Austria (U.C.H.); (M.L.)
| | - Christiane Dienhart
- Department of Internal Medicine I, Division of Gastroenterology, Hepathology, Nephrology, Metabolism and Diabetology, Paracelsus Medical University of Salzburg, 5020 Salzburg, Austria
| | - Richard Rezar
- Department of Internal Medicine II, Division of Cardiology, Paracelsus Medical University of Salzburg, 5020 Salzburg, Austria (U.C.H.); (M.L.)
| | - Uta C. Hoppe
- Department of Internal Medicine II, Division of Cardiology, Paracelsus Medical University of Salzburg, 5020 Salzburg, Austria (U.C.H.); (M.L.)
| | - Michael Lichtenauer
- Department of Internal Medicine II, Division of Cardiology, Paracelsus Medical University of Salzburg, 5020 Salzburg, Austria (U.C.H.); (M.L.)
| |
Collapse
|
2
|
Boxhammer E, Paar V, Wernly B, Kiss A, Mirna M, Aigner A, Acar E, Watzinger S, Podesser BK, Zauner R, Wally V, Ablinger M, Hackl M, Hoppe UC, Lichtenauer M. MicroRNA-30d-5p-A Potential New Therapeutic Target for Prevention of Ischemic Cardiomyopathy after Myocardial Infarction. Cells 2023; 12:2369. [PMID: 37830583 PMCID: PMC10571870 DOI: 10.3390/cells12192369] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/23/2023] [Accepted: 09/25/2023] [Indexed: 10/14/2023] Open
Abstract
(1) Background and Objective: MicroRNAs (miRs) are biomarkers for assessing the extent of cardiac remodeling after myocardial infarction (MI) and important predictors of clinical outcome in heart failure. Overexpression of miR-30d-5p appears to have a cardioprotective effect. The aim of the present study was to demonstrate whether miR-30d-5p could be used as a potential therapeutic target to improve post-MI adverse remodeling. (2) Methods and Results: MiR profiling was performed by next-generation sequencing to assess different expression patterns in ischemic vs. healthy myocardium in a rat model of MI. MiR-30d-5p was significantly downregulated (p < 0.001) in ischemic myocardium and was selected as a promising target. A mimic of miR-30d-5p was administered in the treatment group, whereas the control group received non-functional, scrambled siRNA. To measure the effect of miR-30d-5p on infarct area size of the left ventricle, the rats were randomized and treated with miR-30d-5p or scrambled siRNA. Histological planimetry was performed 72 h and 6 weeks after induction of MI. Infarct area was significantly reduced at 72 h and at 6 weeks by using miR-30d-5p (72 h: 22.89 ± 7.66% vs. 35.96 ± 9.27%, p = 0.0136; 6 weeks: 6.93 ± 4.58% vs. 12.48 ± 7.09%, p = 0.0172). To gain insight into infarct healing, scratch assays were used to obtain information on cell migration in human umbilical vein endothelial cells (HUVECs). Gap closure was significantly faster in the mimic-treated cells 20 h post-scratching (12.4% more than the scrambled control after 20 h; p = 0.013). To analyze the anti-apoptotic quality of miR-30d-5p, the ratio between phosphorylated p53 and total p53 was evaluated in human cardiomyocytes using ELISA. Under the influence of the miR-30d-5p mimic, cardiomyocytes demonstrated a decreased pp53/total p53 ratio (0.66 ± 0.08 vs. 0.81 ± 0.17), showing a distinct tendency (p = 0.055) to decrease the apoptosis rate compared to the control group. (3) Conclusion: Using a mimic of miR-30d-5p underlines the cardioprotective effect of miR-30d-5p in MI and could reduce the risk for development of ischemic cardiomyopathy.
Collapse
Affiliation(s)
- Elke Boxhammer
- Internal Medicine II, Department of Cardiology, Paracelsus Medical University Salzburg, 5020 Salzburg, Austria; (E.B.)
| | - Vera Paar
- Internal Medicine II, Department of Cardiology, Paracelsus Medical University Salzburg, 5020 Salzburg, Austria; (E.B.)
| | - Bernhard Wernly
- Department of Internal Medicine, General Hospital Oberndorf, Teaching Hospital of the Paracelsus Medical University, 5110 Oberndorf, Austria
| | - Attila Kiss
- Ludwig Boltzmann Cluster for Cardiovascular Research, Center for Biomedical Research and Translational Surgery, Medical University Vienna, 1090 Vienna, Austria; (A.K.)
