1
|
Silva FRF, Heredia JE, Duffles LF, Arntz OJ, Teixeira MM, Ferreira AVM, Silva TA, van de Loo FAJ, Macari S, Oliveira MC. Protective Effect of Bovine Milk Extracellular Vesicles on Alveolar Bone Loss. Mol Nutr Food Res 2024; 68:e2300445. [PMID: 38087782 DOI: 10.1002/mnfr.202300445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/17/2023] [Indexed: 02/10/2024]
Abstract
SCOPE Bovine milk extracellular vesicles (MEVs) have demonstrated therapeutic potential in regulating bone cell activity. However, the outcome of their use on alveolar bone loss has not yet been demonstrated. METHODS AND RESULTS This study evaluates the effect of oral administration of MEVs on ovariectomized (OVX) mice. There is a reduced height of the alveolar bone crest in OVX mice by MEVs treatment, but the alveolar bone parameters are not altered. OVX mice are then submitted to a force-induced bone remodeling model by orthodontic tooth movement (OTM). MEVs-treated mice have markedly less bone remodeling movement, unlike the untreated OVX mice. Also, OVX mice treated with MEVs show an increased number of osteoblasts and osteocytes associated with higher sclerostin expression and reduce osteoclasts in the alveolar bone. Although the treatment with MEVs in OVX mice does not show differences in root structure in OTM, few odontoclasts are observed in the dental roots of OVX-treated mice. Compared to untreated mice, maxillary and systemic RANKL/OPG ratios are reduced in OVX mice treated with MEVs. CONCLUSION Treatment with MEVs results in positive bone cell balance in the alveolar bone and dental roots, indicating its beneficial potential in treating alveolar bone loss in the nutritional context.
Collapse
Affiliation(s)
- Francine R F Silva
- Immunometabolism, Department of Nutrition, Nursing School, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Joyce E Heredia
- Immunometabolism, Department of Nutrition, Nursing School, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Letícia F Duffles
- Department of Oral Surgery and Pathology, Faculty of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Onno J Arntz
- Experimental Rheumatology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Mauro M Teixeira
- Immunopharmacology, Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Adaliene V M Ferreira
- Immunometabolism, Department of Nutrition, Nursing School, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Tarcilia A Silva
- Department of Oral Surgery and Pathology, Faculty of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Fons A J van de Loo
- Experimental Rheumatology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Soraia Macari
- Department of Restorative Dentistry, Faculty of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Marina C Oliveira
- Immunometabolism, Department of Nutrition, Nursing School, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
2
|
Odo A, Kunimatsu R, Abe T, Sakata S, Nakatani A, Rikitake K, Koizumi Y, Tanabe I, Okimura N, Yoshimi Y, Tanimoto K. Stem cells derived from human exfoliated deciduous teeth-based media in a rat root resorption model. Arch Oral Biol 2024; 158:105854. [PMID: 38056228 DOI: 10.1016/j.archoralbio.2023.105854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/14/2023] [Accepted: 11/20/2023] [Indexed: 12/08/2023]
Abstract
OBJECTIVE Root resorption may occur during orthodontic treatment. Herein, we investigated the effect of a culture supernatant of stem cells derived from human exfoliated deciduous teeth on root resorption. DESIGN Twelve 8-week-old male Sprague-Dawley rats were used, and their maxillary first molars were pulled with excessive orthodontic force to induce root resorption. On days 1 and 7 after traction initiation, stem cells derived from human exfoliated deciduous teeth and alpha minimum essential medium (control group) were administered. After 14 days, the maxillary bone was evaluated for tooth movement. The expression of osteoprotegerin, receptor activator of nuclear factor κB ligand, tumor necrosis factor α, interleukin 1β, interleukin 6, and interleukin 17 was evaluated on the compression side and tension side. RESULTS No significant difference in tooth movement was observed between the two groups. Root resorption decreased in the group administered the culture supernatant compared with in the control. Immunohistochemical staining revealed increased osteoprotegerin expression and decreased receptor activators for nuclear factor κB ligand, tumor necrosis factor α, interleukin 1β, interleukin 6, and interleukin 17 on the compression side and tension side. CONCLUSIONS Administration of stem cells derived from human exfoliated deciduous teeth affected the expression of osteoprotegerin, receptor activator of nuclear factor κB ligand, tumor necrosis factor α, interleukin 1β, interleukin 6 and interleukin 17; hence, these stem cells may inhibit root resorption by regulating their expression.
