1
|
Komatsu K, Matsuura T, Suzumura T, Shibata R, Chen PC, Ogawa T. Vacuum Ultraviolet (VUV)-Induced Physicochemical Engineering of Titanium: Enhanced Fibroblast Activity, Redox System, and Glycosaminoglycan Binding for Soft Tissue Integration. ACS APPLIED BIO MATERIALS 2025; 8:4166-4185. [PMID: 40249645 DOI: 10.1021/acsabm.5c00283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2025]
Abstract
Bacterial invasion at the titanium-tissue interface causes peri-implant inflammation, posing challenges for implants in orthopedics, maxillofacial prosthetics, and dentistry. This study hypothesized that titanium surface decarbonization improves soft tissue cell adhesion and growth. One-minute vacuum ultraviolet (VUV) light treatment at 172 nm reduced surface carbon from 60% to 29% without altering surface topography, making surfaces hydrophilic and hydro-attractive. Human fibroblasts attached to VUV-treated surfaces 2-4 times more frequently than untreated surfaces, with an even greater increase on tilted and curved surfaces. Fibroblast proliferation rose 2-6 times, with an expedited G1-to-S phase transition. Cell retention under dislodging forces increased 2-5 times on VUV-treated surfaces. RNA sequencing showed upregulation of extracellular matrix production, growth factors, cell cycle progression, antioxidant defenses, and proteoglycan/glycosaminoglycan (GAG)-binding, alongside downregulation of the inflammatory response on VUV-treated titanium surfaces. An oxidative stress test showed minimal adverse effects from hydrogen peroxide on cells on VUV-treated surfaces, attributed to increased intracellular glutathione reserves. Enhanced adhesion on VUV-treated titanium was negated by treating the cells with GAG-cleaving enzymes. These findings demonstrate that VUV-mediated decarbonization enhances fibroblast attachment, proliferation, and adhesion by fostering homeostatic cellular phenotypes involving proteoglycan/GAG interactions and antioxidant defense, offering a strategy to improve the soft tissue sealing around titanium implants.
Collapse
Affiliation(s)
- Keiji Komatsu
- Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry, Los Angeles, California 90095, United States
- Department of Lifetime Oral Health Care Sciences, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, Tokyo, 113-8549, Japan
| | - Takanori Matsuura
- Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry, Los Angeles, California 90095, United States
| | - Toshikatsu Suzumura
- Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry, Los Angeles, California 90095, United States
| | - Rune Shibata
- Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry, Los Angeles, California 90095, United States
| | - Po-Chun Chen
- Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry, Los Angeles, California 90095, United States
| | - Takahiro Ogawa
- Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry, Los Angeles, California 90095, United States
- Division of Regenerative and Reconstructive Sciences, UCLA School of Dentistry, Los Angeles, California 90095, United States
| |
Collapse
|
2
|
Matsuura T, Komatsu K, Cheng J, Park G, Ogawa T. Beyond microroughness: novel approaches to navigate osteoblast activity on implant surfaces. Int J Implant Dent 2024; 10:35. [PMID: 38967690 PMCID: PMC11226592 DOI: 10.1186/s40729-024-00554-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 06/15/2024] [Indexed: 07/06/2024] Open
Abstract
Considering the biological activity of osteoblasts is crucial when devising new approaches to enhance the osseointegration of implant surfaces, as their behavior profoundly influences clinical outcomes. An established inverse correlation exists between osteoblast proliferation and their functional differentiation, which constrains the rapid generation of a significant amount of bone. Examining the surface morphology of implants reveals that roughened titanium surfaces facilitate rapid but thin bone formation, whereas smooth, machined surfaces promote greater volumes of bone formation albeit at a slower pace. Consequently, osteoblasts differentiate faster on roughened surfaces but at the expense of proliferation speed. Moreover, the attachment and initial spreading behavior of osteoblasts are notably compromised on microrough surfaces. This review delves into our current understanding and recent advances in nanonodular texturing, meso-scale texturing, and UV photofunctionalization as potential strategies to address the "biological dilemma" of osteoblast kinetics, aiming to improve the quality and quantity of osseointegration. We discuss how these topographical and physicochemical strategies effectively mitigate and even overcome the dichotomy of osteoblast behavior and the biological challenges posed by microrough surfaces. Indeed, surfaces modified with these strategies exhibit enhanced recruitment, attachment, spread, and proliferation of osteoblasts compared to smooth surfaces, while maintaining or amplifying the inherent advantage of cell differentiation. These technology platforms suggest promising avenues for the development of future implants.
Collapse
Affiliation(s)
- Takanori Matsuura
- Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry, 10833 Le Conte Avenue B3-087, Box951668, Los Angeles, CA, 90095-1668, USA
| | - Keiji Komatsu
- Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry, 10833 Le Conte Avenue B3-087, Box951668, Los Angeles, CA, 90095-1668, USA
| | - James Cheng
- Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry, 10833 Le Conte Avenue B3-087, Box951668, Los Angeles, CA, 90095-1668, USA
- Division of Regenerative and Reconstructive Sciences, UCLA School of Dentistry, Los Angeles, USA
| | - Gunwoo Park
- Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry, 10833 Le Conte Avenue B3-087, Box951668, Los Angeles, CA, 90095-1668, USA
| | - Takahiro Ogawa
- Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry, 10833 Le Conte Avenue B3-087, Box951668, Los Angeles, CA, 90095-1668, USA.
- Division of Regenerative and Reconstructive Sciences, UCLA School of Dentistry, Los Angeles, USA.