| | - Moritz Mirna
- Internal Medicine II, Department of Cardiology, Paracelsus Medical University Salzburg, 5020 Salzburg, Austria; (E.B.)
| | - Achim Aigner
- Rudolf Boehm-Institute for Pharmacology and Toxicology, Clinical Pharmacology, Leipzig University, 04107 Leipzig, Germany;
| | - Eylem Acar
- Ludwig Boltzmann Cluster for Cardiovascular Research, Center for Biomedical Research and Translational Surgery, Medical University Vienna, 1090 Vienna, Austria; (A.K.)
| | - Simon Watzinger
- Ludwig Boltzmann Cluster for Cardiovascular Research, Center for Biomedical Research and Translational Surgery, Medical University Vienna, 1090 Vienna, Austria; (A.K.)
| | - Bruno K. Podesser
- Ludwig Boltzmann Cluster for Cardiovascular Research, Center for Biomedical Research and Translational Surgery, Medical University Vienna, 1090 Vienna, Austria; (A.K.)
| | - Roland Zauner
- Dermatology, Paracelsus Medical University Salzburg, 5020 Salzburg, Austria
| | - Verena Wally
- Dermatology, Paracelsus Medical University Salzburg, 5020 Salzburg, Austria
| | - Michael Ablinger
- Dermatology, Paracelsus Medical University Salzburg, 5020 Salzburg, Austria
| | | | - Uta C. Hoppe
- Internal Medicine II, Department of Cardiology, Paracelsus Medical University Salzburg, 5020 Salzburg, Austria; (E.B.)
| | - Michael Lichtenauer
- Internal Medicine II, Department of Cardiology, Paracelsus Medical University Salzburg, 5020 Salzburg, Austria; (E.B.)
| |
Collapse
|
3
|
Giamouzis G, Dimos A, Xanthopoulos A, Skoularigis J, Triposkiadis F. Left ventricular hypertrophy and sudden cardiac death. Heart Fail Rev 2021; 27:711-724. [PMID: 34184173 DOI: 10.1007/s10741-021-10134-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/22/2021] [Indexed: 12/31/2022]
Abstract
Sudden cardiac death (SCD) is among the leading causes of death worldwide, and it remains a public health problem, as it involves young subjects. Current guideline-directed risk stratification for primary prevention is largely based on left ventricular (LV) ejection fraction (LVEF), and preventive strategies such as implantation of a cardiac defibrillator (ICD) are justified only for documented low LVEF (i.e., ≤ 35%). Unfortunately, only a small percentage of primary prevention ICDs, implanted on the basis of a low LVEF, will deliver life-saving therapies on an annual basis. On the other hand, the vast majority of patients that experience SCD have LVEF > 35%, which is clamoring for better understanding of the underlying mechanisms. It is mandatory that additional variables be considered, both independently and in combination with the EF, to improve SCD risk prediction. LV hypertrophy (LVH) is a strong independent risk factor for SCD regardless of the etiology and the severity of symptoms. Concentric and eccentric LV hypertrophy, and even earlier concentric remodeling without hypertrophy, are all associated with increased risk of SCD. In this paper, we summarize the physiology and physiopathology of LVH, review the epidemiological evidence supporting the association between LVH and SCD, briefly discuss the mechanisms linking LVH with SCD, and emphasize the need to evaluate LV geometry as a potential risk stratification tool regardless of the LVEF.
Collapse
Affiliation(s)
- Grigorios Giamouzis
- Department of Cardiology, University General Hospital of Larissa, Larissa, Greece.,Department of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Apostolos Dimos
- Department of Cardiology, University General Hospital of Larissa, Larissa, Greece
| | - Andrew Xanthopoulos
- Department of Cardiology, University General Hospital of Larissa, Larissa, Greece
| | - John Skoularigis
- Department of Cardiology, University General Hospital of Larissa, Larissa, Greece.,Department of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Filippos Triposkiadis
- Department of Cardiology, University General Hospital of Larissa, Larissa, Greece. .,Department of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece.
