1
|
Wu CH, Kaneyasu Y, Yano K, Shigeishi H, Kitasaki H, Maehara T, Niitani Y, Takemoto T, Mine Y, Le MNT, Kawada-Matsuo M, Komatsuzawa H, Ohta K. Anti-fungal effects of slightly acidic electrolyzed water on Candida species. J Oral Biosci 2025; 67:100573. [PMID: 39515466 DOI: 10.1016/j.job.2024.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 10/19/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024]
Abstract
OBJECTIVES Slightly acidic electrolyzed water (SAEW) is produced by electrolyzing 2-6% diluted hydrochloric acid in a membrane-less chamber, resulting in 5.0-6.5 pH, and can be applied to various foods as a disinfectant. Although SAEW has shown to have bactericidal activity, the details of its anti-fungal effects towards Candida species remain unknown. Therefore, we examined the fungicidal effects of SAEW on Candida spp. and biofilms on acrylic resins. METHODS The fungicidal effects of SAEW on Candida spp. at different reaction times and total numbers of colonies in culture plates were examined. Subsequently, SAEW was added to Candida spp. biofilms formed on polystyrene plates, and adenosine triphosphate (ATP) in SAEW was measured to examine its fungicidal effects towards Candida spp. biofilms. The fungicidal effect of SAEW on Candida spp. biofilms was determined by counting the number of colonies on the acrylic resin after adding SAEW. RESULTS SAEW completely killing activity within 1 min with the tested Candida spp. C. albicans and C. glabrata ATP were increased 5 min after adding SAEW compared with the controls, suggesting the removal of biofilm. Of the C. albicans on acrylic resin, >99.9%were killed by SAEW compared to their levels in deionized distilled water (DW) (76.2 × 102/mL and 43.3 × 102/mL, respectively). Similarly, 93.1% of C. glabrata were killed by SAEW compared to DW (159.3x102/mL). CONCLUSIONS SAEW may be useful in preventing oral candidiasis as part of oral care.
Collapse
Affiliation(s)
- Chia-Hsin Wu
- Department of Public Oral Health, Program of Oral Health Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-Ku, Hiroshima, 734-8553, Japan
| | - Yoshino Kaneyasu
- Department of Public Oral Health, Program of Oral Health Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-Ku, Hiroshima, 734-8553, Japan
| | - Kanako Yano
- Department of Public Oral Health, Program of Oral Health Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-Ku, Hiroshima, 734-8553, Japan
| | - Hideo Shigeishi
- Department of Public Oral Health, Program of Oral Health Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-Ku, Hiroshima, 734-8553, Japan
| | - Honami Kitasaki
- Department of Public Oral Health, Program of Oral Health Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-Ku, Hiroshima, 734-8553, Japan
| | - Tomoko Maehara
- Department of Public Oral Health, Program of Oral Health Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-Ku, Hiroshima, 734-8553, Japan
| | - Yoshie Niitani
- Department of Oral Health Management, Program of Oral Health Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-Ku, Hiroshima, 734-8553, Japan
| | - Toshinobu Takemoto
- Department of Oral Health Management, Program of Oral Health Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-Ku, Hiroshima, 734-8553, Japan
| | - Yuichi Mine
- Department of Medical Systems Engineering, Division of Oral Health Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi Minami-ku, Hiroshima, 734-8553, Japan
| | - Mi Nguyen-Tra Le
- Department of Bacteriology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, 734-8551, Japan
| | - Miki Kawada-Matsuo
- Department of Bacteriology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, 734-8551, Japan
| | - Hitoshi Komatsuzawa
- Department of Bacteriology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, 734-8551, Japan
| | - Kouji Ohta
- Department of Public Oral Health, Program of Oral Health Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-Ku, Hiroshima, 734-8553, Japan.