Collapse
Affiliation(s)
- Ayaka Odo
- Department of Orthodontics and Craniofacial Development Biology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Japan
| | - Ryo Kunimatsu
- Department of Orthodontics and Craniofacial Development Biology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Japan.
| | - Takaharu Abe
- Department of Orthodontics, Division of Oral Health and Development, Hiroshima University Hospital, Japan
| | - Shuzo Sakata
- Department of Orthodontics, Division of Oral Health and Development, Hiroshima University Hospital, Japan
| | - Ayaka Nakatani
- Department of Orthodontics, Division of Oral Health and Development, Hiroshima University Hospital, Japan
| | - Kodai Rikitake
- Department of Orthodontics, Division of Oral Health and Development, Hiroshima University Hospital, Japan
| | - Yuma Koizumi
- Department of Orthodontics, Division of Oral Health and Development, Hiroshima University Hospital, Japan
| | - Izumi Tanabe
- Department of Orthodontics and Craniofacial Development Biology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Japan
| | - Naonobu Okimura
- Department of Orthodontics and Craniofacial Development Biology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Japan
| | - Yuki Yoshimi
- Department of Orthodontics, Division of Oral Health and Development, Hiroshima University Hospital, Japan
| | - Kotaro Tanimoto
- Department of Orthodontics and Craniofacial Development Biology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Japan
| |
Collapse
|
3
|
Zhou Y, Nishiura A, Morikuni H, Deng W, Tsujibayashi T, Momota Y, Azetsu Y, Takami M, Honda Y, Matsumoto N. RANKL + senescent cells under mechanical stress: a therapeutic target for orthodontic root resorption using senolytics. Int J Oral Sci 2023; 15:20. [PMID: 37253719 DOI: 10.1038/s41368-023-00228-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 04/29/2023] [Accepted: 05/04/2023] [Indexed: 06/01/2023] Open
Abstract
In dentistry, orthodontic root resorption is a long-lasting issue with no effective treatment strategy, and its mechanisms, especially those related to senescent cells, remain largely unknown. Here, we used an orthodontic intrusion tooth movement model with an L-loop in rats to demonstrate that mechanical stress-induced senescent cells aggravate apical root resorption, which was prevented by administering senolytics (a dasatinib and quercetin cocktail). Our results indicated that cementoblasts and periodontal ligament cells underwent cellular senescence (p21+ or p16+) and strongly expressed receptor activator of nuclear factor-kappa B (RANKL) from day three, subsequently inducing tartrate-resistant acid phosphatase (TRAP)-positive odontoclasts and provoking apical root resorption. More p21+ senescent cells expressed RANKL than p16+ senescent cells. We observed only minor changes in the number of RANKL+ non-senescent cells, whereas RANKL+ senescent cells markedly increased from day seven. Intriguingly, we also found cathepsin K+p21+p16+ cells in the root resorption fossa, suggesting senescent odontoclasts. Oral administration of dasatinib and quercetin markedly reduced these senescent cells and TRAP+ cells, eventually alleviating root resorption. Altogether, these results unveil those aberrant stimuli in orthodontic intrusive tooth movement induced RANKL+ early senescent cells, which have a pivotal role in odontoclastogenesis and subsequent root resorption. These findings offer a new therapeutic target to prevent root resorption during orthodontic tooth movement.