| |
Collapse
|
4
|
Zhang XD, Thai PN, Lieu DK, Chiamvimonvat N. Cardiac small-conductance calcium-activated potassium channels in health and disease. Pflugers Arch 2021; 473:477-489. [PMID: 33624131 PMCID: PMC7940285 DOI: 10.1007/s00424-021-02535-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 12/22/2022]
Abstract
Small-conductance Ca2+-activated K+ (SK, KCa2) channels are encoded by KCNN genes, including KCNN1, 2, and 3. The channels play critical roles in the regulation of cardiac excitability and are gated solely by beat-to-beat changes in intracellular Ca2+. The family of SK channels consists of three members with differential sensitivity to apamin. All three isoforms are expressed in human hearts. Studies over the past two decades have provided evidence to substantiate the pivotal roles of SK channels, not only in healthy heart but also with diseases including atrial fibrillation (AF), ventricular arrhythmia, and heart failure (HF). SK channels are prominently expressed in atrial myocytes and pacemaking cells, compared to ventricular cells. However, the channels are significantly upregulated in ventricular myocytes in HF and pulmonary veins in AF models. Interests in cardiac SK channels are further fueled by recent studies suggesting the possible roles of SK channels in human AF. Therefore, SK channel may represent a novel therapeutic target for atrial arrhythmias. Furthermore, SK channel function is significantly altered by human calmodulin (CaM) mutations, linked to life-threatening arrhythmia syndromes. The current review will summarize recent progress in our understanding of cardiac SK channels and the roles of SK channels in the heart in health and disease.
Collapse
Affiliation(s)
- Xiao-Dong Zhang
- Division of Cardiovascular Medicine, Department of Internal Medicine, School of Medicine, University of California, Davis, One Shields Avenue, GBSF 6315, Davis, CA, 95616, USA.
- Department of Veterans Affairs, Northern California Health Care System, 10535 Hospital Way, Mather, CA, 95655, USA.
| | - Phung N Thai
- Division of Cardiovascular Medicine, Department of Internal Medicine, School of Medicine, University of California, Davis, One Shields Avenue, GBSF 6315, Davis, CA, 95616, USA
- Department of Veterans Affairs, Northern California Health Care System, 10535 Hospital Way, Mather, CA, 95655, USA
| | - Deborah K Lieu
- Division of Cardiovascular Medicine, Department of Internal Medicine, School of Medicine, University of California, Davis, One Shields Avenue, GBSF 6315, Davis, CA, 95616, USA
| | - Nipavan Chiamvimonvat
- Division of Cardiovascular Medicine, Department of Internal Medicine, School of Medicine, University of California, Davis, One Shields Avenue, GBSF 6315, Davis, CA, 95616, USA.
- Department of Veterans Affairs, Northern California Health Care System, 10535 Hospital Way, Mather, CA, 95655, USA.
- Department of Pharmacology, School of Medicine, University of California, Davis, Davis, CA, 95616, USA.
| |
Collapse
|
5
|
Shirazi-Tehrani E, Firouzabadi N, Tamaddon G, Bahramali E, Vafadar A. Carvedilol Alters Circulating MiR-1 and MiR-214 in Heart Failure. PHARMACOGENOMICS & PERSONALIZED MEDICINE 2020; 13:375-383. [PMID: 32943906 PMCID: PMC7481348 DOI: 10.2147/pgpm.s263740] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 08/11/2020] [Indexed: 02/01/2023]
Abstract
Introduction MicroRNAs (miRNAs) are recognized as major contributors in various cardiovascular diseases, such as heart failure (HF). These small noncoding RNAs that posttranscriptionally control target genes are involved in regulating different pathophysiological processes including cardiac proliferation, ifferentiation, hypertrophy, and fibrosis. Although carvedilol, a β-adrenergic blocker, and a drug of choice in HF produce cytoprotective actions against cardiomyocyte hypertrophy, the mechanisms are poorly understood. Here we proposed that the expression of hypertrophic-specific miRNAs (miR-1, miR-133, miR-208, and miR-214) might be linked to beneficial effects of carvedilol. Methods The levels of four hypertrophic-specific miRNAs were measured in the sera of 35 patients with systolic HF receiving carvedilol (treated) and 20 HF patients not receiving any β-blockers (untreated) as well as 17 nonHF individuals (healthy) using quantitative reverse transcription-polymerase chain reaction (qRT-PCR). Systolic HF was defined as left ventricular ejection fraction <50% by transthoracic echocardiography. Results We demonstrated that miR-1 and miR-214 were significantly upregulated in the treated group compared to the untreated group (P=0.014 and 5.3-fold, 0.033 and 4.2-fold, respectively). However, miR-133 and miR-208 did not show significant difference in expression between these two study groups. MiR-1 was significantly downregulated in the untreated group compared with healthy individuals (P=0.019 and 0.14-fold). Conclusion In conclusion, it might be postulated that one of the mechanisms by which carvedilol may exert its cardioprotective effects can be through increasing miR-1 and miR-214 expressions which may also serve as a potential therapeutic target in patients with systolic HF in future.
