1
|
Chavan C, Ray S, Kumar CM. Stem cell therapy approaches for non-malignant diseases & non-haematological diseases in India: A systematic review. Indian J Med Res 2024; 160:411-427. [PMID: 39737504 DOI: 10.25259/ijmr_2141_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 10/01/2024] [Indexed: 01/01/2025] Open
Abstract
Background & objectives Our study aims to provide the diversity of stem cell use for non-malignant, non-haematological diseases in India through the lens of clinical trials. Methods A PRISMA approach was used to evaluate the safety and efficacy of stem cell use for the period 2001-2021 in India. The outcomes were measured using each disease category, types of stem cells, the origin of stem cells, safety, and efficacy. Results Of the 9206 studies screened, 61 studies that were relevant to stem cell use for non-malignant diseases were included for analysis. Autologous stem cells (75%) were used predominantly compared to allogenic stem cells (18.33%), followed by mixed type (6.67%). Use of bone marrow-derived stem cells (51%) was dominant, followed by melanocytes (19%), adipose (7%), haematopoietic (12%), and (11%) other types of stem cells. The study revealed 37 randomized clinical trial studies conducted in the government research hospital compared to the non-government. Interpretation & conclusions Maintaining the gold standard for stem cell therapy requires randomized clinical trials with large sample sizes, control groups, failures, adverse effects, etc. It is important to have a monitoring and regulation system in stem cell clinical research activities with enough preclinical data and repeated exchanges between the bench and the bedside.
Collapse
Affiliation(s)
- Chandrashekhar Chavan
- Department of Inclusive Health, CSIR-National Institute of Science Communication and Policy Research, New Delhi, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, India
| | - Suman Ray
- Department of Inclusive Health, CSIR-National Institute of Science Communication and Policy Research, New Delhi, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, India
| | - Chandra Mohan Kumar
- Department of Pediatrics, All India Institute of Medical Sciences, Patna, India
| |
Collapse
|
2
|
Devine I, O'Brien C, Mockler D, Kennedy C, Hughes G, Hennessy M. Exploring the readiness of the Irish healthcare system to adopt advanced therapies: a scoping review protocol. Regen Med 2024; 19:439-444. [PMID: 39011595 PMCID: PMC11370901 DOI: 10.1080/17460751.2024.2368352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 06/07/2024] [Indexed: 07/17/2024] Open
Abstract
Aim: Advanced therapy medicinal products (ATMPs) are medicines for human use that are based on genes, tissues or cells. They offer groundbreaking new opportunities for the treatment of disease and injury. However, ATMP adoption requires adjustments to current clinical practices and frameworks. This study investigates the readiness of the Irish healthcare system to adopt licensed ATMPs. Materials & methods: Scoping review, guided by the preferred reporting items for systematic reviews and meta-analyses - scoping review extension. A systematic search of English articles from 2013 to 2023 (published and grey literature) will be conducted.Results: Findings will be presented via narrative summary, graphical and tabular formats.Discussion: Review findings will be discussed in the context of recommendations that will inform national policy and strategy on the adoption of ATMPs in Ireland.
Collapse
Affiliation(s)
- Isabella Devine
- Wellcome-HRB Clinical Research Facility at St James's Hospital Dublin, Dublin, Ireland
- Trinity College Dublin, Dublin, Ireland
| | - Clarice O'Brien
- Wellcome-HRB Clinical Research Facility at St James's Hospital Dublin, Dublin, Ireland
- Trinity College Dublin, Dublin, Ireland
| | | | - Cormac Kennedy
- Wellcome-HRB Clinical Research Facility at St James's Hospital Dublin, Dublin, Ireland
- Trinity College Dublin, Dublin, Ireland
| | - Gerry Hughes
- Wellcome-HRB Clinical Research Facility at St James's Hospital Dublin, Dublin, Ireland
- Trinity College Dublin, Dublin, Ireland
| | - Martina Hennessy
- Wellcome-HRB Clinical Research Facility at St James's Hospital Dublin, Dublin, Ireland
- Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
3
|
Blaudez F, Ivanovski S, Fernandez T, Vaquette C. Effect of In Vitro Culture Length on the Bone-Forming Capacity of Osteoblast-Derived Decellularized Extracellular Matrix Melt Electrowritten Scaffolds. Biomacromolecules 2023; 24:3450-3462. [PMID: 37458386 DOI: 10.1021/acs.biomac.2c01504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Recent advancements in decellularization have seen the development of extracellular matrix (ECM)-decorated scaffolds for bone regeneration; however, little is understood of the impact of in vitro culture prior to decellularization on the performances of these constructs. Therefore, this study investigated the effect of in vitro culture on ECM-decorated melt electrowritten polycaprolactone scaffold bioactivity. The scaffolds were seeded with osteoblasts and cultured for 1, 2, or 4 weeks to facilitate bone-specific ECM deposition and subsequently decellularized to form an acellular ECM-decorated scaffold. The utilization of mild chemicals and DNase was highly efficient in removing DNA while preserving ECM structure and composition. ECM decoration of the melt electrowritten fibers was observed within the first week of culture, with increased ECM at 2 and 4 week culture periods. Infiltration of re-seeded cells as well as overall bone regeneration in a rodent calvarial model was impeded by a longer culture period. Thus, it was demonstrated that the length of culture has a key influence on the osteogenic properties of decellularized ECM-decorated scaffolds, with long-term culture (2+ weeks) causing pore obstruction and creating a physical barrier which interfered with bone formation. These findings have important implications for the development of effective ECM-decorated scaffolds for bone regeneration.