| |
Collapse
|
2
|
da Silva LJ, Rodrigues DS, de Farias Cabral VP, da Silva CR, Sá LGDAV, de Andrade-Neto JB, Barbosa AD, Flaresso AA, Rocha SNCD, Cavalcanti BC, Moraes MOD, Rios MEF, Pampolha Filho IS, Júnior HVN. Unveiling novel insights: geraniol's enhanced anti-candida efficacy and mechanistic innovations against multidrug-resistant candida strains. Braz J Microbiol 2024; 55:3721-3731. [PMID: 39297913 PMCID: PMC11711867 DOI: 10.1007/s42770-024-01498-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 07/15/2024] [Indexed: 09/21/2024] Open
Abstract
OBJECTIVES This study addressed the need for new treatments for severe Candida infections, especially resistant strains. It evaluated the antifungal potential of geraniol alone and with fluconazole against various Candida spp., including resistant strains, and investigated geraniol's mechanism of action using flow cytometry. METHODS The research assessed the inhibitory effects of geraniol on the growth of various Candida species at concentrations ranging from 110 to 883 µg/ml. The study also explored the potential synergistic effects when geraniol was combined with fluconazole. The mechanism of action was investigated through flow cytometry, with a particular emphasis on key enzymes associated with plasma membrane synthesis, membrane permeability changes, mitochondrial membrane depolarization, reactive oxygen species (ROS) induction, and genotoxicity. RESULTS Geraniol demonstrated significant antifungal activity against different Candida species, inhibiting growth at concentrations within the range of 110 to 883 µg/ml. The mechanism of action appeared to be multifactorial. Geraniol was associated with the inhibition of crucial enzymes involved in plasma membrane synthesis, increased membrane permeability, induction of mitochondrial membrane depolarization, elevated ROS levels, and the presence of genotoxicity. These effects collectively contributed to cell apoptosis. CONCLUSIONS Geraniol, alone and in combination with fluconazole, shows promise as a potential therapeutic option for Candida spp. INFECTIONS Its diverse mechanism of action, impacting crucial cellular processes, highlights its potential as an effective antifungal agent. Further research into geraniol's therapeutic applications may aid in developing innovative strategies to address Candida infections, especially those resistant to current therapies.
Collapse
Affiliation(s)
- Lisandra Juvêncio da Silva
- School of Pharmacy, Laboratory for Bioprospection of Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil
- Center for Drug Research and Development (NPDM), Federal University of Ceará, Fortaleza, CE, Brazil
| | - Daniel Sampaio Rodrigues
- School of Pharmacy, Laboratory for Bioprospection of Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil
- Center for Drug Research and Development (NPDM), Federal University of Ceará, Fortaleza, CE, Brazil
- Christus University Center (UNICHRISTUS), Fortaleza, CE, Brazil
| | - Vitória Pessoa de Farias Cabral
- School of Pharmacy, Laboratory for Bioprospection of Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil
- Center for Drug Research and Development (NPDM), Federal University of Ceará, Fortaleza, CE, Brazil
| | - Cecília Rocha da Silva
- School of Pharmacy, Laboratory for Bioprospection of Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil
- Center for Drug Research and Development (NPDM), Federal University of Ceará, Fortaleza, CE, Brazil
| | - Lívia Gurgel do Amaral Valente Sá
- School of Pharmacy, Laboratory for Bioprospection of Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil
- Center for Drug Research and Development (NPDM), Federal University of Ceará, Fortaleza, CE, Brazil
- Christus University Center (UNICHRISTUS), Fortaleza, CE, Brazil
| | - João Batista de Andrade-Neto
- School of Pharmacy, Laboratory for Bioprospection of Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil
- Center for Drug Research and Development (NPDM), Federal University of Ceará, Fortaleza, CE, Brazil
- Christus University Center (UNICHRISTUS), Fortaleza, CE, Brazil
| | - Amanda Dias Barbosa
- School of Pharmacy, Laboratory for Bioprospection of Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil
- Center for Drug Research and Development (NPDM), Federal University of Ceará, Fortaleza, CE, Brazil
| | | | | | - Bruno Coelho Cavalcanti
- Center for Drug Research and Development (NPDM), Federal University of Ceará, Fortaleza, CE, Brazil
- Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Manoel Odorico de Moraes
- Center for Drug Research and Development (NPDM), Federal University of Ceará, Fortaleza, CE, Brazil
- Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Maria Erivanda França Rios
- Center for Drug Research and Development (NPDM), Federal University of Ceará, Fortaleza, CE, Brazil
- Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, CE, Brazil
| | | | - Hélio Vitoriano Nobre Júnior
- School of Pharmacy, Laboratory for Bioprospection of Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil.