Collapse
Affiliation(s)
- Elham Shirazi-Tehrani
- Department of Pharmacology & Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Negar Firouzabadi
- Department of Pharmacology & Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.,Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Gholamhossein Tamaddon
- Department of Medical Biotechnology, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran.,Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ehsan Bahramali
- Digestive Disease Research Center, Digestive Disease Research Institute, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Asma Vafadar
- Department of Medical Biotechnology, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran.,Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
6
|
Abstract
Thyroid hormones have many cardioprotective actions expressed mainly through the action of T3 on thyroid receptors α1 and β1. They are procontractile anti-apoptotic, anti-inflammatory, and anti-fibrotic, promote angiogenesis and regeneration, and have beneficial effects on microRNA profiles. They have proven to be anti-remodeling in numerous animal studies, mostly in rodents; a specific action on the border zone has been described. Studies in humans with DIPTA have been in conclusion. Remodeling can be defined as an increase of ≥20 % of the end-diastolic or end-systolic volume, together with a return to the fetal phenotype. An overview of animal and clinical studies is given.
Collapse
|
7
|
Schneider SIDR, Silvello D, Martinelli NC, Garbin A, Biolo A, Clausell N, Andrades M, Dos Santos KG, Rohde LE. Plasma levels of microRNA-21, -126 and -423-5p alter during clinical improvement and are associated with the prognosis of acute heart failure. Mol Med Rep 2018; 17:4736-4746. [PMID: 29344661 DOI: 10.3892/mmr.2018.8428] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 11/09/2017] [Indexed: 11/06/2022] Open
Abstract
MicroRNAs are associated with myocardial damage and heart failure (HF). The present study investigated whether the plasma levels of microRNA (miR)‑21, ‑126 and ‑423‑5p alter according to the (de)compensated state of patients with HF and are associated with all‑cause mortality. In 48 patients with HF admitted to the emergency room for an episode of acute decompensation, blood samples were collected to measure miR and B‑type natriuretic peptide levels within 24 h of hospital admission, at the time of hospital discharge, and a number of weeks post‑discharge (chronic stable compensated state). Levels of miR‑21, miR‑126 and miR‑423‑5p increased between admission and discharge, and decreased following clinical compensation. During follow‑up (up to 48 months), 38 patients (79%) were rehospitalized at least once and 21 patients (44%) succumbed. Patients who had increased levels of miR‑21 and miR‑126 at the time of clinical compensation exhibited better 24‑month survival and remained rehospitalization‑free for a longer period compared with those with low levels. Additionally, patients whose levels of miR‑423‑5p increased between admission and clinical compensation experienced fewer hospital readmissions in the 24 months following the time of clinical compensation compared with those who had decreased levels. It was concluded that the plasma levels of miR‑21, miR‑126 and miR‑423‑5p altered during clinical improvement and were associated with the prognosis of acute decompensated HF.
Collapse
Affiliation(s)
- Stéfanie Ingrid Dos Reis Schneider
- Cardiovascular Experimental and Molecular Laboratory, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS 90035‑903, Brazil
| | - Daiane Silvello
- Cardiovascular Experimental and Molecular Laboratory, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS 90035‑903, Brazil
| | - Nidiane Carla Martinelli
- Cardiovascular Experimental and Molecular Laboratory, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS 90035‑903, Brazil
| | - Arthur Garbin
- Cardiovascular Experimental and Molecular Laboratory, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS 90035‑903, Brazil
| | - Andréia Biolo
- Cardiovascular Experimental and Molecular Laboratory, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS 90035‑903, Brazil
| | - Nadine Clausell
- Cardiovascular Experimental and Molecular Laboratory, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS 90035‑903, Brazil
| | - Michael Andrades
- Cardiovascular Experimental and Molecular Laboratory, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS 90035‑903, Brazil
| | - Kátia Gonçalves Dos Santos
- Cardiovascular Experimental and Molecular Laboratory, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS 90035‑903, Brazil
| | - Luís Eduardo Rohde
- Cardiovascular Experimental and Molecular Laboratory, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS 90035‑903, Brazil
| |
Collapse
|
8
|
Marinescu KK, Uriel N, Mann DL, Burkhoff D. Left ventricular assist device-induced reverse remodeling: it's not just about myocardial recovery. Expert Rev Med Devices 2016; 14:15-26. [PMID: 27871197 DOI: 10.1080/17434440.2017.1262762] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION The abnormal structure, function and molecular makeup of dilated cardiomyopathic hearts can be partially normalized in patients supported by a left ventricular assist device (LVAD), a process called reverse remodeling. This leads to recovery of function in many patients, though the rate of full recovery is low and in many cases is temporary, leading to the concept of heart failure remission, rather than recovery. Areas covered: We summarize data indicative of ventricular reverse remodeling, recovery and remission during LVAD support. These terms were used in searches performed in Pubmed. Duplication of topics covered in depth in prior review articles were avoided. Expert commentary: Although most patients undergoing mechanical circulatory support (MCS) show a significant degree of reverse remodeling, very few exhibit sufficiently improved function to justify device explantation, and many from whom LVADs have been explanted have relapsed back to the original heart failure phenotype. Future research has the potential to clarify the ideal combination of pharmacological, cell, gene, and mechanical therapies that would maximize recovery of function which has the potential to improve exercise tolerance of patients while on support, and to achieve a higher degree of myocardial recovery that is more likely to persist after device removal.
