1
|
Yu B, Li M, Han SP, Yu Z, Zhu J. Circular RNA hsa_circ_105039 promotes cardiomyocyte differentiation by sponging miR‑17 to regulate cyclinD2 expression. Mol Med Rep 2021; 24:861. [PMID: 34664684 PMCID: PMC8548937 DOI: 10.3892/mmr.2021.12501] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 09/10/2021] [Indexed: 11/06/2022] Open
Abstract
Previously it was found that hsa_circ_105039 was underexpressed in the heart tissue of patients with congenital heart disease (CHD). However, the function and mechanism of hsa_circ_105039 in CHD are unclear. In the present study, induced pluripotent stem (iPS) cells were differentiated into cardiomyocytes using 1% dimethyl sulfoxide (DMSO). Cell differentiation, viability, migration and apoptosis were measured before and following hsa_circ_105039 knockdown or overexpression. The results indicated that hsa_circ_105039 overexpression promoted cell differentiation, viability and migration; whereas apoptosis was simultaneously repressed. A luciferase reporter assay verified that hsa_circ_105039 acted as a sponge for microRNA (miR)‑17 and that cyclinD2 was a direct target of miR‑17. Furthermore, differentiation‑related genes and proteins were analyzed by reverse transcription‑quantitative PCR and western blotting, respectively. The results showed that hsa_circ_105039 could also upregulate the expression of differentiation‑related genes and proteins, including natriuretic peptide A, cardiac troponin I, GATA‑binding protein 4 and homobox transcription factor, in iPS cells. The results suggested that hsa_circ_105039 exerted a protective effect by promoting miR‑17/cyclinD2 in DMSO‑induced iPS cardiomyocytes, which indicated that hsa_circ_105039 is a potential key molecule for the diagnosis of CHD.
Collapse
Affiliation(s)
- Boshi Yu
- Department of Pediatrics, Women's Hospital of Nanjing Medical University Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu 210004, P.R. China
| | - Mengmeng Li
- Department of Pediatrics, Women's Hospital of Nanjing Medical University Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu 210004, P.R. China
| | - Shu Ping Han
- Department of Pediatrics, Women's Hospital of Nanjing Medical University Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu 210004, P.R. China
| | - Zhangbin Yu
- Department of Pediatrics, Women's Hospital of Nanjing Medical University Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu 210004, P.R. China
| | - Jingai Zhu
- Department of Pediatrics, Women's Hospital of Nanjing Medical University Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu 210004, P.R. China
| |
Collapse
|
2
|
Ekert JE, Deakyne J, Pribul-Allen P, Terry R, Schofield C, Jeong CG, Storey J, Mohamet L, Francis J, Naidoo A, Amador A, Klein JL, Rowan W. Recommended Guidelines for Developing, Qualifying, and Implementing Complex In Vitro Models (CIVMs) for Drug Discovery. SLAS DISCOVERY 2020; 25:1174-1190. [PMID: 32495689 DOI: 10.1177/2472555220923332] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The pharmaceutical industry is continuing to face high research and development (R&D) costs and low overall success rates of clinical compounds during drug development. There is an increasing demand for development and validation of healthy or disease-relevant and physiological human cellular models that can be implemented in early-stage discovery, thereby shifting attrition of future therapeutics to a point in discovery at which the costs are significantly lower. There needs to be a paradigm shift in the early drug discovery phase (which is lengthy and costly), away from simplistic cellular models that show an inability to effectively and efficiently reproduce healthy or human disease-relevant states to steer target and compound selection for safety, pharmacology, and efficacy questions. This perspective article covers the various stages of early drug discovery from target identification (ID) and validation to the hit/lead discovery phase, lead optimization, and preclinical safety. We outline key aspects that should be considered when developing, qualifying, and implementing complex in vitro models (CIVMs) during these phases, because criteria such as cell types (e.g., cell lines, primary cells, stem cells, and tissue), platform (e.g., spheroids, scaffolds or hydrogels, organoids, microphysiological systems, and bioprinting), throughput, automation, and single and multiplexing endpoints will vary. The article emphasizes the need to adequately qualify these CIVMs such that they are suitable for various applications (e.g., context of use) of drug discovery and translational research. The article ends looking to the future, in which there is an increase in combining computational modeling, artificial intelligence and machine learning (AI/ML), and CIVMs.
