1
|
Pham VD, Lee JH, Shin D, Vu HM, Jung J, Kashyap MK, Lee SH, Kim MS. On the Ocean of Biomarkers for the Precise Diagnosis and Prognosis of Lung Diseases. Proteomics Clin Appl 2025; 19:e70003. [PMID: 40098318 DOI: 10.1002/prca.70003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 02/25/2025] [Accepted: 02/26/2025] [Indexed: 03/19/2025]
Abstract
Bronchoalveolar lavage fluid (BALF) has long been used for diagnosing various lung diseases through its cellular components. However, the clinical utility of biomolecules in the BALF remains largely unexplored. Recently, mass spectrometry-based proteomics has been applied to profile the BALF proteomes to identify novel biomarkers for lung diseases. This review discusses the current progress in the field of BALF proteomics and highlights its potential as a valuable source of biomarkers for different lung diseases. Additionally, we explored the latest advancements and findings from BALF studies. Finally, we address the current limitations and propose future directions and research opportunities to advance the study of BALF.
Collapse
Affiliation(s)
- Van Duc Pham
- Department of New Biology, DGIST, Daegu, Republic of Korea
| | - Jung-Hyung Lee
- Department of New Biology, DGIST, Daegu, Republic of Korea
| | - Doyun Shin
- Department of New Biology, DGIST, Daegu, Republic of Korea
| | - Hung M Vu
- Bertis R&D Division, Bertis Inc., Gwacheon-si, Gyeonggi-do, Republic of Korea
- Center for Gene and Protein Research, Hanoi Medical University, Hanoi, Vietnam
| | - Junyang Jung
- Department of Precision Medicine, Graduate School, Kyung Hee University, Seoul, Republic of Korea
- Department of Anatomy and Neurobiology, College of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Manoj K Kashyap
- Molecular Oncology Laboratory, Amity Stem Cell Institute, Amity Medical School, Amity University Haryana, Panchgaon (Manesar), Gurugram, Haryana, India
| | - Seung Hyeun Lee
- Department of Precision Medicine, Graduate School, Kyung Hee University, Seoul, Republic of Korea
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, College of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Min-Sik Kim
- Department of New Biology, DGIST, Daegu, Republic of Korea
- New Biology Research Center, DGIST, Daegu, Republic of Korea
| |
Collapse
|
2
|
Kasprzyk-Pochopień J, Kamińska A, Mielczarek P, Piekoszewski W, Klimkowska A, Sładek K, Soja J, Adamek D, Stępień E. Comparison of nanoLC-MALDI-MS/MS with nanoLC-TIMS-MS/MS in the proteomic analysis of extracellular vesicles of bronchoalveolar lavage fluid. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2025; 17:1173-1187. [PMID: 39835386 DOI: 10.1039/d4ay01599a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
The study aims to evaluate and compare two advanced proteomic techniques, nanoLC-MALDI-MS/MS and nanoLC-TIMS-MS/MS, in characterizing extracellular vesicles (EVs) from the bronchoalveolar lavage fluid (BALF) of patients with asthma and idiopathic pulmonary fibrosis (IPF). Pulmonary diseases, driven by pollutants and infections, often necessitate detailed analysis of BALF to identify diagnostic biomarkers and therapeutic targets. EVs, which include exosomes, microvesicles, and apoptotic bodies, are isolated using filtration and ultracentrifugation, and their morphology, concentration, and size distribution are assessed through transmission electron microscopy (TEM) and nanoparticle tracking analysis (NTA). The proteomic profiles of these EVs are then analyzed using the aforementioned techniques, highlighting their unique and common proteins. The study found that nanoLC-TIMS-MS/MS identified significantly more proteins compared to nanoLC-MALDI-MS/MS. Functional analysis via Gene Ontology revealed pathways related to inflammation and cell signaling, underscoring the role of EVs in disease pathophysiology. The findings suggest that EVs in BALF can serve as valuable biomarkers and therapeutic targets in respiratory diseases, providing a foundation for future research and clinical applications.
Collapse
Affiliation(s)
- Joanna Kasprzyk-Pochopień
- Laboratory of High-Resolution Mass Spectrometry, Faculty of Chemistry, Jagiellonian University, Krakow, Poland.
| | - Agnieszka Kamińska
- Department of Medical Physics, M. Smoluchowski Institute of Physics, Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Krakow, Poland
| | - Przemysław Mielczarek
- Department of Analytical Chemistry and Biochemistry, Faculty of Materials Science and Ceramics, AGH University of Krakow, Krakow, Poland
| | - Wojciech Piekoszewski
- Laboratory of High-Resolution Mass Spectrometry, Faculty of Chemistry, Jagiellonian University, Krakow, Poland.
