1
|
Khodaii J, Araj-Khodaei M, Vafaee MS, Wong DF, Gjedde A. Relative strengths of three linearizations of receptor availability: Saturation, Inhibition, and Occupancy plots. J Nucl Med 2021; 63:294-301. [PMID: 34088774 DOI: 10.2967/jnumed.117.204453] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 04/23/2021] [Indexed: 11/16/2022] Open
Abstract
We derived three widely used linearizations from the definition of receptor availability in molecular imaging with Positron Emission Tomography. The purpose of the present research was to determine the convergence of the results of the three methods in terms of three parameters, occupancy (s), distribution volume of the non-displaceable binding compartment (VND), and binding potential of the radioligand (BPND), in the absence of a gold standard. We tested 104 cases culled from the literature and calculated the goodness of fit of each of the Least Squares (LSM) and Deming II (DM) methods of linear regression when applied to the determination of the three main parameters, s, VND, and BPND, using the goodness of fit parameters R2, coefficient of variation (RMSE), and ‖X‖_∞ with both regression methods. We observed superior convergence among the values of s, VND, and BPND for the Inhibition and Occupancy plots. The Inhibition Plot emerged as the plot with a slightly higher degree of convergence (based on R2, RMSE and ‖X‖_∞ value). With two regression methods, Least Squares (LSM) and Deming II (DM), the estimated values of s, VND, and BPND generally converged. The Inhibition and Occupancy plots yielded the best fits to the data, according to the goodness of fit parameters, due primarily to the absent commingling of the dependent and independent variables tested with the Saturation (original Lassen) plot. In the presence of noise, the Inhibition and Occupancy plots yielded higher convergence.
Collapse
Affiliation(s)
- Javad Khodaii
- Amirkabir university of technology (Tehran Polytechnic), Iran, Islamic Republic of
| | - Mostafa Araj-Khodaei
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences ,Tabriz, Iran, Iran, Islamic Republic of
| | - Manouchehr S Vafaee
- Center of Neuroscience, University of Copenhagen, Copenhagen, Denmark, Denmark
| | - Dean F Wong
- Section of Nuclear Medicine, Department of Radiology and Radiological Science, Johns Hopkins Medical, United States
| | - Albert Gjedde
- Center of Neuroscience, University of Copenhagen, Copenhagen, Denmark, Denmark
| |
Collapse
|
2
|
Alia-Klein N, Preston-Campbell RN, Kim SW, Pareto D, Logan J, Wang GJ, Moeller SJ, Fowler JS, Biegon A. Human Cognitive Ability Is Modulated by Aromatase Availability in the Brain in a Sex-Specific Manner. Front Neurosci 2020; 14:565668. [PMID: 33192252 PMCID: PMC7604391 DOI: 10.3389/fnins.2020.565668] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 09/14/2020] [Indexed: 11/18/2022] Open
Abstract
The enzyme aromatase catalyzes the final step in estrogen biosynthesis, converting testosterone to estradiol, and is expressed in the brain of all mammals. Estrogens are thought to be important for maintenance of cognitive function in women, whereas testosterone is thought to modulate cognitive abilities in men. Here, we compare differences in cognitive performance in relation to brain aromatase availability in healthy men and women. Twenty-seven healthy participants were administered tests of verbal learning and memory and perceptual/abstract reasoning. In vivo images of brain aromatase availability were acquired in this sample using positron emission tomography (PET) with the validated aromatase radiotracer [11C]vorozole. Regions of interest were placed bilaterally on the amygdala and thalamus where aromatase availability is highest in the human brain. Though cognitive performance and aromatase availability did not differ as a function of sex, higher availability of aromatase in the amygdala was associated with lower cognitive performance in men. No such relationship was found in women; and the corresponding regression slopes were significantly different between the sexes. Thalamic aromatase availability was not significantly correlated with cognitive performance in either sex. These findings suggest that the effects of brain aromatase on cognitive performance are both region- and sex-specific and may explain some of the normal variance seen in verbal and nonverbal cognitive abilities in men and women as well as sex differences in the trajectory of cognitive decline associated with Alzheimer’s disease.