Collapse
Affiliation(s)
- Jason E Ekert
- In Vitro In Vivo Translation, Research, Pharmaceutical R&D, GlaxoSmithKline, Collegeville, PA, USA
| | - Julianna Deakyne
- In Vitro In Vivo Translation, Research, Pharmaceutical R&D, GlaxoSmithKline, Collegeville, PA, USA
| | - Philippa Pribul-Allen
- In Vitro In Vivo Translation, Research, Pharmaceutical R&D, GlaxoSmithKline, Ware, UK
| | - Rebecca Terry
- In Vitro In Vivo Translation, Research, Pharmaceutical R&D, GlaxoSmithKline, Ware, UK
| | - Christopher Schofield
- Functional Genomics, Medicinal Science and Technology, Pharmaceutical R&D, GlaxoSmithKline, Stevenage, UK
| | | | - Joanne Storey
- Research Office of Animal Welfare, Ethics and Strategy, Research, Pharmaceutical R&D, GlaxoSmithKline, Stevenage, UK
| | - Lisa Mohamet
- Functional Genomics, Medicinal Science and Technology, Pharmaceutical R&D, GlaxoSmithKline, Stevenage, UK
| | - Jo Francis
- Screening Profiling and Mechanistic Biology, Medicinal Science and Technology, Pharmaceutical R&D, GlaxoSmithKline, Stevenage, UK
| | - Anita Naidoo
- In Vitro In Vivo Translation, Research, Pharmaceutical R&D, GlaxoSmithKline, Ware, UK
| | - Alejandro Amador
- Functional Genomics, Medicinal Science and Technology, Pharmaceutical R&D, GlaxoSmithKline, Collegeville, PA, USA
| | - Jean-Louis Klein
- Novel Human Genetics, Research, Pharmaceutical R&D, GlaxoSmithKline, Collegeville, PA, USA
| | - Wendy Rowan
- Novel Human Genetics, Research, Pharmaceutical R&D, GlaxoSmithKline, Stevenage, UK
| |
Collapse
|
3
|
Stress-induced precocious aging in PD-patient iPSC-derived NSCs may underlie the pathophysiology of Parkinson's disease. Cell Death Dis 2019; 10:105. [PMID: 30718471 PMCID: PMC6362163 DOI: 10.1038/s41419-019-1313-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 12/09/2018] [Accepted: 12/12/2018] [Indexed: 12/17/2022]
Abstract
Parkinson’s disease (PD) is an aging-related degenerative disorder arisen from the loss of dopaminergic neurons in substantia nigra. Although many genetic mutations have been implicated to be genetically linked to PD, the low incidence of familial PD carried with mutations suggests that there must be other factors such as oxidative stress, mitochondrial dysfunction, accumulation of misfolded proteins, and enhanced inflammation, which are contributable to the pathophysiology of PD. The major efforts of current research have been devoted to unravel the toxic effect of multiple factors, which directly cause the degeneration of dopaminergic neurons in adulthood. Until recently, several studies have demonstrated that NSCs had compromised proliferation and differentiation capacity in PD animal models or PD patient-derived iPS models, suggesting that the pathology of PD may be rooted in some cellular aberrations at early developmental stage but the mechanism remains to be elusive. Based on the early-onset PD patient-specific iPSCs, we found that PD-patient iPSC-derived NSCs were more susceptible to stress and became functionally compromised by radiation or oxidative insults. We further unraveled that stress-induced SIRT1 downregulation leading to autophagic dysfunction, which were responsible for these deficits in PD-NSCs. Mechanistically, we demonstrated that stress-induced activation of p38 MAPK suppressed SIRT1 expression, which in turn augmented the acetylation of multiple ATG proteins of autophagic complex and eventually led to autophagic deficits. Our studies suggest that early developmental deficits may, at least partially, contribute to the pathology of PD and provide a new avenue for developing better therapeutic interventions to PD.
Collapse
|
4
|
Sima N, Li R, Huang W, Xu M, Beers J, Zou J, Titus S, Ottinger EA, Marugan JJ, Xie X, Zheng W. Neural stem cells for disease modeling and evaluation of therapeutics for infantile (CLN1/PPT1) and late infantile (CLN2/TPP1) neuronal ceroid lipofuscinoses. Orphanet J Rare Dis 2018; 13:54. [PMID: 29631617 PMCID: PMC5891977 DOI: 10.1186/s13023-018-0798-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 03/29/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Infantile and late infantile neuronal ceroid lipofuscinoses (NCLs) are lysosomal storage diseases affecting the central nervous system (CNS). The infantile NCL (INCL) is caused by mutations in the PPT1 gene and late-infantile NCL (LINCL) is due to mutations in the TPP1 gene. Deficiency in PPT1 or TPP1 enzyme function results in lysosomal accumulation of pathological lipofuscin-like material in the patient cells. There is currently no small-molecular drug treatment for NCLs. RESULTS We have generated induced pluripotent stem cells (iPSC) from three patient dermal fibroblast lines and further differentiated them into neural stem cells (NSCs). Using these new disease models, we evaluated the effect of δ-tocopherol (DT) and hydroxypropyl-β-cyclodextrin (HPBCD) with the enzyme replacement therapy as the control. Treatment with the relevant recombinant enzyme or DT significantly ameliorated the lipid accumulation and lysosomal enlargement in the disease cells. A combination therapy of δ-tocopherol and HPBCD further improved the effect compared to that of either drug used as a single therapy. CONCLUSION The results demonstrate that these patient iPSC derived NCL NSCs are valid cell- based disease models with characteristic disease phenotypes that can be used for study of disease pathophysiology and drug development.