- Department of Analytical Chemistry, Faculty of Chemistry, Jagiellonian University, Krakow, Poland
| | | | - Krzysztof Sładek
- Department of Pulmonology, University Hospital in Krakow, Krakow, Poland
| | - Jerzy Soja
- Department of Pulmonology, University Hospital in Krakow, Krakow, Poland
| | - Dariusz Adamek
- Department of Pathomorphology, Faculty of Medicine Jagiellonian University, Krakow, Poland
| | - Ewa Stępień
- Department of Medical Physics, M. Smoluchowski Institute of Physics, Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Krakow, Poland
- Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Krakow, Poland
- Center for Theranostics, Jagiellonian University, Krakow, Poland
| |
Collapse
|
3
|
Arenas-De Larriva MDS, Fernández-Vega A, Jurado-Gamez B, Ortea I. diaPASEF Proteomics and Feature Selection for the Description of Sputum Proteome Profiles in a Cohort of Different Subtypes of Lung Cancer Patients and Controls. Int J Mol Sci 2022; 23:8737. [PMID: 35955870 PMCID: PMC9369298 DOI: 10.3390/ijms23158737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 07/29/2022] [Accepted: 08/03/2022] [Indexed: 11/21/2022] Open
Abstract
The high mortality, the presence of an initial asymptomatic stage and the fact that diagnosis in early stages reduces mortality justify the implementation of screening programs in the populations at risk of lung cancer. It is imperative to develop less aggressive methods that can complement existing diagnosis technologies. In this study, we aimed to identify lung cancer protein biomarkers and pathways affected in sputum samples, using the recently developed diaPASEF mass spectrometry (MS) acquisition mode. The sputum proteome of lung cancer cases and controls was analyzed through nano-HPLC-MS using the diaPASEF mode. For functional analysis, the results from differential expression analysis were further analyzed in the STRING platform, and feature selection was performed using sparse partial least squares discriminant analysis (sPLS-DA). Our results showed an activation of inflammation, with an alteration of pathways and processes related to acute-phase, complement, and immune responses. The resulting sPLS-DA model separated between case and control groups with high levels of sensitivity and specificity. In conclusion, we showed how new-generation proteomics can be used to detect potential biomarkers in sputum samples, and ultimately to discriminate patients from controls and even to help to differentiate between different cancer subtypes.
Collapse
Affiliation(s)
- María del Sol Arenas-De Larriva
- Pneumology Department, Reina Sofia University Hospital, Maimonides Biomedical Research Institute of Cordoba, University of Cordoba, 14004 Cordoba, Spain
| | | | - Bernabe Jurado-Gamez
- Pneumology Department, Reina Sofia University Hospital, Maimonides Biomedical Research Institute of Cordoba, University of Cordoba, 14004 Cordoba, Spain
| | - Ignacio Ortea
- Institute for Biomedical Research and Innovation of Cadiz (INiBICA), 11009 Cadiz, Spain
- Proteomics Unit, CINN, CSIC, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| |
Collapse
|
4
|
Extracellular Heat Shock Proteins as Therapeutic Targets and Biomarkers in Fibrosing Interstitial Lung Diseases. Int J Mol Sci 2021; 22:ijms22179316. [PMID: 34502225 PMCID: PMC8430559 DOI: 10.3390/ijms22179316] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 12/19/2022] Open
Abstract
Interstitial lung diseases (ILDs) include a large number of diseases and causes with variable outcomes often associated with progressive fibrosis. Although each of the individual fibrosing ILDs are rare, collectively, they affect a considerable number of patients, representing a significant burden of disease. Idiopathic pulmonary fibrosis (IPF) is the typical chronic fibrosing ILD associated with progressive decline in lung. Other fibrosing ILDs are often associated with connective tissues diseases, including rheumatoid arthritis-ILD (RA-ILD) and systemic sclerosis-associated ILD (SSc-ILD), or environmental/drug exposure. Given the vast number of progressive fibrosing ILDs and the disparities in clinical patterns and disease features, the course of these diseases is heterogeneous and cannot accurately be predicted for an individual patient. As a consequence, the discovery of novel biomarkers for these types of diseases is a major clinical challenge. Heat shock proteins (HSPs) are molecular chaperons that have been extensively described to be involved in fibrogenesis. Their extracellular forms (eHSPs) have been recently and successfully used as therapeutic targets or circulating biomarkers in cancer. The current review will describe the role of eHSPs in fibrosing ILDs, highlighting the importance of these particular stress proteins to develop new therapeutic strategies and discover potential biomarkers in these diseases.
Collapse
|
5
|
Horimasu Y, Yamaguchi K, Sakamoto S, Masuda T, Miyamoto S, Nakashima T, Iwamoto H, Fujitaka K, Hamada H, Hattori N. Quantitative parameters of lymphocyte nuclear morphology in bronchoalveolar lavage fluid as novel biomarkers for sarcoidosis. Orphanet J Rare Dis 2021; 16:298. [PMID: 34217348 PMCID: PMC8254956 DOI: 10.1186/s13023-021-01926-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 06/27/2021] [Indexed: 12/03/2022] Open
Abstract
Background Bronchoalveolar lavage (BAL) is one of the fundamental examinations for the differential diagnosis of interstitial lung diseases (ILDs), and lymphocytosis strongly indicates alternative diagnoses rather than idiopathic pulmonary fibrosis. However, the BALF lymphocytosis is observed in several ILDs. We considered that quantitative evaluation of the BALF lymphocyte nuclear morphology would be useful in the differential diagnosis of ILDs with increased BALF lymphocyte fraction. Results One hundred and twenty-one patients with ILDs having increased BALF lymphocyte fraction were recruited (68 in the development cohort and 53 in the validation cohort). In the development cohort, BALF lymphocyte nuclei in sarcoidosis patients showed significantly smaller areas, shorter perimeters, lower radius ratios, and increased roundness than those of other ILD patients (p < 0.001 for each). Next, the fractions of lymphocytes with small areas, short perimeters, low radius ratios, and increased roundness, which were determined based on receiver operating characteristic (ROC) analyses-based thresholds, were demonstrated to be higher in sarcoidosis patients than in the other ILD patients (p < 0.001 for each). Furthermore, when we combined size-representing parameters with shape-representing parameters, the fraction of lymphocytes with small and round nuclei showed approximately 0.90 of area under the ROC curve in discriminating sarcoidosis both in the development cohort and the validation cohort. Conclusion This study is the first to demonstrate the usefulness of quantitative parameters of BALF lymphocyte nuclear morphology as novel biomarkers for sarcoidosis. Supplementary Information The online version contains supplementary material available at 10.1186/s13023-021-01926-x.