Collapse
Affiliation(s)
- Karolina K Marinescu
- a Department of Medicine, Division of Cardiology, Advanced Heart Failure , Rush University Medical Center , Chicago , IL , USA
| | - Nir Uriel
- b Department of Medicine, Division of Cardiology , University of Chicago , Chicago , IL , USA
| | - Douglas L Mann
- c Department of Medicine, Division of Cardiology , Washington University School of Medicine/Barnes Jewish Hospital , St. Louis , MO , USA
| | - Daniel Burkhoff
- d Department of Medicine, Division of Cardiology , Columbia University Medical Center/New York-Presbyterian Hospital , New York , NY , USA
| |
Collapse
|
9
|
Cokkinos DV, Belogianneas C. Left Ventricular Remodelling: A Problem in Search of Solutions. Eur Cardiol 2016; 11:29-35. [PMID: 30310445 DOI: 10.15420/ecr.2015:9:3] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Cardiac remodelling (REM) is a generally unfavourable process that leads to left ventricular dilation in response to cardiac injury, predominantly acute myocardial infarction (AMI). REM occurs in around 30 % of anterior infarcts despite timely primary coronary intervention and the use of drugs, i.e. angiotensin-converting enzyme inhibitors (ACEI) or angiotensin II receptor blockers (ARBs), beta-blockers, aldosterone inhibitors and statins. In order to diagnose REM, many imaging modalities (echocardiography, cardiac magnetic resonance, scintigraphy) are employed together with an increasing number of serum biomarkers including microRNAs. The most widely used definition of REM is a >20 % increase in left ventricular end-diastolic volume (LVEDV). There is also evidence that regression of REM can occur, i.e. reverse REM. The latter is defined as a ≥10 % decrease in left ventricular end-systolic volume (LVESV) and confers a more favourable outcome. Many therapeutic agents may be used during primary intervention and over the long term; however, few have demonstrated significant benefits. Revascularisation, anti-REM surgery and, where indicated, cardiac resynchronisation therapy can be of benefit. Gene therapy by sarcoplasmic reticulum Ca2+ ATPase 2 (SERCA-2a) transfer has been investigated but data from the Calcium upregulation by percutaneous administration of gene therapy in patients with cardiac disease (CUPID 2) trial were disappointing. Progenitor cell therapy shows promise. In conclusion, therapy for REM remains inadequate.
Collapse
Affiliation(s)
- Dennis V Cokkinos
- Biomedical Research Foundation Academy of Athens, Onassis Cardiac Surgery Centre, Athens, Greece
| | - Christos Belogianneas
- Biomedical Research Foundation Academy of Athens, Onassis Cardiac Surgery Centre, Athens, Greece
| |
Collapse
|
10
|
Martinez SR, Gay MS, Zhang L. Epigenetic mechanisms in heart development and disease. Drug Discov Today 2015; 20:799-811. [PMID: 25572405 PMCID: PMC4492921 DOI: 10.1016/j.drudis.2014.12.018] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 12/05/2014] [Accepted: 12/29/2014] [Indexed: 12/11/2022]
Abstract
Suboptimal intrauterine development has been linked to predisposition to cardiovascular disease in adulthood, a concept termed 'developmental origins of health and disease'. Although the exact mechanisms underlying this developmental programming are unknown, a growing body of evidence supports the involvement of epigenetic regulation. Epigenetic mechanisms such as DNA methylation, histone modifications and micro-RNA confer added levels of gene regulation without altering DNA sequences. These modifications are relatively stable signals, offering possible insight into the mechanisms underlying developmental origins of health and disease. This review will discuss the role of epigenetic mechanisms in heart development as well as aberrant epigenetic regulation contributing to cardiovascular disease. Additionally, we will address recent advances targeting epigenetic mechanisms as potential therapeutic approaches to cardiovascular disease.