Collapse
Affiliation(s)
- Ni Sima
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Bethesda, MD, 20892, USA.,Department of Gynecologic Oncology, Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Rong Li
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Bethesda, MD, 20892, USA
| | - Wei Huang
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Bethesda, MD, 20892, USA.,Department of Gynecologic Oncology, Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Miao Xu
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Bethesda, MD, 20892, USA
| | - Jeanette Beers
- iPSC core, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jizhong Zou
- iPSC core, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Steven Titus
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Bethesda, MD, 20892, USA
| | - Elizabeth A Ottinger
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Bethesda, MD, 20892, USA
| | - Juan J Marugan
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Bethesda, MD, 20892, USA
| | - Xing Xie
- Department of Gynecologic Oncology, Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Wei Zheng
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Bethesda, MD, 20892, USA.
| |
Collapse
|
5
|
Zhao Y, Fei X, Guo J, Zou G, Pan W, Zhang J, Huang Y, Liu T, Cheng W. Induction of reprogramming of human amniotic epithelial cells into iPS cells by overexpression of Yap, Oct4, and Sox2 through the activation of the Hippo-Yap pathway. Exp Ther Med 2017; 14:199-206. [PMID: 28672915 PMCID: PMC5488545 DOI: 10.3892/etm.2017.4512] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 05/17/2017] [Indexed: 12/16/2022] Open
Abstract
The present study has reported a novel method for producing induced pluripotent stem (iPS) cells. Primary human amniotic epithelial cells (HuAECs) were isolated from the amniotic membranes of pregnant women who received Cesarean sections. These cells were infected with retroviruses carrying octamer-binding transcription factor 4 (Oct4), (sex determining region Y)-box 2 (Sox2) and Yes-associated protein (Yap) (OSY). Following in vitro culture for ~14 days, epithelial-like HuAECs exhibited several iPS clone-like cell colonies (OSY-iPS). These cell clones presented positive alkaline phosphatase features and expressed high levels of embryonic stem cell-like markers (Nanog homeobox, Sox2, Oct4, reduced expression protein 1, and SSES3/4). Additionally, epigenetic analysis results indicated that the methylation of CpG islands on endogenous Oct4 and Sox2 promoters was reduced in OSY-iPS cells. Furthermore, the majority of the histone H3 at lysine 9 sites that interacted with the Oct4 and Sox2 promoters were acetylated, suggesting that the transcription activities of the above two transcription factors significantly increased. In vivo and in vitro induced differentiation experiments demonstrated that OSY-iPS could develop into embryoid bodies in vitro, and express numerous cellular markers in the three germ layers. Furthermore, OSY-iPS could form teratomas in immunodeficient mice. The pathological detection results suggest that these teratomas contain numerous types of cells from the three germ layers. However, the results from the quantitative polymerase chain reaction and western blot analyses suggest that the Hippo-Yap signaling pathway was significantly activated in OSY-iPS cells. In conclusion, a novel method for iPS induction was established in the present study. HuAECs were successfully induced to reprogram iPS cells through the introduction of OSY to activate the Hippo-Yap signaling pathway.
