1
|
Silva Couto P, Molina SA, O'Sullivan D, O'Neill L, Lyness AM, Rafiq QA. Understanding the impact of bioactive coating materials for human mesenchymal stromal cells and implications for manufacturing. Biotechnol Lett 2023:10.1007/s10529-023-03369-9. [PMID: 37227598 DOI: 10.1007/s10529-023-03369-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 03/06/2023] [Accepted: 03/31/2023] [Indexed: 05/26/2023]
Abstract
Bioactive materials interact with cells and modulate their characteristics which enable the generation of cell-based products with desired specifications. However, their evaluation and impact are often overlooked when establishing a cell therapy manufacturing process. In this study, we investigated the role of different surfaces for tissue culture including, untreated polystyrene surface, uncoated Cyclic Olefin Polymer (COP) and COP coated with collagen and recombinant fibronectin. It was observed that human mesenchymal stromal cells (hMSCs) expanded on COP-coated plates with different bioactive materials resulted in improved cell growth kinetics compared to traditional polystyrene plates and non-coated COP plates. The doubling time obtained was 2.78 and 3.02 days for hMSC seeded in COP plates coated with collagen type I and recombinant fibronectin respectively, and 4.64 days for cells plated in standard polystyrene treated plates. Metabolite analysis reinforced the findings of the growth kinetic studies, specifically that cells cultured on COP plates coated with collagen I and fibronectin exhibited improved growth as evidenced by a higher lactate production rate (9.38 × 105 and 9.67 × 105 pmol/cell/day, respectively) compared to cells from the polystyrene group (5.86 × 105 pmol/cell/day). This study demonstrated that COP is an effective alternative to polystyrene-treated plates when coated with bioactive materials such as collagen and fibronectin, however COP-treated plates without additional coatings were found not to be sufficient to support cell growth. These findings demonstrate the key role biomaterials play in the cell manufacturing process and the importance of optimising this selection.
Collapse
Affiliation(s)
- Pedro Silva Couto
- Department of Biochemical Engineering, Advanced Centre for Biochemical Engineering, University College London, Gower Street, London, WC1E 6BT, UK
| | - Samuel A Molina
- Applied Research & Technology Scouting R&D, West Pharmaceutical Services, Inc., Exton, PA, USA
| | - Denis O'Sullivan
- TheraDep, Questum, Ballingarrane, Clonmel, Co., Tipperary, Ireland
| | - Liam O'Neill
- TheraDep, Questum, Ballingarrane, Clonmel, Co., Tipperary, Ireland
| | - Alexander M Lyness
- Applied Research & Technology Scouting R&D, West Pharmaceutical Services, Inc., Exton, PA, USA
| | - Qasim A Rafiq
- Department of Biochemical Engineering, Advanced Centre for Biochemical Engineering, University College London, Gower Street, London, WC1E 6BT, UK.
| |
Collapse
|
2
|
Ung CY, Correia C, Billadeau DD, Zhu S, Li H. Manifold epigenetics: A conceptual model that guides engineering strategies to improve whole-body regenerative health. Front Cell Dev Biol 2023; 11:1122422. [PMID: 36866271 PMCID: PMC9971008 DOI: 10.3389/fcell.2023.1122422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 01/30/2023] [Indexed: 02/16/2023] Open
Abstract
Despite the promising advances in regenerative medicine, there is a critical need for improved therapies. For example, delaying aging and improving healthspan is an imminent societal challenge. Our ability to identify biological cues as well as communications between cells and organs are keys to enhance regenerative health and improve patient care. Epigenetics represents one of the major biological mechanisms involving in tissue regeneration, and therefore can be viewed as a systemic (body-wide) control. However, how epigenetic regulations concertedly lead to the development of biological memories at the whole-body level remains unclear. Here, we review the evolving definitions of epigenetics and identify missing links. We then propose our Manifold Epigenetic Model (MEMo) as a conceptual framework to explain how epigenetic memory arises and discuss what strategies can be applied to manipulate the body-wide memory. In summary we provide a conceptual roadmap for the development of new engineering approaches to improve regenerative health.
Collapse
Affiliation(s)
- Choong Yong Ung
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, United States
| | - Cristina Correia
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, United States
| | | | - Shizhen Zhu
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, United States
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, United States
| | - Hu Li
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
3
|
Silpa L, Sim R, Russell AJ. Recent Advances in Small Molecule Stimulation of Regeneration and Repair. Bioorg Med Chem Lett 2022; 61:128601. [PMID: 35123003 DOI: 10.1016/j.bmcl.2022.128601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/26/2022] [Accepted: 01/28/2022] [Indexed: 11/02/2022]
Abstract
Therapeutic approaches to stimulate regeneration and repair have the potential to transform healthcare and improve outcomes for patients suffering from numerous chronic degenerative diseases. To date most approaches have involved the transplantation of therapeutic cells, and while there have been a small number of clinical approvals, major hurdles exist to the routine adoption of such therapies. In recent years humans and other mammals have been shown to possess a regenerative capacity across multiple tissues and organs, and an innate regenerative and repair response has been shown to be activated in these organs in response to injury. These realisations have inspired a transformative approach in regenerative medicine: the development of new agents to directly target these innate regeneration and repair pathways. In this article we will review the current state of the art in the discovery of small molecule modulators of regeneration and their translation towards therapeutic agents, focussing specifically on the areas of neuroregeneration and cardiac regeneration.
Collapse
Affiliation(s)
- Laurence Silpa
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford OX1 3TA
| | - Rachel Sim
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford OX1 3TA
| | - Angela J Russell
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford OX1 3TA; Department of Pharmacology, University of Oxford, University of Oxford OX1 3QT.
| |
Collapse
|
4
|
Mikkelsen RK, Blønd L, Hölmich LR, Mølgaard C, Troelsen A, Hölmich P, Barfod KW. Treatment of osteoarthritis with autologous, micro-fragmented adipose tissue: a study protocol for a randomized controlled trial. Trials 2021; 22:748. [PMID: 34706757 PMCID: PMC8549306 DOI: 10.1186/s13063-021-05628-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 09/15/2021] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Osteoarthritis is a destructive joint disease that leads to degeneration of cartilage and other morphological changes in the joint. No medical treatment currently exists that can reverse these morphological changes. Intra-articular injection with autologous, micro-fragmented adipose tissue has been suggested to relieve symptoms. METHODS/DESIGN The study is a blinded randomized controlled trial with patients allocated in a 1:1 ratio to 2 parallel groups. Patients suffering from pain and functional impairment due to osteoarthritis Kellgren-Lawrence grades 2-3 in the tibiofemoral joint are eligible for inclusion. The intervention group is treated with an intra-articular injection with autologous, micro-fragmented adipose tissue prepared using the Lipogems® system. The control group receives an intra-articular injection with isotonic saline. In total, 120 patients are to be included. The primary outcome is The Knee injury and Osteoarthritis Outcome Score (KOOS4) evaluated at 6 months. Secondary outcomes are KOOS at 3, 12 and 24 months; the Tegner activity score; treatment failure; and work status of the patient. The analysis will be conducted both as intention-to-treat and per-protocol analysis. DISCUSSION This trial is the first to investigate the efficacy of autologous, micro-fragmented adipose tissue in a randomized controlled trial. The study uses the patient-reported outcome measure Knee Injury and Osteoarthritis Outcome Score (KOOS4) after 6 months as the primary outcome, as it is believed to be a valid measure to assess the patient's opinion about their knee and associated problems when suffering from osteoarthritis.
Collapse
Affiliation(s)
- Rasmus Kramer Mikkelsen
- Department of Orthopaedic Surgery, Copenhagen University Hospital Hvidovre, Kettegård Allé 30, 2650 Hvidovre, Denmark
- Sports Orthopedic Research Center – Copenhagen (SORC-C), Hvidovre, Denmark
| | - Lars Blønd
- Department of Orthopedic Surgery, University Hospital Zealand, Lykkebækvej 1, 4600 Køge, Denmark
| | - Lisbeth Rosenkrantz Hölmich
- Department of Plastic Surgery, Copenhagen University Herlev and Gentofte Hospital, Borgmester Ib Juuls Vej 1, 2730 Herlev, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Cecilie Mølgaard
- Department of Orthopaedic Surgery, Copenhagen University Hospital Hvidovre, Kettegård Allé 30, 2650 Hvidovre, Denmark
- Sports Orthopedic Research Center – Copenhagen (SORC-C), Hvidovre, Denmark
| | - Anders Troelsen
- Department of Orthopaedic Surgery, Copenhagen University Hospital Hvidovre, Kettegård Allé 30, 2650 Hvidovre, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Clinical Orthopedic Research Hvidovre (CORH), Hvidovre, Denmark
| | - Per Hölmich
- Department of Orthopaedic Surgery, Copenhagen University Hospital Hvidovre, Kettegård Allé 30, 2650 Hvidovre, Denmark
- Sports Orthopedic Research Center – Copenhagen (SORC-C), Hvidovre, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Kristoffer Weisskirchner Barfod
- Department of Orthopaedic Surgery, Copenhagen University Hospital Hvidovre, Kettegård Allé 30, 2650 Hvidovre, Denmark
- Sports Orthopedic Research Center – Copenhagen (SORC-C), Hvidovre, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
5
|
Effect of Biomedical Materials in the Implementation of a Long and Healthy Life Policy. Processes (Basel) 2021. [DOI: 10.3390/pr9050865] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
This paper is divided into seven main parts. Its purpose is to review the literature to demonstrate the importance of developing bioengineering and global production of biomaterials to care for the level of healthcare in the world. First, the general description of health as a universal human value and assumptions of a long and healthy life policy is presented. The ethical aspects of the mission of medical doctors and dentists were emphasized. The coronavirus, COVID-19, pandemic has had a significant impact on health issues, determining the world’s health situation. The scope of the diseases is given, and specific methods of their prevention are discussed. The next part focuses on bioengineering issues, mainly medical engineering and dental engineering, and the need for doctors to use technical solutions supporting medicine and dentistry, taking into account the current stage Industry 4.0 of the industrial revolution. The concept of Dentistry 4.0 was generally presented, and a general Bioengineering 4.0 approach was suggested. The basics of production management and the quality loop of the product life cycle were analyzed. The general classification of medical devices and biomedical materials necessary for their production was presented. The paper contains an analysis of the synthesis and characterization of biomedical materials supporting medicine and dentistry, emphasizing additive manufacturing methods. Numerous examples of clinical applications supported considerations regarding biomedical materials. The economic conditions for implementing various biomedical materials groups were supported by forecasts for developing global markets for biomaterials, regenerative medicine, and tissue engineering. In the seventh part, recapitulation and final remarks against the background of historical retrospection, it was emphasized that the technological processes of production and processing of biomedical materials and the systematic increase in their global production are a determinant of the implementation of a long and healthy policy.
