1
|
Itatani H, Yamaki A, Konishi K, Okamoto H, Okumura N, Shigematsu N, Misumi S, Takenaka S. Fermented Royal Jelly Enriched With 10-Hydroxydecanoic Acid and Its Potential for Enhancing Mucosal Immunity. Food Sci Nutr 2025; 13:e70041. [PMID: 39968212 PMCID: PMC11833300 DOI: 10.1002/fsn3.70041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 11/29/2024] [Accepted: 02/01/2025] [Indexed: 02/20/2025] Open
Abstract
Royal jelly (RJ) is known to contain 10-hydroxydecanoic acid (10HDAA), which has been shown to have immune activation properties, including the promotion of M cell differentiation. However, the natural concentration of 10HDAA in RJ is relatively low. To enhance the functional use of RJ as an immunostimulatory food ingredient, this study aimed to increase its 10HDAA content using bacteria capable of converting 10-hydroxy-2-decenoic acid (10H2DA) to 10HDAA in RJ. A lactic acid bacterium, Lactobacillus panisapium, was isolated from the digestive tract of queen bees and demonstrated a high capacity to convert 10H2DA to 10HDAA. Using the isolated strain, fermented RJ (fRJ) with a fivefold increase in 10HDAA content was produced compared to raw RJ. Preliminary evaluations of fRJ's immune-stimulating effects revealed significant benefits, including enhanced M cell differentiation, activation of macrophage phagocytic ability, and increased immunoglobulin (Ig) A secretion in individuals with reduced salivary IgA levels. Safety assessments confirmed that fRJ is safe for consumption. In summary, fRJ enriched with 10HDAA was produced and demonstrated potential as an immune-stimulating food.
Collapse
Affiliation(s)
- Hayate Itatani
- Institute for Bee Products & Health Science, R&D DepartmentYamada Bee Company, Inc.OkayamaJapan
- Environmental Microbiology, Division of Agrobioscience, Graduate School of Agricultural ScienceKobe UniversityKobeJapan
| | - Ayanori Yamaki
- Institute for Bee Products & Health Science, R&D DepartmentYamada Bee Company, Inc.OkayamaJapan
| | - Kaori Konishi
- Institute for Bee Products & Health Science, R&D DepartmentYamada Bee Company, Inc.OkayamaJapan
| | - Hideto Okamoto
- Institute for Bee Products & Health Science, R&D DepartmentYamada Bee Company, Inc.OkayamaJapan
- Yamada Bee Company Group Institute for Beauty Science, R&D DepartmentYamada Bee Company, Inc.TokyoJapan
| | - Nobuaki Okumura
- Institute for Bee Products & Health Science, R&D DepartmentYamada Bee Company, Inc.OkayamaJapan
- Yamada Bee Company Group Institute for Beauty Science, R&D DepartmentYamada Bee Company, Inc.TokyoJapan
| | | | - Shogo Misumi
- Department of Environmental and Molecular Health Sciences, Faculty of Medical and Pharmaceutical SciencesKumamoto UniversityKumamotoJapan
| | - Shinji Takenaka
- Environmental Microbiology, Division of Agrobioscience, Graduate School of Agricultural ScienceKobe UniversityKobeJapan
| |
Collapse
|
2
|
Hong S, Baravkar SB, Lu Y, Masoud AR, Zhao Q, Zhou W. Molecular Modification of Queen Bee Acid and 10-Hydroxydecanoic Acid with Specific Tripeptides: Rational Design, Organic Synthesis, and Assessment for Prohealing and Antimicrobial Hydrogel Properties. Molecules 2025; 30:615. [PMID: 39942719 PMCID: PMC11819776 DOI: 10.3390/molecules30030615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 01/28/2025] [Accepted: 01/28/2025] [Indexed: 02/16/2025] Open
Abstract
Royal jelly and medical grade honey are traditionally used in treating wounds and infections, although their effectiveness is often variable and insufficient. To overcome their limitations, we created novel amphiphiles by modifying the main reparative and antimicrobial components, queen bee acid (hda) and 10-hydroxyl-decanoic acid (hdaa), through peptide bonding with specific tripeptides. Our molecular design incorporated amphiphile targets as being biocompatible in wound healing, biodegradable, non-toxic, hydrogelable, prohealing, and antimicrobial. The amphiphilic molecules were designed in a hda(hdaa)-aa1-aa2-aa3 structural model with rational selection criteria for each moiety, prepared via Rink/Fmoc-tBu-based solid-phase peptide synthesis, and structurally verified by NMR and LC-MS/MS. We tested several amphiphiles among those containing moieties of hda or hdaa and isoleucine-leucine-aspartate (ILD-amidated) or IL-lysine (ILK-NH2). These tests were conducted to evaluate their prohealing and antimicrobial hydrogel properties. Our observation of their hydrogelation and hydrogel-rheology showed that they can form hydrogels with stable elastic moduli and injectable shear-thinning properties, which are suitable for cell and tissue repair and regeneration. Our disc-diffusion assay demonstrated that hdaa-ILK-NH2 markedly inhibited Staphylococcus aureus. Future research is needed to comprehensively evaluate the prohealing and antimicrobial properties of these novel molecules modified from hda and hdaa with tripeptides.