Collapse
Affiliation(s)
- Yanhui Zhao
- Department of Orthodontics, School and Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai 200072, P.R. China
| | - Xinfeng Fei
- Department of Ophthalmology, The Branch of Shanghai General Hospital, Shanghai 200081, P.R. China
| | - Jianming Guo
- Vascular Surgery Department, Xuanwu Hospital Capital Medical University, Beijing 100053, P.R. China
| | - Gang Zou
- Department of Obstetrics, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 200040, P.R. China
| | - Weidong Pan
- Department of Neurology, Shuguang Hospital, Shanghai Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Jingju Zhang
- Department of Orthodontics, School and Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai 200072, P.R. China
| | - Yongyi Huang
- Laboratoire PROTEE, Bâtiment R, Université du Sud Toulon-Var, 83957 La Garde Cedex, France
| | - Te Liu
- Shanghai Geriatric Institute of Chinese Medicine, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200031, P.R. China
| | - Weiwei Cheng
- International Peace Maternity and Child Health Hospital, Shanghai Jiaotong University, Shanghai 200030, P.R. China
| |
Collapse
|
6
|
Long Y, Xu M, Li R, Dai S, Beers J, Chen G, Soheilian F, Baxa U, Wang M, Marugan JJ, Muro S, Li Z, Brady R, Zheng W. Induced Pluripotent Stem Cells for Disease Modeling and Evaluation of Therapeutics for Niemann-Pick Disease Type A. Stem Cells Transl Med 2016; 5:1644-1655. [PMID: 27484861 PMCID: PMC5189647 DOI: 10.5966/sctm.2015-0373] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 05/13/2016] [Indexed: 11/16/2022] Open
Abstract
Niemann-Pick disease type A (NPA)-induced pluripotent stem cells from patient dermal fibroblasts were differentiated into neural stem cells. By using the differentiated NPA neuronal cells as a cell-based disease model system, α-tocopherol, δ-tocopherol, and hydroxypropyl-β-cyclodextrin significantly reduced sphingomyelin accumulation in these NPA neuronal cells. This cell-based NPA model can be used for further study of disease pathophysiology and for high-throughput screening of compound libraries to identify lead compounds for drug development. Niemann-Pick disease type A (NPA) is a lysosomal storage disease caused by mutations in the SMPD1 gene that encodes acid sphingomyelinase (ASM). Deficiency in ASM function results in lysosomal accumulation of sphingomyelin and neurodegeneration. Currently, there is no effective treatment for NPA. To accelerate drug discovery for treatment of NPA, we generated induced pluripotent stem cells from two patient dermal fibroblast lines and differentiated them into neural stem cells. The NPA neural stem cells exhibit a disease phenotype of lysosomal sphingomyelin accumulation and enlarged lysosomes. By using this disease model, we also evaluated three compounds that reportedly reduced lysosomal lipid accumulation in Niemann-Pick disease type C as well as enzyme replacement therapy with ASM. We found that α-tocopherol, δ-tocopherol, hydroxypropyl-β-cyclodextrin, and ASM reduced sphingomyelin accumulation and enlarged lysosomes in NPA neural stem cells. Therefore, the NPA neural stem cells possess the characteristic NPA disease phenotype that can be ameliorated by tocopherols, cyclodextrin, and ASM. Our results demonstrate the efficacies of cyclodextrin and tocopherols in the NPA cell-based model. Our data also indicate that the NPA neural stem cells can be used as a new cell-based disease model for further study of disease pathophysiology and for high-throughput screening to identify new lead compounds for drug development. Significance Currently, there is no effective treatment for Niemann-Pick disease type A (NPA). To accelerate drug discovery for treatment of NPA, NPA-induced pluripotent stem cells were generated from patient dermal fibroblasts and differentiated into neural stem cells. By using the differentiated NPA neuronal cells as a cell-based disease model system, α-tocopherol, δ-tocopherol, and hydroxypropyl-β-cyclodextrin significantly reduced sphingomyelin accumulation in these NPA neuronal cells. Therefore, this cell-based NPA model can be used for further study of disease pathophysiology and for high-throughput screening of compound libraries to identify lead compounds for drug development.