| |
Collapse
|
3
|
Komatsu K, Matsuura T, Suzumura T, Ogawa T. Genome-wide transcriptional responses of osteoblasts to different titanium surface topographies. Mater Today Bio 2023; 23:100852. [PMID: 38024842 PMCID: PMC10663851 DOI: 10.1016/j.mtbio.2023.100852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 10/21/2023] [Accepted: 10/29/2023] [Indexed: 12/01/2023] Open
Abstract
This is the first genome-wide transcriptional profiling study using RNA-sequencing to investigate osteoblast responses to different titanium surface topographies, specifically between machined, smooth and acid-etched, microrough surfaces. Rat femoral osteoblasts were cultured on machine-smooth and acid-etched microrough titanium disks. The culture system was validated through a series of assays confirming reduced osteoblast attachment, slower proliferation, and faster differentiation on microrough surfaces. RNA-sequencing analysis of osteoblasts at an early stage of culture revealed that gene expression was highly correlated (r = 0.975) between the two topographies, but 1.38 % genes were upregulated and 0.37 % were downregulated on microrough surfaces. Upregulated transcripts were enriched for immune system, plasma membrane, response to external stimulus, and positive regulation to stimulus processes. Structural mapping confirmed microrough surface-promoted gene sharing and networking in signaling pathways and immune system/responses. Target-specific pathway analysis revealed that Rho family G-protein signaling pathways and actin genes, responsible for the formation of stress fibers, cytoplasmic projections, and focal adhesion, were upregulated on microrough surfaces without upregulation of core genes triggered by cell-to-cell interactions. Furthermore, disulfide-linked or -targeted extracellular matrix (ECM) or membranous glycoproteins such as laminin, fibronectin, CD36, and thrombospondin were highly expressed on microrough surfaces. Finally, proliferating cell nuclear antigen (PCNA) and cyclin D1, whose co-expression reduces cell proliferation, were upregulated on microrough surfaces. Thus, osteoblasts on microrough surfaces were characterized by upregulation of genes related to a wide range of functions associated with the immune system, stress/stimulus responses, proliferation control, skeletal and cytoplasmic signaling, ECM-integrin receptor interactions, and ECM-membranous glycoprotein interactions, furthering our knowledge of the surface-dependent expression of osteoblastic biomarkers on titanium.
Collapse
Affiliation(s)
- Keiji Komatsu
- Weintraub Center for Reconstructive Biotechnology and the Division of Regenerative and Reconstructive Sciences, UCLA School of Dentistry, Los Angeles, CA, 90095, USA
- Department of Lifetime Oral Health Care Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, 113-8549, Japan
| | - Takanori Matsuura
- Weintraub Center for Reconstructive Biotechnology and the Division of Regenerative and Reconstructive Sciences, UCLA School of Dentistry, Los Angeles, CA, 90095, USA
| | - Toshikatsu Suzumura
- Weintraub Center for Reconstructive Biotechnology and the Division of Regenerative and Reconstructive Sciences, UCLA School of Dentistry, Los Angeles, CA, 90095, USA
| | - Takahiro Ogawa
- Weintraub Center for Reconstructive Biotechnology and the Division of Regenerative and Reconstructive Sciences, UCLA School of Dentistry, Los Angeles, CA, 90095, USA
| |
Collapse
|
4
|
A Novel High-Energy Vacuum Ultraviolet Light Photofunctionalization Approach for Decomposing Organic Molecules around Titanium. Int J Mol Sci 2023; 24:ijms24031978. [PMID: 36768297 PMCID: PMC9916712 DOI: 10.3390/ijms24031978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/01/2023] [Accepted: 01/11/2023] [Indexed: 01/20/2023] Open
Abstract
Titanium undergoes biological aging, represented by increased hydrophobicity and surface accumulation of organic molecules over time, which compromises the osseointegration of dental and orthopedic implants. Here, we evaluated the efficacy of a novel UV light source, 172 nm wavelength vacuum UV (VUV), in decomposing organic molecules around titanium. Methylene blue solution used as a model organic molecule placed in a quartz ampoule with and without titanium specimens was treated with four different UV light sources: (i) ultraviolet C (UVC), (ii) high-energy UVC (HUVC), (iii) proprietary UV (PUV), and (iv) VUV. After one minute of treatment, VUV decomposed over 90% of methylene blue, while there was 3-, 3-, and 8-fold more methylene blue after the HUVC, PUV, and UVC treatments, respectively. In dose-dependency experiments, maximal methylene blue decomposition occurred after one minute of VUV treatment and after 20-30 min of UVC treatment. Rapid and effective VUV-mediated organic decomposition was not influenced by the surface topography of titanium or its alloy and even occurred in the absence of titanium, indicating only a minimal photocatalytic contribution of titanium dioxide to organic decomposition. VUV-mediated but not other light source-mediated methylene blue decomposition was proportional to its concentration. Plastic tubes significantly reduced methylene blue decomposition for all light sources. These results suggest that VUV, in synergy with quartz ampoules, mediates rapid and effective organic decomposition compared with other UV sources. This proof-of-concept study paves the way for rapid and effective VUV-powered photofunctionalization of titanium to overcome biological aging.
Collapse
|
5
|
Decomposing Organic Molecules on Titanium with Vacuum Ultraviolet Light for Effective and Rapid Photofunctionalization. J Funct Biomater 2022; 14:jfb14010011. [PMID: 36662058 PMCID: PMC9861116 DOI: 10.3390/jfb14010011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/19/2022] [Accepted: 12/22/2022] [Indexed: 12/24/2022] Open
Abstract
Ultraviolet (UV) photofunctionalization counteracts the biological aging of titanium to increase the bioactivity and osseointegration of titanium implants. However, UV photofunctionalization currently requires long treatment times of between 12 min and 48 h, precluding routine clinical use. Here, we tested the ability of a novel, xenon excimer lamp emitting 172 nm vacuum UV (VUV) to decompose organic molecules coated on titanium as a surrogate of photofunctionalization. Methylene blue as a model organic molecule was coated on grade 4 commercially pure titanium and treated with four UV light sources: (i) ultraviolet C (UVC), (ii) high-energy UVC (HUVC), (iii) proprietary UV (PUV), and (iv) VUV. After one minute of treatment, VUV decomposed 57% of methylene blue compared with 2%, 36%, and 42% for UVC, HUVC, and PUV, respectively. UV dose-dependency testing revealed maximal methylene blue decomposition with VUV within one minute. Equivalent decomposition was observed on grade 5 titanium alloy specimens, and placing titanium specimens in quartz ampoules did not compromise efficacy. Methylene blue was decomposed even on polymethyl methacrylate acrylic specimens at 20-25% lower efficiency than on titanium specimens, indicating a relatively small contribution of titanium dioxide-mediated photocatalytic decomposition to the total decomposition. Load-testing revealed that VUV maintained high efficacy of methylene blue decomposition regardless of the coating density, whereas other UV light sources showed low efficacy with thin coatings and plateauing efficacy with thicker coatings. This study provides foundational data on rapid and efficient VUV-mediated organic decomposition on titanium. In synergy with quartz ampoules used as containers, VUV has the potential to overcome current technical challenges hampering the clinical application of UV photofunctionalization.