Collapse
|
6
|
Leask F, Terzic A. Regenerative outlook: offering global solutions for equitable care. Regen Med 2020; 15:2249-2252. [PMID: 33245010 DOI: 10.2217/rme-2020-0177] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 11/11/2020] [Indexed: 12/18/2022] Open
Affiliation(s)
| | - Andre Terzic
- Department of Cardiovascular Medicine; Department of Molecular Pharmacology & Experimental Therapeutics, Department of Clinical Genomics, Center for Regenerative Medicine, Marriott Heart Disease Research Program, van Cleve Cardiac Regenerative Medicine Program, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
7
|
Radhakrishnan H, Javitz HS, Bhatnagar P. Lentivirus Manufacturing Process for Primary T-Cell Biofactory Production. ACTA ACUST UNITED AC 2020; 4:e1900288. [PMID: 32390316 DOI: 10.1002/adbi.201900288] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 03/08/2020] [Accepted: 04/06/2020] [Indexed: 02/06/2023]
Abstract
A process for maximizing the titer of lentivirus particles, deemed to be a necessity for transducing primary cells, is developed. Lentivirus particles, with a set of transgenes encoding an artificial cell-signaling pathway, are used to transform primary T cells as vectors for calibrated synthesis of desired proteins in situ, that is, T-cell biofactory cells. The process is also used to generate primary T cells expressing antigen-specific chimeric antigen receptors, that is, CAR T cells. The two differently engineered primary T cells are expanded and validated for their respective functions, that is, calibrated synthesis of desired proteins upon engaging the target cells, which is specific for the T-cell biofactory cells, and cytolysis of the target cells common to both types of cells. The process is compliant with current Good Manufacturing Practices and can be used to support the scale-up for clinical translation.
Collapse
Affiliation(s)
| | - Harold S Javitz
- Education Division, SRI International, Menlo Park, CA, 94025, USA
| | | |
Collapse
|
8
|
Expansion processes for cell-based therapies. Biotechnol Adv 2019; 37:107455. [PMID: 31629791 DOI: 10.1016/j.biotechadv.2019.107455] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 07/08/2019] [Accepted: 09/24/2019] [Indexed: 02/06/2023]
Abstract
Living cells are emerging as therapeutic entities for the treatment of patients affected with severe and chronic diseases where no conventional drug can provide a definitive cure. At the same time, the promise of cell-based therapies comes with several biological, regulatory, economic, logistical, safety and engineering challenges that need to be addressed before translating into clinical practice. Among the complex operations required for their manufacturing, cell expansion occupies a significant part of the entire process and largely determines the number, the phenotype and several other critical quality attributes of the final cell therapy products (CTPs). This review aims at characterizing the main culture systems and expansion processes used for CTP production, highlighting the need to implement scalable, cost-efficient technologies together with process optimization strategies to bridge the gap between basic scientific research and commercially available therapies.
Collapse
|
9
|
Fath-Bayati L, Vasei M, Sharif-Paghaleh E. Optical fluorescence imaging with shortwave infrared light emitter nanomaterials for in vivo cell tracking in regenerative medicine. J Cell Mol Med 2019; 23:7905-7918. [PMID: 31559692 PMCID: PMC6850965 DOI: 10.1111/jcmm.14670] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 07/13/2019] [Accepted: 07/30/2019] [Indexed: 12/13/2022] Open
Abstract
In vivo tracking and monitoring of adoptive cell transfer has a distinct importance in cell‐based therapy. There are many imaging modalities for in vivo monitoring of biodistribution, viability and effectiveness of transferred cells. Some of these procedures are not applicable in the human body because of low sensitivity and high possibility of tissue damages. Shortwave infrared region (SWIR) imaging is a relatively new technique by which deep biological tissues can be potentially visualized with high resolution at cellular level. Indeed, scanning of the electromagnetic spectrum (beyond 1000 nm) of SWIR has a great potential to increase sensitivity and resolution of in vivo imaging for various human tissues. In this review, molecular imaging modalities used for monitoring of biodistribution and fate of administered cells with focusing on the application of non‐invasive optical imaging at shortwave infrared region are discussed in detail.
Collapse
Affiliation(s)
- Leyla Fath-Bayati
- Department of Tissue Engineering & Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran.,Department of Tissue Engineering, School of Medicine, Qom University of Medical Sciences, Qom, Iran
| | - Mohammad Vasei
- Department of Tissue Engineering & Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran.,Cell-based Therapies Research Institute, Digestive Disease Research Institute (DDRI), Shariati Hospital, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Ehsan Sharif-Paghaleh
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Department of Imaging Chemistry and Biology, Faculty of Life Sciences and Medicine, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| |
Collapse
|
10
|
Wong RS, Chen YY, Smolke CD. Regulation of T cell proliferation with drug-responsive microRNA switches. Nucleic Acids Res 2019; 46:1541-1552. [PMID: 29244152 PMCID: PMC5815133 DOI: 10.1093/nar/gkx1228] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 11/30/2017] [Indexed: 11/21/2022] Open
Abstract
As molecular and cellular therapies advance in the clinic, the role of genetic regulation is becoming increasingly important for controlling therapeutic potency and safety. The emerging field of mammalian synthetic biology provides promising tools for the construction of regulatory platforms that can intervene with endogenous pathways and control cell behavior. Recent work has highlighted the development of synthetic biological systems that integrate sensing of molecular signals to regulated therapeutic function in various disease settings. However, the toxicity and limited dosing of currently available molecular inducers have largely inhibited translation to clinical settings. In this work, we developed synthetic microRNA-based genetic systems that are controlled by the pharmaceutical drug leucovorin, which is readily available and safe for prolonged administration in clinical settings. We designed microRNA switches to target endogenous cytokine receptor subunits (IL-2Rβ and γc) that mediate various signaling pathways in T cells. We demonstrate the function of these control systems by effectively regulating T cell proliferation with the drug input. Each control system produced unique functional responses, and combinatorial targeting of multiple receptor subunits exhibited greater repression of cell growth. This work highlights the potential use of drug-responsive genetic control systems to improve the management and safety of cellular therapeutics.
Collapse
Affiliation(s)
- Remus S Wong
- Department of Bioengineering, 443 Via Ortega, MC 4245, Stanford University, Stanford, CA 94305, USA
| | - Yvonne Y Chen
- Department of Chemical and Biomolecular Engineering, 420 Westwood Plaza, Boelter Hall 5531, University of California-Los Angeles, Los Angeles, CA 90095, USA
| | - Christina D Smolke
- Department of Bioengineering, 443 Via Ortega, MC 4245, Stanford University, Stanford, CA 94305, USA.,Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| |
Collapse
|
11
|
Aijaz A, Li M, Smith D, Khong D, LeBlon C, Fenton OS, Olabisi RM, Libutti S, Tischfield J, Maus MV, Deans R, Barcia RN, Anderson DG, Ritz J, Preti R, Parekkadan B. Biomanufacturing for clinically advanced cell therapies. Nat Biomed Eng 2018; 2:362-376. [PMID: 31011198 PMCID: PMC6594100 DOI: 10.1038/s41551-018-0246-6] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 05/08/2018] [Indexed: 02/07/2023]
Abstract
The achievements of cell-based therapeutics have galvanized efforts to bring cell therapies to the market. To address the demands of the clinical and eventual commercial-scale production of cells, and with the increasing generation of large clinical datasets from chimeric antigen receptor T-cell immunotherapy, from transplants of engineered haematopoietic stem cells and from other promising cell therapies, an emphasis on biomanufacturing requirements becomes necessary. Robust infrastructure should address current limitations in cell harvesting, expansion, manipulation, purification, preservation and formulation, ultimately leading to successful therapy administration to patients at an acceptable cost. In this Review, we highlight case examples of cutting-edge bioprocessing technologies that improve biomanufacturing efficiency for cell therapies approaching clinical use.
Collapse
Affiliation(s)
- Ayesha Aijaz
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ, USA
| | - Matthew Li
- Department of Surgery, Center for Surgery, Innovation, and Bioengineering, Massachusetts General Hospital, Harvard Medical School and Shriners Hospitals for Children, Boston, MA, USA
| | - David Smith
- Hitachi Chemical Advanced Therapeutics Solutions, Allendale, NJ, USA
| | - Danika Khong
- Department of Surgery, Center for Surgery, Innovation, and Bioengineering, Massachusetts General Hospital, Harvard Medical School and Shriners Hospitals for Children, Boston, MA, USA
| | - Courtney LeBlon
- Hitachi Chemical Advanced Therapeutics Solutions, Allendale, NJ, USA
| | - Owen S Fenton
- Department of Chemical Engineering, Institute for Medical Engineering and Science, Division of Health Science and Technology, and the David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ronke M Olabisi
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ, USA
| | | | - Jay Tischfield
- Human Genetics Institute of New Jersey, RUCDR, Piscataway, NJ, USA
| | - Marcela V Maus
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | | | | | - Daniel G Anderson
- Department of Chemical Engineering, Institute for Medical Engineering and Science, Division of Health Science and Technology, and the David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jerome Ritz
- Cell Manipulation Core Facility, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Robert Preti
- Hitachi Chemical Advanced Therapeutics Solutions, Allendale, NJ, USA
| | - Biju Parekkadan
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ, USA.