Collapse
Affiliation(s)
- Shannalee R Martinez
- Center for Perinatal Biology, Division of Pharmacology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Maresha S Gay
- Center for Perinatal Biology, Division of Pharmacology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Lubo Zhang
- Center for Perinatal Biology, Division of Pharmacology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA.
| |
Collapse
|
11
|
Aggarwal P, Turner A, Matter A, Kattman SJ, Stoddard A, Lorier R, Swanson BJ, Arnett DK, Broeckel U. RNA expression profiling of human iPSC-derived cardiomyocytes in a cardiac hypertrophy model. PLoS One 2014; 9:e108051. [PMID: 25255322 PMCID: PMC4177883 DOI: 10.1371/journal.pone.0108051] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 07/30/2014] [Indexed: 01/12/2023] Open
Abstract
Cardiac hypertrophy is an independent risk factor for cardiovascular disease and heart failure. There is increasing evidence that microRNAs (miRNAs) play an important role in the regulation of messenger RNA (mRNA) and the pathogenesis of various cardiovascular diseases. However, the ability to comprehensively study cardiac hypertrophy on a gene regulatory level is impacted by the limited availability of human cardiomyocytes. Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) offer the opportunity for disease modeling. Here we utilize a previously established invitro model of cardiac hypertrophy to interrogate the regulatory mechanism associated with the cardiac disease process. We perform miRNA sequencing and mRNA expression analysis on endothelin 1 (ET-1) stimulated hiPSC-CMs to describe associated RNA expression profiles. MicroRNA sequencing revealed over 250 known and 34 predicted novel miRNAs to be differentially expressed between ET-1 stimulated and unstimulated control hiPSC-CMs. Messenger RNA expression analysis identified 731 probe sets with significant differential expression. Computational target prediction on significant differentially expressed miRNAs and mRNAs identified nearly 2000 target pairs. A principal component analysis approach comparing the invitro data with human myocardial biopsies detected overlapping expression changes between the invitro samples and myocardial biopsies with Left Ventricular Hypertrophy. These results provide further insights into the complex RNA regulatory mechanism associated with cardiac hypertrophy.
Collapse
Affiliation(s)
- Praful Aggarwal
- Department of Pediatrics, Children’s Research Institute, and Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Amy Turner
- Department of Pediatrics, Children’s Research Institute, and Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Andrea Matter
- Department of Pediatrics, Children’s Research Institute, and Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Steven J. Kattman
- Cellular Dynamics International Inc., Madison, Wisconsin, United States of America
| | - Alexander Stoddard
- Department of Pediatrics, Children’s Research Institute, and Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Rachel Lorier
- Department of Pediatrics, Children’s Research Institute, and Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Bradley J. Swanson
- Cellular Dynamics International Inc., Madison, Wisconsin, United States of America
| | - Donna K. Arnett
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Ulrich Broeckel
- Department of Pediatrics, Children’s Research Institute, and Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
12
|
Nair N, Gupta S, Collier IX, Gongora E, Vijayaraghavan K. Can microRNAs emerge as biomarkers in distinguishing HFpEF versus HFrEF? Int J Cardiol 2014; 175:395-9. [PMID: 25002320 DOI: 10.1016/j.ijcard.2014.06.027] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Revised: 05/24/2014] [Accepted: 06/20/2014] [Indexed: 01/15/2023]
Abstract
MicroRNAs (miRNAs) are short strands of approximately 21-25 nucleotides. MiRNAs are emerging as important biomarker candidates for various cardiovascular diseases. These small molecules are being currently investigated for diagnosis, prognosis and more importantly as therapeutic targets. This review tries to explore the possibility of identifying miRNAs that are specific to Heart Failure with reduced Ejection Fraction (HFrEF) and Heart Failure with preserved Ejection Fraction (HFpEF) as both conditions carry equal morbidity and mortality risks, but drastically differ in their underlying pathophysiology. The concept of circulating miRNAs as biomarkers needs further investigation because the mechanism of their release into circulation still remains elusive; and, the biological correlation between circulatory miRNA and the relevant organ/tissue expression has not been established. A growing body of evidence indicates that miRNA may "shuttle" in between intracellular compartments for paracrine activities. Generating different panels of miRNAs may be useful in distinguishing HFrEF vs HFpEF. The use of antisense oligonucleotides to silence miRNAs would be another avenue towards establishing target-driven therapeutics in the context of personalized medicine.