Collapse
Affiliation(s)
- Yasushi Horimasu
- Department of Respiratory Medicine, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-ku, Hiroshima City, Hiroshima, 734-8551, Japan.
| | - Kakuhiro Yamaguchi
- Department of Respiratory Medicine, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-ku, Hiroshima City, Hiroshima, 734-8551, Japan
| | - Shinjiro Sakamoto
- Department of Respiratory Medicine, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-ku, Hiroshima City, Hiroshima, 734-8551, Japan
| | - Takeshi Masuda
- Department of Respiratory Medicine, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-ku, Hiroshima City, Hiroshima, 734-8551, Japan
| | - Shintaro Miyamoto
- Department of Respiratory Medicine, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-ku, Hiroshima City, Hiroshima, 734-8551, Japan
| | - Taku Nakashima
- Department of Respiratory Medicine, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-ku, Hiroshima City, Hiroshima, 734-8551, Japan
| | - Hiroshi Iwamoto
- Department of Respiratory Medicine, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-ku, Hiroshima City, Hiroshima, 734-8551, Japan
| | - Kazunori Fujitaka
- Department of Respiratory Medicine, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-ku, Hiroshima City, Hiroshima, 734-8551, Japan
| | - Hironobu Hamada
- Department of Respiratory Medicine, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-ku, Hiroshima City, Hiroshima, 734-8551, Japan
| | - Noboru Hattori
- Department of Respiratory Medicine, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-ku, Hiroshima City, Hiroshima, 734-8551, Japan
| |
Collapse
|
6
|
Inoue Y, Okamoto T, Honda T, Nukui Y, Akashi T, Takemura T, Tozuka M, Miyazaki Y. Disruption in the balance between apolipoprotein A-I and mast cell chymase in chronic hypersensitivity pneumonitis. IMMUNITY INFLAMMATION AND DISEASE 2020; 8:659-671. [PMID: 33016012 PMCID: PMC7654418 DOI: 10.1002/iid3.355] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 09/21/2020] [Indexed: 02/06/2023]
Abstract
Background Apolipoprotein A‐I (apoA‐I) has an antifibrotic effect in idiopathic pulmonary fibrosis. Although pulmonary fibrosis is associated with poor prognosis of patients with hypersensitivity pneumonitis (HP), little is known regarding the role of apoA‐I in the pathogenesis of HP. Methods Two‐dimensional electrophoresis, immunoblotting, and enzyme‐linked immunosorbent assays were performed for the identification and quantification of apoA‐I in bronchoalveolar lavage fluid (BALF) from patients with acute and chronic HP. To investigate the degradation of apoA‐I, apoA‐I was incubated with BALF. Moreover, the role of apoA‐I in TGF‐β1‐induced epithelial–mesenchymal transition of A549 cells was examined. Results The concentration of apoA‐I in the BALF was significantly lower in chronic HP (n = 56) compared with acute HP (n = 31). The expression level of apoA‐I was also low in the lung tissues of chronic HP. ApoA‐I was degraded by BALF from HP patients. The number of chymase‐positive mast cells in the alveolar parenchyma was inversely correlated with apoA‐I levels in the BALF of chronic HP patients. In vitro experiment using A549 cells, untreated apoA‐I inhibited TGF‐β1‐induced epithelial–mesenchymal transition, although this trend was not observed in the chymase‐treated apoA‐I. Conclusions A decrease of apoA‐I was associated with the pathogenesis of chronic HP in terms of pulmonary fibrosis and mast cell chymase attenuated the protective effect of apoA‐I against pulmonary fibrosis. Furthermore, apoA‐I could be a crucial molecule associated with lung fibrogenesis of HP.
Collapse
Affiliation(s)
- Yukihisa Inoue
- Department of Respiratory Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tsukasa Okamoto
- Department of Respiratory Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takayuki Honda
- Department of Respiratory Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yoshihisa Nukui
- Department of Respiratory Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takumi Akashi
- Department of Pathology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tamiko Takemura
- Department of Pathology, Japan Red Cross Centre, Tokyo, Japan
| | - Minoru Tozuka
- Department of Analytical Laboratory Chemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yasunari Miyazaki
- Department of Respiratory Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
7
|
Martínez-Calle M, Alonso A, Pérez-Gil J, Olmeda B. Native supramolecular protein complexes in pulmonary surfactant: Evidences for SP-A/SP-B interactions. J Proteomics 2019; 207:103466. [DOI: 10.1016/j.jprot.2019.103466] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 07/08/2019] [Accepted: 07/22/2019] [Indexed: 12/21/2022]
|
8
|
Cao Y, Xu S, Kong W, Cai H, Xu Y. Identification and validation of differentially expressed proteins in serum of CSU patients with different duration of wheals using an iTRAQ labeling, 2D-LC-MS/MS. Exp Ther Med 2018; 16:4527-4536. [PMID: 30542401 PMCID: PMC6257644 DOI: 10.3892/etm.2018.6818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 09/14/2018] [Indexed: 11/28/2022] Open
Abstract
Chronic spontaneous urticaria (CSU) is one of the most common types of chronic urticaria (CU), with symptoms that recur easily, migrate and are refractory. It is unclear whether association between the differentiation of protein expression levels in the serum of CSU patients and the different duration of wheals exists. In the present study the samples were divided according to the duration of the wheals into group A (wheal duration <2 h) and group B (wheal duration 12–24 h). Differentially expressed proteins in sera of CSU patients with different durations of wheals were identified and validated with isobaric tags for relative and absolute quantitation (iTRAQ) in combination with two-dimensional liquid chromatography/tandem mass spectrometry (2D-LC-MS/MS). Three hundred and seventy CSU serum-related proteins were initially identified. Among these proteins, ~30 had significant differences between the groups. According to the classification of biological functions and upregulated/downregulated values, serum amyloid A (SAA), CFL1, TPM4 and monocyte differentiation antigen (CD14) were chosen and validated by enzyme-linked immunosorbent assay (ELISA). The expression levels of CD14 in sera were not significantly different among the groups. SAA, CFL1 and TPM4 were associated with the wheal duration in CSU patients and therefore could be considered as new potential inflammatory biomarkers associated with CSU.