- Center for Drug Research and Development (NPDM), Federal University of Ceará, Fortaleza, CE, Brazil.
| |
Collapse
|
3
|
Silva-Rodrigues G, de Castro IM, Borges PHG, Suzukawa HT, de Souza JM, Bartolomeu-Gonçalves G, Pelisson M, Medeiros CIS, Bispo MDLF, de Almeida RSC, Ishida K, Tavares ER, Yamauchi LM, Yamada-Ogatta SF. Geraniol Potentiates the Effect of Fluconazole against Planktonic and Sessile Cells of Azole-Resistant Candida tropicalis: In Vitro and In Vivo Analyses. Pharmaceutics 2024; 16:1053. [PMID: 39204397 PMCID: PMC11360560 DOI: 10.3390/pharmaceutics16081053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/24/2024] [Accepted: 08/03/2024] [Indexed: 09/04/2024] Open
Abstract
Candida tropicalis is regarded as an opportunistic pathogen, causing diseases ranging from superficial infections to life-threatening disseminated infections. The ability of this yeast to form biofilms and develop resistance to antifungals represents a significant therapeutic challenge. Herein, the effect of geraniol (GER), alone and combined with fluconazole (FLZ), was evaluated in the planktonic and sessile cells of azole-resistant C. tropicalis. GER showed a time-dependent fungicidal effect on the planktonic cells, impairing the cell membrane integrity. Additionally, GER inhibited the rhodamine 6G efflux, and the molecular docking analyzes supported the binding affinity of GER to the C. tropicalis Cdr1 protein. GER exhibited a synergism with FLZ against the planktonic and sessile cells, inhibiting the adhesion of the yeast cells and the viability of the 48-h biofilms formed on abiotic surfaces. C. tropicalis biofilms treated with GER, alone or combined with FLZ, displayed morphological and ultrastructural alterations, including a decrease in the stacking layers and the presence of wilted cells. Moreover, neither GER alone nor combined with FLZ caused toxicity, and both treatments prolonged the survival of the Galleria mellonella larvae infected with azole-resistant C. tropicalis. These findings indicate that the combination of GER and FLZ may be a promising strategy to control azole-resistant C. tropicalis infections.
Collapse
Affiliation(s)
- Gislaine Silva-Rodrigues
- Postgraduate Program in Microbiology, Department of Microbiology, State University of Londrina, Londrina 86057-970, Brazil; (G.S.-R.); (I.M.d.C.); (P.H.G.B.); (H.T.S.); (L.M.Y.)
| | - Isabela Madeira de Castro
- Postgraduate Program in Microbiology, Department of Microbiology, State University of Londrina, Londrina 86057-970, Brazil; (G.S.-R.); (I.M.d.C.); (P.H.G.B.); (H.T.S.); (L.M.Y.)
| | - Paulo Henrique Guilherme Borges
- Postgraduate Program in Microbiology, Department of Microbiology, State University of Londrina, Londrina 86057-970, Brazil; (G.S.-R.); (I.M.d.C.); (P.H.G.B.); (H.T.S.); (L.M.Y.)
| | - Helena Tiemi Suzukawa
- Postgraduate Program in Microbiology, Department of Microbiology, State University of Londrina, Londrina 86057-970, Brazil; (G.S.-R.); (I.M.d.C.); (P.H.G.B.); (H.T.S.); (L.M.Y.)
| | - Joyce Marinho de Souza
- Postgraduate Program in Microbiology, Department of Microbiology, State University of Londrina, Londrina 86057-970, Brazil; (G.S.-R.); (I.M.d.C.); (P.H.G.B.); (H.T.S.); (L.M.Y.)