Collapse
Affiliation(s)
- Song Hong
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health, New Orleans, LA 70112, USA (A.-R.M.)
- Department of Ophthalmology, School of Medicine, Louisiana State University Health, New Orleans, LA 70112, USA
| | - Sachin B. Baravkar
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health, New Orleans, LA 70112, USA (A.-R.M.)
| | - Yan Lu
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health, New Orleans, LA 70112, USA (A.-R.M.)
| | - Abdul-Razak Masoud
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health, New Orleans, LA 70112, USA (A.-R.M.)
| | - Qi Zhao
- NMR Laboratory, Department of Chemistry, Tulane University, New Orleans, LA 70115, USA;
| | - Weilie Zhou
- Department of Physics and AMRI, University of New Orleans, New Orleans, LA 70148, USA
| |
Collapse
|
3
|
Dai J, Guan H, Zhang L, Jiang H, Su W, Wang J, Jia X, Pang Z. Fatty Acids Derived from Royal Jelly Exert Anti-Inflammatory and Antibacterial Activities in the Treatment of Pseudomonas aeruginosa-Induced Acute Pneumonia. J Med Food 2025; 28:44-57. [PMID: 39585208 DOI: 10.1089/jmf.2024.k.0153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2024] Open
Abstract
Pseudomonas aeruginosa, an opportunistic pathogen, commonly causes hospital-acquired pneumonia. Royal jelly fatty acids (RJFAs), a mixture of various fatty acids extracted from royal jelly, exhibit antibacterial and anti-inflammatory properties in treating many infectious diseases. Nevertheless, the therapeutic mechanisms of RJFAs in treatment of acute P. aeruginosa pulmonary infection are still unclear. Herein, we initially extracted the fatty acids from royal jelly and characterized their chemical constituents using headspace gas chromatography-mass spectrometry. Furthermore, we examined the antibacterial effect of RJFAs in vitro and explored its therapeutic effect and molecular mechanisms in treating acute P. aeruginosa pulmonary infection in vivo. The in vitro antibacterial studies revealed that RJFAs significantly inhibited P. aeruginosa growth. Moreover, the in vivo studies showed that the RJFAs effectively mitigated the lung damage and inflammation induced by P. aeruginosa through impairing neutrophil infiltration, reducing the bacterial load in lung and diminishing the production of proinflammatory cytokines, including tumor necrosis factor (TNF-α), interleukin (IL-1β), IL-6, and macrophage inflammatory protein-2 (MIP-2). In addition, the mice treated with RJFAs exhibited reduced phosphorylation of extracellular signal-regulated kinase (ERK), p38, c-Jun N-terminal kinase (JNK), c-Jun, and nuclear factor-kappa B (NF-κB) p65 in the lung tissues in comparison with that of the mice without drug treatment. These findings demonstrated that RJFAs exhibited significant antibacterial and anti-inflammatory effects in treating the P. aeruginosa-induced acute pneumonia, and the anti-inflammatory effects were exerted through suppressing the mitogen-activated protein kinase/activator protein-1 (MAPK/AP-1) pathway and NF-κB activation, suggesting a promising therapeutic potential of RJFAs against acute bacterial pneumonia.