- Department of Surgery, Center for Surgery, Innovation, and Bioengineering, Massachusetts General Hospital, Harvard Medical School and Shriners Hospitals for Children, Boston, MA, USA.
- Sentien Biotechnologies, Inc, Lexington, MA, USA.
- Harvard Stem Cell Institute, Cambridge, MA, USA.
| |
Collapse
|
12
|
Jossen V, van den Bos C, Eibl R, Eibl D. Manufacturing human mesenchymal stem cells at clinical scale: process and regulatory challenges. Appl Microbiol Biotechnol 2018; 102:3981-3994. [PMID: 29564526 PMCID: PMC5895685 DOI: 10.1007/s00253-018-8912-x] [Citation(s) in RCA: 132] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 02/28/2018] [Accepted: 03/02/2018] [Indexed: 01/10/2023]
Abstract
Human mesenchymal stem cell (hMSC)-based therapies are of increasing interest in the field of regenerative medicine. As economic considerations have shown, allogeneic therapy seems to be the most cost-effective method. Standardized procedures based on instrumented single-use bioreactors have been shown to provide billion of cells with consistent product quality and to be superior to traditional expansions in planar cultivation systems. Furthermore, under consideration of the complex nature and requirements of allogeneic hMSC-therapeutics, a new equipment for downstream processing (DSP) was successfully evaluated. This mini-review summarizes both the current state of the hMSC production process and the challenges which have to be taken into account when efficiently producing hMSCs for the clinical scale. Special emphasis is placed on the upstream processing (USP) and DSP operations which cover expansion, harvesting, detachment, separation, washing and concentration steps, and the regulatory demands.
Collapse
Affiliation(s)
- Valentin Jossen
- Institute of Chemistry and Biotechnology, Zurich University of Applied Sciences, 8820, Wädenswil, Switzerland.
| | | | - Regine Eibl
- Institute of Chemistry and Biotechnology, Zurich University of Applied Sciences, 8820, Wädenswil, Switzerland
| | - Dieter Eibl
- Institute of Chemistry and Biotechnology, Zurich University of Applied Sciences, 8820, Wädenswil, Switzerland
| |
Collapse
|
13
|
Mesenchymal Stem Cells and Calcium Phosphate Bioceramics: Implications in Periodontal Bone Regeneration. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1107:91-112. [PMID: 30105601 DOI: 10.1007/5584_2018_249] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In orthopedic medicine, a feasible reconstruction of bone structures remains one of the main challenges both for healthcare and for improvement of patients' quality of life. There is a growing interest in mesenchymal stem cells (MSCs) medical application, due to their multilineage differentiation potential, and tissue engineering integration to improve bone repair and regeneration. In this review we will describe the main characteristics of MSCs, such as osteogenesis, immunomodulation and antibacterial properties, key parameters to consider during bone repair strategies. Moreover, we describe the properties of calcium phosphate (CaP) bioceramics, which demonstrate to be useful tools in combination with MSCs, due to their biocompatibility, osseointegration and osteoconduction for bone repair and regeneration. Also, we overview the main characteristics of dental cavity MSCs, which are promising candidates, in combination with CaP bioceramics, for bone regeneration and tissue engineering. The understanding of MSCs biology and their interaction with CaP bioceramics and other biomaterials is critical for orthopedic surgical bone replacement, reconstruction and regeneration, which is an integrative and dynamic medical, scientific and bioengineering field of research and biotechnology.
Collapse
|
14
|
Remodeling the Human Adult Stem Cell Niche for Regenerative Medicine Applications. Stem Cells Int 2017; 2017:6406025. [PMID: 29090011 PMCID: PMC5635271 DOI: 10.1155/2017/6406025] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 08/17/2017] [Indexed: 12/29/2022] Open
Abstract
The interactions between stem cells and their surrounding microenvironment are pivotal to determine tissue homeostasis and stem cell renewal or differentiation and regeneration in vivo. Ever since they were postulated in 1978, stem cell niches have been identified and characterized in many germline and adult tissues. Comprehensive studies over the last decades helped to clarify the critical components of stem cell niches that include cellular, extracellular, biochemical, molecular, and physical regulators. This knowledge has direct impact on their inherent regenerative potential. Clinical applications demand readily available cell sources that, under controlled conditions, provide a specific therapeutic function. Thus, translational medicine aims at optimizing in vitro or in vivo the various components and complex architecture of the niche to exploit its therapeutic potential. Accordingly, the objective is to recreate the natural niche microenvironment during cell therapy process development and closely comply with the requests of regulatory authorities. In this paper, we review the most recent advances of translational medicine approaches that target the adult stem cell natural niche microenvironment for regenerative medicine applications.
Collapse
|
15
|
Schubert S, Brehm W, Hillmann A, Burk J. Serum-free human MSC medium supports consistency in human but not in equine adipose-derived multipotent mesenchymal stromal cell culture. Cytometry A 2017; 93:60-72. [PMID: 28926198 DOI: 10.1002/cyto.a.23240] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
For clinical applications of multipotent mesenchymal stromal cells (MSCs), serum-free culture is preferable to standardize cell products and prevent contamination with pathogens. In contrast to human MSCs, knowledge on serum-free culture of large animal MSCs is limited, despite its relevance for preclinical studies and development of veterinary cellular therapeutics. This study aimed to evaluate the suitability of a commercially available serum-free human MSC medium for culturing equine adipose-derived MSCs in comparison with human adipose MSCs. Enzyme-free isolation by explant technique and expansion of equine and human cells in the serum-free medium were feasible. However, serum-free culture altered the morphology and complicated handling of equine MSCs, with cell aggregation and spontaneous detachment of multilayers, compared to culture in standard medium supplemented with fetal bovine serum. Furthermore, proliferation and the surface immunophenotype of equine cells were more variable compared to the controls and appeared to depend on the lot of the serum-free medium. Particularly the expression of CD90 was different between experimental groups (P < 0.05), with lower percentages of CD90+ cells found in equine MSC samples cultured in serum-free medium (5.21-83.40%) compared to standard medium (86.20-99.50%). Additionally, small subpopulations expressing MSC exclusion markers such as CD14 (0.28-11.60%), CD34 (0.00-9.87%), CD45 (0.35-10.50%), or MHCII (0.00-3.67%) were found in equine samples after serum-free culture. In contrast, human samples displayed a more consistent morphology and a consistent CD29+ (98.60-99.90%), CD73+ (94.60-98.40%), CD90+ (99.60-99.90%), and CD105+ (97.40-99.80%) immunophenotype after culture in serum-free medium. The obtained data demonstrate that the serum-free medium was suitable for human MSC culture but did not lead to entirely satisfactory results in equine MSCs. This underlines that requirements regarding serum-free culture conditions are species-specific, indicating a need for serum-free media to be optimized for MSCs from relevant animal species. © 2017 International Society for Advancement of Cytometry.
Collapse
Affiliation(s)
- Susanna Schubert
- Saxonian Incubator for Clinical Translation (SIKT), University of Leipzig, Philipp-Rosenthal-Straße 55, Leipzig 04103, Germany.,Faculty of Veterinary Medicine, Institute of Physiology, University of Leipzig, An den Tierkliniken 7, Leipzig 04103, Germany
| | - Walter Brehm
- Saxonian Incubator for Clinical Translation (SIKT), University of Leipzig, Philipp-Rosenthal-Straße 55, Leipzig 04103, Germany.,Faculty of Veterinary Medicine, Large Animal Clinic for Surgery, University of Leipzig, An den Tierkliniken 21, Leipzig 04103, Germany
| | - Aline Hillmann
- Saxonian Incubator for Clinical Translation (SIKT), University of Leipzig, Philipp-Rosenthal-Straße 55, Leipzig 04103, Germany
| | - Janina Burk
- Saxonian Incubator for Clinical Translation (SIKT), University of Leipzig, Philipp-Rosenthal-Straße 55, Leipzig 04103, Germany.,Faculty of Veterinary Medicine, Institute of Physiology, University of Leipzig, An den Tierkliniken 7, Leipzig 04103, Germany
| |
Collapse
|
16
|
Pettitt D, Arshad Z, Davies B, Smith J, French A, Cole D, Bure K, Dopson S, DiGiusto D, Karp J, Reeve B, Barker R, Holländer G, Brindley D. An assessment of the factors affecting the commercialization of cell-based therapeutics: a systematic review protocol. Syst Rev 2017; 6:120. [PMID: 28651620 PMCID: PMC5485574 DOI: 10.1186/s13643-017-0517-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 06/09/2017] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Cellular-based therapies represent a platform technology within the rapidly expanding field of regenerative medicine and are distinct from conventional therapeutics-offering a unique approach to managing what were once considered untreatable diseases. Despite a significant increase in basic science activity within the cell therapy arena, alongside a growing portfolio of cell therapy trials and promising investment, the translation of cellular-based therapeutics from "bench to bedside" remains challenging, and the number of industry products available for widespread clinical use remains comparatively low. This systematic review identifies unique intrinsic and extrinsic barriers in the cell-based therapy domain. METHODS/DESIGN Eight electronic databases will be searched, specifically Medline, EMBASE (OvidSP), BIOSIS & Web of Science, Cochrane Library & HEED, EconLit (ProQuest), WHOLIS WHO Library Database, PAIS International (ProQuest), and Scopus. Addition to this gray literature was searched by manually reviewing relevant work. All identified articles will be subjected for review by two authors who will decide whether or not each article passes our inclusion/exclusion criteria. Eligible papers will subsequently be reviewed, and key data extracted into a pre-designed data extraction scorecard. An assessment of the perceived impact of broad commercial barriers to the adoption of cell-based therapies will be conducted. These broad categories will include manufacturing, regulation and intellectual property, reimbursement, clinical trials, clinical adoption, ethics, and business models. This will inform further discussion in the review. There is no PROSPERO registration number. DISCUSSION Through a systematic search and appraisal of available literature, this review will identify key challenges in the commercialization pathway of cellular-based therapeutics and highlights significant barriers impeding successful clinical adoption. This will aid in creating an adaptable, acceptable, and harmonized approach supported by apposite regulatory frameworks and pertinent expertise throughout the respective stages of the adoption cycle to facilitate the adoption of new products and technologies in the industry.