Collapse
Affiliation(s)
- Nelly Alia-Klein
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | | | - Sung Won Kim
- National Institute on Alcohol and Alcohol Abuse, Bethesda, MD, United States
| | - Deborah Pareto
- Neuroradiology Unit, Vall d’Hebron University Hospital, Barcelona, Spain
| | - Jean Logan
- New York University, Langone Medical Center, New York, NY, United States
| | - Gene-Jack Wang
- National Institute on Alcohol and Alcohol Abuse, Bethesda, MD, United States
| | - Scott J. Moeller
- Stony Brook University School of Medicine, Stony Brook, NY, United States
| | | | - Anat Biegon
- Stony Brook University School of Medicine, Stony Brook, NY, United States
- *Correspondence: Anat Biegon,
| |
Collapse
|
3
|
Relationship of estrogen synthesis capacity in the brain with obesity and self-control in men and women. Proc Natl Acad Sci U S A 2020; 117:22962-22966. [PMID: 32868418 DOI: 10.1073/pnas.2006117117] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Gonadal hormones are linked to mechanisms that govern appetitive behavior and its suppression. Estrogens are synthesized from androgens by the enzyme aromatase, highly expressed in the ovaries of reproductive-aged women and in the brains of men and women of all ages. We measured aromatase availability in the amygdala using positron emission tomography (PET) with the aromatase inhibitor [11C]vorozole in a sample of 43 adult, normal-weight, overweight, or obese men and women. A subsample of 27 also completed personality measures to examine the relationship between aromatase and personality traits related to self-regulation and inhibitory control. Results indicated that aromatase availability in the amygdala was negatively associated with body mass index (BMI) (in kilograms per square meter) and positively correlated with scores of the personality trait constraint independent of sex or age. Individual variations in the brain's capacity to synthesize estrogen may influence the risk of obesity and self-control in men and women.
Collapse
|
4
|
Biegon A, Shroyer KR, Franceschi D, Dhawan J, Tahmi M, Pareto D, Bonilla P, Airola K, Cohen J. Initial Studies with 11C-Vorozole PET Detect Overexpression of Intratumoral Aromatase in Breast Cancer. J Nucl Med 2019; 61:807-813. [PMID: 31757843 DOI: 10.2967/jnumed.119.231589] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 10/30/2019] [Indexed: 12/20/2022] Open
Abstract
Aromatase inhibitors are the mainstay of hormonal therapy in estrogen receptor-positive breast cancer, although the response rate is just over 50% and in vitro studies suggest that only two thirds of postmenopausal breast tumors overexpress aromatase. The goal of the present study was to validate and optimize PET with 11C-vorozole for measuring aromatase expression in postmenopausal breast cancer in vivo. Methods: Ten newly diagnosed postmenopausal women with biopsy-confirmed breast cancer were administered 11C-vorozole intravenously, and PET emission data were collected between 40 and 90 min after injection. Tracer injection and scanning were repeated 2 h after ingestion of 2.5 mg of letrozole. Mean and maximal SUVs and ratios to nontumor tissue in the contralateral breast were determined at baseline and after letrozole. Biopsy specimens from the same tumors were stained for aromatase using immunohistochemistry and evaluated for stain intensity and the percentage of immune-positive cells. Results: Seven of the 10 women (70%) demonstrated increased mean focal uptake of tracer (SUV ratio > 1.1) coinciding with the mammographic location of the lesion, whereas the other 3 women (30%) did not (SUV ratio ≤ 1.0). All patients with an SUV ratio above 1.1 had mean SUVs above 2.4, and there was no overlap (SUV ratio ≤ 1; SUVmean, 0.8-1.8). The SUV ratio relative to breast around tumor was indistinguishable from the ratio to contralateral breast. Pretreatment with letrozole reduced tracer uptake in most subjects, although the percentage of blocking varied across and within tumors. Tumors with a high SUV in vivo also showed a high immunohistochemical staining intensity. Conclusion: PET with 11C-vorozole is a useful technique for measuring aromatase expression in individual breast lesions, enabling noninvasive quantitative measurement of baseline and posttreatment aromatase availability in primary tumors and metastatic lesions.