Collapse
|
6
|
Kitajima H, Hirota M, Komatsu K, Isono H, Matsuura T, Mitsudo K, Ogawa T. Ultraviolet Light Treatment of Titanium Microfiber Scaffolds Enhances Osteoblast Recruitment and Osteoconductivity in a Vertical Bone Augmentation Model: 3D UV Photofunctionalization. Cells 2022; 12:cells12010019. [PMID: 36611812 PMCID: PMC9818481 DOI: 10.3390/cells12010019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 12/16/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022] Open
Abstract
Vertical bone augmentation to create host bone prior to implant placement is one of the most challenging regenerative procedures. The objective of this study is to evaluate the capacity of a UV-photofunctionalized titanium microfiber scaffold to recruit osteoblasts, generate intra-scaffold bone, and integrate with host bone in a vertical augmentation model with unidirectional, limited blood supply. Scaffolds were fabricated by molding and sintering grade 1 commercially pure titanium microfibers (20 μm diameter) and treated with UVC light (200-280 nm wavelength) emitted from a low-pressure mercury lamp for 20 min immediately before experiments. The scaffolds had an even and dense fiber network with 87% porosity and 20-50 mm inter-fiber distance. Surface carbon reduced from 30% on untreated scaffold to 10% after UV treatment, which corresponded to hydro-repellent to superhydrophilic conversion. Vertical infiltration testing revealed that UV-treated scaffolds absorbed 4-, 14-, and 15-times more blood, water, and glycerol than untreated scaffolds, respectively. In vitro, four-times more osteoblasts attached to UV-treated scaffolds than untreated scaffolds three hours after seeding. On day 2, there were 70% more osteoblasts on UV-treated scaffolds. Fluorescent microscopy visualized confluent osteoblasts on UV-treated microfibers two days after seeding but sparse and separated cells on untreated microfibers. Alkaline phosphatase activity and osteocalcin gene expression were significantly greater in osteoblasts grown on UV-treated microfiber scaffolds. In an in vivo model of vertical augmentation on rat femoral cortical bone, the interfacial strength between innate cortical bone and UV-treated microfiber scaffold after two weeks of healing was double that observed between bone and untreated scaffold. Morphological and chemical analysis confirmed seamless integration of the innate cortical and regenerated bone within microfiber networks for UV-treated scaffolds. These results indicate synergy between titanium microfiber scaffolds and UV photofunctionalization to provide a novel and effective strategy for vertical bone augmentation.
Collapse
Affiliation(s)
- Hiroaki Kitajima
- Division of Regenerative and Reconstructive Sciences and Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry, Los Angeles, CA 90095-1668, USA
- Department of Oral and Maxillofacial Surgery, Yokohama City University Graduate School of Medicine, 3-9 Fuku-ura, Kanazawa-ku, Yokohama 236-0004, Kanagawa, Japan
| | - Makoto Hirota
- Division of Regenerative and Reconstructive Sciences and Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry, Los Angeles, CA 90095-1668, USA
- Department of Oral and Maxillofacial Surgery/Orthodontics, Yokohama City University Medical Center, 4-57 Urafune-cho, Minami-ku, Yokohama 236-0004, Kanagawa, Japan
- Correspondence: ; Tel./Fax: +81-45-785-8438
| | - Keiji Komatsu
- Division of Regenerative and Reconstructive Sciences and Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry, Los Angeles, CA 90095-1668, USA
| | - Hitoshi Isono
- Department of Oral and Maxillofacial Surgery, Yokohama City University Graduate School of Medicine, 3-9 Fuku-ura, Kanazawa-ku, Yokohama 236-0004, Kanagawa, Japan
| | - Takanori Matsuura
- Division of Regenerative and Reconstructive Sciences and Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry, Los Angeles, CA 90095-1668, USA
| | - Kenji Mitsudo
- Department of Oral and Maxillofacial Surgery, Yokohama City University Graduate School of Medicine, 3-9 Fuku-ura, Kanazawa-ku, Yokohama 236-0004, Kanagawa, Japan
| | - Takahiro Ogawa
- Division of Regenerative and Reconstructive Sciences and Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry, Los Angeles, CA 90095-1668, USA
| |
Collapse
|
7
|
A Novel Cell Delivery System Exploiting Synergy between Fresh Titanium and Fibronectin. Cells 2022; 11:cells11142158. [PMID: 35883601 PMCID: PMC9317518 DOI: 10.3390/cells11142158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/03/2022] [Accepted: 07/06/2022] [Indexed: 12/10/2022] Open
Abstract
Delivering and retaining cells in areas of interest is an ongoing challenge in tissue engineering. Here we introduce a novel approach to fabricate osteoblast-loaded titanium suitable for cell delivery for bone integration, regeneration, and engineering. We hypothesized that titanium age influences the efficiency of protein adsorption and cell loading onto titanium surfaces. Fresh (newly machined) and 1-month-old (aged) commercial grade 4 titanium disks were prepared. Fresh titanium surfaces were hydrophilic, whereas aged surfaces were hydrophobic. Twice the amount of type 1 collagen and fibronectin adsorbed to fresh titanium surfaces than aged titanium surfaces after a short incubation period of three hours, and 2.5-times more fibronectin than collagen adsorbed regardless of titanium age. Rat bone marrow-derived osteoblasts were incubated on protein-adsorbed titanium surfaces for three hours, and osteoblast loading was most efficient on fresh titanium adsorbed with fibronectin. The number of osteoblasts loaded using this synergy between fresh titanium and fibronectin was nine times greater than that on aged titanium with no protein adsorption. The loaded cells were confirmed to be firmly attached and functional. The number of loaded cells was strongly correlated with the amount of protein adsorbed regardless of the protein type, with fibronectin simply more efficiently adsorbed on titanium surfaces than collagen. The role of surface hydrophilicity of fresh titanium surfaces in increasing protein adsorption or cell loading was unclear. The hydrophilicity of protein-adsorbed titanium increased with the amount of protein but was not the primary determinant of cell loading. In conclusion, the osteoblast loading efficiency was dependent on the age of the titanium and the amount of protein adsorption. In addition, the efficiency of protein adsorption was specific to the protein, with fibronectin being much more efficient than collagen. This is a novel strategy to effectively deliver osteoblasts ex vivo and in vivo using titanium as a vehicle.