Collapse
Affiliation(s)
- Yue Zhou
- Department of Orthodontics, Osaka Dental University, 8-1 Kuzuhahanazonocho, Hirakata, Osaka, Japan
| | - Aki Nishiura
- Department of Orthodontics, Osaka Dental University, 8-1 Kuzuhahanazonocho, Hirakata, Osaka, Japan.
| | - Hidetoshi Morikuni
- Department of Orthodontics, Osaka Dental University, 8-1 Kuzuhahanazonocho, Hirakata, Osaka, Japan
| | - Wenqi Deng
- Department of Orthodontics, Osaka Dental University, 8-1 Kuzuhahanazonocho, Hirakata, Osaka, Japan
| | - Toru Tsujibayashi
- Department of Physics, Osaka Dental University, 8-1 Kuzuhahanazonocho, Hirakata, Osaka, Japan
| | - Yoshihiro Momota
- Department of Anesthesiology, Osaka Dental University, 8-1 Kuzuhahanazonocho, Hirakata, Osaka, Japan
| | - Yuki Azetsu
- Department of Pharmacology, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawaku, Tokyo, Japan
| | - Masamichi Takami
- Department of Pharmacology, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawaku, Tokyo, Japan
| | - Yoshitomo Honda
- Department of Oral Anatomy, Osaka Dental University, 8-1 Kuzuhahanazonocho, Hirakata, Osaka, Japan.
| | - Naoyuki Matsumoto
- Department of Orthodontics, Osaka Dental University, 8-1 Kuzuhahanazonocho, Hirakata, Osaka, Japan
| |
Collapse
|
4
|
Yamaguchi M, Fukasawa S. Is Inflammation a Friend or Foe for Orthodontic Treatment?: Inflammation in Orthodontically Induced Inflammatory Root Resorption and Accelerating Tooth Movement. Int J Mol Sci 2021; 22:2388. [PMID: 33673606 PMCID: PMC7957544 DOI: 10.3390/ijms22052388] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/20/2021] [Accepted: 02/22/2021] [Indexed: 02/07/2023] Open
Abstract
The aim of this paper is to provide a review on the role of inflammation in orthodontically induced inflammatory root resorption (OIIRR) and accelerating orthodontic tooth movement (AOTM) in orthodontic treatment. Orthodontic tooth movement (OTM) is stimulated by remodeling of the periodontal ligament (PDL) and alveolar bone. These remodeling activities and tooth displacement are involved in the occurrence of an inflammatory process in the periodontium, in response to orthodontic forces. Inflammatory mediators such as prostaglandins (PGs), interleukins (Ils; IL-1, -6, -17), the tumor necrosis factor (TNF)-α superfamily, and receptor activator of nuclear factor (RANK)/RANK ligand (RANKL)/osteoprotegerin (OPG) are increased in the PDL during OTM. OIIRR is one of the accidental symptoms, and inflammatory mediators have been detected in resorbed roots, PDL, and alveolar bone exposed to heavy orthodontic force. Therefore, these inflammatory mediators are involved with the occurrence of OIIRR during orthodontic tooth movement. On the contrary, regional accelerating phenomenon (RAP) occurs after fractures and surgery such as osteotomies or bone grafting, and bone healing is accelerated by increasing osteoclasts and osteoblasts. Recently, tooth movement after surgical procedures such as corticotomy, corticision, piezocision, and micro-osteoperforation might be accelerated by RAP, which increases the bone metabolism. Therefore, inflammation may be involved in accelerated OTM (AOTM). The knowledge of inflammation during orthodontic treatment could be used in preventing OIIRR and AOTM.