Collapse
Affiliation(s)
- Jiangqin Dai
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Haixing Guan
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Linlin Zhang
- Institute of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Hehe Jiang
- Institute of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wen Su
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jue Wang
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiaolei Jia
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zheng Pang
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
4
|
Kobayashi G, Okamura T, Majima S, Senmaru T, Okada H, Ushigome E, Nakanishi N, Nishimoto Y, Yamada T, Okamoto H, Okumura N, Sasano R, Hamaguchi M, Fukui M. Effects of Royal Jelly on Gut Dysbiosis and NAFLD in db/ db Mice. Nutrients 2023; 15:nu15112580. [PMID: 37299544 DOI: 10.3390/nu15112580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 05/27/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
Royal jelly (RJ) is a naturally occurring substance synthesized by honeybees and has various health benefits. Herein, we focused on the medium-chain fatty acids (MCFAs) unique to RJ and evaluated their therapeutic efficacy in treating non-alcoholic fatty liver disease (NAFLD). We examined db/m mice that were exclusively fed a normal diet, db/db mice exclusively fed a normal diet, and db/db mice fed varying RJ quantities (0.2, 1, and 5%). RJ improved NAFLD activity scores and decreased gene expression related to fatty acid metabolism, fibrosis, and inflammation in the liver. RJ regulated innate immunity-related inflammatory responses in the small intestine and decreased the expression of genes associated with inflammation and nutrient absorption transporters. RJ increased the number of operational taxonomic units, the abundance of Bacteroides, and seven taxa, including bacteria that produce short-chain fatty acids. RJ increased the concentrations of RJ-related MCFAs (10-hidroxy-2-decenoic acid, 10-hydroxydecanoic acid, 2-decenedioic acid, and sebacic acid) in the serum and liver. These RJ-related MCFAs decreased saturated fatty acid deposition in HepG2 cells and decreased the gene expression associated with fibrosis and fatty acid metabolism. RJ and RJ-related MCFAs improved dysbiosis and regulated the expression of inflammation-, fibrosis-, and nutrient absorption transporter-related genes, thereby preventing NAFLD.
Collapse
Affiliation(s)
- Genki Kobayashi
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Takuro Okamura
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Saori Majima
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Takafumi Senmaru
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Hiroshi Okada
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Emi Ushigome
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Naoko Nakanishi
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | | | - Takuji Yamada
- Metabologenomics Inc., Tsuruoka 997-0052, Japan
- Department of Life Science and Technology, Tokyo Institute of Technology, Tokyo 152-8550, Japan
| | - Hideto Okamoto
- Institute for Health Science, R&D Department, Yamada Bee Company, Inc., Okayama 708-0393, Japan
| | - Nobuaki Okumura
- Institute for Health Science, R&D Department, Yamada Bee Company, Inc., Okayama 708-0393, Japan
| | | | - Masahide Hamaguchi
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Michiaki Fukui
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| |
Collapse
|
5
|
Gao J, Liu J, Li Y, Liu J, Wang H, Chai M, Dong Y, Zhang Z, Su G, Wang M. Targeting p53 for neuroinflammation: New therapeutic strategies in ischemic stroke. J Neurosci Res 2023. [PMID: 37156641 DOI: 10.1002/jnr.25200] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 04/10/2023] [Accepted: 04/21/2023] [Indexed: 05/10/2023]
Abstract
Ischemic stroke (IS) is characterized by high incidence, high recurrence, and high mortality and places a heavy burden on society and families. The pathological mechanisms of IS are complex, among which secondary neurological impairment mediated by neuroinflammation is considered to be the main factor in cerebral ischemic injury. At present, there is still a lack of specific therapies to treat neuroinflammation. The tumor suppressor protein p53 has long been regarded as a key substance in the regulation of the cell cycle and apoptosis in the past. Recently, studies have found that p53 also plays an important role in neuroinflammatory diseases, such as IS. Therefore, p53 may be a crucial target for the regulation of the neuroinflammatory response. Here, we provide a comprehensive review of the potential of targeting p53 in the treatment of neuroinflammation after IS. We describe the function of p53, the major immune cells involved in neuroinflammation, and the role of p53 in inflammatory responses mediated by these cells. Finally, we summarize the therapeutic strategies of targeting p53 in regulating the neuroinflammatory response after IS to provide new directions and ideas for the treatment of ischemic brain injury.