Collapse
|
8
|
Ultraviolet Treatment of Titanium to Enhance Adhesion and Retention of Oral Mucosa Connective Tissue and Fibroblasts. Int J Mol Sci 2021; 22:ijms222212396. [PMID: 34830275 PMCID: PMC8617952 DOI: 10.3390/ijms222212396] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/13/2021] [Accepted: 11/15/2021] [Indexed: 01/16/2023] Open
Abstract
Peri-implantitis is an unsolved but critical problem with dental implants. It is postulated that creating a seal of gingival soft tissue around the implant neck is key to preventing peri-implantitis. The objective of this study was to determine the effect of UV surface treatment of titanium disks on the adhesion strength and retention time of oral connective tissues as well as on the adherence of mucosal fibroblasts. Titanium disks with a smooth machined surface were prepared and treated with UV light for 15 min. Keratinized mucosal tissue sections (3 × 3 mm) from rat palates were incubated for 24 h on the titanium disks. The adhered tissue sections were then mechanically detached by agitating the culture dishes. The tissue sections remained adherent for significantly longer (15.5 h) on the UV-treated disks than on the untreated control disks (7.5 h). A total of 94% of the tissue sections were adherent for 5 h or longer on the UV-treated disks, whereas only 50% of the sections remained on the control disks for 5 h. The adhesion strength of the tissue sections to the titanium disks, as measured by tensile testing, was six times greater after UV treatment. In the culture studies, mucosal fibroblasts extracted from rat palates were attached to titanium disks by incubating for 24, 48, or 96 h. The number of attached cells was consistently 15–30% greater on the UV-treated disks than on the control disks. The cells were then subjected to mechanical or chemical (trypsinization) detachment. After mechanical detachment, the residual cell rates on the UV-treated surfaces after 24 and 48 h of incubation were 35% and 25% higher, respectively, than those on the control surfaces. The remaining rate after chemical detachment was 74% on the control surface and 88% on the UV-treated surface for the cells cultured for 48 h. These trends were also confirmed in mouse embryonic fibroblasts, with an intense expression of vinculin, a focal adhesion protein, on the UV-treated disks even after detachment. The UV-treated titanium was superhydrophilic, whereas the control titanium was hydrophobic. X-ray photoelectron spectroscopy (XPS) chemical analysis revealed that the amount of carbon at the surface was significantly reduced after UV treatment, while the amount of TiOH molecules was increased. These ex vivo and in vitro results indicate that the UV treatment of titanium increases the adhesion and retention of oral mucosa connective tissue as a result of increased resistance of constituent fibroblasts against exogenous detachment, both mechanically and chemically, as well as UV-induced physicochemical changes of the titanium surface.
Collapse
|
9
|
Osteoblast Attachment Compromised by High and Low Temperature of Titanium and Its Restoration by UV Photofunctionalization. MATERIALS 2021; 14:ma14195493. [PMID: 34639891 PMCID: PMC8509491 DOI: 10.3390/ma14195493] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/10/2021] [Accepted: 09/15/2021] [Indexed: 01/19/2023]
Abstract
Titanium implants undergo temperature fluctuations during manufacturing, transport, and storage. However, it is unknown how this affects their bioactivity. Herein, we explored how storage (six months, dark conditions) and temperature fluctuations (5-50 °C) affected the bioactivity of titanium implants. Stored and fresh acid-etched titanium disks were exposed to different temperatures for 30 min under wet or dry conditions, and their hydrophilicity/hydrophobicity and bioactivity (using osteoblasts derived from rat bone marrow) were evaluated. Ultraviolet (UV) treatment was evaluated as a method of restoring the bioactivity. The fresh samples were superhydrophilic after holding at 5 or 25 °C under wet or dry conditions, and hydrophilic after holding at 50 °C. In contrast, all the stored samples were hydrophobic. For both fresh and stored samples, exposure to 5 or 50 °C reduced osteoblast attachment compared to holding at 25 °C under both wet and dry conditions. Regression analysis indicated that holding at 31 °C would maximize cell attachment (p < 0.05). After UV treatment, cell attachment was the same or better than that before temperature fluctuations. Overall, titanium surfaces may have lower bioactivity when the temperature fluctuates by ≥20 °C (particularly toward lower temperatures), independent of the hydrophilicity/hydrophobicity. UV treatment was effective in restoring the temperature-compromised bioactivity.
Collapse
|
10
|
Surface treatment of 3D printed porous Ti6Al4V implants by ultraviolet photofunctionalization for improved osseointegration. Bioact Mater 2021; 7:26-38. [PMID: 34466715 PMCID: PMC8377410 DOI: 10.1016/j.bioactmat.2021.05.043] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 05/25/2021] [Accepted: 05/25/2021] [Indexed: 12/16/2022] Open
Abstract
Three-dimensional (3D)-printed porous Ti6Al4V implants play an important role in the reconstruction of bone defects. However, its osseointegration capacity needs to be further improved, and related methods are inadequate, especially lacking customized surface treatment technology. Consequently, we aimed to design an omnidirectional radiator based on ultraviolet (UV) photofunctionalization for the surface treatment of 3D-printed porous Ti6Al4V implants, and studied its osseointegration promotion effects in vitro and in vivo, while elucidating related mechanisms. Following UV treatment, the porous Ti6Al4V scaffolds exhibited significantly improved hydrophilicity, cytocompatibility, and alkaline phosphatase activity, while preserving their original mechanical properties. The increased osteointegration strength was further proven using a rabbit condyle defect model in vivo, in which UV treatment exhibited a high efficiency in the osteointegration enhancement of porous Ti6Al4V scaffolds by increasing bone ingrowth (BI), the bone-implant contact ratio (BICR), and the mineralized/osteoid bone ratio. The advantages of UV treatment for 3D-printed porous Ti6Al4V implants using the omnidirectional radiator in the study were as follows: 1) it can significantly improve the osseointegration capacity of porous titanium implants despite the blocking out of UV rays by the porous structure; 2) it can evenly treat the surface of porous implants while preserving their original topography or other morphological features; and 3) it is an easy-to-operate low-cost process, making it worthy of wide clinical application. An omnidirectional radiator based on ultraviolet photofunctionalization was invented.. The omnidirectional radiator can evenly treat the surface of the porous implants.. The present method can enhance osteoinetegration of porous Ti6Al4V implants in a convenient way with a low cost.