Collapse
Affiliation(s)
- Yanyun Cao
- Department of Dermatology, Pudong New Area People's Hospital, Shanghai 201299, P.R. China
| | - Shunming Xu
- Department of Dermatology, Pudong New Area People's Hospital, Shanghai 201299, P.R. China
| | - Wei Kong
- Department of Dermatology, Pudong New Area People's Hospital, Shanghai 201299, P.R. China
| | - Haibin Cai
- Department of Dermatology, Pudong New Area People's Hospital, Shanghai 201299, P.R. China
| | - Yang Xu
- Department of Dermatology, Pudong New Area People's Hospital, Shanghai 201299, P.R. China
| |
Collapse
|
9
|
Nukui Y, Miyazaki Y, Suhara K, Okamoto T, Furusawa H, Inase N. Identification of apolipoprotein A-I in BALF as a biomarker of sarcoidosis. SARCOIDOSIS VASCULITIS AND DIFFUSE LUNG DISEASES 2018; 35:5-15. [PMID: 32476874 DOI: 10.36141/svdld.v35i1.5834] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Accepted: 10/30/2017] [Indexed: 02/04/2023]
Abstract
Background: Sarcoidosis goes into remission in two-thirds of patients with sarcoidosis, but about 20 % of patients develop pulmonary fibrosis. The mechanisms of pulmonary fibrosis in sarcoidosis and differences in pathogenesis between clinical stages are still unclear. Objectives: The aim of this study was investigating proteins associated with clinical stages by comparing bronchoalveolar lavage fluid (BALF) protein between stage I and stage IV using proteome analysis. Methods: Proteomic differences in BALF were compared between stage I and stage IV by examining BALF from 8 stage I patients and 5 stage IV patients by two-dimensional gel electrophoresis and mass spectrometry. Results: In individual comparisons of BALF samples, the levels of apolipoprotein (Apo) A-I fragment, fibrinogen γ chain, calcyphosine, complement C3, and surfactant protein A were significantly higher in stage I than in stage IV. In contrast, none of the proteins examined significantly higher in stage IV than in stage I. To confirm the results of Apo A-I in the BALF proteome, we performed enzyme-linked immunosorbent assay (ELISA) in a larger group. The concentration of BALF Apo A-I was significantly higher in stage I patients than in stage IV patients (0.70 [0.13-0.89] vs. 0.15 [0.08-0.21] ng/μg protein, p=0.003). Conclusion: The involvement of BALF Apo A-I in sarcoidosis may differ between stage I and stage IV. (Sarcoidosis Vasc Diffuse Lung Dis 2018; 35: 5-15).
Collapse
Affiliation(s)
- Yoshihisa Nukui
- Department of Respiratory Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yasunari Miyazaki
- Department of Respiratory Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kozo Suhara
- Department of Respiratory Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tsukasa Okamoto
- Department of Respiratory Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Haruhiko Furusawa
- Department of Respiratory Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Naohiko Inase
- Department of Respiratory Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
10
|
Shi L, Zhu B, Xu M, Wang X. Selection of AECOPD-specific immunomodulatory biomarkers by integrating genomics and proteomics with clinical informatics. Cell Biol Toxicol 2017; 34:109-123. [DOI: 10.1007/s10565-017-9405-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Accepted: 07/06/2017] [Indexed: 12/14/2022]
|
11
|
Ortea I, Rodríguez-Ariza A, Chicano-Gálvez E, Arenas Vacas MS, Jurado Gámez B. Discovery of potential protein biomarkers of lung adenocarcinoma in bronchoalveolar lavage fluid by SWATH MS data-independent acquisition and targeted data extraction. J Proteomics 2016; 138:106-14. [PMID: 26917472 DOI: 10.1016/j.jprot.2016.02.010] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 02/01/2016] [Accepted: 02/13/2016] [Indexed: 12/11/2022]
Abstract
UNLABELLED Lung cancer currently ranks as the neoplasia with the highest global mortality rate. Although some improvements have been introduced in recent years, new advances in diagnosis are required in order to increase survival rates. New mildly invasive endoscopy-based diagnostic techniques include the collection of bronchoalveolar lavage fluid (BALF), which is discarded after using a portion of the fluid for standard pathological procedures. BALF proteomic analysis can contribute to clinical practice with more sensitive biomarkers, and can complement cytohistological studies by aiding in the diagnosis, prognosis, and subtyping of lung cancer, as well as the monitoring of treatment response. The range of quantitative proteomics methodologies used for biomarker discovery is currently being broadened with the introduction of data-independent acquisition (DIA) analysis-related approaches that address the massive quantitation of the components of a proteome. Here we report for the first time a DIA-based quantitative proteomics study using BALF as the source for the discovery of potential lung cancer biomarkers. The results have been encouraging in terms of the number of identified and quantified proteins. A panel of candidate protein biomarkers for adenocarcinoma in BALF is reported; this points to the activation of the complement network as being strongly over-represented and suggests this pathway as a potential target for lung cancer research. In addition, the results reported for haptoglobin, complement C4-A, and glutathione S-transferase pi are consistent with previous studies, which indicates that these proteins deserve further consideration as potential lung cancer biomarkers in BALF. Our study demonstrates that the analysis of BALF proteins by liquid chromatography-tandem mass spectrometry (LC-MS/MS), combining a simple sample pre-treatment and SWATH DIA MS, is a useful method for the discovery of potential lung cancer biomarkers. SIGNIFICANCE Bronchoalveolar lavage fluid (BALF) analysis can contribute to clinical practice with more sensitive biomarkers, thus complementing cytohistological studies in order to aid in the diagnosis, prognosis, and subtyping of lung cancer, as well as the monitoring of treatment response. Here we report a panel of candidate protein biomarkers for adenocarcinoma in BALF. Forty-four proteins showed a fold-change higher than 3.75 among adenocarcinoma patients compared with controls. This report is the first DIA-based quantitative proteomics study to use bronchoalveolar lavage fluid (BALF) as a matrix for discovering potential biomarkers. The results are encouraging in terms of the number of identified and quantified proteins, demonstrating that the analysis of BALF proteins by a SWATH approach is a useful method for the discovery of potential biomarkers of pulmonary diseases.