Collapse
Affiliation(s)
- Nandini Nair
- Division of Cardiology, Scott and White Memorial Hospital, United States; Spokane Heart Institute, Sacred Heart Medical Center, 122 West Seventh Ave, Suite 450, Spokane, WA 99204, United States.
| | | | - Ian X Collier
- Division of Cardiology, Scott and White Memorial Hospital, United States
| | - Enrique Gongora
- Division of Cardiothoracic Surgery, Drexel University College of Medicine, Philadelphia, PA 19104, United States
| | | |
Collapse
|
13
|
Goldfinger JZ, Nair AP. Myocardial recovery and the failing heart: medical, device and mechanical methods. Ann Glob Health 2013; 80:55-60. [PMID: 24751565 DOI: 10.1016/j.aogh.2013.12.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Revised: 05/05/2013] [Accepted: 12/19/2013] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Cardiac remodeling describes the molecular, cellular, and interstitial changes that cause the ventricle to develop pathologic geometry as heart failure progresses. Reverse remodeling, or the healing of a failing heart, leads to improved mortality and quality of life. FINDINGS Therapies that lead to reverse remodeling include medications such as β-blockers and angiotensin-converting enzyme inhibitors; cardiac resynchronization therapy with biventricular pacing; and mechanical support with left ventricular assist devices. CONCLUSIONS Further study is needed to better predict which patients will benefit most from these therapies and will then go on to experience reverse remodeling and myocardial recovery.
Collapse
Affiliation(s)
- Judith Z Goldfinger
- Zena and Michael A. Wiener Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, NY.
| | - Ajith P Nair
- Zena and Michael A. Wiener Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| |
Collapse
|
14
|
Abstract
Cardiovascular diseases in children comprise a large public health problem. The major goals of paediatric cardiologists and paediatric cardiovascular researchers are to identify the cause(s) of these diseases to improve treatment and preventive protocols. Recent studies show the involvement of microRNAs (miRs) in different aspects of heart development, function, and disease. Therefore, miR-based research in paediatric cardiovascular disorders is crucial for a better understanding of the underlying pathogenesis of the disease, and unravelling novel, efficient, preventive, and therapeutic means. The ultimate goal of such research is to secure normal cardiac development and hence decrease disabilities, improve clinical outcomes, and decrease the morbidity and mortality among children. This review focuses on the role of miRs in different paediatric cardiovascular conditions in an effort to encourage miR-based research in paediatric cardiovascular disorders.
Collapse
|
15
|
Role of microRNAs in cardiac remodelling: new insights and future perspectives. Int J Cardiol 2012; 167:1651-9. [PMID: 23063140 DOI: 10.1016/j.ijcard.2012.09.120] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Revised: 09/20/2012] [Accepted: 09/22/2012] [Indexed: 01/08/2023]
Abstract
Cardiac remodelling is a key process in the progression of cardiovascular disease, implemented in myocardial infarction, valvular heart disease, myocarditis, dilated cardiomyopathy, atrial fibrillation and heart failure. Fibroblasts, extracellular matrix proteins, coronary vasculature, cardiac myocytes and ionic channels are all involved in this remodelling process. MicroRNAs (miRNAs) represent a sizable sub-group of small non-coding RNAs, which degrade or inhibit the translation of their target mRNAs, thus regulating gene expression and play an important role in a wide range of biologic processes. Recent studies have reported that miRNAs are aberrantly expressed in the cardiovascular system under some pathological conditions. Indeed, in vitro and in vivo models have revealed that miRNAs are essential for cardiac development and remodelling. Clinically, there is increasing evidence of the potential diagnostic role of miRNAs as potential diagnostic biomarkers and they may represent a novel therapeutic target in several cardiovascular disorders. This paper provides an overview of the impact of several miRNAs in electrical and structural remodelling of the cardiac tissue, and the diagnostic and therapeutic potential of miRNA in cardiovascular disease.