Collapse
|
11
|
Biomimetic Zirconia with Cactus-Inspired Meso-Scale Spikes and Nano-Trabeculae for Enhanced Bone Integration. Int J Mol Sci 2021; 22:ijms22157969. [PMID: 34360734 PMCID: PMC8347469 DOI: 10.3390/ijms22157969] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 07/20/2021] [Accepted: 07/21/2021] [Indexed: 01/03/2023] Open
Abstract
Biomimetic design provides novel opportunities for enhancing and functionalizing biomaterials. Here we created a zirconia surface with cactus-inspired meso-scale spikes and bone-inspired nano-scale trabecular architecture and examined its biological activity in bone generation and integration. Crisscrossing laser etching successfully engraved 60 μm wide, cactus-inspired spikes on yttria-stabilized tetragonal zirconia polycrystal (Y-TZP) with 200–300 nm trabecular bone-inspired interwoven structures on the entire surface. The height of the spikes was varied from 20 to 80 μm for optimization. Average roughness (Sa) increased from 0.10 μm (polished smooth surface) to 18.14 μm (80 μm-high spikes), while the surface area increased by up to 4.43 times. The measured dimensions of the spikes almost perfectly correlated with their estimated dimensions (R2 = 0.998). The dimensional error of forming the architecture was 1% as a coefficient of variation. Bone marrow-derived osteoblasts were cultured on a polished surface and on meso- and nano-scale hybrid textured surfaces with different spike heights. The osteoblastic differentiation was significantly promoted on the hybrid-textured surfaces compared with the polished surface, and among them the hybrid-textured surface with 40 μm-high spikes showed unparalleled performance. In vivo bone-implant integration also peaked when the hybrid-textured surface had 40 μm-high spikes. The relationships between the spike height and measures of osteoblast differentiation and the strength of bone and implant integration were non-linear. The controllable creation of meso- and nano-scale hybrid biomimetic surfaces established in this study may provide a novel technological platform and design strategy for future development of biomaterial surfaces to improve bone integration and regeneration.
Collapse
|
12
|
Compromised Epithelial Cell Attachment after Polishing Titanium Surface and Its Restoration by UV Treatment. MATERIALS 2020; 13:ma13183946. [PMID: 32906598 PMCID: PMC7559826 DOI: 10.3390/ma13183946] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/02/2020] [Accepted: 09/04/2020] [Indexed: 12/22/2022]
Abstract
Titanium-based implant abutments and tissue bars are polished during the finalization. We hypothesized that polishing degrades the bioactivity of titanium, and, if this is the case, photofunctionalization-grade UV treatment can alleviate the adverse effect. Three groups of titanium disks were prepared; machined surface, polished surface and polished surface followed by UV treatment (polished/UV surface). Polishing was performed by the sequential use of greenstone and silicon rubber burs. UV treatment was performed using a UV device for 12 min. Hydrophobicity/hydrophilicity was examined by the contact angle of ddH2O. The surface morphology and chemistry of titanium were examined by scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS), respectively. Human epithelium cells were seeded on titanium disks. The number of cells attached, the spreading behavior of cells and the retention on titanium surfaces were examined. The polished surfaces were smooth with only minor scratches, while the machined surfaces showed traces and metal flashes made by machine-turning. The polished surfaces showed a significantly increased percentage of surface carbon compared to machined surfaces. The carbon percentage on polished/UV surfaces was even lower than that on machined surfaces. A silicon element was detected on polished surfaces but not on polished/UV surfaces. Both machined and polished surfaces were hydrophobic, whereas polished/UV surfaces were hydrophilic. The number of attached cells after 24 h of incubation was 60% lower on polished surfaces than on machined surfaces. The number of attached cells on polished/UV surfaces was even higher than that on machined surfaces. The size and perimeter of cells, which was significantly reduced on polished surfaces, were fully restored on polished/UV surfaces. The number of cells remained adherent after mechanical detachment was reduced to half on polished surfaces compared to machined surfaces. The number of adherent cells on polished/UV surfaces was two times higher than on machined surfaces. In conclusion, polishing titanium causes chemical contamination, while smoothing its surface significantly compromised the attachment and retention of human epithelial cells. The UV treatment of polished titanium surfaces reversed these adverse effects and even outperformed the inherent bioactivity of the original titanium.
Collapse
|
13
|
Liu C, Sun M, Wang Y, Zhu T, Ye G, You D, Dong L, Zhao W, Cheng K, Weng W, Zhang YS, Yu M, Wang H. Ultraviolet Radiant Energy-Dependent Functionalization Regulates Cellular Behavior on Titanium Dioxide Nanodots. ACS APPLIED MATERIALS & INTERFACES 2020; 12:31793-31803. [PMID: 32485098 DOI: 10.1021/acsami.0c07761] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Titanium dioxide (TiO2) photofunctionalization has been demonstrated as an effective surface modification method for the osseointegration of implants. However, the insufficient understanding of the mechanism underlying photofunctionalization limits its clinical applications. Here, we report an ultraviolet (UV) radiant energy-dependent functionalization on TiO2 nanodots (TN) surfaces. We found the cell adhesion, proliferation, and osteogenic differentiation gradually increased with the accumulation of UV radiant energy (URE). The optimal functionalizing treatment energy was found to be 2000 mJ/cm2, which could regulate cell-specific behaviors on TN surfaces. The enhanced cell behaviors were regulated by the adsorption and functional site exposure of the extracellular matrix (ECM) proteins, which were the result of the surface physicochemical changes induced by the URE. The correlation between the URE and the reconstruction of surface hydroxyl groups was considered as an alternative mechanism of this energy-dependent functionalization. We also demonstrated the synergistic effects of FAK-RHOA and ERK1/2 signaling pathways on mediating the URE-dependent cell behaviors. Overall, this study provides a novel insight into the mechanisms of photofunctionalization, guiding the design of implants and the clinical practice of photofunctionalization.
Collapse
Affiliation(s)
- Chao Liu
- The Affiliated Stomatology Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
- Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou 310003, China
| | - Mouyuan Sun
- The Affiliated Stomatology Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
- Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou 310003, China
| | - Yu Wang
- The Affiliated Stomatology Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
- Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou 310003, China
| | - Tianer Zhu
- The Affiliated Stomatology Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
- Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou 310003, China
| | - Guanchen Ye
- The Affiliated Stomatology Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
- Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou 310003, China
| | - Dongqi You
- The Affiliated Stomatology Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
- Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou 310003, China
| | - Lingqing Dong
- The Affiliated Stomatology Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
- Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou 310003, China
- School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Wenquan Zhao
- The First Affiliated Hospital of Medical College, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Kui Cheng
- School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Wenjian Weng
- School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, Massachusetts 02139, United States
| | - Mengfei Yu
- The Affiliated Stomatology Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
- Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou 310003, China
| | - Huiming Wang
- The Affiliated Stomatology Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
- Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou 310003, China
- The First Affiliated Hospital of Medical College, Zhejiang University School of Medicine, Hangzhou 310003, China
| |
Collapse
|
14
|
Sanchez-Perez A, Cachazo-Jiménez C, Sánchez-Matás C, Martín-de-Llano JJ, Davis S, Carda-Batalla C. Effects of Ultraviolet Photoactivation on Osseointegration of Commercial Pure Titanium Dental Implant After 8 Weeks in a Rabbit Model. J ORAL IMPLANTOL 2020; 46:101-107. [PMID: 31905048 DOI: 10.1563/aaid-joi-d-19-00122] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study investigated whether a 6-Watt ultraviolet C-lamp was capable of producing photofunctionalization on commercial implants during a medium observation term of 8 weeks. A total of 20 implants were inserted in 5 New Zealand rabbits, with each animal receiving 2 implants per tibia (one photofunctionalized and one untreated), according to a previously established randomization sequence. All implants were inserted by a single surgeon following the manufacturer's instructions. Histological analysis was performed by an evaluator who was blinded to the treatment condition. After 8 weeks of healing, the 2 groups showed no statistically significant differences in terms of bone-to-implant contact. Compared to control implants, the photofunctionalized implants showed improved wettability and more homogenous results. Within the limits of the present study, the use of this 6-W ultraviolet C-lamp, for an irradiation time of 15 minutes at a distance of 15 cm, did not improve the percentages of bone-to-implant contact in rabbits at an osseointegration time of 8 weeks.