Collapse
Affiliation(s)
- David Pettitt
- The Oxford - UCL Centre for the Advancement of Sustainable Medical Innovation (CASMI), The University of Oxford, Oxford, UK.,Department of Paediatrics, University of Oxford, Oxford, UK
| | - Zeeshaan Arshad
- University of St. Andrews School of Medicine, University of St. Andrews, St. Andrews, UK. .,, Docherty Gardens, Glenrothes, KY7 5GA, UK.
| | - Benjamin Davies
- Orthopedic Surgery Departement, University of Cambridge, Cambridge, UK
| | - James Smith
- The Oxford - UCL Centre for the Advancement of Sustainable Medical Innovation (CASMI), The University of Oxford, Oxford, UK.,Nuffield Department of Orthopedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Anna French
- The Oxford - UCL Centre for the Advancement of Sustainable Medical Innovation (CASMI), The University of Oxford, Oxford, UK
| | | | - Kim Bure
- Sartorius Stedim, Göttingen, Germany
| | - Sue Dopson
- Said Business School, University of Oxford, Oxford, UK
| | - David DiGiusto
- Division of Cell Transplantation and Regenerative Medicine, University of Stanford, Stanford, USA
| | - Jeff Karp
- Harvard Medical School, Harvard University, Boston, USA.,Brigham and Women's Hospital, Boston, USA.,Harvard-MIT Division of Health Sciences and Technology, Cambridge, USA
| | | | | | - Georg Holländer
- Department of Paediatrics, University of Oxford, Oxford, UK.,Department of Biomedicine, University of Basel and Basel University Children's Hospital, Basel, Switzerland
| | - David Brindley
- The Oxford - UCL Centre for the Advancement of Sustainable Medical Innovation (CASMI), The University of Oxford, Oxford, UK.,Department of Paediatrics, University of Oxford, Oxford, UK.,Said Business School, University of Oxford, Oxford, UK.,Harvard Stem Cell Institute, Cambridge, USA.,Centre for Behavioral Medicine, UCL School of Pharmacy, University College London, London, UK.,USCF-Stanford Center of Excellence in Regulatory Science and Innovation (CERSI), Stanford, USA
| |
Collapse
|
17
|
Karnieli O, Friedner OM, Allickson JG, Zhang N, Jung S, Fiorentini D, Abraham E, Eaker SS, Yong TK, Chan A, Griffiths S, Wehn AK, Oh S, Karnieli O. A consensus introduction to serum replacements and serum-free media for cellular therapies. Cytotherapy 2016; 19:155-169. [PMID: 28017599 DOI: 10.1016/j.jcyt.2016.11.011] [Citation(s) in RCA: 137] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 10/09/2016] [Accepted: 11/09/2016] [Indexed: 02/06/2023]
Abstract
The cell therapy industry is a fast-growing industry targeted toward a myriad of clinical indications. As the cell therapy industry matures and clinical trials hit their pivotal Phase 3 studies, there will be a significant need for scale-up, process validation, and critical raw material quality assurance. Part of the well discussed challenges of upscaling manufacturing processes there is a less discussed issue relating to the availability of raw materials in the needed quality and quantities. The FDA recently noted that over 80% of the 66 investigational new drug (IND) applications for mesenchymal stem cell (MSC) products analyzed described the use of FBS during manufacturing. Accumulated data from the past years show an acceleration in serum consumption by at least 10%-15% annually, which suggests that the global demand for serum may soon exceed the supply. Ongoing concerns of safety issues due to risks of various pathogen contaminations, as well as issues related to the aforementioned serum variability that can affect final product reproducibility, are strong motivators to search for serum substitutes or serum-free media. it is important to note that there are no accepted definitions for most of these terms which leads to misleading's and misunderstandings, where the same term might be defined differently by different vendors, manufacturer, and users. It is the drug developer's responsibility to clarify what the supplied labels mean and to identify the correct questions and audits to ensure quality. The paper reviews the available serum replacements, main components, basic strategies for replacement of serum and suggests definitions.
Collapse
Affiliation(s)
| | | | - Julie G Allickson
- Regenerative Medicine Clinical Center, Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Nan Zhang
- Hematology Branch, National Heart, Lung, and Blood Institute National Institute of Health, Bethesda, Maryland, USA
| | - Sunghoon Jung
- Cell Therapy Research & Technology Lonza Walkersville, Walkersville, Maryland, USA
| | | | - Eytan Abraham
- Cell Therapy Research & Technology Lonza Walkersville, Walkersville, Maryland, USA
| | - Shannon S Eaker
- GE Healthcare Cell Therapy Division, Marlborough, Massachusetts, USA
| | | | - Allan Chan
- Bioprocessing Technology Institute, Singapore
| | | | - Amy K Wehn
- Irvine Scientific, Santa Ana, California, USA
| | - Steve Oh
- Bioprocessing Technology Institute, Singapore
| | | |
Collapse
|
18
|
Editorial. Cytotherapy 2016; 18:1349-1350. [PMID: 27686830 DOI: 10.1016/j.jcyt.2016.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
19
|
Large-scale progenitor cell expansion for multiple donors in a monitored hollow fibre bioreactor. Cytotherapy 2016; 18:1219-33. [PMID: 27421744 DOI: 10.1016/j.jcyt.2016.05.013] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 04/29/2016] [Accepted: 05/20/2016] [Indexed: 12/28/2022]
Abstract
BACKGROUND AIMS With the increasing scale in stem cell production, a robust and controlled cell expansion process becomes essential for the clinical application of cell-based therapies. The objective of this work was the assessment of a hollow fiber bioreactor (Quantum Cell Expansion System from Terumo BCT) as a cell production unit for the clinical-scale production of human periosteum derived stem cells (hPDCs). METHODS We aimed to demonstrate comparability of bioreactor production to standard culture flask production based on a product characterization in line with the International Society of Cell Therapy in vitro benchmarks and supplemented with a compelling quantitative in vivo bone-forming potency assay. Multiple process read-outs were implemented to track process performance and deal with donor-to-donor-related variation in nutrient needs and harvest timing. RESULTS The data show that the hollow fiber bioreactor is capable of robustly expanding autologous hPDCs on a clinical scale (yield between 316 million and 444 million cells starting from 20 million after ± 8 days of culture) while maintaining their in vitro quality attributes compared with the standard flask-based culture. The in vivo bone-forming assay on average resulted in 10.3 ± 3.7% and 11.0 ± 3.8% newly formed bone for the bioreactor and standard culture flask respectively. The analysis showed that the Quantum system provides a reproducible cell expansion process in terms of yields and culture conditions for multiple donors.
Collapse
|
20
|
Spagnol ST, Lin WC, Booth EA, Ladoux B, Lazarus HM, Dahl KN. Early Passage Dependence of Mesenchymal Stem Cell Mechanics Influences Cellular Invasion and Migration. Ann Biomed Eng 2015; 44:2123-31. [PMID: 26581348 DOI: 10.1007/s10439-015-1508-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 11/11/2015] [Indexed: 02/06/2023]
Abstract
The cellular structures and mechanical properties of human mesenchymal stem cells (hMSCs) vary significantly during culture and with differentiation. Previously, studies to measure mechanics have provided divergent results using different quantitative parameters and mechanical models of deformation. Here, we examine hMSCs prepared for clinical use and subject them to mechanical testing conducive to the relevant deformability associated with clinical injection procedures. Micropipette aspiration of hMSCs shows deformation as a viscoelastic fluid, with little variation from cell to cell within a population. After two passages, hMSCs deform as viscoelastic solids. Further, for clinical applicability during stem cell migration in vivo, we investigated the ability of hMSCs to invade into micropillar arrays of increasing confinement from 12 to 8 μm spacing between adjacent micropillars. We find that hMSC samples with reduced deformability and cells that are more solid-like with passage are more easily able to enter the micropillar arrays. Increased cell fluidity is an advantage for injection procedures and optimization of cell selection based on mechanical properties may enhance efficacy of injected hMSC populations. However, the ability to invade and migrate within tight interstitial spaces appears to be increased with a more solidified cytoskeleton, likely from increased force generation and contractility. Thus, there may be a balance between optimal injection survival and in situ tissue invasion.
Collapse
Affiliation(s)
- Stephen T Spagnol
- Department of Chemical Engineering, Carnegie Mellon University, 5000 Forbes Ave., Pittsburgh, PA, 15213, USA
| | - Wei-Chun Lin
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Elizabeth A Booth
- Department of Chemical Engineering, Carnegie Mellon University, 5000 Forbes Ave., Pittsburgh, PA, 15213, USA
| | - Benoit Ladoux
- Institut Jacques Monod (IJM), CNRS UMR 7592 & Université Paris Diderot, Paris, France
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
| | - Hillard M Lazarus
- Division of Hematology and Oncology, Department of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Kris Noel Dahl
- Department of Chemical Engineering, Carnegie Mellon University, 5000 Forbes Ave., Pittsburgh, PA, 15213, USA.