Collapse
Affiliation(s)
- Masaru Yamaguchi
- Ginza Orthodontic Clinic, Ginza Granvia 6F, 3-3-14 Ginza, Chuo-ku, Tokyo 104-0061, Japan;
| | | |
Collapse
|
5
|
Inhibitory Effects of 4-Hexylresorcinol on Root Resorption Induced by Orthodontic Tooth Movement. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10186313] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Root resorption during orthodontic tooth movement (OTM) is caused by an imbalance between the bone turnover rate and applied mechanical stress. The administration of 4-hexylresorcinol (4HR) increases the bone turnover rate and factors associated with bone formation. Thus, 4HR may show protective activity against root resorption during orthodontic tooth movement (OTM). A total of 40 rats (male: 20; female: 20) were included in this study, and the mandibular first molar was subjected to excessive orthodontic force. The experimental group (n = 20) received 12.8 mg/kg of 4HR every 2 weeks. The controls (n = 20) received a solvent without 4HR. Both groups had the same sex distribution. On Day 28 after the initiation of OTM, all the animals were sacrificed for micro-computed tomography analysis, Western blot analysis, and immunohistochemistry. The ratios of the root length and root volume to the total volume were significantly higher in the experimental group compared to those in the control group (p < 0.05). The expression levels of OPG, RANKL, alkaline phosphatase, and Runx2 in the experimental group according to Western blotting were significantly higher in the experimental group compared to those in the control group (p < 0.05). Their expression was mainly found in the periodontal ligament area. In conclusion, the administration of 4HR decreased the root resorption caused by OTM and increased the expression levels of OPG, RANKL, alkaline phosphatase, and Runx2.
Collapse
|
6
|
Amaro ERS, Ortiz FR, Dorneles LS, Santos MDS, Barrioni BR, Miranda RM, Garlet GP, Teixeira MM, Szawka RE, Silva TA, Macari S. Estrogen protects dental roots from orthodontic-induced inflammatory resorption. Arch Oral Biol 2020; 117:104820. [PMID: 32592932 DOI: 10.1016/j.archoralbio.2020.104820] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 05/06/2020] [Accepted: 06/14/2020] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Root resorption is a side effect of orthodontic tooth movement (OTM). Despite the recognized role of estrogen on bone, there is little information about their effects on orthodontic-induced inflammatory root resorption (OIIRR). We aimed to investigate if estrogen deficiency affects OIIRR in two mice strains. METHODS Female Balb/C (Balb) and C57BL6/J (C57) mice were ovariectomized (OVX) and replaced with estradiol (E2). Tooth samples subjected or not to OTM were collected and analyzed by microCT, histomorphometry and qPCR. RESULTS OVX resulted in decreased root volume (RV/TV) and root mineral density (RMD) in Balb mice without OTM. In contrast, OVX did not modify physiological root structure of C57 mice. OTM and OIIRR were increased after OVX in both mice strains after 30 days. E2 replacement reversed this phenotype in Balb, but not in C57 mice. Due to the significant increase of OIIRR in OVX Balb mice, the expression of key molecules was investigated in periodontium. Accordingly, these mice showed increased expression of receptor activator of nuclear factor kappa-B ligand (RANKL), tumor necrosis factor alpha, matrix metalloproteinases-2 and -13 and decreased osteoprotegerin (OPG) and interleukin-10 expression after OTM. E2 replacement reversed the changes of these markers. CONCLUSION The lack of estrogen in Balb mice without OTM triggered loss of root structure which was positively correlated to RANKL/OPG ratio. Regardless of mouse strain, the absence of estrogen following OTM induced OIIRR. Mechanisms involve the imbalance of RANKL/OPG system, inflammatory and osteoclastic makers.