Collapse
Affiliation(s)
| | | | | | | | - Scott Davis
- Private practice in Port Macquarie and Coffs Harbour, NSW Australia
| | - Carmen Carda-Batalla
- Department of Pathology, Medicine and Dentistry, University of Valencia, Spain; INCLIVA, Valencia, Spain
| |
Collapse
|
15
|
Novel Osteogenic Behaviors around Hydrophilic and Radical-Free 4-META/MMA-TBB: Implications of an Osseointegrating Bone Cement. Int J Mol Sci 2020; 21:ijms21072405. [PMID: 32244335 PMCID: PMC7177939 DOI: 10.3390/ijms21072405] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/24/2020] [Accepted: 03/29/2020] [Indexed: 12/15/2022] Open
Abstract
Poly(methyl methacrylate) (PMMA)-based bone cement, which is widely used to affix orthopedic metallic implants, is considered bio-tolerant but lacks osteoconductivity and is cytotoxic. Implant loosening and toxic complications are significant and recognized problems. Here we devised two strategies to improve PMMA-based bone cement: (1) adding 4-methacryloyloxylethyl trimellitate anhydride (4-META) to MMA monomer to render it hydrophilic; and (2) using tri-n-butyl borane (TBB) as a polymerization initiator instead of benzoyl peroxide (BPO) to reduce free radical production. Rat bone marrow-derived osteoblasts were cultured on PMMA-BPO, common bone cement ingredients, and 4-META/MMA-TBB, newly formulated ingredients. After 24 h of incubation, more cells survived on 4-META/MMA-TBB than on PMMA-BPO. The mineralized area was 20-times greater on 4-META/MMA-TBB than PMMA-BPO at the later culture stage and was accompanied by upregulated osteogenic gene expression. The strength of bone-to-cement integration in rat femurs was 4- and 7-times greater for 4-META/MMA-TBB than PMMA-BPO during early- and late-stage healing, respectively. MicroCT and histomorphometric analyses revealed contact osteogenesis exclusively around 4-META/MMA-TBB, with minimal soft tissue interposition. Hydrophilicity of 4-META/MMA-TBB was sustained for 24 h, particularly under wet conditions, whereas PMMA-BPO was hydrophobic immediately after mixing and was unaffected by time or condition. Electron spin resonance (ESR) spectroscopy revealed that the free radical production for 4-META/MMA-TBB was 1/10 to 1/20 that of PMMA-BPO within 24 h, and the substantial difference persisted for at least 10 days. The compromised ability of PMMA-BPO in recruiting cells was substantially alleviated by adding free radical-scavenging amino-acid N-acetyl cysteine (NAC) into the material, whereas adding NAC did not affect the ability of 4-META/MMA-TBB. These results suggest that 4-META/MMA-TBB shows significantly reduced cytotoxicity compared to PMMA-BPO and induces osteoconductivity due to uniquely created hydrophilic and radical-free interface. Further pre-clinical and clinical validations are warranted.
Collapse
|
16
|
Okubo T, Tsukimura N, Taniyama T, Ishijima M, Nakhaei K, Rezaei NM, Hirota M, Park W, Akita D, Tateno A, Ishigami T, Ogawa T. Ultraviolet treatment restores bioactivity of titanium mesh plate degraded by contact with medical gloves. J Oral Sci 2019; 60:567-573. [PMID: 30587689 DOI: 10.2334/josnusd.17-0443] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Titanium mesh plate (Ti mesh) used for bone augmentation inadvertently comes into contact with medical gloves during trimming and bending. We tested the hypotheses that glove contact degrades the biological capability of Ti mesh and that ultraviolet treatment (UV) can restore this capability. Three groups of Ti mesh specimens were prepared: as-received (AR), after glove contact (GC), and after glove contact followed by UV treatment. The AR and GC meshes were hydrophobic, but GC mesh was more hydrophobic. AR and GC meshes had significant amounts of surface carbon, and Si content was higher for GC mesh than for AR mesh. UV mesh was hydrophilic, and carbon and silicon content values were significantly lower in this group than in the AR and GC groups. The number, alkaline phosphatase activity, and mineralization ability of attached osteoblasts were significantly lower in the GC group than in the AR group and markedly higher in the UV group than in the AR group. In conclusion, glove contact caused chemical contamination of Ti mesh, which significantly reduced its bioactivity. UV treatment restored bioactivity in contaminated Ti mesh, which outperformed even the baseline Ti mesh.
Collapse
Affiliation(s)
- Takahisa Okubo
- Division of Applied Oral Sciences, Nihon University Graduate School of Dentistry
| | - Naoki Tsukimura
- Department of Partial Denture Prosthodontics, Nihon University School of Dentistry
| | - Takashi Taniyama
- Division of Advanced Prosthodontics, Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry
| | - Manabu Ishijima
- Division of Advanced Prosthodontics, Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry
| | - Kourosh Nakhaei
- Division of Advanced Prosthodontics, Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry
| | - Naser M Rezaei
- Division of Advanced Prosthodontics, Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry
| | - Makoto Hirota
- Division of Advanced Prosthodontics, Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry
| | - Wonhee Park
- Division of Advanced Prosthodontics, Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry
| | - Daisuke Akita
- Department of Partial Denture Prosthodontics, Nihon University School of Dentistry
| | - Atsushi Tateno
- Division of Applied Oral Sciences, Nihon University Graduate School of Dentistry
| | - Tomohiko Ishigami
- Department of Partial Denture Prosthodontics, Nihon University School of Dentistry
| | - Takahiro Ogawa
- Division of Advanced Prosthodontics, Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry
| |
Collapse
|
17
|
In Vitro and In Vivo Evaluation of Titanium Surface Modification for Biological Aging by Electrolytic Reducing Ionic Water. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9040713] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In this study, using electrolytic reducing ionic water (S-100®), a novel surface treatment method safely and easily modifying the surface properties was evaluated in vitro and in vivo. Ti-6Al-4V disks were washed and the disks were kept standing on a clean bench for one and four weeks for aging. These disks were immersed in S-100® (S-100 group), immersed in ultra-pure water (Control group), or irradiated with ultraviolet light (UV group), and surface analysis, cell experiment, and animal experiment were performed using these disks. The titanium surface became hydrophilic in the S-100 group and the amount of protein adsorption and cell adhesion rate were improved in vitro. In vivo, new bone formation was noted around the disk. These findings suggested that surface treatment with S-100® adds bioactivity to the biologically aged titanium surface. We are planning to further investigate it and accumulate evidence for clinical application.