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA.
| |
Collapse
|
21
|
Bubela T, McCabe C, Archibald P, Atkins H, Bradshaw SE, Kefalas P, Mujoomdar M, Packer C, Piret J, Raxworthy M, Soares M, Viswanathan S. Bringing regenerative medicines to the clinic: the future for regulation and reimbursement. Regen Med 2015; 10:897-911. [PMID: 26565607 DOI: 10.2217/rme.15.51] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Significant investments in regenerative medicine necessitate discussion to align evidentiary requirements and decision-making considerations from regulatory, health system payer and developer perspectives. Only with coordinated efforts will the potential of regenerative medicine be realized. We report on discussions from two workshops sponsored by NICE, University of Alberta, Cell Therapy Catapult and Centre for Commercialization of Regenerative Medicine. We discuss methods to support the assessment of value for regenerative medicine products and services and the synergies that exist between market authorization and reimbursement regulations and practices. We discuss the convergence in novel adaptive licensing practices that may promote the development and adoption of novel therapeutics that meet the needs of healthcare payers.
Collapse
Affiliation(s)
- Tania Bubela
- School of Public Health, 3-279 Edmonton Clinic Health Academy, 11405-87 Avenue, University of Alberta, Edmonton, AB, T6G 1C9, Canada
| | - Christopher McCabe
- Department of Emergency Medicine, 736 University Terrace, 8303 112 Street, University of Alberta, Edmonton, AB, T6G 2T4, Canada
| | - Peter Archibald
- Centre for Innovative Manufacturing in Regenerative Medicine, Loughborough University, Loughborough, LE11 3GR, UK
| | - Harold Atkins
- Ottawa Hospital Research Institute, 501 Smyth Road, Box 926, Ottawa, ON, K1H 8L6, Canada
| | | | - Panos Kefalas
- Catapult Cell Therapy, 12th Floor Tower Wing, Guy's Hospital, Great Maze Pond, London, SE1 9RT, UK
| | | | - Claire Packer
- The NIHR Horizon Scanning Centre, School of Health & Population Sciences, Public Health building, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - James Piret
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall Vancouver, British Columbia, V6T 1Z4, Canada
| | - Mike Raxworthy
- Neotherix Ltd, Research Centre, York Science Park, York, YO10 5DF, UK
| | - Marta Soares
- Centre for Health Economics, Alcuin 'A' Block, University of York, Heslington, York, YO10 5DD, UK
| | - Sowmya Viswanathan
- Philip S Orsino Cell Therapy Facility, Princess Margaret Cancer Centre, 610 University Avenue, Suite 5-303, Toronto, ON, M5G 2M9, Canada
| |
Collapse
|
22
|
Heathman TRJ, Nienow AW, McCall MJ, Coopman K, Kara B, Hewitt CJ. The translation of cell-based therapies: clinical landscape and manufacturing challenges. Regen Med 2015; 10:49-64. [PMID: 25562352 DOI: 10.2217/rme.14.73] [Citation(s) in RCA: 201] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cell-based therapies have the potential to make a large contribution toward currently unmet patient need and thus effective manufacture of these products is essential. Many challenges must be overcome before this can become a reality and a better definition of the manufacturing requirements for cell-based products must be obtained. The aim of this study is to inform industry and academia of current cell-based therapy clinical development and to identify gaps in their manufacturing requirements. A total of 1342 active cell-based therapy clinical trials have been identified and characterized based on cell type, target indication and trial phase. Multiple technologies have been assessed for the manufacture of these cell types in order to facilitate product translation and future process development.
Collapse
Affiliation(s)
- Thomas R J Heathman
- Centre for Biological Engineering, Loughborough University, Leicestershire, LE11 3TU, UK
| | | | | | | | | | | |
Collapse
|
23
|
Dodson BP, Levine AD. Challenges in the translation and commercialization of cell therapies. BMC Biotechnol 2015; 15:70. [PMID: 26250902 PMCID: PMC4528687 DOI: 10.1186/s12896-015-0190-4] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 07/29/2015] [Indexed: 02/06/2023] Open
Abstract
Background Cell therapies are an emerging form of healthcare that offer significant potential to improve the practice of medicine and provide benefits to patients who currently have limited or no treatment options. Ideally, these innovative therapies can complement existing small molecule, biologic and device approaches, forming a so-called fourth pillar of medicine and allowing clinicians to identify the best treatment approach for each patient. Despite this potential, cell therapies are substantially more complex than small molecule or biologic interventions. This complexity poses challenges for scientists and firms developing cell therapies and regulators seeking to oversee this growing area of medicine. Results In this project, we retrospectively examined the development of seven cell therapies – including three autologous interventions and four allogeneic interventions – with the aim of identifying common challenges hindering attempts to bring new cell therapies to market. We complemented this analysis with a series of qualitative interviews with experts in various aspects of cell therapy. Through our analysis, which included review of extant literature collected from company documents, newspapers, journals, analyst reports and similar sources, and analysis of the qualitative interviews, we identified several common challenges that cell therapy firms must address in both the pre- and post-market stages. Key pre-market challenges included identifying and maintaining stable funding to see firms through lengthy developmental timelines and uncertain regulatory processes. These challenges are not unique to cell therapies, of course, but the novelty of cell-based interventions complicates these efforts compared to small molecule or biologic approaches. The atypical nature of cell therapies also led to post-market difficulties, including challenges navigating the reimbursement process and convincing providers to change their treatment approaches. In addition, scaling up production, distributing cell therapies and managing the costs of production were challenges that started pre-market and continued into the post-market phase. Conclusions Our analysis highlights several interrelated challenges hindering the development of cell therapies. Identifying strategies to address these challenges may accelerate the development and increase the impact of novel cell therapies.
Collapse
Affiliation(s)
- Brittany P Dodson
- School of Public Policy, Georgia Institute of Technology, Atlanta, GA, USA.
| | - Aaron D Levine
- School of Public Policy, Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA.
| |
Collapse
|
24
|
Bernsen MR, Guenoun J, van Tiel ST, Krestin GP. Nanoparticles and clinically applicable cell tracking. Br J Radiol 2015; 88:20150375. [PMID: 26248872 DOI: 10.1259/bjr.20150375] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
In vivo cell tracking has emerged as a much sought after tool for design and monitoring of cell-based treatment strategies. Various techniques are available for pre-clinical animal studies, from which much has been learned and still can be learned. However, there is also a need for clinically translatable techniques. Central to in vivo cell imaging is labelling of cells with agents that can give rise to signals in vivo, that can be detected and measured non-invasively. The current imaging technology of choice for clinical translation is MRI in combination with labelling of cells with magnetic agents. The main challenge encountered during the cell labelling procedure is to efficiently incorporate the label into the cell, such that the labelled cells can be imaged at high sensitivity for prolonged periods of time, without the labelling process affecting the functionality of the cells. In this respect, nanoparticles offer attractive features since their structure and chemical properties can be modified to facilitate cellular incorporation and because they can carry a high payload of the relevant label into cells. While these technologies have already been applied in clinical trials and have increased the understanding of cell-based therapy mechanism, many challenges are still faced.
Collapse
Affiliation(s)
- Monique R Bernsen
- 1 Department of Radiology, Erasmus MC, Rotterdam, Netherlands.,2 Department of Nuclear Medicine, Erasmus MC, Rotterdam, Netherlands
| | - Jamal Guenoun
- 1 Department of Radiology, Erasmus MC, Rotterdam, Netherlands
| | | | | |
Collapse
|
25
|
Dodson BP, Levine AD. Challenges in the translation and commercialization of cell therapies. BMC Biotechnol 2015. [PMID: 26250902 DOI: 10.1186/s12896-015-0190-4.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cell therapies are an emerging form of healthcare that offer significant potential to improve the practice of medicine and provide benefits to patients who currently have limited or no treatment options. Ideally, these innovative therapies can complement existing small molecule, biologic and device approaches, forming a so-called fourth pillar of medicine and allowing clinicians to identify the best treatment approach for each patient. Despite this potential, cell therapies are substantially more complex than small molecule or biologic interventions. This complexity poses challenges for scientists and firms developing cell therapies and regulators seeking to oversee this growing area of medicine. RESULTS In this project, we retrospectively examined the development of seven cell therapies - including three autologous interventions and four allogeneic interventions - with the aim of identifying common challenges hindering attempts to bring new cell therapies to market. We complemented this analysis with a series of qualitative interviews with experts in various aspects of cell therapy. Through our analysis, which included review of extant literature collected from company documents, newspapers, journals, analyst reports and similar sources, and analysis of the qualitative interviews, we identified several common challenges that cell therapy firms must address in both the pre- and post-market stages. Key pre-market challenges included identifying and maintaining stable funding to see firms through lengthy developmental timelines and uncertain regulatory processes. These challenges are not unique to cell therapies, of course, but the novelty of cell-based interventions complicates these efforts compared to small molecule or biologic approaches. The atypical nature of cell therapies also led to post-market difficulties, including challenges navigating the reimbursement process and convincing providers to change their treatment approaches. In addition, scaling up production, distributing cell therapies and managing the costs of production were challenges that started pre-market and continued into the post-market phase. CONCLUSIONS Our analysis highlights several interrelated challenges hindering the development of cell therapies. Identifying strategies to address these challenges may accelerate the development and increase the impact of novel cell therapies.