| | - Guilherme Bartolomeu-Gonçalves
- Postgraduate Program in Clinical and Laboratory Pathophysiology, Department of Pathology, Clinical and Toxicological Analysis, State University of Londrina, Londrina 86038-350, Brazil
| | - Marsileni Pelisson
- Postgraduate Program in Clinical and Laboratory Pathophysiology, Department of Pathology, Clinical and Toxicological Analysis, State University of Londrina, Londrina 86038-350, Brazil
| | | | - Marcelle de Lima Ferreira Bispo
- Synthesis of Medicinal Molecules Laboratory, Department of Chemistry, State University of Londrina, Londrina 86057-970, Brazil;
| | - Ricardo Sérgio Couto de Almeida
- Postgraduate Program in Microbiology, Department of Microbiology, State University of Londrina, Londrina 86057-970, Brazil; (G.S.-R.); (I.M.d.C.); (P.H.G.B.); (H.T.S.); (L.M.Y.)
| | - Kelly Ishida
- Laboratory of Antifungal Chemotherapy, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-900, Brazil;
| | - Eliandro Reis Tavares
- Department of Medicine, Pontifical Catholic University of Paraná, Campus Londrina, Londrina 86067-000, Brazil;
- Laboratory of Molecular Biology of Microorganisms, Department of Microbiology, State University of Londrina, Londrina 86057-970, Brazil
| | - Lucy Megumi Yamauchi
- Postgraduate Program in Microbiology, Department of Microbiology, State University of Londrina, Londrina 86057-970, Brazil; (G.S.-R.); (I.M.d.C.); (P.H.G.B.); (H.T.S.); (L.M.Y.)
- Laboratory of Molecular Biology of Microorganisms, Department of Microbiology, State University of Londrina, Londrina 86057-970, Brazil
| | - Sueli Fumie Yamada-Ogatta
- Postgraduate Program in Microbiology, Department of Microbiology, State University of Londrina, Londrina 86057-970, Brazil; (G.S.-R.); (I.M.d.C.); (P.H.G.B.); (H.T.S.); (L.M.Y.)
- Postgraduate Program in Clinical and Laboratory Pathophysiology, Department of Pathology, Clinical and Toxicological Analysis, State University of Londrina, Londrina 86038-350, Brazil
- Laboratory of Molecular Biology of Microorganisms, Department of Microbiology, State University of Londrina, Londrina 86057-970, Brazil
| |
Collapse
|
4
|
Vasconcelos PGS, Lee KM, Abuna GF, Costa EMMB, Murata RM. Monoterpene antifungal activities: evaluating geraniol, citronellal, and linalool on Candida biofilm, host inflammatory responses, and structure-activity relationships. Front Pharmacol 2024; 15:1394053. [PMID: 39101130 PMCID: PMC11294919 DOI: 10.3389/fphar.2024.1394053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 06/06/2024] [Indexed: 08/06/2024] Open
Abstract
Introduction: Despite the rising concern with fungal resistance, a myriad of molecules has yet to be explored. Geraniol, linalool, and citronellal are monoterpenes with the same molecular formula (C10H18O), however, neither the effect of these compounds on inflammatory axis induced by Candida spp. nor the antibiofilm Structure-Activity Relationship (SAR) have been well-investigated. Herein we analyzed geraniol, linalool and citronellal antifungal activity, cytotoxicity, and distinctive antibiofilm SAR, also the influence of geraniol on Candida spp induced dysregulated inflammatory axis, and in vivo toxicity. Methods: Minimal inhibitory (MIC) and fungicidal (MFC) concentrations against Candida spp were defined, followed by antibiofilm activity (CFU-colony forming unit/mL/g of dry weight). Cytotoxic activity was assessed using human monocytes (THP-1) and oral squamous cell (TR146). Geraniol was selected for further analysis based on antifungal, antibiofilm and cytotoxic results. Geraniol was tested using a dual-chamber co-culture model with TR146 cells infected with C. albicans, and THP-1 cells, used to mimic oral epithelium upon fungal infection. Expression of Candida enzymes (phospholipase-PLB and