Collapse
Affiliation(s)
- Fanny Blaudez
- School of Dentistry and Oral Health, Griffith University, Parklands Dr., Southport QLD 4222, Australia
- The University of Queensland, School of Dentistry, 288 Herston Rd., Herston QLD 4006, Australia
| | - Saso Ivanovski
- The University of Queensland, School of Dentistry, 288 Herston Rd., Herston QLD 4006, Australia
| | - Tulio Fernandez
- The University of Queensland, School of Dentistry, 288 Herston Rd., Herston QLD 4006, Australia
- College of Medicine and Dentistry, James Cook University, Cairns Campus, Cairns 4870, Australia
| | - Cedryck Vaquette
- The University of Queensland, School of Dentistry, 288 Herston Rd., Herston QLD 4006, Australia
| |
Collapse
|
4
|
Frederix GW, Ham RMT. Gene therapies, uncertainty, and decision-making: thinking about the last mile at the first step. Expert Rev Pharmacoecon Outcomes Res 2023; 23:853-856. [PMID: 37539711 DOI: 10.1080/14737167.2023.2245138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 08/02/2023] [Indexed: 08/05/2023]
Affiliation(s)
- Gerardus Wj Frederix
- University Medical Centre Utrecht, Julius Centre for Health Sciences and Primary Care, Department of Epidemiology & Health Economics, Utrecht, The Netherlands
| | - Renske Mt Ten Ham
- University Medical Centre Utrecht, Julius Centre for Health Sciences and Primary Care, Department of Epidemiology & Health Economics, Utrecht, The Netherlands
| |
Collapse
|
5
|
Krasilnikova OA, Baranovskii DS, Yakimova AO, Arguchinskaya N, Kisel A, Sosin D, Sulina Y, Ivanov SA, Shegay PV, Kaprin AD, Klabukov ID. Intraoperative Creation of Tissue-Engineered Grafts with Minimally Manipulated Cells: New Concept of Bone Tissue Engineering In Situ. Bioengineering (Basel) 2022; 9:704. [PMID: 36421105 PMCID: PMC9687730 DOI: 10.3390/bioengineering9110704] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/31/2022] [Accepted: 11/02/2022] [Indexed: 07/22/2023] Open
Abstract
Transfer of regenerative approaches into clinical practice is limited by strict legal regulation of in vitro expanded cells and risks associated with substantial manipulations. Isolation of cells for the enrichment of bone grafts directly in the Operating Room appears to be a promising solution for the translation of biomedical technologies into clinical practice. These intraoperative approaches could be generally characterized as a joint concept of tissue engineering in situ. Our review covers techniques of intraoperative cell isolation and seeding for the creation of tissue-engineered grafts in situ, that is, directly in the Operating Room. Up-to-date, the clinical use of tissue-engineered grafts created in vitro remains a highly inaccessible option. Fortunately, intraoperative tissue engineering in situ is already available for patients who need advanced treatment modalities.
Collapse
Affiliation(s)
- Olga A. Krasilnikova
- Department of Regenerative Medicine, National Medical Research Radiological Center, Koroleva St. 4, 249036 Obninsk, Russia
| | - Denis S. Baranovskii
- Department of Regenerative Medicine, National Medical Research Radiological Center, Koroleva St. 4, 249036 Obninsk, Russia
- Research and Educational Resource Center for Cellular Technologies, Peoples’ Friendship University of Russia (RUDN University), Miklukho-Maklay St. 6, 117198 Moscow, Russia
| | - Anna O. Yakimova
- Department of Regenerative Medicine, National Medical Research Radiological Center, Koroleva St. 4, 249036 Obninsk, Russia
| | - Nadezhda Arguchinskaya
- Department of Regenerative Medicine, National Medical Research Radiological Center, Koroleva St. 4, 249036 Obninsk, Russia
| | - Anastas Kisel
- Department of Regenerative Medicine, National Medical Research Radiological Center, Koroleva St. 4, 249036 Obninsk, Russia
| | - Dmitry Sosin
- Federal State Budgetary Institution “Centre for Strategic Planning and Management of Biomedical Health Risks” of the Federal Medical Biological Agency, Pogodinskaya St. 10 Bld. 1, 119121 Moscow, Russia
| | - Yana Sulina
- Department of Obstetrics and Gynecology, Sechenov University, Bolshaya Pirogovskaya St. 2 Bld. 3, 119435 Moscow, Russia
| | - Sergey A. Ivanov
- Department of Regenerative Medicine, National Medical Research Radiological Center, Koroleva St. 4, 249036 Obninsk, Russia
| | - Peter V. Shegay
- Department of Regenerative Medicine, National Medical Research Radiological Center, Koroleva St. 4, 249036 Obninsk, Russia
| | - Andrey D. Kaprin
- Department of Regenerative Medicine, National Medical Research Radiological Center, Koroleva St. 4, 249036 Obninsk, Russia
- Research and Educational Resource Center for Cellular Technologies, Peoples’ Friendship University of Russia (RUDN University), Miklukho-Maklay St. 6, 117198 Moscow, Russia
| | - Ilya D. Klabukov
- Department of Regenerative Medicine, National Medical Research Radiological Center, Koroleva St. 4, 249036 Obninsk, Russia
- Research and Educational Resource Center for Cellular Technologies, Peoples’ Friendship University of Russia (RUDN University), Miklukho-Maklay St. 6, 117198 Moscow, Russia
- Obninsk Institute for Nuclear Power Engineering, National Research Nuclear University MEPhI, Studgorodok 1, 249039 Obninsk, Russia
| |
Collapse
|
6
|
W Sandoval AG, Traktuev DO, March KL. Development of a student-driven undergraduate program in regenerative medicine. Regen Med 2022; 17:755-765. [PMID: 35924471 DOI: 10.2217/rme-2022-0069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
As it begins to enter the clinic, regenerative medicine has the potential to revolutionize healthcare. Although there exists a growing need for individuals well-versed in the practice of regenerative medicine, few undergraduate institutions offer opportunities to learn about the topic. This article highlights the conception of two novel undergraduate courses in regenerative medicine developed through collaboration between students and faculty at our University to fill this void in the undergraduate curriculum. Lectures from scientists, healthcare professionals, regulatory experts and biotechnology leaders introduced students to regenerative medicine research and the translational process, and a certificate program incorporating relevant coursework and research experience is in development. This pipeline will guide promising undergraduate students to the field of regenerative medicine.