Collapse
Affiliation(s)
- Anat Biegon
- Department of Radiology, Stony Brook University School of Medicine, Stony Brook, New York
| | - Kenneth R Shroyer
- Department of Pathology, Stony Brook University School of Medicine, Stony Brook, New York
| | - Dinko Franceschi
- Department of Radiology, Stony Brook University School of Medicine, Stony Brook, New York
| | - Jasbeer Dhawan
- Department of Radiology, Stony Brook University School of Medicine, Stony Brook, New York
| | - Mouna Tahmi
- Department of Radiology, Stony Brook University School of Medicine, Stony Brook, New York
| | - Deborah Pareto
- Radiology Department, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Patrick Bonilla
- Department of Obstetrics and Gynecology, Nassau University Medical Center, East Meadow, New York; and
| | - Krystal Airola
- Department of Radiology, Stony Brook University School of Medicine, Stony Brook, New York
| | - Jules Cohen
- Hematology/Oncology, Stony Brook University School of Medicine, Stony Brook, New York
| |
Collapse
|
5
|
Moraga‐Amaro R, van Waarde A, Doorduin J, de Vries EFJ. Sex steroid hormones and brain function: PET imaging as a tool for research. J Neuroendocrinol 2018; 30:e12565. [PMID: 29237239 PMCID: PMC5838537 DOI: 10.1111/jne.12565] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 10/26/2017] [Accepted: 12/06/2017] [Indexed: 12/15/2022]
Abstract
Sex steroid hormones are major regulators of sexual characteristic among species. These hormones, however, are also produced in the brain. Steroidal hormone-mediated signalling via the corresponding hormone receptors can influence brain function at the cellular level and thus affect behaviour and higher brain functions. Altered steroid hormone signalling has been associated with psychiatric disorders, such as anxiety and depression. Neurosteroids are also considered to have a neuroprotective effect in neurodegenerative diseases. So far, the role of steroid hormone receptors in physiological and pathological conditions has mainly been investigated post mortem on animal or human brain tissues. To study the dynamic interplay between sex steroids, their receptors, brain function and behaviour in psychiatric and neurological disorders in a longitudinal manner, however, non-invasive techniques are needed. Positron emission tomography (PET) is a non-invasive imaging tool that is used to quantitatively investigate a variety of physiological and biochemical parameters in vivo. PET uses radiotracers aimed at a specific target (eg, receptor, enzyme, transporter) to visualise the processes of interest. In this review, we discuss the current status of the use of PET imaging for studying sex steroid hormones in the brain. So far, PET has mainly been investigated as a tool to measure (changes in) sex hormone receptor expression in the brain, to measure a key enzyme in the steroid synthesis pathway (aromatase) and to evaluate the effects of hormonal treatment by imaging specific downstream processes in the brain. Although validated radiotracers for a number of targets are still warranted, PET can already be a useful technique for steroid hormone research and facilitate the translation of interesting findings in animal studies to clinical trials in patients.
Collapse
Affiliation(s)
- R. Moraga‐Amaro
- Department of Nuclear Medicine and Molecular ImagingUniversity Medical Center GroningenUniversity of GroningenGroningenThe Netherlands
| | - A. van Waarde
- Department of Nuclear Medicine and Molecular ImagingUniversity Medical Center GroningenUniversity of GroningenGroningenThe Netherlands
| | - J. Doorduin
- Department of Nuclear Medicine and Molecular ImagingUniversity Medical Center GroningenUniversity of GroningenGroningenThe Netherlands
| | - E. F. J. de Vries
- Department of Nuclear Medicine and Molecular ImagingUniversity Medical Center GroningenUniversity of GroningenGroningenThe Netherlands
| |
Collapse
|
6
|
Biegon A. In vivo visualization of aromatase in animals and humans. Front Neuroendocrinol 2016; 40:42-51. [PMID: 26456904 PMCID: PMC4783227 DOI: 10.1016/j.yfrne.2015.10.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Revised: 09/29/2015] [Accepted: 10/07/2015] [Indexed: 12/20/2022]
Abstract
Aromatase catalyzes the last and obligatory step in the biosynthesis of estrogens across species. In vivo visualization of aromatase can be performed using positron emission tomography (PET) with radiolabeled aromatase inhibitors such as [(11)C]vorozole. PET studies in rats, monkeys and healthy human subjects demonstrate widespread but heterogeneous aromatase availability in brain and body, which appears to be regulated in a species, sex and region-specific manner. Thus, aromatase availability is high in brain amygdala and in ovaries of all species examined to date, with males demonstrating higher levels than females in all comparable organs. However, the highest concentrations of aromatase in the human brain are found in specific nuclei of the thalamus while the highest levels in rats and monkeys are found in the amygdala. Regional brain aromatase availability is increased by androgens and inhibited by nicotine. Future studies may improve diagnosis and treatment in brain disorders and cancers overexpressing aromatase.