aspartyl proteases-SAP) and host inflammatory cytokines (interleukins: IL-1β, IL-6, IL-17, IL-18, IL-10, and Tumor necrosis factor-TNF) were analyzed. Lastly, geraniol in vivo toxicity was assessed using Galleria mellonella. Results: MIC values obtained were 1.25-5 mM/mL for geraniol, 25-100 mM/mL for linalool, and 100-200 mM/mL for citronellal. Geraniol 5 and 50 mM/mL reduced yeast viability during biofilm analysis, only 500 mM/mL of linalool was effective against a 72 h biofilm and no biofilm activity was seen for citronellal. LD50 for TR146 and THP-1 were, respectively: geraniol 5.883 and 8.027 mM/mL; linalool 1.432 and 1.709 mM/mL; and citronellal 0.3006 and 0.1825 mM/mL. Geraniol was able to downregulate expression of fungal enzymes and host pro-inflammatory cytokines IL-1β, IL-6, and IL-18. Finally, safety in vivo parameters were observed up to 20 mM/Kg. Discussion: Despite chemical similarities, geraniol presented better antifungal, antibiofilm activity, and lower cytotoxicity when compared to the other monoterpenes. It also showed low in vivo toxicity and capacity to downregulate the expression of fungal enzymes and host pro-inflammatory cytokines. Thus, it can be highlighted as a viable option for oral candidiasis treatment.
Collapse
Affiliation(s)
| | - Kyu Min Lee
- Department of Foundational Sciences, School of Dental Medicine, East Carolina University, Greenville, NC, United States
| | - Gabriel Flores Abuna
- Department of Foundational Sciences, School of Dental Medicine, East Carolina University, Greenville, NC, United States
| | - Edja Maria Melo Brito Costa
- Department of Dentistry, Postgraduate Program in Dentistry, State University of Paraiba, Campina Grande, Paraíba, Brazil
| | - Ramiro Mendonça Murata
- Department of Foundational Sciences, School of Dental Medicine, East Carolina University, Greenville, NC, United States
| |
Collapse
|
5
|
Ribeiro AB, Pizziolo PG, Clemente LM, Aguiar HC, Poker BDC, Silva AAME, Makrakis LR, Fifolato MA, Souza GC, Oliveira VDC, Watanabe E, Lovato da Silva CH. Strategies for Preventing and Treating Oral Mucosal Infections Associated with Removable Dentures: A Scoping Review. Antibiotics (Basel) 2024; 13:273. [PMID: 38534708 PMCID: PMC10967410 DOI: 10.3390/antibiotics13030273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/01/2024] [Accepted: 03/14/2024] [Indexed: 03/28/2024] Open
Abstract
Oral infections occur due to contact between biofilm rich in Candida albicans formed on the inner surface of complete dentures and the mucosa. This study investigated historical advances in the prevention and treatment of oral mucosal infection and identified gaps in the literature. Bibliographic research was conducted, looking at PubMed, Embase, Web of Science, and Scopus, where 935 articles were found. After removing duplicates and excluding articles by reading the title and abstract, 131 articles were selected for full reading and 104 articles were included. Another 38 articles were added from the gray literature. This review followed the PRISMA-ScR guidelines. The historical period described ranges from 1969 to 2023, in which, during the 21st century, in vitro and in vivo studies became more common and, from 2010 to 2023, the number of randomized controlled trials increased. Among the various approaches tested are the incorporation of antimicrobial products into prosthetic materials, the improvement of oral and denture hygiene protocols, the development of synthetic and natural products for the chemical control of microorganisms, and intervention with local or systemic antimicrobial agents. Studies report good results with brushing combined with sodium hypochlorite, and new disinfectant solutions and products incorporated into prosthetic materials are promising.