Collapse
Affiliation(s)
- Aaron Gabriel W Sandoval
- University of Florida Center for Regenerative Medicine, Gainesville, FL 32610, USA.,Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, CB2 0AW, UK.,Faculty of Life Sciences & Medicine, King's College London, London, SE1 1UL, UK
| | - Dmitry O Traktuev
- University of Florida Center for Regenerative Medicine, Gainesville, FL 32610, USA.,Division of Cardiovascular Medicine, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Keith L March
- University of Florida Center for Regenerative Medicine, Gainesville, FL 32610, USA.,Division of Cardiovascular Medicine, University of Florida College of Medicine, Gainesville, FL 32610, USA
| |
Collapse
|
7
|
Mansouri V, Beheshtizadeh N, Gharibshahian M, Sabouri L, Varzandeh M, Rezaei N. Recent advances in regenerative medicine strategies for cancer treatment. Biomed Pharmacother 2021; 141:111875. [PMID: 34229250 DOI: 10.1016/j.biopha.2021.111875] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 06/23/2021] [Accepted: 06/28/2021] [Indexed: 02/07/2023] Open
Abstract
Cancer stands as one of the most leading causes of death worldwide, while one of the most significant challenges in treating it is revealing novel alternatives to predict, diagnose, and eradicate tumor cell growth. Although various methods, such as surgery, chemotherapy, and radiation therapy, are used today to treat cancer, its mortality rate is still high due to the numerous shortcomings of each approach. Regenerative medicine field, including tissue engineering, cell therapy, gene therapy, participate in cancer treatment and development of cancer models to improve the understanding of cancer biology. The final intention is to convey fundamental and laboratory research to effective clinical treatments, from the bench to the bedside. Proper interpretation of research attempts helps to lessen the burden of treatment and illness for patients. The purpose of this review is to investigate the role of regenerative medicine in accelerating and improving cancer treatment. This study examines the capabilities of regenerative medicine in providing novel cancer treatments and the effectiveness of these treatments to clarify this path as much as possible and promote advanced future research in this field.
Collapse
Affiliation(s)
- Vahid Mansouri
- Gene Therapy Research Center, Digestive Diseases Research Institute, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran; Regenerative Medicine group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Nima Beheshtizadeh
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Iran; School of Engineering, Faculty of Science and Engineering, Macquarie University, Sydney, NSW 2109, Australia; Regenerative Medicine group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| | - Maliheh Gharibshahian
- Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran; Regenerative Medicine group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Leila Sabouri
- Regenerative Medicine group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Mohammad Varzandeh
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran; Regenerative Medicine group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| |
Collapse
|
8
|
Affiliation(s)
- Andrew Webster
- Science & Technology Studies Unit, University of York, York, YO10 5DD, UK
| | - Andre Terzic
- Mayo Clinic, Center for Regenerative Medicine, 200 First Street SW, Rochester, 55905-0002 MN , USA
| |
Collapse
|
9
|
Umemura M, Morrison M. Comparative lessons in regenerative medicine readiness: learning from the UK and Japanese experience. Regen Med 2021; 16:269-282. [PMID: 33781099 DOI: 10.2217/rme-2020-0136] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
This paper explores how 'regenerative readiness' varies between different national research and healthcare systems. Here, 'readiness' refers to both the readiness of a given technology and the ability of a given setting to adopt a new technology. We compare two settings that have taken active yet dissonant approaches to improve readiness: the UK and Japan. Existing scholarship observes that disruptive technologies such as regenerative medicine require many adaptations to become useable and function along the principles of their design. We incorporate the sociotechnical systems framework to consider the range of adaptive measures taken across elements of the sociotechnical system for novel technological adoption. Building upon existing works on technology readiness and institutional readiness, we also expand the conceptualization of readiness toward system-wide readiness.
Collapse
Affiliation(s)
- Maki Umemura
- Senior Lecturer in International Business, Cardiff Business School, Cardiff University, Aberconway Building, Colum Drive, Cardiff, CF10 3EU, UK
| | - Michael Morrison
- Senior Researcher in Social Science, Centre for Health, Law & Emerging Technologies, Faculty of Law, University of Oxford, Ewert House, Banbury Road, Oxford, OX2 7DD, UK.,Research Affiliate, Institution for Science Innovation & Society, School of Anthropology & Museum Ethnography, University of Oxford, 51/53 Banbury Road, Oxford, OX2 6PE, UK
| |
Collapse
|
10
|
Lindenberg M, Retèl V, Rohaan M, van den Berg J, Haanen J, van Harten W. Evaluating different adoption scenarios for TIL-therapy and the influence on its (early) cost-effectiveness. BMC Cancer 2020; 20:712. [PMID: 32736535 PMCID: PMC7393723 DOI: 10.1186/s12885-020-07166-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 07/10/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Treatment with tumor-Infiltrating Lymphocytes (TIL) is an innovative therapy for advanced melanoma with promising clinical phase I/II study results and likely beneficial cost-effectiveness. As a randomized controlled trial on the effectiveness of TIL therapy in advanced melanoma compared to ipilimumab is still ongoing, adoption of TIL therapy by the field is confronted with uncertainty. To deal with this, scenario drafting can be used to identify potential barriers and enables the subsequent anticipation on these barriers. This study aims to inform adoption decisions of TIL by evaluating various scenarios and evaluate their effect on the cost-effectiveness. METHODS First, 14 adoption scenarios for TIL-therapy were drafted using a Delphi approach with a group of involved experts. Second, the likelihood of the scenarios taking place within 5 years was surveyed among international experts using a web-based questionnaire. Third, based on the questionnaire results and recent literature, scenarios were labeled as being either "likely" or "-unlikely". Finally, the cost-effectiveness of TIL treatment involving the "likely" scored scenarios was calculated. RESULTS Twenty-nine experts from 12 countries completed the questionnaire. The scenarios showed an average likelihood ranging from 29 to 58%, indicating that future developments of TIL-therapy were surrounded with quite some uncertainty. Eight of the 14 scenarios were labeled as "likely". The net monetary benefit per patient is presented as a measure of cost-effectiveness, where a positive value means that a scenario is cost-effective. For six of these scenarios the cost-effectiveness was calculated: "Commercialization of TIL production" (the price was assumed to be 3 times the manufacturing costs in the academic setting) (-€51,550), "Pharmaceutical companies lowering the prices of ipilimumab" (€11,420), "Using TIL-therapy combined with ipilimumab" (-€10,840), "Automatic TIL production" (€22,670), "TIL more effective" (€23,270), "Less Interleukin-2" (€20,370). CONCLUSIONS Incorporating possible future developments, TIL-therapy was calculated to be cost-effective compared to ipilimumab in the majority of "likely" scenarios. These scenarios could function as facilitators for adoption. Contrary, TIL therapy was expected to not be cost-effective when sold at commercial prices, or when combined with ipilimumab. These scenarios should be considered in the adoption decision as these may act as crucial barriers.