Collapse
Affiliation(s)
- Eduarda R S Amaro
- Department of Restorative Destistry, Faculty of Dentistry, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Fernanda Ruffo Ortiz
- Department of Pediatric Dentistry, Faculty of Dentistry, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Leandro S Dorneles
- Department of Structural Engineering, Faculty of Engineering, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Mariana de Souza Santos
- Department of Restorative Destistry, Faculty of Dentistry, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Breno Rocha Barrioni
- Department of Metallurgical and Materials Engineering, Faculty of Engineering, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Roberta Magalhães Miranda
- Department of Oral Pathology and Surgery, Faculty of Dentistry, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Gustavo P Garlet
- Department of Biological Sciences, School of Dentistry of Bauru, São Paulo University, Bauru, São Paulo, Brazil
| | - Mauro M Teixeira
- Department of Biochemistry and Immunology, Biological Science Institute, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Raphael E Szawka
- Department of Physiology and Biophysics, Biological Science Institute, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Tarcília A Silva
- Department of Oral Pathology and Surgery, Faculty of Dentistry, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Soraia Macari
- Department of Restorative Destistry, Faculty of Dentistry, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
7
|
Involvement of interleukins-17 and -34 in exacerbated orthodontic root resorption by jiggling force during rat experimental tooth movement. J World Fed Orthod 2020; 9:47-55. [PMID: 32672655 DOI: 10.1016/j.ejwf.2020.04.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 04/24/2020] [Accepted: 04/27/2020] [Indexed: 01/03/2023]
Abstract
BACKGROUND Orthodontically induced root resorption (OIRR) is considered as an undesirable and unpredictable sequel of orthodontic treatment. Recent reports demonstrated that interleukin (IL)-17/IL-34, and T cells secrete inflammatory/osteoclastogenic cytokines, which might stimulate osteoclastogenesis/bone resorption. However, little is known about the role played by IL-17/IL-34 in OIRR. The present study was aimed at investigating the odontoclastic expression pattern of IL-17 and IL-34 in resorbed cementum during different experimental tooth movements in vivo. METHODS Twenty-four 8-week-old male Wistar rats were divided into four groups: control group, optimal force group (10 g), heavy force group (50 g), and jiggling force group (compression and tension, repetition; 10 g). After 7, 14, and 21 days, the expression levels of IL-17 and IL-34 protein in the resorbed cementum were analyzed using immunohistochemical methods. RESULTS On day 21, the immunoreactivity for IL-17 and IL-34 in resorbed roots in the jiggling force group was stronger than that in the heavy force and optimal force groups. Moreover, the number of IL-17-positive and IL-34-positive odontoclasts was significantly increased in the jiggling force group compared with those in the other groups on day 21. CONCLUSIONS These results suggest that jiggling forces might exacerbate OIRR compared with heavy forces, as evidenced by the increased expression of IL-17 and IL-34 in odontoclasts obtained from resorbed roots.
Collapse
|
8
|
Kunimatsu R, Kimura A, Tsuka Y, Horie K, Yoshimi Y, Awada T, Gunji H, Abe T, Nakajima K, Sakata S, Nakatani A, Tanimoto K. Baicalin inhibits root resorption during tooth movement in a rodent model. Arch Oral Biol 2020; 116:104770. [PMID: 32470833 DOI: 10.1016/j.archoralbio.2020.104770] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 05/11/2020] [Accepted: 05/12/2020] [Indexed: 12/29/2022]
Abstract
OBJECTIVE Baicalin mediates bone metabolism and has shown protective activity against periodontal tissue damage in a rat model of periodontitis. Therefore, we hypothesized that baicalin may inhibit the root resorption that occurs during orthodontic tooth movement and examined its effect on the histological changes in periodontal tissue that occur during tooth movement. METHODS First molars of rats were subjected to traction using excessive orthodontic force to produce a root resorption model. Rats in the baicalin group received baicalin for 3 weeks during tooth movement, and the amount of first molar movement on day 21 after the initiation of traction was measured by three-dimensional micro-computed tomography analysis. After tooth movement, tissue samples from the mesial and tension sides were collected, and successive horizontal sections were prepared and examined using hematoxylin-eosin and tartrate-resistant acid phosphatase (TRAP) staining and immunohistochemical staining for the receptor activator of NF-kB ligand (RANKL) and osteoprotegerin (OPG). The severity of root resorption was also determined by histological analysis. RESULTS There was no significant intergroup difference in tooth movement during the experimental exaggerated tooth movement. In comparison with the control group, the baicalin-treated group showed increased OPG expression, suppressed RANKL expression, and significantly fewer TRAP-positive cells in the first molars. The root resorption area was significantly smaller in the baicalin group. CONCLUSIONS Treatment with baicalin prevented root resorption without preventing tooth movement. Baicalin may be useful for the management of root resorption during orthodontic treatment.