Collapse
Affiliation(s)
- I Ortea
- Proteomics Unit, IMIBIC, Maimonides Institute for Biomedical Research, Córdoba, Spain.
| | - A Rodríguez-Ariza
- Medical Oncology Department, Reina Sofia University Hospital and IMIBIC, Maimonides Institute for Biomedical Research, Córdoba, Spain
| | - E Chicano-Gálvez
- Proteomics Unit, IMIBIC, Maimonides Institute for Biomedical Research, Córdoba, Spain
| | - M S Arenas Vacas
- Department of Respiratory Medicine, Reina Sofia University Hospital and IMIBIC, Maimonides Institute for Biomedical Research, Córdoba, Spain
| | - B Jurado Gámez
- Department of Respiratory Medicine, Reina Sofia University Hospital and IMIBIC, Maimonides Institute for Biomedical Research, Córdoba, Spain
| |
Collapse
|
12
|
Suhara K, Miyazaki Y, Okamoto T, Ishizuka M, Tsuchiya K, Inase N. Fragmented gelsolins are increased in rheumatoid arthritis-associated interstitial lung disease with usual interstitial pneumonia pattern. Allergol Int 2016; 65:88-95. [PMID: 26666486 DOI: 10.1016/j.alit.2015.08.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 08/06/2015] [Accepted: 08/06/2015] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Rheumatoid arthritis-associated interstitial lung disease (RA-ILD) occurs in 10%-30% of patients with RA, and interstitial lung disease (ILD) is associated with increased mortality in up to 10% of patients with RA. The pathogenesis of RA-ILD is virtually unknown. The aim of this study is to investigate the proteins related to UIP pattern by comparing to OP pattern in RA-ILD using proteome analysis of bronchoalveolar lavage fluid (BALF). METHODS Proteomic differences in BALF were compared between the UIP pattern and OP pattern by examining BALF from 5 patients with the UIP pattern and 7 patients with the OP pattern by two-dimensional gel electrophoresis and mass spectrometry. RESULTS In individual comparisons of BALF samples, the levels of the protein gelsolin and Ig kappa chain C region were significantly higher in the UIP pattern than in the OP pattern. In contrast, the levels of α-1 antitrypsin, CRP, haptoglobin β, and surfactant protein A (isoform number 5) were all significantly higher in the OP pattern than in the UIP pattern. Gelsolin was cleaved into two fragments, a C-terminal half and N-terminal half, and the levels of both were significantly higher in the UIP pattern than in the OP pattern. CONCLUSIONS Fragmented gelsolins may be associated with the pathogenesis of fibrosis in RA-ILD.
Collapse
Affiliation(s)
- Kozo Suhara
- Department of Respiratory Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yasunari Miyazaki
- Department of Respiratory Medicine, Tokyo Medical and Dental University, Tokyo, Japan.
| | - Tsukasa Okamoto
- Department of Respiratory Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Masahiro Ishizuka
- Department of Respiratory Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kimitake Tsuchiya
- Department of Respiratory Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Naohiko Inase
- Department of Respiratory Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
13
|
Wang XF, Zhang XY, Gao X, Liu XX, Wang YH. Proteomic Profiling of a Respiratory Syncytial Virus-Infected Rat Pneumonia Model. Jpn J Infect Dis 2016; 69:285-92. [DOI: 10.7883/yoken.jjid.2015.244] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Xue-Feng Wang
- The Affiliated Hospital of Liaoning University of Traditional Chinese Medicine
| | - Xiu-Ying Zhang
- The Graduate College of Liaoning University of Traditional Chinese Medicine
| | - Xuejuan Gao
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, Jinan University
| | - Xiao-Xue Liu
- The Graduate College of Liaoning University of Traditional Chinese Medicine
| | - Yi-Huan Wang
- The Graduate College of Liaoning University of Traditional Chinese Medicine
| |
Collapse
|
14
|
Ménoret A, Crocker SJ, Rodriguez A, Rathinam VA, Clark RB, Vella AT. Transition from identity to bioactivity-guided proteomics for biomarker discovery with focus on the PF2D platform. Proteomics Clin Appl 2015. [PMID: 26201056 DOI: 10.1002/prca.201500029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Proteomic strategies provide a valuable tool kit to identify proteins involved in diseases. With recent progress in MS technology, high throughput proteomics has accelerated protein identification for potential biomarkers. Numerous biomarker candidates have been identified in several diseases, and many are common among pathologies. An overall strategy that could complement and strengthen the search for biomarkers is combining protein identity with biological outcomes. This review describes an emerging framework of bridging bioactivity to protein identity, exploring the possibility that some biomarkers will have a mechanistic role in the disease process. A review of pulmonary, cardiovascular, and CNS biomarkers will be discussed to demonstrate the utility of combining bioactivity with identification as a means to not only find meaningful biomarkers, but also to uncover functional mediators of disease.