Collapse
Affiliation(s)
- Melanie Lindenberg
- Division of Psychosocial Research and Epidemiology, the Netherlands Cancer Institute - Antoni van Leeuwenhoek hospital, Amsterdam, The Netherlands.,Department of Health Technology and Services Research, University of Twente, MB-HTSR, PO Box 217, 7500AE, Enschede, The Netherlands
| | - Valesca Retèl
- Division of Psychosocial Research and Epidemiology, the Netherlands Cancer Institute - Antoni van Leeuwenhoek hospital, Amsterdam, The Netherlands.,Department of Health Technology and Services Research, University of Twente, MB-HTSR, PO Box 217, 7500AE, Enschede, The Netherlands
| | - Maartje Rohaan
- Department of Medical Oncology, The Netherlands Cancer Institute - Antoni van Leeuwenhoek hospital, Amsterdam, The Netherlands
| | - Joost van den Berg
- Biotherapeutics Unit (BTU), The Netherlands Cancer Institute - Antoni van Leeuwenhoek hospital, Amsterdam, The Netherlands
| | - John Haanen
- Department of Medical Oncology, The Netherlands Cancer Institute - Antoni van Leeuwenhoek hospital, Amsterdam, The Netherlands
| | - Wim van Harten
- Division of Psychosocial Research and Epidemiology, the Netherlands Cancer Institute - Antoni van Leeuwenhoek hospital, Amsterdam, The Netherlands. .,Department of Health Technology and Services Research, University of Twente, MB-HTSR, PO Box 217, 7500AE, Enschede, The Netherlands.
| |
Collapse
|
11
|
What does cell therapy manufacturing cost? A framework and methodology to facilitate academic and other small-scale cell therapy manufacturing costings. Cytotherapy 2020; 22:388-397. [DOI: 10.1016/j.jcyt.2020.03.432] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 03/11/2020] [Accepted: 03/12/2020] [Indexed: 12/26/2022]
|
12
|
Advanced therapy medicinal product manufacturing under the hospital exemption and other exemption pathways in seven European Union countries. Cytotherapy 2020; 22:592-600. [PMID: 32563611 DOI: 10.1016/j.jcyt.2020.04.092] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/01/2020] [Accepted: 04/17/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND AIMS As part of the advanced therapy medicinal product (ATMP) regulation, the hospital exemption (HE) was enacted to accommodate manufacturing of custom-made ATMPs for treatment purposes in the European Union (EU). However, how the HE pathway has been used in practice is largely unknown. METHODS Using a survey and interviews, we provide the product characteristics, scale and motivation for ATMP manufacturing under HE and other, non-ATMP-specific exemption pathways in seven European countries. RESULTS Results show that ATMPs were manufactured under HE by public facilities located in Finland, Germany, Italy and the Netherlands, which enabled availability of a modest number of ATMPs (n = 12) between 2009 and 2017. These ATMPs were shown to have close proximity to clinical practice, and manufacturing was primarily motivated by clinical needs and clinical experience. Public facilities used HE when patients could not obtain treatment in ongoing or future trials. Regulatory aspects motivated (Finland, Italy, the Netherlands) or limited (Belgium, Germany) HE utilization, whereas financial resources generally limited HE utilization by public facilities. Public facilities manufactured other ATMPs (n = 11) under named patient use (NPU) between 2015 and 2017 and used NPU in a similar fashion as HE. The scale of manufacturing under HE over 9 years was shown to be rather limited in comparison to manufacturing under NPU over 3 years. In Germany, ATMPs were mainly manufactured by facilities of private companies under HE. CONCLUSIONS The HE enables availability of ATMPs with close proximity to clinical practice. Yet in some countries, HE provisions limit utilization, whereas commercial developments could be undermined by private HE licenses in Germany. Transparency through a public EU-wide registry and guidance for distinguishing between ATMPs that are or are not commercially viable as well as public-private engagements are needed to optimize the use of the HE pathway and regulatory pathways for commercial development in a complementary fashion.
Collapse
|
13
|
Jacques E, Suuronen EJ. The Progression of Regenerative Medicine and its Impact on Therapy Translation. Clin Transl Sci 2020; 13:440-450. [PMID: 31981408 PMCID: PMC7214652 DOI: 10.1111/cts.12736] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 11/07/2019] [Indexed: 12/14/2022] Open
Abstract
Despite regenerative medicine (RM) being one of the hottest topics in biotechnology for the past 3 decades, it is generally acknowledged that the field's performance at the bedside has been somewhat disappointing. This may be linked to the novelty of these technologies and their disruptive nature, which has brought an increasing level of complexity to translation. Therefore, we look at how the historical development of the RM field has changed the translational strategy. Specifically, we explore how the pursuit of such novel regenerative therapies has changed the way experts aim to translate their ideas into clinical applications, and then identify areas that need to be corrected or reinforced in order for these therapies to eventually be incorporated into the standard-of-care. This is then linked to a discussion of the preclinical and postclinical challenges remaining today, which offer insights that can contribute to the future progression of RM.
Collapse
Affiliation(s)
- Erik Jacques
- Division of Cardiac SurgeryUniversity of Ottawa Heart InstituteOttawaOntarioCanada
- School of Human KineticsUniversity of OttawaOttawaCanada
| | - Erik J. Suuronen
- Division of Cardiac SurgeryUniversity of Ottawa Heart InstituteOttawaOntarioCanada
- Department of Cellular & Molecular MedicineUniversity of OttawaOttawaCanada
| |
Collapse
|
14
|
Jose J, George T, Thomas AM. Regulation of Stem Cell-Based Research in India in Comparison with the US, EU and other Asian Countries: Current Issues and Future Perspectives. Curr Stem Cell Res Ther 2020; 15:492-508. [PMID: 32250233 DOI: 10.2174/1574888x15666200402134750] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 11/20/2019] [Accepted: 11/29/2019] [Indexed: 11/22/2022]
Abstract
Stem cell therapy is applicable for repair and replacement of damaged cells and tissues. Apart from transplanting cells to the body, the stem cell therapy directs them to grow new and healthy tissues. Stem cells in the area of regenerative medicines hold tremendous promise that may help to regenerate the damaged tissues and heal various diseases like multiple sclerosis, heart diseases, Parkinson's disease, and so on. To prove the safety, efficacy, and for the requirement of a licence for manufacturing and sale, all the stem cell therapies should pass the required criteria and undergo certain examinations of the regulatory agencies. The regulatory authorities review the manufacturing procedures of products to assure its purity and potency. This review summarizes the comparative critical evaluations of existing regulations and developments on the stem cells research in India, USA, EU and Asian regions and also discusses the challenges that have to be overcome and the important points that should be understood to position India as a source of the perspective nation in stem cells around the world.