Collapse
Affiliation(s)
- Ryo Kunimatsu
- Department of Orthodontics and Craniofacial Development Biology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Japan.
| | - Aya Kimura
- Department of Orthodontics and Craniofacial Development Biology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Japan
| | - Yuji Tsuka
- Department of Orthodontics and Craniofacial Development Biology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Japan
| | - Kayo Horie
- Department of Orthodontics and Craniofacial Development Biology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Japan
| | - Yuki Yoshimi
- Department of Orthodontics and Craniofacial Development Biology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Japan
| | - Tetsuya Awada
- Department of Orthodontics and Craniofacial Development Biology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Japan
| | - Hidemi Gunji
- Department of Orthodontics and Craniofacial Development Biology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Japan
| | - Takaharu Abe
- Department of Orthodontics and Craniofacial Development Biology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Japan
| | - Kengo Nakajima
- Department of Orthodontics and Craniofacial Development Biology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Japan
| | - Syuzou Sakata
- Department of Orthodontics and Craniofacial Development Biology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Japan
| | - Ayaka Nakatani
- Department of Orthodontics and Craniofacial Development Biology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Japan
| | - Kotaro Tanimoto
- Department of Orthodontics and Craniofacial Development Biology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Japan
| |
Collapse
|
9
|
Lu C, Chen L, Hua Y. Cystathionine gamma lyase aggravates orthodontic root resorption in mice. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:787. [PMID: 32042803 DOI: 10.21037/atm.2019.11.03] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Background This study aimed to determine the contribution of cystathionine gamma lyase (CSE) to physiological and orthodontic root resorption in mice. Methods Mice genetically deficient in the CSE (CSE-/-), the dominant hydrogen sulfide (H2S)-generating enzyme in osteoclast were used in this study. Physiological and orthodontic root resorption was assessed with micro computed tomography (micro-CT) and scanning electron microscopy (SEM) in the mice at the age of 8-, 26-, and 52-week and in 8-week old mice following 1-, 2-, and 3-week orthodontic treatment, respectively. Hematoxylin and eosin (HE) and tartrate-resistant acid phosphatase (TRAP) staining were used for further determination of root resorption and the number of osteoclasts. The receptor activator of nuclear factor kappa-B ligand (RANKL)/osteoprotegerin (OPG) level in surrounding alveolar bone of the maxillary first molar after 2-week orthodontic treatment was measured by reverse transcription polymerase chain reaction (RT-PCR). Results Root resorption lacunae (RRL) gradually and significantly increased with age in wild type (WT) and CSE-/- mice. The CSE-/- showed less RRL compared with the WT group. At each time point of orthodontic treatment, the CSE-/- group had less RRL and osteoclasts than the WT group. The orthodontically induced RANKL/OPG mRNA expression in the periodontal tissue in the CSE-/- group was lower than that in the WT group. Conclusions CSE contributes significantly to physiological and orthodontic root resorption.