Collapse
Affiliation(s)
- Anat Biegon
- Department of Neurology, Stony Brook University School of Medicine, Stony Brook, NY 11794-2565, United States.
| |
Collapse
|
7
|
Biegon A, Alexoff DL, Kim SW, Logan J, Pareto D, Schlyer D, Wang GJ, Fowler JS. Aromatase imaging with [N-methyl-11C]vorozole PET in healthy men and women. J Nucl Med 2015; 56:580-5. [PMID: 25698781 DOI: 10.2967/jnumed.114.150383] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 01/19/2015] [Indexed: 11/16/2022] Open
Abstract
UNLABELLED Aromatase, the last and obligatory enzyme catalyzing estrogen biosynthesis from androgenic precursors, can be labeled in vivo with (11)C-vorozole. Aromatase inhibitors are widely used in breast cancer and other endocrine conditions. The present study aimed to provide baseline information defining aromatase distribution in healthy men and women, against which its perturbation in pathologic situations can be studied. METHODS (11)C-vorozole (111-296 MBq/subject) was injected intravenously in 13 men and 20 women (age range, 23-67 y). PET data were acquired over a 90-min period. Each subject had 4 scans, 2 per day separated by 2-6 wk, including brain and torso or pelvis scans. Young women were scanned at 2 discrete phases of the menstrual cycle (midcycle and late luteal). Men and postmenopausal women were also scanned after pretreatment with a clinical dose of the aromatase inhibitor letrozole. Time-activity curves were obtained, and standardized uptake values (SUV) were calculated for major organs including brain, heart, lungs, liver, kidneys, spleen, muscle, bone, and male and female reproductive organs (penis, testes, uterus, ovaries). Organ and whole-body radiation exposures were calculated using OLINDA software. RESULTS Liver uptake was higher than uptake in any other organ but was not blocked by pretreatment with letrozole. Mean SUVs were higher in men than in women, and brain uptake was blocked by letrozole. Male brain SUVs were also higher than SUVs in any other organ (ranging from 0.48 ± 0.05 in lungs to 1.5 ± 0.13 in kidneys). Mean ovarian SUVs (3.08 ± 0.7) were comparable to brain levels and higher than in any other organ. Furthermore, ovarian SUVs in young women around the time of ovulation (midcycle) were significantly higher than those measured in the late luteal phase, whereas aging and cigarette smoking reduced (11)C-vorozole uptake. CONCLUSION PET with (11)C-vorozole is useful for assessing physiologic changes in estrogen synthesis capacity in the human body. Baseline levels in breasts, lungs, and bones are low, supporting further investigation of this tracer as a new tool for detection of aromatase-overexpressing primary tumors or metastases in these organs and optimization of treatment in cancer and other disorders in which aromatase inhibitors are useful.
Collapse
Affiliation(s)
- Anat Biegon
- Stony Brook University School of Medicine, Stony Brook, New York Brookhaven National Laboratory, Upton, New York
| | | | - Sung Won Kim
- National Institute on Alcoholism and Alcohol Abuse, Bethesda, Maryland
| | - Jean Logan
- New York University Langone Medical Center, New York, New York
| | - Deborah Pareto
- Institut de Recerca Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Alta Tecnologia, Barcelona, Spain; and
| | | | - Gene-Jack Wang
- National Institute on Alcoholism and Alcohol Abuse, Bethesda, Maryland
| | - Joanna S Fowler
- Brookhaven National Laboratory, Upton, New York State University of New York at Stony Brook, Stony Brook, New York
| |
Collapse
|