Collapse
Affiliation(s)
- Jobin Jose
- Department of Pharmaceutical Regulatory Affairs and Pharmaceutics, NGSM Institute of Pharmaceutical Sciences, NITTE Deemed to be University, Paneer, Mangalore 575018, Karnataka, India
| | - Teena George
- Department of Pharmaceutical Regulatory Affairs and Pharmaceutics, NGSM Institute of Pharmaceutical Sciences, NITTE Deemed to be University, Paneer, Mangalore 575018, Karnataka, India
| | - Aaron M Thomas
- Department of Pharmaceutical Regulatory Affairs and Pharmaceutics, NGSM Institute of Pharmaceutical Sciences, NITTE Deemed to be University, Paneer, Mangalore 575018, Karnataka, India
| |
Collapse
|
15
|
Coppens DG, Gardarsdottir H, van den Bogert CA, De Bruin ML, Leufkens HG, Hoekman J. Publication rates and reported results in a cohort of gene- and cell-based therapy trials. Regen Med 2020; 15:1215-1227. [PMID: 32103712 DOI: 10.2217/rme-2019-0066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Aim: We investigated publication rates and reported results for gene- and cell-based therapy trials. Materials & methods: In a cohort of Institutional Review Board (IRB)-authorized trials during 2007-2017 in the Netherlands (n = 105), we examine publication rates and reported results in scientific papers and conference abstracts as well as associations with the occurrence of trial characteristics. Results: The publication rate for scientific papers was 27% and 17% for conference abstracts (median survival time: 1050 days). Academic hospitals published more in scientific papers whereas private sponsors published more in conference abstracts. Manufacturing protocols were underreported compared with clinical outcomes. Most publications reported positive results (78%). Conclusion: Publication rates are currently suboptimal indicating a need for enhanced knowledge sharing to stimulate gene- and cell-based therapy development.
Collapse
Affiliation(s)
- Delphi Gm Coppens
- Division of Pharmacoepidemiology & Clinical Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Helga Gardarsdottir
- Division of Pharmacoepidemiology & Clinical Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands.,Department of Clinical Pharmacy, Division Laboratories, Pharmacy & Biomedical Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Cornelis A van den Bogert
- Division of Pharmacoepidemiology & Clinical Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Marie L De Bruin
- Division of Pharmacoepidemiology & Clinical Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands.,Copenhagen Centre for Regulatory Science, University of Copenhagen, Copenhagen, Denmark
| | - Hubert Gm Leufkens
- Division of Pharmacoepidemiology & Clinical Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Jarno Hoekman
- Division of Pharmacoepidemiology & Clinical Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands.,Innovation Studies Group, Faculty of Geosciences, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
16
|
Lindenberg MA, Retèl VP, van den Berg JH, Geukes Foppen MH, Haanen JB, van Harten WH. Treatment With Tumor-infiltrating Lymphocytes in Advanced Melanoma: Evaluation of Early Clinical Implementation of an Advanced Therapy Medicinal Product. J Immunother 2019; 41:413-425. [PMID: 30300260 PMCID: PMC6200372 DOI: 10.1097/cji.0000000000000245] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 08/06/2018] [Indexed: 12/18/2022]
Abstract
Tumor-infiltrating lymphocytes (TIL)-therapy in advanced melanoma is an advanced therapy medicinal product (ATMP) which, despite promising results, has not been implemented widely. In a European setting, TIL-therapy has been in use since 2011 and is currently being evaluated in a randomized controlled trial. As clinical implementation of ATMPs is challenging, this study aims to evaluate early application of TIL-therapy, through the application of a constructive technology assessment (CTA). First the literature on ATMP barriers and facilitators in clinical translation was summarized. Subsequently, application of TIL-therapy was evaluated through semistructured interviews with 26 stakeholders according to 6 CTA domains: clinical, economic, patient-related, organizational, technical, and future. In addition, treatment costs were estimated. A number of barriers to clinical translation were identified in the literature, including: inadequate financial support, lack of regulatory knowledge, risks in using live tissues, and the complex path to market approval. Innovative reimbursement procedures could particularly facilitate translation. The CTA survey of TIL-therapy acknowledged these barriers, and revealed the following facilitators: the expected effectiveness resulting in institutional support for an internal pilot, the results of which led to the inclusion of TIL-therapy in a national coverage with evidence development program, the availability of an in-house pharmacist, quality assurance expertise and a TIL-skilled technician. Institutional and national implementation of TIL-therapy remains complex. The promising clinical effectiveness is expected to facilitate the adoption of TIL-therapy, especially when validated through a randomized controlled trial. Innovative and conditional reimbursement procedures, together with the organization of knowledge transfer, could support and improve clinical translation of TIL and ATMPs.