Collapse
Affiliation(s)
- Juan Gao
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, China
| | - Jifei Liu
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, China
| | - Yonghong Li
- NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, Lanzhou, China
| | - Junxi Liu
- Chinese Academy of Sciences Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, China
| | - He Wang
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, China
| | - Miao Chai
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, China
| | - Ying Dong
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, China
| | - Zhenchang Zhang
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, China
| | - Gang Su
- Institute of Genetics, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Manxia Wang
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, China
| |
Collapse
|
6
|
Inhibition of Skin Pathogenic Bacteria, Antioxidant and Anti-Inflammatory Activity of Royal Jelly from Northern Thailand. Molecules 2023; 28:molecules28030996. [PMID: 36770665 PMCID: PMC9920569 DOI: 10.3390/molecules28030996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/15/2023] [Accepted: 01/16/2023] [Indexed: 01/21/2023] Open
Abstract
Royal jelly is a nutritious substance produced by the hypopharyngeal and mandibular glands of honeybees. Royal jelly possesses many attractive and beneficial properties which make it an ideal component in medical and pharmaceutical products. The antibacterial, antioxidant, and anti-inflammatory activities of royal jelly from honeybees (Apis mellifera) were determined in this study. Moreover, the total phenolic and flavonoid contents of the royal jelly were also evaluated. The effects of royal jelly on growth inhibition against skin pathogenic bacteria, including Cutibacterium acnes, methicillin-resistant Staphylococcus aureus (MRSA), Pseudomonas aeruginosa, Staphylococcus aureus, Staphylococcus epidermidis, and Corynebacterium spp., were investigated by the agar well diffusion method. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were further determined by the broth dilution method. The results indicated that royal jelly showed antibacterial activity by inhibiting the growth of Gram-positive pathogenic bacteria, while the effectiveness decreased against Gram-negative bacteria. Interestingly, royal jelly from Lamphun (RJ-LP1), and Chiang Mai (RJ-CM1), presented high inhibitory efficacy against C. acnes, MRSA, and S. aureus within 4 h by a time killing assay. Furthermore, the anti-inflammatory properties of royal jelly were tested using RAW264.7 macrophage cells, and results revealed that RJ-LP1 and RJ-CM1 could reduce nitric oxide (NO) production and suppress iNOS gene expression. After testing the antioxidant activity, RJ-CM1 and RJ-CM2 of royal jelly from Chiang Mai had the highest level. Additionally, RJ-CM1 also showed the highest total phenolic and flavonoid content. These findings have brought forward new knowledge of the antibacterial, antioxidant, and anti-inflammatory properties of royal jelly, which will improve clinical and pharmaceutical uses of royal jelly as an alternative therapy for bacterial infections, and also as a dietary supplement product.
Collapse
|
7
|
10-HDA Induces ROS-Mediated Apoptosis in A549 Human Lung Cancer Cells by Regulating the MAPK, STAT3, NF- κB, and TGF- β1 Signaling Pathways. BIOMED RESEARCH INTERNATIONAL 2020; 2020:3042636. [PMID: 33376719 PMCID: PMC7744184 DOI: 10.1155/2020/3042636] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 11/18/2020] [Accepted: 11/22/2020] [Indexed: 01/19/2023]
Abstract
10-Hydroxy-2-decenoic acid (10-HDA), also known as royal jelly acid, has a variety of physiological functions, and recent studies have shown that it also has anticancer effects. However, its anticancer mechanisms have not been clearly defined. In this study, we investigated the underlying mechanisms of 10-HDA in A549 human lung cancer cells. We used Cell Counting Kit-8 assay, scratch wound healing assay, flow cytometry, and western blot analysis to investigate its apoptotic effects and underlying mechanism. Our results showed that 10-HDA inhibited the proliferation of three types of human lung cancer cells and had no significant toxic effects on normal cells. Accompanying reactive oxygen species (ROS), 10-HDA induced A549 cell apoptosis by regulating mitochondrial-associated apoptosis, and caused cell cycle arrest at the G0/G1 phase in a time-dependent manner. Meanwhile, 10-HDA also regulated mitogen-activated protein kinase (MAPK), signal transducer and activator of transcription 3 (STAT3), and nuclear factor kappa B (NF-κB) signaling pathways by increasing the expression levels of phosphorylated c-Jun N-terminal kinase, p-p38, and I-κB, and additionally, by decreasing the expression levels of phosphorylated extracellular signal-regulated kinase, p-STAT3, and NF-κB. These effects were blocked by MAPK inhibitors and N-acetyl-L-cysteine. Furthermore, 10-HDA inhibited cell migration by regulating transforming growth factor beta 1 (TGF-β1), SNAI1, GSK-3β, E-cadherin, N-cadherin, and vimentin. Taken together, the results of this study showed that 10-HDA induced cell cycle arrest and apoptosis in A549 human lung cancer cells through ROS-mediated MAPK, STAT3, NF-κB, and TGF-β1 signaling pathways. Therefore, 10-HDA may be a potential therapy for human lung cancer.