Collapse
Affiliation(s)
- Antoine Ménoret
- Department of Immunology, University of Connecticut Health Center, Farmington, CT, USA
| | - Stephen J Crocker
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT, USA
| | - Annabelle Rodriguez
- Department of Cell Biology, University of Connecticut Health Center, Farmington, CT, USA
| | - Vijay A Rathinam
- Department of Immunology, University of Connecticut Health Center, Farmington, CT, USA
| | - Robert B Clark
- Department of Immunology, University of Connecticut Health Center, Farmington, CT, USA
| | - Anthony T Vella
- Department of Immunology, University of Connecticut Health Center, Farmington, CT, USA
| |
Collapse
|
15
|
A functional proteomics approach to the comprehension of sarcoidosis. J Proteomics 2015; 128:375-87. [PMID: 26342673 DOI: 10.1016/j.jprot.2015.08.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 07/30/2015] [Accepted: 08/19/2015] [Indexed: 12/22/2022]
Abstract
Pulmonary sarcoidosis (Sar) is an idiopathic disease histologically typified by non-caseating epitheliod cell sarcoid granulomas. A cohort of 37 Sar patients with chronic persistent pulmonary disease was described in this study. BAL protein profiles from 9 of these Sar patients were compared with those from 8 smoker (SC) and 10 no-smoker controls (NSC) by proteomic approach. Principal Component Analysis was performed to clusterize the samples in the corresponding conditions highlighting a differential pattern profiles primarily in Sar than SC. Spot identification reveals thirty-four unique proteins involved in lipid, mineral, and vitamin Dmetabolism, and immuneregulation of macrophage function. Enrichment analysis has been elaborated by MetaCore, revealing 14-3-3ε, α1-antitrypsin, GSTP1, and ApoA1 as "central hubs". Process Network as well as Pathway Maps underline proteins involved in immune response and inflammation induced by complement system, innate inflammatory response and IL-6signalling. Disease Biomarker Network highlights Tuberculosis and COPD as pathologies that share biomarkers with sarcoidosis. In conclusion, Sar protein expression profile seems more similar to that of NSC than SC, conversely to other ILDs. Moreover, Disease Biomarker Network revealed several common features between Sar and TB, exhorting to orientate the future proteomics investigations also in comparative BALF analysis of Sar and TB.
Collapse
|
16
|
Ledford JG, Addison KJ, Foster MW, Que LG. Eosinophil-associated lung diseases. A cry for surfactant proteins A and D help? Am J Respir Cell Mol Biol 2015; 51:604-14. [PMID: 24960334 DOI: 10.1165/rcmb.2014-0095tr] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Surfactant proteins (SP)-A and SP-D (SP-A/-D) play important roles in numerous eosinophil-dominated diseases, including asthma, allergic bronchopulmonary aspergillosis, and allergic rhinitis. In these settings, SP-A/-D have been shown to modulate eosinophil chemotaxis, inhibit eosinophil mediator release, and mediate macrophage clearance of apoptotic eosinophils. Dysregulation of SP-A/-D function in eosinophil-dominated diseases is also not uncommon. Alterations in serum SP-A/-D levels are associated with disease severity in allergic rhinitis and chronic obstructive pulmonary disease. Furthermore, oligimerization of SP-A/-D, necessary for their proper function, can be perturbed by reactive nitrogen species, which are increased in eosinophilic disease. In this review, we highlight the associations of eosinophilic lung diseases with SP-A and SP-D levels and functions.
Collapse
Affiliation(s)
- Julie G Ledford
- 1 Department of Medicine, Division of Pulmonary, Allergy and Critical Care, and
| | | | | | | |
Collapse
|
17
|
Proteomic changes of alveolar lining fluid in illnesses associated with exposure to inhaled non-infectious microbial particles. PLoS One 2014; 9:e102624. [PMID: 25033447 PMCID: PMC4102538 DOI: 10.1371/journal.pone.0102624] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 06/21/2014] [Indexed: 01/02/2023] Open
Abstract
Background Hyperresponsiveness to inhaled non-infectious microbial particles (NIMPs) has been associated with illnesses in the airways. Hypersensitivity pneumonitis (HP) is considered to be the prototype for these NIMPs-related diseases; however, there is no consensus on the definitions or diagnostic criteria for HP and the spectrum of related illnesses. Methods and Findings In order to identify the possible diagnostic markers for illnesses associated with NIMPs in alveolar lining fluid, we performed a proteomic analysis using a two-dimensional difference gel electrophoresis on bronchoalveolar lavage (BAL) fluid from patients with exposure to NIMPs in the context of damp building-related illness (DBRI) or conditions on the borderline to acute HP, designated here as agricultural type of microbial exposure (AME). Samples from patients with HP and sarcoidosis (SARC) were included for reference. Results were compared to results of healthy subjects (CTR). Western blot was used for validation of potential marker proteins from BAL fluid and plasma. Protein expression patterns suggest a close similarity between AME and HP, while DBRI was similar to CTR. However, in DBRI the levels of the inflammation associated molecules galectin-3 and alpha-1-antitrypsin were increased. A novel finding emerging from this study was the increases of semenogelin levels in BAL fluid from patients with AME, HP and SARC. Histone 4 levels were increased in AME, HP and SARC. Elevated plasma levels of histone 2B were detected in HP and SARC, suggesting it to be a potential blood indicator for inflammatory diseases of the lungs. Conclusions In this study, the proteomic changes in bronchoalveolar lavage of DBRI patients were distinct from other NIMP exposure associated lung diseases, while changes in AME overlapped those observed for HP patient samples. Some of the proteins identified in this study, semenogelin and histone 4, could function as diagnostic markers for differential diagnosis between DBRI and HP-like conditions.