Collapse
Affiliation(s)
- Melanie A. Lindenberg
- Division of Psychosocial Research and Epidemiology
- Department of Health Technology and Services research, University of Twente, Enschede, The Netherlands
| | - Valesca P. Retèl
- Division of Psychosocial Research and Epidemiology
- Department of Health Technology and Services research, University of Twente, Enschede, The Netherlands
| | | | - Marnix H. Geukes Foppen
- Division of Molecular Oncology and Immunology
- Department of Medical Oncology, The Netherlands Cancer Institute—Antoni van Leeuwenhoek, Amsterdam
| | - John B. Haanen
- Division of Molecular Oncology and Immunology
- Department of Medical Oncology, The Netherlands Cancer Institute—Antoni van Leeuwenhoek, Amsterdam
| | - Wim H. van Harten
- Division of Psychosocial Research and Epidemiology
- Department of Health Technology and Services research, University of Twente, Enschede, The Netherlands
| |
Collapse
|
17
|
Nemeth C, Fine A, Fatemi A. Translational challenges in advancing regenerative therapy for treating neurological disorders using nanotechnology. Adv Drug Deliv Rev 2019; 148:60-67. [PMID: 31100303 DOI: 10.1016/j.addr.2019.05.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 03/05/2019] [Accepted: 05/13/2019] [Indexed: 12/20/2022]
Abstract
The focus of regenerative therapies is to replace or enrich diseased or injured cells and tissue in an attempt to replenish the local environment and function, while slowing or halting further degeneration. Targeting neurological diseases specifically is difficult, due to the complex nature of the central nervous system, including the difficulty of bypassing the brain's natural defense systems. While cell-based regenerative therapies show promise in select tissues, preclinical and clinical studies have been largely unable to transfer these successes to the brain. Advancements in nanotechnologies have provided new methods of central nervous system access, drug and cell delivery, as well as new systems of cell maintenance and support that may bridge the gap between regenerative therapies and the brain. In this review, we discuss current regenerative therapies for neurological diseases, nanotechnology as nanocarriers, and the technical, manufacturing, and regulatory challenges that arise from inception to formulation of nanoparticle-regenerative therapies.
Collapse
|
18
|
Webster A. Accelerating Innovation: Complexity, Regulation, and Temporality. FRONTIERS IN SOCIOLOGY 2019; 4:13. [PMID: 33869340 PMCID: PMC8022755 DOI: 10.3389/fsoc.2019.00013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 02/08/2019] [Indexed: 05/05/2023]
Abstract
This Perspective paper explores recent moves seen in many countries toward accelerating the speed at which biomedical innovation can be delivered to the clinic. It discusses the drivers behind this and the rationale for it, illustrating this briefly in the field of regenerative medicine. It argues that the process reconfigures present/future relations, especially in terms of the relationship between different forms of evidence and risk calculations. The regulatory/innovation relationship is, as a result, being rewritten. Paradoxically, the moves toward acceleration are less to do with the arrival of a more streamlined evaluation system that selects for scientifically robust technologies ready for "the market." In contrast, it reflects the growing complexity of innovation itself: whereas Latour (1987) had argued that "science-in the-making" was backstage in contrast to "ready-made science," the former is now very visible. This in turn has generated two other parallel processes-"regulation-in-the-making" and "risk-in-the-making." Such shifts can be seen in the field of regenerative medicine. The paper asks how best to engage with the move toward acceleration and thereby the future oversight of innovation.
Collapse
|
19
|
Evolution of Business Models in Regenerative Medicine: Effects of a Disruptive Innovation on the Innovation Ecosystem. Clin Ther 2018; 40:1084-1094. [DOI: 10.1016/j.clinthera.2018.06.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 06/01/2018] [Accepted: 06/04/2018] [Indexed: 01/07/2023]
|
20
|
Stark JF. Perspectives on human regeneration. PALGRAVE COMMUNICATIONS 2018; 4:66. [PMID: 29910957 PMCID: PMC6003594 DOI: 10.1057/s41599-018-0118-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 04/18/2018] [Indexed: 06/08/2023]
Abstract
Regeneration is a concept that has fascinated humans for centuries. Whether we have been trying to bring things back to life, extract additional resources from the world, or remodel our living spaces-domestic and urban-it is often presented as an unproblematic force for good. But what exactly does it mean to regenerate a body, mind or space? This paper, which introduces a collection of contributions on the theme of human regeneration, explores the limits and possibilities of regeneration as a conceptual tool for understanding the biological realm. What does it mean to be regenerated? How can a scholarly focus on this concept enrich our histories of bodies, ageing, disability and science, technology and medicine? As a secondary goal, I identify two distinct aspects of regeneration-'hard' and 'soft' regeneration-which concern the medical and social elements of regeneration respectively. By recognising that everything from cosmetics and fictions to prosthetics and organs grown in vitro display a combination of 'hard' and 'soft' elements, we are better placed to understand that the biological and social must be considered in consort for us to fully appreciate the meanings and practices that underpin multiple forms of human regeneration.
Collapse
|
21
|
Gardner J, Webster A, Barry J. Anticipating the clinical adoption of regenerative medicine: building institutional readiness in the UK. Regen Med 2018; 13:29-39. [DOI: 10.2217/rme-2017-0121] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
This perspective paper examines the challenges of implementing regenerative medicine (RM) therapies within hospitals and clinics. Drawing on recent work in the social sciences, the paper highlights dynamics within existing healthcare systems that will present both hindrances and affordances for the implementation of new RM technologies within hospitals and clinics. The paper argues that identifying suitable locations for cell- and gene-therapy treatment centers requires an assessment of their institutional readiness for RM. Some provisional criteria for assessing institutional readiness are outlined, and the paper will suggest that it is necessary to begin developing a program for the phased introduction of RM in the longer term.
Collapse
Affiliation(s)
- John Gardner
- School of Social Sciences, Monash University, Clayton Campus, W414 Menzies Building, 20 Chancellors Walk, Melbourne, Australia
| | - Andrew Webster
- Department of Sociology, Science & Technology Studies Unit, Wentworth College, University of York, York YO10 5DD, UK
| | - Jacqueline Barry
- Cell & Gene Therapy Catapult, Guy's Hospital, 12th Floor Tower Wing, Great Maze Pond, London SE1 9RT, UK
| |
Collapse
|
22
|
Mahalatchimy A, Faulkner A. The emerging landscape of reimbursement of regenerative medicine products in the UK: publications, policies and politics. Regen Med 2017; 12:611-622. [PMID: 28972450 DOI: 10.2217/rme-2017-0041] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
AIM This paper aims to map the trends and analyze key institutional dynamics that constitute the policies for reimbursement of regenerative medicine (RM), especially in the UK. MATERIALS & METHODS Two quantitative publications studies using Google Scholar and a qualitative study based on a larger study of 43 semi-structured interviews. RESULTS Reimbursement has been a growing topic of publications specific to RM and independent from orphan drugs. Risk-sharing schemes receive attention among others for dealing with RM reimbursement. Trade organizations have been especially involved on RM reimbursement issues and have proposed solutions. CONCLUSION The policy and institutional landscape of reimbursement studies in RM is a highly variegated and conflictual one and in its infancy.