Collapse
Affiliation(s)
- Adriana Barbosa Ribeiro
- Department of Dental Materials and Prosthesis, Ribeirão Preto School of Dentistry, University of São Paulo, Café Avenue S/N, Ribeirão Preto 14040-904, SP, Brazil; (A.B.R.); (P.G.P.); (L.M.C.); (H.C.A.); (B.d.C.P.); (A.A.M.e.S.); (L.R.M.); (M.A.F.); (G.C.S.); (V.d.C.O.)
| | - Pillar Gonçalves Pizziolo
- Department of Dental Materials and Prosthesis, Ribeirão Preto School of Dentistry, University of São Paulo, Café Avenue S/N, Ribeirão Preto 14040-904, SP, Brazil; (A.B.R.); (P.G.P.); (L.M.C.); (H.C.A.); (B.d.C.P.); (A.A.M.e.S.); (L.R.M.); (M.A.F.); (G.C.S.); (V.d.C.O.)
| | - Lorena Mosconi Clemente
- Department of Dental Materials and Prosthesis, Ribeirão Preto School of Dentistry, University of São Paulo, Café Avenue S/N, Ribeirão Preto 14040-904, SP, Brazil; (A.B.R.); (P.G.P.); (L.M.C.); (H.C.A.); (B.d.C.P.); (A.A.M.e.S.); (L.R.M.); (M.A.F.); (G.C.S.); (V.d.C.O.)
| | - Helena Cristina Aguiar
- Department of Dental Materials and Prosthesis, Ribeirão Preto School of Dentistry, University of São Paulo, Café Avenue S/N, Ribeirão Preto 14040-904, SP, Brazil; (A.B.R.); (P.G.P.); (L.M.C.); (H.C.A.); (B.d.C.P.); (A.A.M.e.S.); (L.R.M.); (M.A.F.); (G.C.S.); (V.d.C.O.)
| | - Beatriz de Camargo Poker
- Department of Dental Materials and Prosthesis, Ribeirão Preto School of Dentistry, University of São Paulo, Café Avenue S/N, Ribeirão Preto 14040-904, SP, Brazil; (A.B.R.); (P.G.P.); (L.M.C.); (H.C.A.); (B.d.C.P.); (A.A.M.e.S.); (L.R.M.); (M.A.F.); (G.C.S.); (V.d.C.O.)
| | - Arthur Augusto Martins e Silva
- Department of Dental Materials and Prosthesis, Ribeirão Preto School of Dentistry, University of São Paulo, Café Avenue S/N, Ribeirão Preto 14040-904, SP, Brazil; (A.B.R.); (P.G.P.); (L.M.C.); (H.C.A.); (B.d.C.P.); (A.A.M.e.S.); (L.R.M.); (M.A.F.); (G.C.S.); (V.d.C.O.)
| | - Laís Ranieri Makrakis
- Department of Dental Materials and Prosthesis, Ribeirão Preto School of Dentistry, University of São Paulo, Café Avenue S/N, Ribeirão Preto 14040-904, SP, Brazil; (A.B.R.); (P.G.P.); (L.M.C.); (H.C.A.); (B.d.C.P.); (A.A.M.e.S.); (L.R.M.); (M.A.F.); (G.C.S.); (V.d.C.O.)
| | - Marco Aurelio Fifolato
- Department of Dental Materials and Prosthesis, Ribeirão Preto School of Dentistry, University of São Paulo, Café Avenue S/N, Ribeirão Preto 14040-904, SP, Brazil; (A.B.R.); (P.G.P.); (L.M.C.); (H.C.A.); (B.d.C.P.); (A.A.M.e.S.); (L.R.M.); (M.A.F.); (G.C.S.); (V.d.C.O.)
| | - Giulia Cristina Souza
- Department of Dental Materials and Prosthesis, Ribeirão Preto School of Dentistry, University of São Paulo, Café Avenue S/N, Ribeirão Preto 14040-904, SP, Brazil; (A.B.R.); (P.G.P.); (L.M.C.); (H.C.A.); (B.d.C.P.); (A.A.M.e.S.); (L.R.M.); (M.A.F.); (G.C.S.); (V.d.C.O.)