Collapse
Affiliation(s)
- Caizhu Lu
- Department of Orthodontics, School of Stomatology/Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Tongji University, Shanghai 200072, China
| | - Liyuan Chen
- Department of Orthodontics, School of Stomatology/Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Tongji University, Shanghai 200072, China
| | - Yongmei Hua
- Department of Orthodontics, School of Stomatology/Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Tongji University, Shanghai 200072, China
| |
Collapse
|
10
|
Fang X, Qi R, Liu C. Root resorption in orthodontic treatment with clear aligners: A systematic review and meta‐analysis. Orthod Craniofac Res 2019; 22:259-269. [PMID: 31323701 DOI: 10.1111/ocr.12337] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 07/13/2019] [Accepted: 07/15/2019] [Indexed: 12/01/2022]
Affiliation(s)
- Xuanwei Fang
- Stomatological Hospital, Southern Medical University Guangzhou Guangdong China
- School of Stomatology Southern Medical University Guangzhou Guangdong China
| | - Rui Qi
- Stomatological Hospital, Southern Medical University Guangzhou Guangdong China
- School of Stomatology Southern Medical University Guangzhou Guangdong China
| | - Chufeng Liu
- Stomatological Hospital, Southern Medical University Guangzhou Guangdong China
| |
Collapse
|
11
|
Wu W, Liu H, Lou J, Yang Y, Rong X, Xu J. [Domestic artificial cervical disc interface pressure distribution and effect of bone-implant interface pressure on osseointegration]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2017; 31:443-450. [PMID: 29798610 DOI: 10.7507/1002-1892.201610121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Objective To analyze the distribution of stress in the upper and lower plates of the prosthesis-bone interface, and the effect of interface pressure on osseointegration. Methods CT scanning was performed on goats at 1 week after artificial cervical disc replacement to establish the finite element model of C 3, 4. The stress distribution of the upper and lower plates of the interface was observed. At 6 and 12 months after replacement, Micro-CT scan and three dimensional reconstruction were performed to measure the bone volume fraction (BVF), trabecular number (Tb. N), trabecular thickness (Tb. Th), trabecular separation (Tb. Sp), bone mineral density (BMD), bone surface/bone volume (BS/BV), and trabecular pattern factor (Tb. Pf). The C 3 lower plate and C 4 upper plate of 4 normal goat were chosen to made the cylinder of the diameter of 2 mm. The gene expressions of receptor activator for nuclear factor κB ligand (RANKL), osteoprotegerin (OPG), transforming growth factor β (TGF-β), and macrophage colony-stimulating factor (M-CSF) were detected by real time fluorescent quantitative PCR at immediate after cutting and at 24 and 48 hours after culture. The samples of appropriate culture time were selected to made mechanical loading, and the gene expressions of RANKL, OPG, M-CSF, and TGF-β were detected by real time fluorescent quantitative PCR; no mechanical loading samples were used as normal controls. Results Under 25 N axial loading, the stress of the upper plate of C 3, 4 was concentrated to post median region, and the stress of the lower plate to middle-front region and two orbits. According to stress, the plate was divided into 5 regions. The Micro-CT scan showed that BMD, Tb.Th, BVF, and Tb.N significantly increased, and BS/BV, Tb.Sp, and Tb.Pf significantly decreased at 12 months after replacement when compared with ones at 6 months ( P<0.05). At 24 and 48 hours after culture, the gene expressions of RANKL, OPG, and TGF-β were signifi-cantly higher than those at immediate ( P<0.05), but no significant difference was found between at 24 and 48 hours after culture ( P>0.05). The mechanical loading test results at 24 hours after culture showed that the RANKL and OPG gene expressions and OPG/RANKL ratio in C 3 lower plate and C 4 upper plate were significantly up-regulated when compared with controls ( P<0.05), but no significant difference was shown in TGF-β and M-CSF gene expressions ( P>0.05). Conclusion Domestic artificial cervical disc endplate has different pressure distribution, the stress of lower plate is higher than that of upper plate. Pressure has important effect on local osseointegration; the higher pressure area is, the osseointegration is better. Under the maximum pressure in interface, the osteoblast proliferation will increase, which is advantageous to the local osseointegration.
Collapse
Affiliation(s)
- Wenjie Wu
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P.R.China;Department of Orthopedics, Southwest Hospital, Third Military Medical University, Chongqing, 400038, P.R.China
| | - Hao Liu
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu Sichuan, 610041,
| | - Jigang Lou
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P.R.China
| | - Yunbei Yang
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P.R.China
| | - Xin Rong
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P.R.China
| | - Jianzhong Xu
- Department of Orthopedics, Southwest Hospital, Third Military Medical University, Chongqing, 400038, P.R.China
| |
Collapse
|