Collapse
|
18
|
Bishal AK, Sukotjo C, Jokisaari JR, Klie RF, Takoudis CG. Enhanced Bioactivity of Collagen Fiber Functionalized with Room Temperature Atomic Layer Deposited Titania. ACS APPLIED MATERIALS & INTERFACES 2018; 10:34443-34454. [PMID: 30212175 DOI: 10.1021/acsami.8b05857] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Surface modifications of a biomaterial like collagen are crucial in improving the surface properties and thus enhancing the functionality and performance of such a material for a variety of biomedical applications. In this study, a commercially available collagen membrane's surface was functionalized by depositing an ultrathin film of titania or titanium dioxide (TiO2) using a room temperature atomic layer deposition (ALD) process. A novel titanium precursor-oxidizer combination was used for this process in a custom-made ALD reactor. Surface characterizations revealed successful deposition of uniform, conformal TiO2 thin film on the collagen fibrillar surface, and consequently, the fibers became thicker making the membrane pores smaller. The in vitro bioactivity of the ALD-TiO2 thin film coated collagen was investigated for the first time using cell proliferation and a calcium phosphate mineralization assay. The TiO2-coated collagen demonstrated improved biocompatibility promoting higher growth and proliferation of human osteoblastic and mesenchymal stem cells when compared to that of noncoated collagen. A higher level of calcium phosphate or apatite formation was observed on ALD modified collagen surface as compared to that on noncoated collagen. Therefore, this novel material can be promising in bone tissue engineering applications.
Collapse
Affiliation(s)
- Arghya K Bishal
- Department of Bioengineering , University of Illinois at Chicago , Chicago , Illinois 60607 , United States
| | - Cortino Sukotjo
- Department of Bioengineering , University of Illinois at Chicago , Chicago , Illinois 60607 , United States
- Restorative Dentistry, College of Dentistry , University of Illinois at Chicago , Chicago , Illinois 60612 , United States
| | - Jacob R Jokisaari
- Department of Physics , University of Illinois at Chicago , Chicago , Illinois 60607 , United States
| | - Robert F Klie
- Department of Physics , University of Illinois at Chicago , Chicago , Illinois 60607 , United States
| | - Christos G Takoudis
- Department of Bioengineering , University of Illinois at Chicago , Chicago , Illinois 60607 , United States
- Department of Chemical Engineering , University of Illinois at Chicago , Chicago , Illinois 60607 , United States
| |
Collapse
|
19
|
Elkhidir Y, Lai R, Feng Z. The impact of photofunctionalized gold nanoparticles on osseointegration. Heliyon 2018; 4:e00662. [PMID: 30094359 PMCID: PMC6077240 DOI: 10.1016/j.heliyon.2018.e00662] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 01/10/2018] [Accepted: 06/18/2018] [Indexed: 12/30/2022] Open
Abstract
OBJECTIVES The aims of this study were to create a new surface topography using simulated body fluids (SBF) and Gold Nanoparticles (GNPs) and then to assess the influence of UV Photofunctionalization (PhF) on the osteogenic capacity of these surfaces. MATERIALS AND METHODS Titanium plates were divided into six groups All were acid etched with 67% Sulfuric acid, 4 were immersed in SBF and 2 of these were treated with 10 nm GNPs. Half of the TiO2 plates were photofunctionalized to be compared with the non-PhF ones. Rat's bone marrow stem cells were seeded into the plates and then CCK8 assay, cell viability assay, immunofluorescence, and Scanning electron microscopy (SEM) were done after 24 hours. Gene expression analysis was done using real time quantitative PCR (qPCR) one week later to check for the mRNA expression of Collagen-1, Osteopontin and Osteocalcin. Alkaline phosphatase (ALP) activity was assessed after 2 weeks of cell seeding. RESULTS Our new topography has shown remarkable osteogenic potential. The new surface was the most biocompatible, and the 10 nm GNPs did not show any cytotoxicity. There was a significant increase in bioactivity, enhanced gene expressions and ALP activity. CONCLUSIONS GNPs enhances osteogenic differentiation of stem cells and Photofunctionalizing GNPs highly increases this. We have further created a novel highly efficient topography which highly enhances the speed and extent of osseointegration. This may have great potential for improving treatment outcomes for implant, maxillofacial as well as orthopedic patients.
Collapse
Affiliation(s)
| | | | - Zhiqiang Feng
- Implant Department – Suihua, The First Affiliated Stomatological Hospital of Jinan University, PR China
| |
Collapse
|
20
|
Rezaei NM, Hasegawa M, Ishijima M, Nakhaei K, Okubo T, Taniyama T, Ghassemi A, Tahsili T, Park W, Hirota M, Ogawa T. Biological and osseointegration capabilities of hierarchically (meso-/micro-/nano-scale) roughened zirconia. Int J Nanomedicine 2018; 13:3381-3395. [PMID: 29922058 PMCID: PMC5997135 DOI: 10.2147/ijn.s159955] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
PURPOSE Zirconia is a potential alternative to titanium for dental and orthopedic implants. Here we report the biological and bone integration capabilities of a new zirconia surface with distinct morphology at the meso-, micro-, and nano-scales. METHODS Machine-smooth and roughened zirconia disks were prepared from yttria-stabilized tetragonal zirconia polycrystal (Y-TZP), with rough zirconia created by solid-state laser sculpting. Morphology of the surfaces was analyzed by three-dimensional imaging and profiling. Rat femur-derived bone marrow cells were cultured on zirconia disks. Zirconia implants were placed in rat femurs and the strength of osseointegration was evaluated by biomechanical push-in test. RESULTS The rough zirconia surface was characterized by meso-scale (50 µm wide, 6-8 µm deep) grooves, micro-scale (1-10 µm wide, 0.1-3 µm deep) valleys, and nano-scale (10-400 nm wide, 10-300 nm high) nodules, whereas the machined surface was flat and uniform. The average roughness (Ra) of rough zirconia was five times greater than that of machined zirconia. The expression of bone-related genes such as collagen I, osteopontin, osteocalcin, and BMP-2 was 7-25 times upregulated in osteoblasts on rough zirconia at the early stage of culture. The number of attached cells and rate of proliferation were similar between machined and rough zirconia. The strength of osseointegration for rough zirconia was twice that of machined zirconia at weeks two and four of healing, with evidence of mineralized tissue persisting around rough zirconia implants as visualized by electron microscopy and elemental analysis. CONCLUSION This unique meso-/micro-/nano-scale rough zirconia showed a remarkable increase in osseointegration compared to machine-smooth zirconia associated with accelerated differentiation of osteoblasts. Cell attachment and proliferation were not compromised on rough zirconia unlike on rough titanium. This is the first report introducing a rough zirconia surface with distinct hierarchical morphology and providing an effective strategy to improve and develop zirconia implants.