Collapse
Affiliation(s)
- Brittany P Dodson
- School of Public Policy, Georgia Institute of Technology, Atlanta, GA, USA.
| | - Aaron D Levine
- School of Public Policy, Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA.
| |
Collapse
|
26
|
Hourd P, Chandra A, Alvey D, Ginty P, McCall M, Ratcliffe E, Rayment E, Williams DJ. Qualification of academic facilities for small-scale automated manufacture of autologous cell-based products. Regen Med 2015; 9:799-815. [PMID: 25431916 DOI: 10.2217/rme.14.47] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Academic centers, hospitals and small companies, as typical development settings for UK regenerative medicine assets, are significant contributors to the development of autologous cell-based therapies. Often lacking the appropriate funding, quality assurance heritage or specialist regulatory expertise, qualifying aseptic cell processing facilities for GMP compliance is a significant challenge. The qualification of a new Cell Therapy Manufacturing Facility with automated processing capability, the first of its kind in a UK academic setting, provides a unique demonstrator for the qualification of small-scale, automated facilities for GMP-compliant manufacture of autologous cell-based products in these settings. This paper shares our experiences in qualifying the Cell Therapy Manufacturing Facility, focusing on our approach to streamlining the qualification effort, the challenges, project delays and inefficiencies we encountered, and the subsequent lessons learned.
Collapse
Affiliation(s)
- Paul Hourd
- EPSRC Center for Innovative Manufacturing in Regenerative Medicine, Center for Biological Engineering, Loughborough University, Leicestershire, LE11 3TU, UK
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Davies SG, Kennewell PD, Russell AJ, Seden PT, Westwood R, Wynne GM. Stemistry: the control of stem cells in situ using chemistry. J Med Chem 2015; 58:2863-94. [PMID: 25590360 DOI: 10.1021/jm500838d] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A new paradigm for drug research has emerged, namely the deliberate search for molecules able to selectively affect the proliferation, differentiation, and migration of adult stem cells within the tissues in which they exist. Recently, there has been significant interest in medicinal chemistry toward the discovery and design of low molecular weight molecules that affect stem cells and thus have novel therapeutic activity. We believe that a successful agent from such a discover program would have profound effects on the treatment of many long-term degenerative disorders. Among these conditions are examples such as cardiovascular decay, neurological disorders including Alzheimer's disease, and macular degeneration, all of which have significant unmet medical needs. This perspective will review evidence from the literature that indicates that discovery of such agents is achievable and represents a worthwhile pursuit for the skills of the medicinal chemist.
Collapse
Affiliation(s)
- Stephen G Davies
- †Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford, OX1 3TA, U.K
| | - Peter D Kennewell
- †Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford, OX1 3TA, U.K
| | - Angela J Russell
- †Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford, OX1 3TA, U.K.,‡Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, U.K
| | - Peter T Seden
- †Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford, OX1 3TA, U.K
| | - Robert Westwood
- †Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford, OX1 3TA, U.K
| | - Graham M Wynne
- †Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford, OX1 3TA, U.K
| |
Collapse
|
28
|
Davies BM, Rikabi S, French A, Pinedo-Villanueva R, Morrey ME, Wartolowska K, Judge A, MacLaren RE, Mathur A, Williams DJ, Wall I, Birchall M, Reeve B, Atala A, Barker RW, Cui Z, Furniss D, Bure K, Snyder EY, Karp JM, Price A, Carr A, Brindley DA. Quantitative assessment of barriers to the clinical development and adoption of cellular therapies: A pilot study. J Tissue Eng 2014; 5:2041731414551764. [PMID: 25383173 PMCID: PMC4221931 DOI: 10.1177/2041731414551764] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 07/20/2014] [Indexed: 01/08/2023] Open
Abstract
There has been a large increase in basic science activity in cell therapy and a growing portfolio of cell therapy trials. However, the number of industry products available for widespread clinical use does not match this magnitude of activity. We hypothesize that the paucity of engagement with the clinical community is a key contributor to the lack of commercially successful cell therapy products. To investigate this, we launched a pilot study to survey clinicians from five specialities and to determine what they believe to be the most significant barriers to cellular therapy clinical development and adoption. Our study shows that the main concerns among this group are cost-effectiveness, efficacy, reimbursement, and regulation. Addressing these concerns can best be achieved by ensuring that future clinical trials are conducted to adequately answer the questions of both regulators and the broader clinical community.
Collapse
Affiliation(s)
- Benjamin M Davies
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Sarah Rikabi
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Anna French
- The Oxford-UCL Centre for the Advancement of Sustainable Medical Innovation (CASMI), University of Oxford, Oxford, UK
| | - Rafael Pinedo-Villanueva
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK ; MRC Lifecourse Epidemiology Unit, Southampton General Hospital, Southampton, UK
| | - Mark E Morrey
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Karolina Wartolowska
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Andrew Judge
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK ; MRC Lifecourse Epidemiology Unit, Southampton General Hospital, Southampton, UK
| | - Robert E MacLaren
- Nuffield Laboratory of Ophthalmology, University of Oxford, Oxford, UK
| | - Anthony Mathur
- NIHR Cardiovascular Biomedical Research Unit, London Chest Hospital, London, UK ; Department of Cardiology, Barts Health NHS Trust, London, UK ; Department of Clinical Pharmacology, William Harvey Research Institute, Queen Mary University of London, London, UK
| | - David J Williams
- Centre for Biological Engineering, Wolfson School of Mechanical and Manufacturing Engineering, Loughborough University, Loughborough, UK
| | - Ivan Wall
- Department of Biochemical Engineering, University College London, London, UK ; Department of Nanobiomedical Science & BK21 Plus NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Republic of Korea ; Biomaterials and Tissue Engineering Lab, Department of Nanobiomedical Science and WCU Research Center, Dankook University, Cheonan, Republic of Korea
| | | | - Brock Reeve
- Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Anthony Atala
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Richard W Barker
- The Oxford-UCL Centre for the Advancement of Sustainable Medical Innovation (CASMI), University of Oxford, Oxford, UK
| | - Zhanfeng Cui
- Oxford Centre for Tissue Engineering and Bioprocessing, University of Oxford, Oxford, UK
| | - Dominic Furniss
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Kim Bure
- Sartorius Stedim, Göttingen, Germany
| | - Evan Y Snyder
- Sanford-Burnham Medical Research Institute, La Jolla, CA, USA ; Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA ; Sanford Consortium for Regenerative Medicine, La Jolla, CA, USA
| | - Jeffrey M Karp
- Harvard Stem Cell Institute, Cambridge, MA, USA ; Division of Biomedical Engineering, Department of Medicine, Center for Regenerative Therapeutics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA ; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA ; Harvard Medical School, Cambridge, MA, USA
| | - Andrew Price
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Andrew Carr
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK ; The Oxford-UCL Centre for the Advancement of Sustainable Medical Innovation (CASMI), University of Oxford, Oxford, UK
| | - David A Brindley
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK ; The Oxford-UCL Centre for the Advancement of Sustainable Medical Innovation (CASMI), University of Oxford, Oxford, UK ; Harvard Stem Cell Institute, Cambridge, MA, USA ; Centre for Behavioural Medicine, UCL School of Pharmacy, University College London, London, UK
| |
Collapse
|
29
|
Wynne GM, Russell AJ. Drug Discovery Approaches for Rare Neuromuscular Diseases. ORPHAN DRUGS AND RARE DISEASES 2014. [DOI: 10.1039/9781782624202-00257] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Rare neuromuscular diseases encompass many diverse and debilitating musculoskeletal disorders, ranging from ultra-orphan conditions that affect only a few families, to the so-called ‘common’ orphan diseases like Duchenne muscular dystrophy (DMD) and spinal muscular atrophy (SMA), which affect several thousand individuals worldwide. Increasingly, pharmaceutical and biotechnology companies, in an effort to improve productivity and rebuild dwindling pipelines, are shifting their business models away from the formerly popular ‘blockbuster’ strategy, with rare diseases being an area of increased focus in recent years. As a consequence of this paradigm shift, coupled with high-profile campaigns by not-for-profit organisations and patient advocacy groups, rare neuromuscular diseases are attracting considerable attention as new therapeutic areas for improved drug therapy. Much pioneering work has taken place to elucidate the underlying pathological mechanisms of many rare neuromuscular diseases. This, in conjunction with the availability of new screening technologies, has inspired the development of several truly innovative therapeutic strategies aimed at correcting the underlying pathology. A survey of medicinal chemistry approaches and the resulting clinical progress for new therapeutic agents targeting this devastating class of degenerative diseases is presented, using DMD and SMA as examples. Complementary strategies using small-molecule drugs and biological agents are included.
Collapse
Affiliation(s)
- Graham M. Wynne
- Chemistry Research Laboratory, University of Oxford 12 Mansfield Road Oxford OX1 3TA UK
| | - Angela J. Russell
- Chemistry Research Laboratory, University of Oxford 12 Mansfield Road Oxford OX1 3TA UK
| |
Collapse
|
30
|
Karathanasis SK. Regenerative medicine: transforming the drug discovery and development paradigm. Cold Spring Harb Perspect Med 2014; 4:4/8/a014084. [PMID: 25085955 DOI: 10.1101/cshperspect.a014084] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Despite the explosion of knowledge in basic biological processes controlling tissue regeneration and the growing interest in repairing/replacing diseased tissues and organs through various approaches (e.g., small and large molecule therapeutics, stem cell injection, tissue engineering), the pharmaceutical industry (pharma) has been reluctant to fully adopt these technologies into the traditional drug discovery and research and development (R&D) process. In this article, I discuss knowledge-base gaps and other possible factors that may delay full incorporation of these innovations in pharma R&D. I hope that this discussion will illuminate key issues that currently limit synergistic relationships between pharma and academic institutions and may even stimulate initiation of such collaborative research.