Collapse
|
16
|
Abstract
MicroRNAs (miRNAs) are endogenous, short (~22 nucleotide), evolutionarily conserved, non-coding RNAs that regulate gene expression at the post-transcriptional level. Recent evidence suggests that miRNAs are differentially expressed in the failing myocardium and play an important role in progression of heart failure by targeting genes that govern diverse functions in cardiac remodeling process including myocyte hypertrophy, excitation-contraction coupling, increased myocyte loss, and myocardial fibrosis. In addition to their role in adverse cardiac remodeling, miRNAs hold promise as biomarkers of disease progression in heart failure given their presence in circulation and enhanced stability. Further development of miR-based therapeutics may allow for modulation of cardiac and/or systemic levels of specific miRNAs in patients with heart failure . Here, we summarize current knowledge of miRNAs in relation to their role in regulating various aspects of the cardiac remodeling process and discuss their potential use as biomarkers and/or therapeutic targets in heart failure.
Collapse
Affiliation(s)
- Veli K Topkara
- Center for Cardiovascular Research, Division of Cardiology, Department of Internal Medicine, Washington University School of Medicine, 660 South Euclid Ave. Campus, PO Box 8066, St Louis, MO 63110-1093, USA
| | | |
Collapse
|
17
|
Wang K, Lin ZQ, Long B, Li JH, Zhou J, Li PF. Cardiac hypertrophy is positively regulated by MicroRNA miR-23a. J Biol Chem 2011; 287:589-599. [PMID: 22084234 DOI: 10.1074/jbc.m111.266940] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
MicroRNAs (miRNAs) are a class of small noncoding RNAs that mediate post-transcriptional gene silencing. Myocardial hypertrophy is frequently associated with the development of heart failure. A variety of miRNAs are involved in the regulation of cardiac hypertrophy, however, the molecular targets of miRNAs in the cardiac hypertrophic cascades remain to be fully identified. We produced miR-23a transgenic mice, and these mice exhibit exaggerated cardiac hypertrophy in response to the stimulation with phenylephrine or pressure overload by transverse aortic banding. The endogenous miR-23a is up-regulated upon treatment with phenylephrine, endothelin-1, or transverse aortic banding. Knockdown of miR-23a attenuates hypertrophic responses. To identify the downstream targets of miR-23a, we found that transcription factor Foxo3a is suppressed by miR-23a. Luciferase assay indicates that miR-23a directly inhibits the translation activity of Foxo3a 3' UTR. Introduction or knockdown of miR-23a leads to the alterations of Foxo3a protein levels. Enforced expression of the constitutively active form of Foxo3a counteracts the provocative effect of miR-23a on hypertrophy. Furthermore, we observed that miR-23a is able to alter the expression levels of manganese superoxide dismutase and the consequent reactive oxygen species, and this effect is mediated by Foxo3a. In addition, our results show that miR-23a and Foxo3a bi-transgenic mice exhibit a reduced hypertrophic response compared with the miR-23a transgenic mice alone. Our present study reveals that miR-23a can mediate the hypertrophic signal through regulating Foxo3a. They form an axis in hypertrophic machinery and can be targets for the development of hypertrophic treatment.
Collapse
Affiliation(s)
- Kun Wang
- Division of Cardiovascular Research, State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhi-Qiang Lin
- Division of Cardiovascular Research, State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Bo Long
- Division of Cardiovascular Research, State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jian-Hui Li
- Division of Cardiovascular Research, State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jing Zhou
- Division of Cardiovascular Research, State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Pei-Feng Li
- Division of Cardiovascular Research, State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
18
|
Abstract
Chronic heart failure continues to impose a substantial health-care burden, despite recent treatment advances. The key pathophysiological process that ultimately leads to chronic heart failure is cardiac remodelling in response to chronic disease stresses. Here, we review recent advances in our understanding of molecular and cellular mechanisms that play a part in the complex remodelling process, with a focus on key molecules and pathways that might be suitable targets for therapeutic manipulation. Such pathways include those that regulate cardiac myocyte hypertrophy, calcium homoeostasis, energetics, and cell survival, and processes that take place outside the cardiac myocyte--eg, in the myocardial vasculature and extracellular matrix. We also discuss major gaps in our current understanding, take a critical look at conventional approaches to target discovery that have been used to date, and consider new investigational avenues that might accelerate clinically relevant discovery.
Collapse
Affiliation(s)
- Ajay M Shah
- King's College London British Heart Foundation Centre of Excellence, London, UK.
| | | |
Collapse
|