Collapse
Affiliation(s)
- Aurélie Mahalatchimy
- Centre for Global Health Policy, School of Global Studies, University of Sussex, Falmer Brighton, BN1 9RH, UK.,CNRS, Aix Marseille Université, Université de Toulon, Université Pau & Pays Adour, DICE, CERIC, International Comparative & European Law, Aix en Provence, France
| | - Alex Faulkner
- Centre for Global Health Policy, School of Global Studies, University of Sussex, Falmer Brighton, BN1 9RH, UK
| |
Collapse
|
23
|
Webster A. Regenerative medicine and responsible research and innovation: proposals for a responsible acceleration to the clinic. Regen Med 2017; 12:853-864. [DOI: 10.2217/rme-2017-0028] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
This paper asks how regenerative medicine can be examined through the ‘responsible research and innovation’ (RRI) approach which has been developed over the past decade. It describes the drivers to the development of RRI, and then argues for the need to understand innovation itself through drawing on social science analysis rooted in science and technology studies. The paper then identifies a number of highly specific challenges faced by the regenerative medicine field and the implications these have for value creation. It offers a number of examples of how a combined RRI/science and technology studies perspective can identify priority areas for policy and concludes by arguing for a ‘responsible acceleration’, more likely to foster readiness at a time when much of the policy domain is pushing for ever-rapid access to cell therapies.
Collapse
Affiliation(s)
- Andrew Webster
- Department of Sociology, SATSU, University of York, York, YO10 5DD, UK
| |
Collapse
|
24
|
Gardner J, Webster A. Accelerating Innovation in the Creation of Biovalue: The Cell and Gene Therapy Catapult. SCIENCE, TECHNOLOGY & HUMAN VALUES 2017; 42:925-946. [PMID: 28845068 PMCID: PMC5546419 DOI: 10.1177/0162243917702720] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The field of regenerative medicine (RM) has considerable therapeutic promise that is proving difficult to realize. As a result, governments have supported the establishment of intermediary agencies to "accelerate" innovation. This article examines in detail one such agency, the United Kingdom's Cell and Gene Therapy Catapult (CGTC). We describe CGTC's role as an accelerator agency and its value narrative, which combines both "health and wealth." Drawing on the notion of sociotechnical imaginaries, we unpack the tensions within this narrative and its instantiation as the CGTC cell therapy infrastructure is built and engages with other agencies, some of which have different priorities and roles to play within the RM field.
Collapse
Affiliation(s)
- John Gardner
- School of Social Sciences, Monash University, Clayton, Melbourne, Victoria, Australia
- John Gardner, School of Social Sciences, Monash University, Clayton, Melbourne, Victoria 3800, Australia.
| | - Andrew Webster
- Science and Technology Studies Unit, Department of Sociology, University of York, Heslington, York, United Kingdom
| |
Collapse
|
25
|
Papadaki M. Adaptation through Collaboration: Developing Novel Platforms to Advance the Delivery of Advanced Therapies to Patients. Front Med (Lausanne) 2017; 4:56. [PMID: 28611985 PMCID: PMC5447030 DOI: 10.3389/fmed.2017.00056] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Accepted: 04/27/2017] [Indexed: 12/23/2022] Open
Abstract
For the nascent field of advanced therapies, collaboration will be a game-changer, turning scientific progress that was once unimaginable into transformative medical practice. Despite promise for lifelong management and even cure of disease, skepticism remains about the feasibility of their delivery to patients, fueling investment risks. With the potential for long-term effectiveness in need of frequent reassessment, current approaches to predict real-life drug performance bear little relevance, necessitating novel and iterative schemes to monitoring the benefit–risk profiles throughout the life span of advanced therapies. This work explains that reinventing an adoption route for Advanced Therapy Medicinal Products is as much about the scientific and clinical components, as it is about the organizational structures, requiring an unprecedented level of interactions between stakeholders not traditionally connected; from developers and regulators, to payers, patients, and funders. By reflecting on the successes and lessons learned from the growing space of global precompetitive consortia and public–private partnerships, as well as a number of emerging accelerated development pathways, this work aims to inform the foundations for a future roadmap that can smooth the path to approval, reimbursement, and access, while delivering value to all stakeholders. Echoing the growing demands to bring these transformative products to patients, it provides critical insights to enhance our capacity in three fundamental domains: deploying the operational flexibilities offered by the growing space of collaborations, utilizing emerging flexible and accelerated pathways to tackle challenges in quantifying long-term effectiveness, and building the necessary digital and clinical infrastructure for knowledge development.
Collapse
Affiliation(s)
- Magdalini Papadaki
- Association of the British Pharmaceutical Industry, London, United Kingdom
| |
Collapse
|
26
|
Boráň T, Menezes-Ferreira M, Reischl I, Celis P, Ferry N, Gänsbacher B, Krafft H, Lipucci di Paola M, Sladowski D, Salmikangas P. Clinical Development and Commercialization of Advanced Therapy Medicinal Products in the European Union: How Are the Product Pipeline and Regulatory Framework Evolving? HUM GENE THER CL DEV 2017; 28:126-135. [PMID: 28510497 DOI: 10.1089/humc.2016.193] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The research and development of advanced therapy medicinal products (ATMPs) has been active in Europe and worldwide during recent years. Yet, the number of licensed products remains low. The main expected legal change in the near future in the European Union (EU) concerns the regulation on clinical trials (536/2014), which will come into force in 2018. With this new framework, a more harmonized and swift process for approval of clinical trials is anticipated, which is expected to support the entry of new innovations into the EU market. A survey on ATMPs in clinical trials during 2010-2015 in the EU was conducted in order to study the trends of ATMP development since the earlier survey published in 2012. According to the results, the number of clinical trials using ATMPs is slowly increasing in the EU. Yet, the focus is still in early development, and the projects are mainly carried out by small and medium-sized enterprises, academia, and hospitals. Oncology is the main area of clinical development. Yet, the balance between cell-based products and gene therapy medicinal products in this area may be changing in the future due to the new T-cell technologies. Many limitations and challenges are identified for ATMP development, requiring proportionate regulatory requirements. On the other hand, for such a novel field, the developers should be active in considering possible constraints and actively engage with authorities to look for solutions. This article provides up to-date information on forthcoming regulatory improvements and discusses the main challenges hampering the commercialization of ATMPs in the EU.