Collapse
|
31
|
Vertès AA. Deciphering the therapeutic stem cell strategies of large and midsize pharmaceutical firms. Regen Med 2014; 9:479-95. [DOI: 10.2217/rme.14.16] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The slow adoption of cytotherapeutics remains a vexing hurdle given clinical progress achieved to date with a variety of stem cell lineages. Big and midsize pharmaceutical companies as an asset class still delay large-scale investments in this arena until technological and market risks will have been further reduced. Nonetheless, a handful of stem cell strategic alliance and licensing transactions have already been implemented, indicating that progress is actively monitored, although most of these involve midsize firms. The greatest difficulty is, perhaps, that the regenerative medicine industry is currently only approaching the point of inflexion of the technology development S-curve, as many more clinical trials read out. A path to accelerating technology adoption is to focus on innovation outliers among healthcare actors. These can be identified by analyzing systemic factors (e.g., national science policies and industry fragmentation) and intrinsic factors (corporate culture, e.g., nimble decision-making structures; corporate finance, e.g., opportunity costs and ownership structure; and operations, e.g., portfolio management strategies, threats on existing businesses and patent expirations). Another path is to accelerate the full clinical translation and commercialization of an allogeneic cytotherapeutic product in any indication to demonstrate the disease-modifying potential of the new products for treatment and prophylaxis, ideally for a large unmet medical need such as dry age-related macular degeneration, or for an orphan disease such as biologics-refractory acute graft-versus-host disease. In times of decreased industry average research productivities, regenerative medicine products provide important prospects for creating new franchises with a market potential that could very well mirror that achieved with the technology of monoclonal antibodies.
Collapse
|
32
|
Mikulska A, Filipowska J, Osyczka AM, Szuwarzyński M, Nowakowska M, Szczubiałka K. Photocrosslinked ultrathin anionic polysaccharide supports for accelerated growth of human mesenchymal stem cells. Cell Prolif 2014; 47:516-26. [PMID: 24961895 DOI: 10.1111/cpr.12118] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 04/30/2014] [Indexed: 01/02/2023] Open
Abstract
OBJECTIVES Properties of cell culture supports obtained from ultrathin multilayer films containing anionic natural polysaccharides (PSacs) and a synthetic polycation were studied. MATERIALS AND METHODS Supports were prepared via a layer-by-layer (LbL) self-assembly deposition method. Polymers used were: heparin (Hep), chondroitin sulphate (CS), hyaluronic acid (HA), and ι-carrageenan (Car) as polyanions, and diazoresin (DR) as a polycation. PSac layers were crosslinked with DR layers by irradiation with UV light absorbed by DR resin. RESULTS DR/PSac films are very efficient cell culture growth supports as found from experiments with human mesenchymal stem cells (hMSCs). Irradiation of the films resulted in changing zeta potential of outermost layers of both DR and PSac to more negative values, and in increased film hydrophobicity, as found from the contact angle measurements. Photocrosslinking of the supports led to their increased stability. CONCLUSIONS The supports allow for obtaining intact cell monolayers faster than when typical polystyrene tissue culture plates are used. Moreover, these monolayers spontaneously detach permitting formation of new cell layers on these surfaces relatively early during culture, compared to cells cultured on commonly used tissue culture plastic.
Collapse
Affiliation(s)
- A Mikulska
- Faculty of Chemistry, Jagiellonian University, 30-387, Kraków, Poland
| | | | | | | | | | | |
Collapse
|
33
|
Elman JS, Murray RM, Wang F, Shen K, Gao S, Conway KE, Yarmush ML, Tannous BA, Weissleder R, Parekkadan B. Pharmacokinetics of natural and engineered secreted factors delivered by mesenchymal stromal cells. PLoS One 2014; 9:e89882. [PMID: 24587097 PMCID: PMC3931832 DOI: 10.1371/journal.pone.0089882] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 01/28/2014] [Indexed: 01/14/2023] Open
Abstract
Transient cell therapy is an emerging drug class that requires new approaches for pharmacological monitoring during use. Human mesenchymal stem cells (MSCs) are a clinically-tested transient cell therapeutic that naturally secrete anti-inflammatory factors to attenuate immune-mediated diseases. MSCs were used as a proof-of-concept with the hypothesis that measuring the release of secreted factors after cell transplantation, rather than the biodistribution of the cells alone, would be an alternative monitoring tool to understand the exposure of a subject to MSCs. By comparing cellular engraftment and the associated serum concentration of secreted factors released from the graft, we observed clear differences between the pharmacokinetics of MSCs and their secreted factors. Exploration of the effects of natural or engineered secreted proteins, active cellular secretion pathways, and clearance mechanisms revealed novel aspects that affect the systemic exposure of the host to secreted factors from a cellular therapeutic. We assert that a combined consideration of cell delivery strategies and molecular pharmacokinetics can provide a more predictive model for outcomes of MSC transplantation and potentially other transient cell therapeutics.
Collapse
Affiliation(s)
- Jessica S. Elman
- Department of Surgery, Center for Engineering in Medicine and Surgical Services, Massachusetts General Hospital, Harvard Medical School and the Shriners Hospital for Children, Boston, Massachusetts, United States of America
| | - Ryan M. Murray
- Department of Surgery, Center for Engineering in Medicine and Surgical Services, Massachusetts General Hospital, Harvard Medical School and the Shriners Hospital for Children, Boston, Massachusetts, United States of America
| | - Fangjing Wang
- Department of Surgery, Center for Engineering in Medicine and Surgical Services, Massachusetts General Hospital, Harvard Medical School and the Shriners Hospital for Children, Boston, Massachusetts, United States of America
| | - Keyue Shen
- Department of Surgery, Center for Engineering in Medicine and Surgical Services, Massachusetts General Hospital, Harvard Medical School and the Shriners Hospital for Children, Boston, Massachusetts, United States of America
| | - Shan Gao
- Department of Surgery, Center for Engineering in Medicine and Surgical Services, Massachusetts General Hospital, Harvard Medical School and the Shriners Hospital for Children, Boston, Massachusetts, United States of America
| | - Kevin E. Conway
- Department of Neurology, Experimental Therapeutics and Molecular Imaging Laboratory, Massachusetts General Hospital, Charlestown, Massachusetts, United States of America
| | - Martin L. Yarmush
- Department of Surgery, Center for Engineering in Medicine and Surgical Services, Massachusetts General Hospital, Harvard Medical School and the Shriners Hospital for Children, Boston, Massachusetts, United States of America
- Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey, United States of America
| | - Bakhos A. Tannous
- Department of Neurology, Experimental Therapeutics and Molecular Imaging Laboratory, Massachusetts General Hospital, Charlestown, Massachusetts, United States of America
| | - Ralph Weissleder
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Biju Parekkadan
- Department of Surgery, Center for Engineering in Medicine and Surgical Services, Massachusetts General Hospital, Harvard Medical School and the Shriners Hospital for Children, Boston, Massachusetts, United States of America
- Harvard Stem Cell Institute, Boston, Massachusetts, United States of America
| |
Collapse
|
34
|
Bacchetta R, Lucarelli B, Sartirana C, Gregori S, Lupo Stanghellini MT, Miqueu P, Tomiuk S, Hernandez-Fuentes M, Gianolini ME, Greco R, Bernardi M, Zappone E, Rossini S, Janssen U, Ambrosi A, Salomoni M, Peccatori J, Ciceri F, Roncarolo MG. Immunological Outcome in Haploidentical-HSC Transplanted Patients Treated with IL-10-Anergized Donor T Cells. Front Immunol 2014; 5:16. [PMID: 24550909 PMCID: PMC3907718 DOI: 10.3389/fimmu.2014.00016] [Citation(s) in RCA: 116] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 01/09/2014] [Indexed: 11/21/2022] Open
Abstract
T-cell therapy after hematopoietic stem cell transplantation (HSCT) has been used alone or in combination with immunosuppression to cure hematologic malignancies and to prevent disease recurrence. Here, we describe the outcome of patients with high-risk/advanced stage hematologic malignancies, who received T-cell depleted (TCD) haploidentical-HSCT (haplo-HSCT) combined with donor T lymphocytes pretreated with IL-10 (ALT-TEN trial). IL-10-anergized donor T cells (IL-10-DLI) contained T regulatory type 1 (Tr1) cells specific for the host alloantigens, limiting donor-vs.-host-reactivity, and memory T cells able to respond to pathogens. IL-10-DLI were infused in 12 patients with the goal of improving immune reconstitution after haplo-HSCT without increasing the risk of graft-versus-host-disease (GvHD). IL-10-DLI led to fast immune reconstitution in five patients. In four out of the five patients, total T-cell counts, TCR-Vβ repertoire and T-cell functions progressively normalized after IL-10-DLI. These four patients are alive, in complete disease remission and immunosuppression-free at 7.2 years (median follow-up) after haplo-HSCT. Transient GvHD was observed in the immune reconstituted (IR) patients, despite persistent host-specific hypo-responsiveness of donor T cells in vitro and enrichment of cells with Tr1-specific biomarkers in vivo. Gene-expression profiles of IR patients showed a common signature of tolerance. This study provides the first indication of the feasibility of Tr1 cell-based therapy and paves way for the use of these Tr1 cells as adjuvant treatment for malignancies and immune-mediated disorders.