Collapse
Affiliation(s)
- Yan Long
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland, USA
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, People's Republic of China
| | - Miao Xu
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland, USA
- Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Rong Li
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland, USA
| | - Sheng Dai
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland, USA
- Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Jeanette Beers
- Center for Molecular Medicine, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Guokai Chen
- Center for Molecular Medicine, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
- Faculty of Health Sciences, University of Macau, Macau, People's Republic of China
| | - Ferri Soheilian
- Electron Microscopy Laboratory, Cancer Research Technology Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Ulrich Baxa
- Electron Microscopy Laboratory, Cancer Research Technology Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Mengqiao Wang
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland, USA
| | - Juan J Marugan
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland, USA
| | - Silvia Muro
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, Maryland, USA
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, USA
| | - Zhiyuan Li
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, People's Republic of China
| | - Roscoe Brady
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Wei Zheng
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
7
|
Hansel MC, Davila JC, Vosough M, Gramignoli R, Skvorak KJ, Dorko K, Marongiu F, Blake W, Strom SC. The Use of Induced Pluripotent Stem Cells for the Study and Treatment of Liver Diseases. ACTA ACUST UNITED AC 2016; 67:14.13.1-14.13.27. [PMID: 26828329 DOI: 10.1002/0471140856.tx1413s67] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Liver disease is a major global health concern. Liver cirrhosis is one of the leading causes of death in the world and currently the only therapeutic option for end-stage liver disease (e.g., acute liver failure, cirrhosis, chronic hepatitis, cholestatic diseases, metabolic diseases, and malignant neoplasms) is orthotropic liver transplantation. Transplantation of hepatocytes has been proposed and used as an alternative to whole organ transplant to stabilize and prolong the lives of patients in some clinical cases. Although these experimental therapies have demonstrated promising and beneficial results, their routine use remains a challenge due to the shortage of donor livers available for cell isolation, variable quality of those tissues, the potential need for lifelong immunosuppression in the transplant recipient, and high costs. Therefore, new therapeutic strategies and more reliable clinical treatments are urgently needed. Recent and continuous technological advances in the development of stem cells suggest they may be beneficial in this respect. In this review, we summarize the history of stem cell and induced pluripotent stem cell (iPSC) technology in the context of hepatic differentiation and discuss the potential applications the technology may offer for human liver disease modeling and treatment. This includes developing safer drugs and cell-based therapies to improve the outcomes of patients with currently incurable health illnesses. We also review promising advances in other disease areas to highlight how the stem cell technology could be applied to liver diseases in the future. © 2016 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Marc C Hansel
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.,McGowan Institute for Regenerative Medicine, Pittsburgh, Pennsylvania
| | - Julio C Davila
- Department of Biochemistry, University of Puerto Rico School of Medicine, Medical Sciences Campus, San Juan, Puerto Rico
| | - Massoud Vosough
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Roberto Gramignoli
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Kristen J Skvorak
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Kenneth Dorko
- Department of Pharmacology, Toxicology and Therapeutics, Kansas University Medical Center, Kansas City, Kansas
| | - Fabio Marongiu
- Department of Biomedical Sciences, Section of Experimental Pathology, Unit of Experimental Medicine, University of Cagliari, Cagliari, Italy
| | - William Blake
- Genetically Modified Models Center of Emphasis, Pfizer, Groton, Connecticut
| | - Stephen C Strom
- McGowan Institute for Regenerative Medicine, Pittsburgh, Pennsylvania.,Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
8
|
Czysz K, Minger S, Thomas N. DMSO efficiently down regulates pluripotency genes in human embryonic stem cells during definitive endoderm derivation and increases the proficiency of hepatic differentiation. PLoS One 2015; 10:e0117689. [PMID: 25659159 PMCID: PMC4320104 DOI: 10.1371/journal.pone.0117689] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2014] [Accepted: 12/30/2014] [Indexed: 11/19/2022] Open
Abstract
Background Definitive endoderm (DE) is one of the three germ layers which during in vivo vertebrate development gives rise to a variety of organs including liver, lungs, thyroid and pancreas; consequently efficient in vitro initiation of stem cell differentiation to DE cells is a prerequisite for successful cellular specification to subsequent DE-derived cell types [1, 2]. In this study we present a novel approach to rapidly and efficiently down regulate pluripotency genes during initiation of differentiation to DE cells by addition of dimethyl sulfoxide (DMSO) to Activin A-based culture medium and report its effects on the downstream differentiation to hepatocyte-like cells. Materials and Methods Human embryonic stem cells (hESC) were differentiated to DE using standard methods in medium supplemented with 100ng/ml of Activin A and compared to cultures where DE specification was additionally enhanced with different concentrations of DMSO. DE cells were subsequently primed to generate hepatic-like cells to investigate whether the addition of DMSO during formation of DE improved subsequent expression of hepatic markers. A combination of flow cytometry, real-time quantitative reverse PCR and immunofluorescence was applied throughout the differentiation process to monitor expression of pluripotency (POUF5/OCT4 & NANOG), definitive endoderm (SOX17, CXCR4 & GATA4) and hepatic (AFP & ALB) genes to generate differentiation stage-specific signatures. Results Addition of DMSO to the Activin A-based medium during DE specification resulted in rapid down regulation of the pluripotency genes OCT4 and NANOG, accompanied by an increase expression of the DE genes SOX17, CXCR4 and GATA4. Importantly, the expression level of ALB in DMSO-treated cells was also higher than in cells which were differentiated to the DE stage via standard Activin A treatment.