| | - Viviane de Cássia Oliveira
- Department of Dental Materials and Prosthesis, Ribeirão Preto School of Dentistry, University of São Paulo, Café Avenue S/N, Ribeirão Preto 14040-904, SP, Brazil; (A.B.R.); (P.G.P.); (L.M.C.); (H.C.A.); (B.d.C.P.); (A.A.M.e.S.); (L.R.M.); (M.A.F.); (G.C.S.); (V.d.C.O.)
| | - Evandro Watanabe
- Department of Restorative Dentistry, Ribeirão Preto School of Dentistry, University of São Paulo, Café Avenue S/N, Ribeirão Preto 14040-904, SP, Brazil;
| | - Cláudia Helena Lovato da Silva
- Department of Dental Materials and Prosthesis, Ribeirão Preto School of Dentistry, University of São Paulo, Café Avenue S/N, Ribeirão Preto 14040-904, SP, Brazil; (A.B.R.); (P.G.P.); (L.M.C.); (H.C.A.); (B.d.C.P.); (A.A.M.e.S.); (L.R.M.); (M.A.F.); (G.C.S.); (V.d.C.O.)
| |
Collapse
|
6
|
Pandey R, Pandey B, Bhargava A. The Emergence of N. sativa L. as a Green Antifungal Agent. Mini Rev Med Chem 2024; 24:1521-1534. [PMID: 38409693 DOI: 10.2174/0113895575282914240217060251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 01/16/2024] [Accepted: 01/29/2024] [Indexed: 02/28/2024]
Abstract
BACKGROUND Nigella sativa L. has been widely used in the Unani, Ayurveda, Chinese, and Arabic medicine systems and has a long history of medicinal and folk uses. Several phytoconstituents of the plant are reported to have excellent therapeutic properties. In-vitro and in-vivo studies have revealed that seed oil and thymoquinone have excellent inhibitory efficacy on a wide range of both pathogenic and non-pathogenic fungi. OBJECTIVE The present review aims to undertake a comprehensive and systematic evaluation of the antifungal effects of different phytochemical constituents of black cumin. METHOD An exhaustive database retrieval was conducted on PubMed, Scopus, ISI Web of Science, SciFinder, Google Scholar, and CABI to collect scientific information about the antifungal activity of N. sativa L. with 1990 to 2023 as a reference range using 'Nigella sativa,' 'Nigella oil,' 'antifungal uses,' 'dermatophytic fungi,' 'candidiasis,' 'anti-aflatoxin,' 'anti-biofilm' and 'biological activity' as the keywords. RESULTS Black cumin seeds, as well as the extract of aerial parts, were found to exhibit strong antifungal activity against a wide range of fungi. Among the active compounds, thymoquinone exhibited the most potent antifungal effect. Several recent studies proved that black cumin inhibits biofilm formation and growth. CONCLUSION The review provides an in-depth analysis of the antifungal activity of black cumin. This work emphasizes the need to expand studies on this plant to exploit its antifungal properties for biomedical applications.