Collapse
Affiliation(s)
- Tomáš Boráň
- 1 Státní üstav pro kontrolu léčiv, Prague, Czech Republic
| | | | - Ilona Reischl
- 3 Austrian Medicines and Medical Devices Agency (AGES MEA), Vienna, Austria
| | - Patrick Celis
- 4 European Medicines Agency (EMA), London, United Kingdom
| | | | - Bernd Gänsbacher
- 6 Institute of Experimental Oncology and Therapeutics, Technical University of Munich , Munich, Germany
| | | | | | - Dariusz Sladowski
- 9 Medical University of Warsaw , Department of Transplantology and Central Tissue Bank, Warsaw, Poland
| | | |
Collapse
|
27
|
Corbett MS, Webster A, Hawkins R, Woolacott N. Innovative regenerative medicines in the EU: a better future in evidence? BMC Med 2017; 15:49. [PMID: 28270209 PMCID: PMC5341436 DOI: 10.1186/s12916-017-0818-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 02/14/2017] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Despite a steady stream of headlines suggesting they will transform the future of healthcare, high-tech regenerative medicines have, to date, been quite inaccessible to patients, with only eight having been granted an EU marketing licence in the last 7 years. Here, we outline some of the historical reasons for this paucity of licensed innovative regenerative medicines. We discuss the challenges to be overcome to expedite the development of this complex and rapidly changing area of medicine, together with possible reasons to be more optimistic for the future. DISCUSSION Several factors have contributed to the scarcity of cutting-edge regenerative medicines in clinical practice. These include the great expense and difficulties involved in planning how individual therapies will be developed, manufactured to commercial levels and ultimately successfully delivered to patients. Specific challenges also exist when evaluating the safety, efficacy and cost-effectiveness of these therapies. Furthermore, many treatments are used without a licence from the European Medicines Agency, under "Hospital Exemption" from the EC legislation. For products which are licensed, alternative financing approaches by healthcare providers may be needed, since many therapies will have significant up-front costs but uncertain benefits and harms in the long-term. However, increasing political interest and more flexible mechanisms for licensing and financing of therapies are now evident; these could be key to the future growth and development of regenerative medicine in clinical practice. CONCLUSIONS Recent developments in regulatory processes, coupled with increasing political interest, may offer some hope for improvements to the long and often difficult routes from laboratory to marketplace for leading-edge cell or tissue therapies. Collaboration between publicly-funded researchers and the pharmaceutical industry could be key to the future development of regenerative medicine in clinical practice; such collaborations might also offer a possible antidote to the innovation crisis in the pharmaceutical industry.
Collapse
Affiliation(s)
- Mark S Corbett
- Centre for Reviews and Dissemination, University of York, Heslington, York, YO10 5DD, UK.
| | - Andrew Webster
- Science and Technology Studies Unit, Department of Sociology, University of York, Heslington, York, YO10 5DD, UK
| | - Robert Hawkins
- Medical Oncology, The Christie Hospital and University of Manchester, Wilmslow Road, Manchester, M20 4BX, UK
| | - Nerys Woolacott
- Centre for Reviews and Dissemination, University of York, Heslington, York, YO10 5DD, UK
| |
Collapse
|
28
|
Faulkner A. Opening the gateways to market and adoption of regenerative medicine? The UK case in context. Regen Med 2016; 11:321-30. [PMID: 27035398 DOI: 10.2217/rme-2015-0046] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Regenerative medicine is a site for opposing forces of gatekeeping and innovation. This applies both to regulation of market entry and to clinical adoption. Key gateways include the EU's Advanced Therapy Medicinal Products Regulation, technology assessment body NICE and commissioning/service contractor National Health Service England. The paper maps recent gatekeeping flexibilities, describing the range of gateways to market and healthcare adoption seen as alternatives to mainstream routes. The initiatives range from exemptions in pharmaceutical and ATMP regulations, through 'adaptive pathways' and 'risk-based' approaches, to special designation for promising innovation, value-based assessment and commissioner developments. Future developments are considered in the UK's 'accelerated access review'. Caution is urged in assessing the impact of these gateway flexibilities and their market and public health implications.
Collapse
Affiliation(s)
- Alex Faulkner
- Centre for Global Health Policy, School of Global Studies, University of Sussex, Brighton, BN1 9SJ, UK
| |
Collapse
|
29
|
Gardner J, Higham R, Faulkner A, Webster A. Promissory identities: Sociotechnical representations & innovation in regenerative medicine. Soc Sci Med 2016; 174:70-78. [PMID: 28012432 DOI: 10.1016/j.socscimed.2016.12.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 12/04/2016] [Accepted: 12/12/2016] [Indexed: 02/07/2023]
Abstract
The field of regenerative medicine (RM) is championed as a potential source of curative treatments and economic wealth, and initiatives have been launched in several countries to facilitate innovation within the field. As a way of examining the social dimensions of innovation within regenerative medicine, this paper explores the sociotechnical representations of RM technologies in the UK, and the tensions, affordances and complexities these representations present for actors within the field. Specifically, the paper uses the Science and Technology Studies-inspired notions of 'technology identity' and 'development space' to examine how particular technologies are framed and positioned by actors, and how these positionings subsequently shape innovation pathways. Four developing RM technologies are used as case studies: bioengineered tracheas; autologous chondrocyte implantation; T-cell therapies; and a 'point-of-care' cell preparation device. Using these case studies we argue that there are particular identity aspects that have powerful performative effects and provide momentum to innovation projects, and we argue that there are particular stakeholders in the UK RM landscape who appear to have considerable power in shaping these technology identities and thus innovation pathways.
Collapse
Affiliation(s)
- John Gardner
- Science and Technology Studies Unit, Department of Sociology University of York, Heslington, York, YO10 5DD United Kingdom.
| | - Ruchi Higham
- Science and Technology Studies Unit, Department of Sociology University of York, Heslington, York, YO10 5DD United Kingdom.
| | - Alex Faulkner
- Centre for Global Health Policy, University of Sussex, Falmer Brighton, BN1 9RH, United Kingdom.
| | - Andrew Webster
- Science and Technology Studies Unit, Department of Sociology University of York, Heslington, York, YO10 5DD United Kingdom.
| |
Collapse
|