Collapse
Affiliation(s)
- Katherine Czysz
- GE Healthcare Life Sciences, The Maynard Centre, Cardiff, Wales, United Kingdom
- * E-mail:
| | - Stephen Minger
- GE Healthcare Life Sciences, The Maynard Centre, Cardiff, Wales, United Kingdom
| | - Nick Thomas
- GE Healthcare Life Sciences, The Maynard Centre, Cardiff, Wales, United Kingdom
| |
Collapse
|
9
|
Young JS, Kim JW, Ahmed AU, Lesniak MS. Therapeutic cell carriers: a potential road to cure glioma. Expert Rev Neurother 2015; 14:651-60. [PMID: 24852229 DOI: 10.1586/14737175.2014.917964] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Many different experimental molecular therapeutic approaches have been evaluated in an attempt to treat brain cancer. However, despite the success of these experimental molecular therapies, research has shown that the specific and efficient delivery of therapeutic agents to tumor cells is a limitation. In this regard, cell carrier systems have garnered significant attraction due to their capacity to be loaded with therapeutic agents and carry them specifically to tumor sites. Furthermore, cell carriers can be genetically modified to express therapeutic agents that can directly eradicate cancerous cells or can modulate tumor microenvironments. This review describes the current state of cell carriers, their use as vehicles for the delivery of therapeutic agents to brain tumors, and future directions that will help overcome the present obstacles to cell carrier mediated therapy for brain cancer.
Collapse
Affiliation(s)
- Jacob S Young
- The Brain Tumor Center, The University of Chicago, Chicago, IL, USA
| | | | | | | |
Collapse
|
10
|
Abstract
Integration of physiologically relevant in vitro assays at the earliest stages of drug discovery may improve the likelihood of successfully translating preclinical discoveries to the clinic. Assays based on in vitro-differentiated, human pluripotent stem cell (IVD hPSC)-derived cells, which may better model human physiology, are starting to impact the drug discovery process, but their implementation has been slower than originally anticipated. In this Perspective, we discuss imperatives for incorporating IVD hPSCs into drug discovery and the associated challenges.
Collapse
Affiliation(s)
- Sandra J Engle
- Pharmacokinetics, Dynamics and Metabolism, Pfizer, Eastern Point Road, Groton, CT 06340, USA.
| | | |
Collapse
|
11
|
Databases and collaboration require standards for human stem cell research. Drug Discov Today 2014; 20:247-54. [PMID: 25449658 DOI: 10.1016/j.drudis.2014.10.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 09/26/2014] [Accepted: 10/20/2014] [Indexed: 11/20/2022]
Abstract
Stem cell research is at an important juncture: despite significant potential for human health and several countries with key initiatives to expedite commercialization, there are gaps in capturing and exploiting the results of past and current research. Here, we propose a concerted plan that could be taken to foster a more collaborative approach and ensure that all research efforts can be leveraged across the community. The creation of a definitive centralized database repository, or at least harmonized data repositories, for stem cell groups in academia and industry, enabling secure selective sharing of data when needed, could provide the core structure that is sought globally and protect intellectual property. The development of minimum information about stem cell experiments (MIASCE) could be key to this development.
Collapse
|
12
|
Ovchinnikov DA, Titmarsh DM, Fortuna PR, Hidalgo A, Alharbi S, Whitworth DJ, Cooper-White JJ, Wolvetang EJ. Transgenic human ES and iPS reporter cell lines for identification and selection of pluripotent stem cells in vitro. Stem Cell Res 2014; 13:251-61. [DOI: 10.1016/j.scr.2014.05.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Revised: 05/22/2014] [Accepted: 05/31/2014] [Indexed: 01/08/2023] Open
|
13
|
Guo Z, Higgins CA, Gillette BM, Itoh M, Umegaki N, Gledhill K, Sia SK, Christiano AM. Building a microphysiological skin model from induced pluripotent stem cells. Stem Cell Res Ther 2013; 4 Suppl 1:S2. [PMID: 24564920 PMCID: PMC4029476 DOI: 10.1186/scrt363] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The discovery of induced pluripotent stem cells (iPSCs) in 2006 was a major breakthrough for regenerative medicine. The establishment of patient-specific iPSCs has created the opportunity to model diseases in culture systems, with the potential to rapidly advance the drug discovery field. Current methods of drug discovery are inefficient, with a high proportion of drug candidates failing during clinical trials due to low efficacy and/or high toxicity. Many drugs fail toxicity testing during clinical trials, since the cells on which they have been tested do not adequately model three-dimensional tissues or their interaction with other organs in the body. There is a need to develop microphysiological systems that reliably represent both an intact tissue and also the interaction of a particular tissue with other systems throughout the body. As the port of entry for many drugs is via topical delivery, the skin is the first line of exposure, and also one of the first organs to demonstrate a reaction after systemic drug delivery. In this review, we discuss our strategy to develop a microphysiological system using iPSCs that recapitulates human skin for analyzing the interactions of drugs with the skin.