Collapse
Affiliation(s)
- Naser Mohammadzadeh Rezaei
- Weintraub Center for Reconstructive Biotechnology, Division of Advanced Prosthodontics, UCLA School of Dentistry, Los Angeles, CA, USA
| | - Masakazu Hasegawa
- Weintraub Center for Reconstructive Biotechnology, Division of Advanced Prosthodontics, UCLA School of Dentistry, Los Angeles, CA, USA
| | - Manabu Ishijima
- Weintraub Center for Reconstructive Biotechnology, Division of Advanced Prosthodontics, UCLA School of Dentistry, Los Angeles, CA, USA
| | - Kourosh Nakhaei
- Weintraub Center for Reconstructive Biotechnology, Division of Advanced Prosthodontics, UCLA School of Dentistry, Los Angeles, CA, USA
| | - Takahisa Okubo
- Weintraub Center for Reconstructive Biotechnology, Division of Advanced Prosthodontics, UCLA School of Dentistry, Los Angeles, CA, USA
| | - Takashi Taniyama
- Weintraub Center for Reconstructive Biotechnology, Division of Advanced Prosthodontics, UCLA School of Dentistry, Los Angeles, CA, USA
| | - Amirreza Ghassemi
- Weintraub Center for Reconstructive Biotechnology, Division of Advanced Prosthodontics, UCLA School of Dentistry, Los Angeles, CA, USA
| | - Tania Tahsili
- Weintraub Center for Reconstructive Biotechnology, Division of Advanced Prosthodontics, UCLA School of Dentistry, Los Angeles, CA, USA
| | - Wonhee Park
- Weintraub Center for Reconstructive Biotechnology, Division of Advanced Prosthodontics, UCLA School of Dentistry, Los Angeles, CA, USA
| | - Makoto Hirota
- Weintraub Center for Reconstructive Biotechnology, Division of Advanced Prosthodontics, UCLA School of Dentistry, Los Angeles, CA, USA
| | - Takahiro Ogawa
- Weintraub Center for Reconstructive Biotechnology, Division of Advanced Prosthodontics, UCLA School of Dentistry, Los Angeles, CA, USA
| |
Collapse
|
21
|
Tateshima S, Kaneko N, Yamada M, Duckwiler G, Vinuela F, Ogawa T. Increased affinity of endothelial cells to NiTi using ultraviolet irradiation: An in vitro study. J Biomed Mater Res A 2017; 106:1034-1038. [PMID: 29218785 DOI: 10.1002/jbm.a.36304] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 11/06/2017] [Accepted: 12/04/2017] [Indexed: 11/12/2022]
Abstract
Nickel-titanium alloy (NiTi) is one of the most popular materials used endovascularly because of its shape memory and superelasticity. The NiTi device needs to be covered by endothelial cells after being placed in the blood vessel to reduce ischemic complications. The objective of this study was to examine the impact of ultraviolet (UV) irradiation on the biocompatibility of NiTi surfaces with endothelial cells. NiTi sheets were treated with UV irradiation for 48 h and human aorta derived endothelial cells were used in this study. UV irradiation converted the NiTi surface to hydrophilic state and increased albumin adsorption. The number of endothelial cell migration, attachment, proliferation as well as their metabolic activity were significantly increased on UV treated NiTi. This study provides the first evidence of the photoactivation of NiTi surfaces by UV irradiation and demonstrates improved biocompatibility of UV-treated NiTi surfaces with vascular endothelial cells. These results suggest that UV irradiation may promote endothelialization of NiTi devices in blood vessels. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 1034-1038, 2018.
Collapse
Affiliation(s)
- Satoshi Tateshima
- Division of Interventional Neuroradiology, Ronald Reagan UCLA Medical Center, Los Angeles, California
| | - Naoki Kaneko
- Division of Interventional Neuroradiology, Ronald Reagan UCLA Medical Center, Los Angeles, California
| | - Masahiro Yamada
- Laboratory for Bone and Implant Sciences (LBIS), The Jane and Jerry Weintraub Center for Reconstructive Biotechnology, Division of Advanced Prosthodontics, Biomaterials and Hospital Dentistry, UCLA School of Dentistry, Los Angeles, California.,Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai, Miyagi, Japan
| | - Gary Duckwiler
- Division of Interventional Neuroradiology, Ronald Reagan UCLA Medical Center, Los Angeles, California
| | - Fernando Vinuela
- Division of Interventional Neuroradiology, Ronald Reagan UCLA Medical Center, Los Angeles, California
| | - Takahiro Ogawa
- Laboratory for Bone and Implant Sciences (LBIS), The Jane and Jerry Weintraub Center for Reconstructive Biotechnology, Division of Advanced Prosthodontics, Biomaterials and Hospital Dentistry, UCLA School of Dentistry, Los Angeles, California
| |
Collapse
|
22
|
Abstract
After dental implants are manufactured there can be a loss of biological activity that may be reactivated by exposure to ultraviolet (UV) radiation, that is, photofunctionalization. The titanium surface is energy conditioned by UV radiation. This imparts a slight positive surface energy and hydrophilicity to the titanium dental implant surface. This conditioning renews biological activity lost after a shelf life of as little as 2 weeks. The UV radiation has chemical and biological effects on the osseous-implant interface. Photofunctionization for as little as 15 minutes accelerates healing and increases bone to implant contact. The most effective time exposure and UV wave length are in need of identification to produce a surface most conducive for osseointegration.
Collapse
|