Collapse
|
8
|
You M, Miao Z, Sienkiewicz O, Jiang X, Zhao X, Hu F. 10-Hydroxydecanoic acid inhibits LPS-induced inflammation by targeting p53 in microglial cells. Int Immunopharmacol 2020; 84:106501. [DOI: 10.1016/j.intimp.2020.106501] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 03/22/2020] [Accepted: 04/09/2020] [Indexed: 12/11/2022]
|
9
|
Chen YF, Wang K, Zhang YZ, Zheng YF, Hu FL. In Vitro Anti-Inflammatory Effects of Three Fatty Acids from Royal Jelly. Mediators Inflamm 2016; 2016:3583684. [PMID: 27847405 PMCID: PMC5099463 DOI: 10.1155/2016/3583684] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 09/18/2016] [Indexed: 12/25/2022] Open
Abstract
Trans-10-hydroxy-2-decenoic acid (10-H2DA), 10-hydroxydecanoic acid (10-HDAA), and sebacic acid (SEA) are the three major fatty acids in royal jelly (RJ). Previous studies have revealed several pharmacological activities of 10-H2DA and 10-HDAA, although the anti-inflammatory effects and underlying mechanisms by which SEA acts are poorly understood. In the present study, we evaluated and compared the in vitro anti-inflammatory effects of these RJ fatty acids in lipopolysaccharide-stimulated RAW 264.7 macrophages. The results showed that 10-H2DA, 10-HDAA, and SEA had potent, dose-dependent inhibitory effects on the release of the major inflammatory-mediators, nitric oxide, and interleukin-10, and only SEA decreased TNF-α production. Several key inflammatory genes have also been modulated by these RJ fatty acids, with 10-H2DA showing distinct modulating effects as compared to the other two FAs. Furthermore, we found that these three FAs regulated several proteins involved in MAPK and NF-κB signaling pathways. Taken together, these findings provide additional references for using RJ against inflammatory diseases.
Collapse
Affiliation(s)
- Yi-Fan Chen
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Kai Wang
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Yan-Zheng Zhang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yu-Fei Zheng
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Fu-Liang Hu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
10
|
Tallam A, Perumal TM, Antony PM, Jäger C, Fritz JV, Vallar L, Balling R, del Sol A, Michelucci A. Gene Regulatory Network Inference of Immunoresponsive Gene 1 (IRG1) Identifies Interferon Regulatory Factor 1 (IRF1) as Its Transcriptional Regulator in Mammalian Macrophages. PLoS One 2016; 11:e0149050. [PMID: 26872335 PMCID: PMC4752512 DOI: 10.1371/journal.pone.0149050] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 01/25/2016] [Indexed: 01/28/2023] Open
Abstract
Immunoresponsive gene 1 (IRG1) is one of the highest induced genes in macrophages under pro-inflammatory conditions. Its function has been recently described: it codes for immune-responsive gene 1 protein/cis-aconitic acid decarboxylase (IRG1/CAD), an enzyme catalysing the production of itaconic acid from cis-aconitic acid, a tricarboxylic acid (TCA) cycle intermediate. Itaconic acid possesses specific antimicrobial properties inhibiting isocitrate lyase, the first enzyme of the glyoxylate shunt, an anaplerotic pathway that bypasses the TCA cycle and enables bacteria to survive on limited carbon conditions. To elucidate the mechanisms underlying itaconic acid production through IRG1 induction in macrophages, we examined the transcriptional regulation of IRG1. To this end, we studied IRG1 expression in human immune cells under different inflammatory stimuli, such as TNFα and IFNγ, in addition to lipopolysaccharides. Under these conditions, as previously shown in mouse macrophages, IRG1/CAD accumulates in mitochondria. Furthermore, using literature information and transcription factor prediction models, we re-constructed raw gene regulatory networks (GRNs) for IRG1 in mouse and human macrophages. We further implemented a contextualization algorithm that relies on genome-wide gene expression data to infer putative cell type-specific gene regulatory interactions in mouse and human macrophages, which allowed us to predict potential transcriptional regulators of IRG1. Among the computationally identified regulators, siRNA-mediated gene silencing of interferon regulatory factor 1 (IRF1) in macrophages significantly decreased the expression of IRG1/CAD at the gene and protein level, which correlated with a reduced production of itaconic acid. Using a synergistic approach of both computational and experimental methods, we here shed more light on the transcriptional machinery of IRG1 expression and could pave the way to therapeutic approaches targeting itaconic acid levels.