Collapse
|
14
|
Liu GH, Ding Z, Izpisua Belmonte JC. iPSC technology to study human aging and aging-related disorders. Curr Opin Cell Biol 2012; 24:765-74. [DOI: 10.1016/j.ceb.2012.08.014] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Accepted: 08/28/2012] [Indexed: 01/27/2023]
|
15
|
Liu T, Zou G, Gao Y, Zhao X, Wang H, Huang Q, Jiang L, Guo L, Cheng W. High efficiency of reprogramming CD34⁺ cells derived from human amniotic fluid into induced pluripotent stem cells with Oct4. Stem Cells Dev 2012; 21:2322-32. [PMID: 22264161 DOI: 10.1089/scd.2011.0715] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Although many techniques can be used to generate multitype-induced pluripotent stem (iPS) cells from multitype seed cells, improving the efficiency and shortening the period of cell reprogramming remain troublesome issues. In this study, to generate iPS cells, CD34⁺ cells, isolated from human amniotic fluid cells (HuAFCs) by flow cytometry, were infected with retroviruses carrying only one reprogramming factor (Oct4) and cultured on human amniotic epithelial cell (HuAEC) feeder layers. Approximately 4 to 5 days after viral infection, some embryonic stem cell (ESC)-like colonies appeared among the feeder cells. These colonies were positive for alkaline phosphatase and expressed high levels of ESC pluripotent markers (Nanog, Sox2, Oct4, CD133, and Rex1). Moreover, these iPS cells exhibited high levels of telomerase activity and had normal karyotypes. Additionally, these cells could differentiate into cell types from all 3 germ layers in vivo and in teratomas. In summary, we report a novel way of iPS generation that uses CD34⁺ HuAFCs as seed cells. Using this method, we can generate human iPS cells with greater efficiency and safety (the oncogenic factors, c-Myc and Klf4, were not used), and using the minimum number of reprogramming factors (only one factor, Oct4). Besides, HuAECs were used as feeder layers to culture human iPS cells, which could not only avoid contamination with heterogeneous proteins, but also maintain iPS cells in a self-renewing and undifferentiated state for a long time.
Collapse
Affiliation(s)
- Te Liu
- International Peace Maternity and Child Health Hospital, Shanghai Jiaotong University, Shanghai, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Kim HJ, Jin CY. Stem cells in drug screening for neurodegenerative disease. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2012; 16:1-9. [PMID: 22416213 PMCID: PMC3298819 DOI: 10.4196/kjpp.2012.16.1.1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Revised: 01/20/2012] [Accepted: 01/25/2012] [Indexed: 12/26/2022]
Abstract
Because the average human life span has recently increased, the number of patients who are diagnosed with neurodegenerative diseases has escalated. Recent advances in stem cell research have given us access to unlimited numbers of multi-potent or pluripotent cells for screening for new drugs for neurodegenerative diseases. Neural stem cells (NSCs) are a good model with which to screen effective drugs that increase neurogenesis. Recent technologies for human embryonic stem cells (ESCs) or induced pluripotent stem cells (iPSCs) can provide human cells that harbour specific neurodegenerative disease. This article discusses the use of NSCs, ESCs and iPSCs for neurodegenerative drug screening and toxicity evaluation. In addition, we introduce drugs or natural products that are recently identified to affect the stem cell fate to generate neurons or glia.
Collapse
Affiliation(s)
- Hyun-Jung Kim
- Laboratory of Stem Cell and Molecular Pharmacology, College of Pharmacy, Chung-Ang University, Seoul 156-756, Korea
| | | |
Collapse
|
17
|
March JS, Fegert JM. Drug development in pediatric psychiatry: current status, future trends. Child Adolesc Psychiatry Ment Health 2012; 6:7. [PMID: 22313578 PMCID: PMC3296572 DOI: 10.1186/1753-2000-6-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Accepted: 02/07/2012] [Indexed: 12/12/2022] Open
Affiliation(s)
- John S March
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, North Carolina.