Collapse
Affiliation(s)
- Raghvendra Pandey
- Department of Botany, Mahatma Gandhi Central University, Motihari-845401 (Bihar), India
| | - Brijesh Pandey
- Department of Biotechnology, Mahatma Gandhi Central University, Motihari-845401 (Bihar), India
| | - Atul Bhargava
- Department of Botany, Mahatma Gandhi Central University, Motihari-845401 (Bihar), India
| |
Collapse
|
7
|
Fatima T, Fatima Z, Hameed S. Abrogation of efflux pump activity, biofilm formation, and immune escape by candidacidal geraniol in emerging superbug, Candida auris. Int Microbiol 2023; 26:881-891. [PMID: 36847907 DOI: 10.1007/s10123-023-00343-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 02/07/2023] [Accepted: 02/16/2023] [Indexed: 03/01/2023]
Abstract
During the last decade, Candida auris emerged as a threatening human fungal pathogen that notably caused outbreaks around the globe with high mortality. Considering C. auris species as newly discovered fungi, the evolutionary features remain elusive. The antifungal resistance which is a norm in C. auris underlines the need for innovative therapeutic options. ATP Binding Cassette (ABC) superfamily efflux pumps overexpression and biofilms are known to be major contributors to multidrug resistance (MDR) in C. auris. Therefore, herein, we investigated the antifungal potential of geraniol (Ger) as a promising natural compound in the fight against MDR C. auris. Our experiments proved that Ger was fungicidal in nature and impaired rhodamine 6G (R6G) efflux, confirming the specific effect on ABC transporters. Kinetic studies unravelled the competitive mode of inhibition by Ger for R6G efflux since the apparent Km increased with no change in Vmax value. Mechanistic insights also revealed that Ger depleted ergosterol content in C. auris. Furthermore, Ger led to inhibition in biofilm formation as evident from crystal violet staining, biofilm metabolic and biomass measurements. Additionally, enhanced survival of Caenorhabditis elegans model after C. auris infection demonstrated the in vivo efficacy of Ger. Lastly, the in vivo efficacy was confirmed from a THP-1 cell line model which depicted enhanced macrophage-mediated killing in the presence of Ger. Modulation of C. auris efflux pump activity and biofilm formation by Ger represents a promising approach to combat MDR. Together, this study demonstrated the potential therapeutic insights of Ger as a promising addition to the antifungal armamentarium required to treat emerging and resistant C. auris.
Collapse
Affiliation(s)
- Tazeen Fatima
- Amity Institute of Biotechnology, Amity University Haryana, Gurugram (Manesar), - 122413, India
| | - Zeeshan Fatima
- Amity Institute of Biotechnology, Amity University Haryana, Gurugram (Manesar), - 122413, India.
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, Bisha, - 61922, Saudi Arabia.
| | - Saif Hameed
- Amity Institute of Biotechnology, Amity University Haryana, Gurugram (Manesar), - 122413, India.
| |
Collapse
|
8
|
Kaur L, Aras MA, Chitre V, Nagarsekar A, Ferreira AN. Evaluation and comparison of flexural strength, surface roughness and porosity percentage of denture base resins incorporated with Thymoquinone and silver nano-antimicrobial agents-an in vitro study. J Oral Biol Craniofac Res 2022; 12:716-720. [PMID: 36110866 PMCID: PMC9468500 DOI: 10.1016/j.jobcr.2022.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 05/26/2022] [Accepted: 08/10/2022] [Indexed: 11/21/2022] Open
Abstract
Aim To evaluate and compare the flexural strength, surface roughness and porosity percentage of acrylic denture base material modified with two antimicrobial agents, Thymoquinone (TQ) and Silver nanoparticles (AgNP). Materials and methods A total of 90 specimens were fabricated and divided into groups A, B and C with 30 specimens each. Of the 30 specimens, 10 specimens measuring 65mmx 10mmx 2.5 mm were used to study the flexural strength, 10 specimens measuring 10 mm × 20 mm × 3 mm to study surface roughness and 10 specimens measuring 10 mm × 20 mm × 3 mm to study porosity percentage. Group A specimens were made of unmodified denture base resin, group B and C were modified with 2.5% AgNP and 1% TQ respectively. The specimens were processed in the conventional manner. A universal testing machine was used to measure flexural strength and a profilometer was used to measure surface roughness. Porosity percentage was evaluated with help of a desiccator. The data obtained was subjected to statistical analyses using One-way ANOVA and the Tukey-post hoc test, with statistical significance at p ≤ 0.05. Results Addition of 2.5% AgNP and 1% TQ to acrylic denture base resin significantly reduced flexural strength and increased the porosity percentage (p < 0.01) but within clinically acceptable limits. No significant difference was found in the surface roughness between the various groups tested. Conclusions Heat cured acrylic denture base resins modified with 2.5% AgNPs,1% TQ exhibited clinically acceptable flexural strength and surface properties and could be incorporated into the denture base material as an antimicrobial agent.
Collapse
Affiliation(s)
- Loveleen Kaur
- Department of Prosthodontics, Goa Dental College & Hospital, Goa, India
| | | | | | | | | |
Collapse
|