Collapse
Affiliation(s)
- Aravind Tallam
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Thaneer M. Perumal
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Paul M. Antony
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Christian Jäger
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Joëlle V. Fritz
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Laurent Vallar
- Genomics Research Laboratory, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Rudi Balling
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Antonio del Sol
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Alessandro Michelucci
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
- NORLUX Neuro-Oncology Laboratory, Luxembourg Institute of Health, Luxembourg, Luxembourg
| |
Collapse
|
11
|
Wang J, Zhang W, Zou H, Lin Y, Lin K, Zhou Z, Qiang J, Lin J, Chuka CM, Ge R, Zhao S, Yang X. 10-Hydroxy-2-decenoic acid inhibiting the proliferation of fibroblast-like synoviocytes by PI3K–AKT pathway. Int Immunopharmacol 2015; 28:97-104. [DOI: 10.1016/j.intimp.2015.05.036] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2014] [Revised: 05/19/2015] [Accepted: 05/21/2015] [Indexed: 01/05/2023]
|
12
|
Argüello RJ, Rodriguez Rodrigues C, Gatti E, Pierre P. Protein synthesis regulation, a pillar of strength for innate immunity? Curr Opin Immunol 2014; 32:28-35. [PMID: 25553394 DOI: 10.1016/j.coi.2014.12.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 12/04/2014] [Accepted: 12/10/2014] [Indexed: 12/31/2022]
Abstract
Recognition of pathogen derived molecules by Pattern Recognition Receptors (PRR) induces the production of cytokines (i.e. type I interferons) that stimulate the surrounding cells to transcribe and translate hundreds of genes, in order to prevent further infection and organize the immune response. Here, we report on the rising matter that metabolism sensing and gene expression control at the level of mRNA translation, allow swift responses that mobilize host defenses and coordinate innate responses to infection.
Collapse
Affiliation(s)
- Rafael J Argüello
- Centre d'Immunologie de Marseille-Luminy, Aix-Marseille Université, U2M, 13288 Marseille, France; INSERM, U1104, 13288 Marseille, France; CNRS, UMR 7280, 13288 Marseille, France
| | - Christian Rodriguez Rodrigues
- Centre d'Immunologie de Marseille-Luminy, Aix-Marseille Université, U2M, 13288 Marseille, France; INSERM, U1104, 13288 Marseille, France; CNRS, UMR 7280, 13288 Marseille, France
| | - Evelina Gatti
- Centre d'Immunologie de Marseille-Luminy, Aix-Marseille Université, U2M, 13288 Marseille, France; INSERM, U1104, 13288 Marseille, France; CNRS, UMR 7280, 13288 Marseille, France; Institute for Research in Biomedicine - iBiMED and Aveiro Health Sciences Program, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Philippe Pierre
- Centre d'Immunologie de Marseille-Luminy, Aix-Marseille Université, U2M, 13288 Marseille, France; INSERM, U1104, 13288 Marseille, France; CNRS, UMR 7280, 13288 Marseille, France; Institute for Research in Biomedicine - iBiMED and Aveiro Health Sciences Program, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
13
|
Silver nanoparticles induce anti-proliferative effects on airway smooth muscle cells. Role of nitric oxide and muscarinic receptor signaling pathway. Toxicol Lett 2013; 224:246-56. [PMID: 24188929 DOI: 10.1016/j.toxlet.2013.10.027] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 10/23/2013] [Accepted: 10/24/2013] [Indexed: 12/28/2022]
Abstract
Silver nanoparticles (AgNPs) are used to manufacture materials with new properties and functions. However, little is known about their toxic or beneficial effects on human health, especially in the respiratory system, where its smooth muscle (ASM) regulates the airway contractility by different mediators, such as acetylcholine (ACh) and nitric oxide (NO). The aim of this study was to evaluate the effects of AgNPs on ASM cells. Exposure to AgNPs induced ACh-independent expression of the inducible nitric oxide synthase (iNOS) at 100 μg/mL, associated with excessive production of NO. AgNPs induced the muscarinic receptor activation, since its blockage with atropine and blockage of its downstream signaling pathway inhibited the NO production. AgNPs at 10 and 100 μg/mL induced ACh-independent prolonged cytotoxicity and decreased cellular proliferation mediated by the muscarinic receptor-iNOS pathway. However, the concentration of 100 μg/mL of AgNPs induced muscarinic receptor-independent apoptosis, suggesting the activation of multiple pathways. These data indicate that AgNPs induce prolonged cytotoxic and anti-proliferative effects on ASM cells, suggesting an activation of the muscarinic receptor-iNOS pathway. Further investigation is required to understand the full mechanisms of action of AgNPs on ASM under specific biological conditions.
Collapse
|