| | - Joerg M Fegert
- University Hospital Ulm, Department of Child and Adolescent Psychiatry/Psychotherapy, Steinhövelstr 5, 89075 Ulm, Germany
| |
Collapse
|
18
|
Illich DJ, Demir N, Stojković M, Scheer M, Rothamel D, Neugebauer J, Hescheler J, Zöller JE. Concise review: induced pluripotent stem cells and lineage reprogramming: prospects for bone regeneration. Stem Cells 2011; 29:555-63. [PMID: 21308867 DOI: 10.1002/stem.611] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Bone tissue for transplantation therapies is in high demand in clinics. Osteodegenerative diseases, in particular, osteoporosis and osteoarthritis, represent serious public health issues affecting a respectable proportion of the elderly population. Furthermore, congenital indispositions from the spectrum of craniofacial malformations such as cleft palates and systemic disorders including osteogenesis imperfecta are further increasing the need for bone tissue. Additionally, the reconstruction of fractured bone elements after accidents and the consumption of bone parts during surgical tumor excisions represent frequent clinical situations with deficient availability of healthy bone tissue for therapeutic transplantations. Epigenetic reprogramming represents a powerful technology for the generation of healthy patient-specific cells to replace or repair diseased or damaged tissue. The recent generation of induced pluripotent stem cells (iPSCs) is probably the most promising among these approaches dominating the literature of current stem cell research. It allows the generation of pluripotent stem cells from adult human skin cells from which potentially all cell types of the human body could be obtained. Another technique to produce clinically interesting cell types is direct lineage reprogramming (LR) with the additional advantage that it can be applied directly in vivo to reconstitute a damaged organ. Here, we want to present the two technologies of iPSCs and LR, to outline the current states of research, and to discuss possible strategies for their implementation in bone regeneration.
Collapse
Affiliation(s)
- Damir J Illich
- Medical Center, Institute for Neurophysiology, University of Cologne, Cologne, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
|
20
|
Wobus AM, Löser P. Present state and future perspectives of using pluripotent stem cells in toxicology research. Arch Toxicol 2011; 85:79-117. [PMID: 21225242 PMCID: PMC3026927 DOI: 10.1007/s00204-010-0641-6] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Accepted: 12/21/2010] [Indexed: 02/08/2023]
Abstract
The use of novel drugs and chemicals requires reliable data on their potential toxic effects on humans. Current test systems are mainly based on animals or in vitro–cultured animal-derived cells and do not or not sufficiently mirror the situation in humans. Therefore, in vitro models based on human pluripotent stem cells (hPSCs) have become an attractive alternative. The article summarizes the characteristics of pluripotent stem cells, including embryonic carcinoma and embryonic germ cells, and discusses the potential of pluripotent stem cells for safety pharmacology and toxicology. Special attention is directed to the potential application of embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) for the assessment of developmental toxicology as well as cardio- and hepatotoxicology. With respect to embryotoxicology, recent achievements of the embryonic stem cell test (EST) are described and current limitations as well as prospects of embryotoxicity studies using pluripotent stem cells are discussed. Furthermore, recent efforts to establish hPSC-based cell models for testing cardio- and hepatotoxicity are presented. In this context, methods for differentiation and selection of cardiac and hepatic cells from hPSCs are summarized, requirements and implications with respect to the use of these cells in safety pharmacology and toxicology are presented, and future challenges and perspectives of using hPSCs are discussed.
Collapse
Affiliation(s)
- Anna M Wobus
- In Vitro Differentiation Group, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, 06466 Gatersleben, Germany.
| | | |
Collapse
|
21
|
Smith D. Commercialization challenges associated with induced pluripotent stem cell-based products. Regen Med 2010; 5:593-603. [PMID: 20632862 DOI: 10.2217/rme.10.50] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Induced pluripotent stem (iPS) cells have generated excitement in the regenerative medicine industry. Products derived from iPS cells could be used in a range of drug discovery and development processes. These nontherapeutic products will continue to be launched over the next 5 years, and provide income and knowledge to drive the therapeutic use of iPS cells forward. While the commercial opportunity for iPS cell-based therapies is potentially large, the looming technical and scientific hurdles must be overcome and, thus, the launch of a therapy based on iPS cells is unlikely to occur until the 2020s. While the launch of a therapeutic is many years away, the business models for commercialization should be well understood and proven based on experience with other non-iPS cell-based therapies (both autologous and allogeneic) that will already be on the market.
Collapse
Affiliation(s)
- Devyn Smith
- Strategic Management Group, Pfizer Global R&D, 50 Pequot Avenue, MS6025-C4171, New London, CT 06320, USA.
| |
Collapse
|
22
|
Lensch MW, Rao M. Induced pluripotent stem cells: opportunities and challenges. Regen Med 2010; 5:483-4. [DOI: 10.2217/rme.10.49] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Affiliation(s)
- M William Lensch
- Howard Hughes Medical Institute at Children’s Hospital Boston, MA, USA and Harvard Medical School, Boston, MA, USA and Harvard Stem Cell Institute, 1 Blackfan Circle, Boston, MA 02115, USA
| | - Mahendra Rao
- Invitrogen Corporation, 1600 Faraday Avenue, Carlsbad, CA 92008 USA
| |
Collapse
|