Collapse
Affiliation(s)
- Rosa Bacchetta
- Division of Regenerative Medicine, Stem Cells and Gene Therapy, San Raffaele Scientific Institute, San Raffaele Telethon Institute for Gene Therapy , Milan , Italy
| | - Barbarella Lucarelli
- Division of Regenerative Medicine, Stem Cells and Gene Therapy, San Raffaele Scientific Institute, San Raffaele Telethon Institute for Gene Therapy , Milan , Italy
| | - Claudia Sartirana
- Division of Regenerative Medicine, Stem Cells and Gene Therapy, San Raffaele Scientific Institute, San Raffaele Telethon Institute for Gene Therapy , Milan , Italy
| | - Silvia Gregori
- Division of Regenerative Medicine, Stem Cells and Gene Therapy, San Raffaele Scientific Institute, San Raffaele Telethon Institute for Gene Therapy , Milan , Italy
| | | | | | | | | | - Monica E Gianolini
- Division of Regenerative Medicine, Stem Cells and Gene Therapy, San Raffaele Scientific Institute, San Raffaele Telethon Institute for Gene Therapy , Milan , Italy
| | - Raffaella Greco
- Hematology and BMT Unit, San Raffaele Hospital , Milan , Italy
| | | | | | - Silvano Rossini
- Unit of Immunohaematology and Transfusion Medicine Service, San Raffaele Hospital , Milan , Italy
| | - Uwe Janssen
- Miltenyi Biotec GmbH , Bergisch-Gladbach , Germany
| | - Alessandro Ambrosi
- Center for Statistics in Biomedical Sciences, San Raffaele Scientific Institute , Milan , Italy
| | | | | | - Fabio Ciceri
- Hematology and BMT Unit, San Raffaele Hospital , Milan , Italy
| | - Maria-Grazia Roncarolo
- Division of Regenerative Medicine, Stem Cells and Gene Therapy, San Raffaele Scientific Institute, San Raffaele Telethon Institute for Gene Therapy , Milan , Italy ; Vita-Salute San Raffaele University , Milan , Italy
| |
Collapse
|
35
|
Oliveri RS, Bello S, Biering-Sørensen F. Mesenchymal stem cells improve locomotor recovery in traumatic spinal cord injury: systematic review with meta-analyses of rat models. Neurobiol Dis 2013; 62:338-53. [PMID: 24148857 DOI: 10.1016/j.nbd.2013.10.014] [Citation(s) in RCA: 112] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 09/13/2013] [Accepted: 10/10/2013] [Indexed: 12/13/2022] Open
Abstract
Traumatic spinal cord injury (SCI) is a devastating event with huge personal and societal costs. A limited number of treatments exist to ameliorate the progressive secondary damage that rapidly follows the primary mechanical impact. Mesenchymal stem or stromal cells (MSCs) have anti-inflammatory and neuroprotective effects and may thus reduce secondary damage after administration. We performed a systematic review with quantitative syntheses to assess the evidence of MSCs versus controls for locomotor recovery in rat models of traumatic SCI, and identified 83 eligible controlled studies comprising a total of 1,568 rats. Between-study heterogeneity was large. Fifty-three studies (64%) were reported as randomised, but only four reported adequate methodologies for randomisation. Forty-eight studies (58%) reported the use of a blinded outcome assessment. A random-effects meta-analysis yielded a difference in behavioural Basso-Beattie-Bresnahan (BBB) locomotor score means of 3.9 (95% confidence interval [CI] 3.2 to 4.7; P<0.001) in favour of MSCs. Trial sequential analysis confirmed the findings of the meta-analyses with the upper monitoring boundary for benefit being crossed by the cumulative Z-curve before reaching the diversity-adjusted required information size. Only time from intervention to last follow-up remained statistically significant after adjustment using multivariate random-effects meta-regression modelling. Lack of other demonstrable explanatory variables could be due to insufficient meta-analytic study power. MSCs would seem to demonstrate a substantial beneficial effect on locomotor recovery in a widely-used animal model of traumatic SCI. However, the animal results should be interpreted with caution concerning the internal and external validity of the studies in relation to the design of future clinical trials.
Collapse
Affiliation(s)
- Roberto S Oliveri
- Cell Therapy Facility, The Blood Bank, Department of Clinical Immunology, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark.
| | - Segun Bello
- The Nordic Cochrane Centre, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Fin Biering-Sørensen
- Department of Spinal Cord Injuries, Copenhagen University Hospital Rigshospitalet and Glostrup Hospital, Copenhagen, Denmark
| |
Collapse
|
36
|
Fischbach MA, Bluestone JA, Lim WA. Cell-based therapeutics: the next pillar of medicine. Sci Transl Med 2013; 5:179ps7. [PMID: 23552369 DOI: 10.1126/scitranslmed.3005568] [Citation(s) in RCA: 301] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Two decades ago, the pharmaceutical industry-long dominated by small-molecule drugs-was revolutionized by the the advent of biologics. Today, biomedicine sits on the cusp of a new revolution: the use of microbial and human cells as versatile therapeutic engines. Here, we discuss the promise of this "third pillar" of therapeutics in the context of current scientific, regulatory, economic, and perceptual challenges. History suggests that the advent of cellular medicines will require the development of a foundational cellular engineering science that provides a systematic framework for safely and predictably altering and regulating cellular behaviors.
Collapse
Affiliation(s)
- Michael A Fischbach
- UCSF Center for Systems and Synthetic Biology, University of California, San Francisco, San Francisco, CA 94158, USA. fischbach@f schbach-group.org
| | | | | |
Collapse
|
37
|
Abbasalizadeh S, Baharvand H. Technological progress and challenges towards cGMP manufacturing of human pluripotent stem cells based therapeutic products for allogeneic and autologous cell therapies. Biotechnol Adv 2013; 31:1600-23. [PMID: 23962714 DOI: 10.1016/j.biotechadv.2013.08.009] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Revised: 06/20/2013] [Accepted: 08/12/2013] [Indexed: 12/16/2022]
Abstract
Recent technological advances in the generation, characterization, and bioprocessing of human pluripotent stem cells (hPSCs) have created new hope for their use as a source for production of cell-based therapeutic products. To date, a few clinical trials that have used therapeutic cells derived from hESCs have been approved by the Food and Drug Administration (FDA), but numerous new hPSC-based cell therapy products are under various stages of development in cell therapy-specialized companies and their future market is estimated to be very promising. However, the multitude of critical challenges regarding different aspects of hPSC-based therapeutic product manufacturing and their therapies have made progress for the introduction of new products and clinical applications very slow. These challenges include scientific, technological, clinical, policy, and financial aspects. The technological aspects of manufacturing hPSC-based therapeutic products for allogeneic and autologous cell therapies according to good manufacturing practice (cGMP) quality requirements is one of the most important challenging and emerging topics in the development of new hPSCs for clinical use. In this review, we describe main critical challenges and highlight a series of technological advances in all aspects of hPSC-based therapeutic product manufacturing including clinical grade cell line development, large-scale banking, upstream processing, downstream processing, and quality assessment of final cell therapeutic products that have brought hPSCs closer to clinical application and commercial cGMP manufacturing.
Collapse
Affiliation(s)
- Saeed Abbasalizadeh
- Department of Stem Cells and Developmental Biology at Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | | |
Collapse
|
38
|
The global cell therapy industry continues to rise during the second and third quarters of 2012. Cell Stem Cell 2013; 11:735-9. [PMID: 23217418 DOI: 10.1016/j.stem.2012.11.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
During Q2-Q3 2012, the cell therapy industry benefited from a number of positive external influences including advantageous changes to future FDA regulation, but stock market activity was highly mixed. The FDA approved two more products and an appreciable number of public-company-sponsored clinical trials are progressing through phases 1-3.
Collapse
|
39
|
Abstract
Regenerative Medicine (RM) has the promise to revolutionize the treatment of many debilitating diseases for which the current therapies are inadequate. To realize the full potential of RM, a pragmatic approach needs to be taken by all stakeholders keeping in mind the lessons learnt from recombinant protein manufacturing, gene therapy trials, etc., to develop novel service delivery models for economic viability and regulatory processes in the absence of long-term data. In this chapter, we focus on the three main drivers of RM field and discuss the potential pitfalls and possible ways to mitigate them in order to move the field closer to clinical implementation.
Collapse
|
40
|
Russell AJ. Regenerative medicinal chemistry: the in situ control of stem cells. ACS Med Chem Lett 2013; 4:365-8. [PMID: 24900675 DOI: 10.1021/ml400110b] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
In recent years, there has been mounting evidence to support the presence of stem and progenitor cells within many adult tissues that retain the capacity to proliferate and differentiate, thereby contributing to tissue homeostasis and repair. In line with these discoveries, there have been increasing efforts to develop new agents that target these resident stem and progenitor cell populations in situ to augment or to stimulate repair and regeneration processes. Two such agents are approved drugs, and several more are currently in clinical and preclinical development. Through this emerging therapeutic paradigm there is enormous scope for medicinal chemistry to play a pivotal role in regenerative medicine. The potential impact of regenerative medicinal chemistry is profound, and future studies will reveal which tissue types or disease states will prove most readily tractable through this approach.
Collapse
Affiliation(s)
- Angela J. Russell
- Department of Chemistry,
Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, United Kingdom; Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3PQ,
United Kingdom
| |
Collapse
|
41
|
Viergever RF, Terry RF, Karam G. Use of data from registered clinical trials to identify gaps in health research and development. Bull World Health Organ 2013; 91:416-425C. [PMID: 24052678 DOI: 10.2471/blt.12.114454] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Revised: 02/01/2013] [Accepted: 02/06/2013] [Indexed: 11/27/2022] Open
Abstract
OBJECTIVE To explore what can be learnt about the current composition of the "global landscape" of health research and development (R&D) from data on the World Health Organization's International Clinical Trials Registry Platform (ICTRP). METHODS A random 5% sample of the records of clinical trials that were registered as interventional and actively recruiting was taken from the ICTRP database. FINDINGS Overall, 2381 records of trials were investigated. Analysis of these records indicated that, for every million disability-adjusted life years (DALYs) caused by communicable, maternal, perinatal and nutritional conditions, by noncommunicable diseases, or by injuries, the ICTRP database contained an estimated 7.4, 52.4 and 6.0 trials in which these causes of burden of disease were being investigated, respectively. For every million DALYs in high-income, upper-middle-income, lower-middle-income and low-income countries, an estimated 292.7, 13.4, 3.0 and 0.8 registered trials, respectively, were recruiting in such countries. CONCLUSION The ICTRP constitutes a valuable resource for assessing the global distribution of clinical trials and for informing policy development for health R&D. Populations in lower-income countries receive much less attention, in terms of clinical trial research, than populations in higher-income countries.
Collapse
Affiliation(s)
- Roderik F Viergever
- Department of Primary and Community Care, Radboud University Nijmegen Medical Centre, Nijmegen, Netherlands
| | | | | |
Collapse
|