Collapse
|
18
|
|
19
|
Luong KVQ, Nguyen LTH. Beneficial role of vitamin D3 in the prevention of certain respiratory diseases. Ther Adv Respir Dis 2013; 7:327-50. [PMID: 24056290 DOI: 10.1177/1753465813503029] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
There is evidence of aberrations in the vitamin D-endocrine system in subjects with respiratory diseases. Vitamin D deficiency is highly prevalent in patients with respiratory diseases, and patients who receive vitamin D have significantly larger improvements in inspiratory muscle strength and maximal oxygen uptake. Studies have provided an opportunity to determine which proteins link vitamin D to respiratory pathology, including the major histocompatibility complex class II molecules, vitamin D receptor, vitamin D-binding protein, chromosome P450, Toll-like receptors, poly(ADP-ribose) polymerase-1, and the reduced form of nicotinamide adenine dinucleotide phosphate. Vitamin D also exerts its effect on respiratory diseases through cell signaling mechanisms, including matrix metalloproteinases, mitogen-activated protein kinase pathways, the Wnt/β-catenin signaling pathway, prostaglandins, reactive oxygen species, and nitric oxide synthase. In conclusion, vitamin D plays a significant role in respiratory diseases. The best form of vitamin D for use in the treatment of respiratory diseases is calcitriol because it is the active metabolite of vitamin D3 and modulates inflammatory cytokine expression. Further investigation of calcitriol in respiratory diseases is needed.
Collapse
Affiliation(s)
- Khanh Vinh Quoc Luong
- Vietnamese American Medical Research Foundation, 14971 Brookhurst Street, Westminster, CA 92683, USA
| | | |
Collapse
|
20
|
Foster MW, Thompson JW, Que LG, Yang IV, Schwartz DA, Moseley MA, Marshall HE. Proteomic analysis of human bronchoalveolar lavage fluid after subsgemental exposure. J Proteome Res 2013; 12:2194-205. [PMID: 23550723 DOI: 10.1021/pr400066g] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The analysis of airway fluid, as sampled by bronchoalveolar lavage (BAL), provides a minimally invasive route to interrogate lung biology in health and disease. Here, we used immunodepletion, coupled with gel- and label-free LC-MS/MS, for quantitation of the BAL fluid (BALF) proteome in samples recovered from human subjects following bronchoscopic instillation of saline, lipopolysaccharide (LPS) or house dust mite antigen into three distinct lung subsegments. Among more than 200 unique proteins quantified across nine samples, neutrophil granule-derived and acute phase proteins were most highly enriched in the LPS-exposed lobes. Of these, peptidoglycan response protein 1 was validated and confirmed as a novel marker of neutrophilic inflammation. Compared to a prior transcriptomic analysis of airway cells in this same cohort, the BALF proteome revealed a novel set of response factors. Independent of exposure, the enrichment of tracheal-expressed proteins in right lower lung lobes suggests a potential for constitutive intralobar variability in the BALF proteome; sampling of multiple lung subsegments also appears to aid in the identification of protein signatures that differentiate individuals at baseline. Collectively, this proof-of-concept study validates a robust workflow for BALF proteomics and demonstrates the complementary nature of proteomic and genomic techniques for investigating airway (patho)physiology.
Collapse
Affiliation(s)
- Matthew W Foster
- Division of Pulmonary, Allergy and Critical Care Medicine, Duke University Medical Center, Durham, North Carolina 27710, USA.
| | | | | | | | | | | | | |
Collapse
|
21
|
Agache IO, Rogozea L. Management of hypersensivity pneumonitis. Clin Transl Allergy 2013; 3:5. [PMID: 23374544 PMCID: PMC3585806 DOI: 10.1186/2045-7022-3-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Accepted: 02/01/2013] [Indexed: 12/28/2022] Open
Abstract
Hypersensitivity pneumonitis (HP) is an interstitial lung disease due to a combined type III and IV reaction with a granulomatous inflammation, caused by cytotoxic delayed hypersensitivity lymphocytes, in a Th1/Th17 milieu, chaperoned by a deficient suppressor function of T regulatory cells. Skewing toward a Th2 phenotype is reported for chronic HP. Phenotypic expression and severity depends on environmental and/or host genetic and immune co-factors. The wide spectrum of causative antigens is continuously up-dated with new sources of airborne organic particles and drug-induced HP. The diagnosis requires a detailed history, measurement of environmental exposure, pulmonary function tests, imaging, detection of serum specific antibodies, broncho-alveolar lavage, antigen-induced lymphocyte proliferation, environmental or laboratory-controlled inhalation challenge and lung biopsy. Complete antigen avoidance is the best therapeutic measure, although very difficult to achieve in some cases. Systemic steroids are of value for subacute and chronic forms of HP, but do not influence long term outcome. Manipulation of the immune response in HP holds future promise.
Collapse
Affiliation(s)
- Ioana O Agache
- Theramed Medical Center, Spatarul Luca Arbore 16, 500112, Brasov, Romania.
| | | |
Collapse
|
22
|
Abdullah M, Goldmann T. Pulmonary haptoglobin (pHp) is part of the surfactant system in the human lung. Diagn Pathol 2012; 7:158. [PMID: 23164167 PMCID: PMC3523029 DOI: 10.1186/1746-1596-7-158] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Accepted: 11/14/2012] [Indexed: 11/25/2022] Open
Abstract
Abstract Since the existence of pHp was demonstrated, it has been shown that this molecule and its receptor CD163 are regulated by different stimuli. Furthermore, a comparably fast secretion of pHp was described as well as the immuno-stimulatory effects. The intention of this study was to elucidate the role of pHp in the human lungs further. Here we show, by means of confocal microscopy and immune-electron-microscopy, a clear co-localization of pHp with Surfactant protein-B in lamellar bodies of Alveolar Epithelial Cells Type II. These results are underlined by immunohistochemical stainings in differently fixed human lung tissues, which show pHp in vesicular and released form. The images of the released form resemble the intended position of surfactant in the human alveolus. pHp is secreted by Alveolar epithelial cells type II as previously shown. Moreover, pHp is co-localized with Surfactant protein-B. We conclude that the presented data shows that pHp is a native part of the surfactant system in the human lung. Virtual slides http://www.diagnosticpathology.diagnomx.eu/vs/2563584738239912.
Collapse
Affiliation(s)
- Mahdi Abdullah
- Clinical and Experimental Pathology, Research Center Borstel, Airway Research Center North, Member of the German Center for Lung Research, Parkallee 3, D-23845, Borstel, Germany
| | | |
Collapse
|
23
|
Kim YS, Jung H, Gil HW, Hong SY, Song HY. Proteomic analysis of changes in protein expression in serum from animals exposed to paraquat. Int J Mol Med 2012; 30:1521-7. [PMID: 23023206 DOI: 10.3892/ijmm.2012.1143] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Accepted: 08/13/2012] [Indexed: 11/06/2022] Open
Abstract
Paraquat (PQ) poisoning remains a major public health concern in many countries. Extensive research has focused on finding early diagnostic biomarkers of acute PQ poisoning. In order to investigate the characterization of diagnostic biomarkers in PQ poisoning, we utilized proteomic analysis using serum from rats exposed to PQ, and we identified 8 differentially expressed proteins from over 500 protein spots. The expression of apolipoprotein E (ApoE), preprohaptoglobin (Pphg), a precursor of haptoglobin (Hp), and complement component 3 (C3) proteins was greatly induced by PQ exposure while the expression of fibrinogen γ-chain (FGG) and Ac-158 was dramatically reduced. To further investigate the possibility of ApoE, Pphg and FGG as useful diagnostic biomarkers of PQ poisoning, western blot and qRT-PCR analyses were conducted using cell lines as well as rat and human sera. The expression levels of ApoE, Hp and FGG were significantly altered in the presence of PQ in both rat and human serum suggesting that these proteins may be appropriate candidate molecular biomarkers for the early diagnosis of acute PQ intoxication.
Collapse
Affiliation(s)
- Yong-Sik Kim
- Department of Microbiology, College of Medicine, Soon Chun Hyang University, Cheonan, Chungnam 330-090, Republic of Korea
| | | | | | | | | |
Collapse
|
24
|
Ohshimo S, Bonella F, Guzman J, Costabel U. Hypersensitivity pneumonitis. Immunol Allergy Clin North Am 2012; 32:537-56. [PMID: 23102065 DOI: 10.1016/j.iac.2012.08.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Clinical manifestations of hypersensitivity pneumonitis may closely mimic other interstitial lung diseases, and the disease onset is usually insidious. High-resolution computed tomography and bronchoalveolar lavage are the sensitive and characteristic diagnostic tests for hypersensitivity pneumonitis. The relevant antigen to hypersensitivity pneumonitis cannot be identified in up to 20% to 30% of patients. Clinicians should be aware that hypersensitivity pneumonitis must be considered in all cases of interstitial lung disease, and a detailed environmental exposure history is mandatory.
Collapse
Affiliation(s)
- Shinichiro Ohshimo
- Department of Molecular and Internal Medicine, Graduate School of Biomedical Sciences, Hiroshima University, Japan
| | | | | | | |
Collapse
|
25
|
Selman M, Pardo A, King TE. Hypersensitivity pneumonitis: insights in diagnosis and pathobiology. Am J Respir Crit Care Med 2012; 186:314-24. [PMID: 22679012 DOI: 10.1164/rccm.201203-0513ci] [Citation(s) in RCA: 307] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Hypersensitivity pneumonitis (HP) is a complex syndrome resulting from repeated exposure to a variety of organic particles. HP may present as acute, subacute, or chronic clinical forms but with frequent overlap of these various forms. An intriguing question is why only few of the exposed individuals develop the disease. According to a two-hit model, antigen exposure associated with genetic or environmental promoting factors provokes an immunopathological response. This response is mediated by immune complexes in the acute form and by Th1 and likely Th17 T cells in subacute/chronic cases. Pathologically, HP is characterized by a bronchiolocentric granulomatous lymphocytic alveolitis, which evolves to fibrosis in chronic advanced cases. On high-resolution computed tomography scan, ground-glass and poorly defined nodules, with patchy areas of air trapping, are seen in acute/subacute cases, whereas reticular opacities, volume loss, and traction bronchiectasis superimposed on subacute changes are observed in chronic cases. Importantly, subacute and chronic HP may mimic several interstitial lung diseases, including nonspecific interstitial pneumonia and usual interstitial pneumonia, making diagnosis extremely difficult. Thus, the diagnosis of HP requires a high index of suspicion and should be considered in any patient presenting with clinical evidence of interstitial lung disease. The definitive diagnosis requires exposure to known antigen, and the assemblage of clinical, radiologic, laboratory, and pathologic findings. Early diagnosis and avoidance of further exposure are keys in management of the disease. Corticosteroids are generally used, although their long-term efficacy has not been proved in prospective clinical trials. Lung transplantation should be recommended in cases of progressive end-stage illness.
Collapse
Affiliation(s)
- Moisés Selman
- Instituto Nacional de Enfermedades Respiratorias, Tlalpan 4502, CP 14080 México DF, México.
| | | | | |
Collapse
|