1
|
Rasool SUA, Ashraf S, Nabi M, Masoodi SR, Fazili KM, Amin S. Clinical Manifestations of Hyperandrogenism and Ovulatory Dysfunction Are Not Associated with His1058 C/T SNP (rs1799817) Polymorphism of Insulin Receptor Gene Tyrosine Kinase Domain in Kashmiri Women with PCOS. Int J Endocrinol 2021; 2021:7522487. [PMID: 34912452 PMCID: PMC8668320 DOI: 10.1155/2021/7522487] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 11/15/2021] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Polycystic ovary syndrome (PCOS) is the most common endocrine metabolic disorder affecting premenopausal women. Besides primary features like anovulation, hyperandrogenism, and polycystic ovaries, women with PCOS present with multiple metabolic, cardiovascular, and psychological disorders. The etiology is multifactorial and the different genetic variants are suggested to play an important role in pathogenesis. Insulin resistance is a ubiquitous finding in PCOS and SNPs in genes involved in the insulin signaling pathway are possible candidates that can explain the development of clinical manifestations of PCOS. AIM We aimed to investigate the association of INSR His1058 C/T (rs1799817) single nucleotide polymorphism with PCOS in Kashmiri women. The genotypic-phenotypic correlation of the tested SNP with hyperandrogenism, ovulatory dysfunction, and metabolic markers was evaluated. RESULTS The allele frequency (OR = 1.00, 95% CI = 0.67-1.48, χ 2 = 0.01, P=0.99) and genotype distribution (χ 2 = 3.73, P=0.15) in INSR C/T polymorphism were comparable with controls. No significant association was found with PCOS in dominant (P=0.194), recessive (P=0.442), and homo vs. het. (P=0.5) genotype models. Genotype-phenotype correlation analysis revealed that variant TT genotype had significantly higher HOMA (P=0.029) and reduced insulin sensitivity QUICKI (P=0.037) values. There was no significant variation in the prevalence of hirsutism, acne, alopecia, menstrual disturbances, acanthosis nigricans, and obesity (all P > 0.05) in different INSR C/T genotypes. CONCLUSION The INSR C/T SNP (rs1799817) does not increase the risk of PCOS in Kashmiri women. This SNP is unlikely to play a significant role in the development and manifestation of clinical symptoms of polycystic ovary syndrome.
Collapse
Affiliation(s)
| | - Sairish Ashraf
- Department of Biochemistry, University of Kashmir, Srinagar, India
| | - Mudasar Nabi
- Department of Biochemistry, University of Kashmir, Srinagar, India
| | - Shariq R. Masoodi
- Department of Endocrinology, Sher-i-Kashmir Institute of Medical Sciences, Srinagar, India
| | - Khalid M. Fazili
- Department of Biotechnology, University of Kashmir, Srinagar, India
| | - Shajrul Amin
- Department of Biochemistry, University of Kashmir, Srinagar, India
| |
Collapse
|
2
|
Denyer AL, Catchpole B, Davison LJ. Genetics of canine diabetes mellitus part 2: Current understanding and future directions. Vet J 2021; 270:105612. [PMID: 33641811 DOI: 10.1016/j.tvjl.2021.105612] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 01/05/2021] [Accepted: 01/12/2021] [Indexed: 02/08/2023]
Abstract
Part 1 of this 2-part review outlined the importance of disease classification in diabetes genetic studies, as well as the ways in which genetic variants may contribute to risk of a complex disease within an individual, or within a particular group of individuals. Part 2, presented here, describes in more detail our current understanding of the genetics of canine diabetes mellitus compared to our knowledge of the human disease. Ongoing work to improve our knowledge, using new technologies, is also introduced.
Collapse
Affiliation(s)
- Alice L Denyer
- Department of Pathology and Pathogen Biology, Royal Veterinary College, Hatfield, UK
| | - Brian Catchpole
- Department of Pathology and Pathogen Biology, Royal Veterinary College, Hatfield, UK
| | - Lucy J Davison
- Department of Clinical Sciences and Services, Royal Veterinary College, Hatfield, UK; Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK.
| | | |
Collapse
|
3
|
Abstract
PURPOSE OF REVIEW Diabetes is a spectrum of clinical manifestations, including latent autoimmune diabetes in adults (LADA). However, it has been questioned whether LADA exists or simply is a group of misclassified type 1 diabetes (T1D) and type 2 diabetes (T2D) patients. This review will provide an updated overview of the genetics of LADA, highlight what genetics tell us about LADA as a diabetes subtype, and point to future directions in the study of LADA. RECENT FINDINGS Recent studies have verified the genetic overlap between LADA and both T1D and T2D and have contributed identification of a novel LADA-specific locus, namely, PFKFB3, and subtype-specific signatures in the HLA region. Genetic risk scores comprising T1D-risk variants have been shown to be a promising tool for discriminating diabetes subtypes and identifying patients rapidly progressing to insulin dependence. Genetic data support the existence of LADA, but further studies are needed to fully determine the place of LADA in the diabetes spectrum.
Collapse
Affiliation(s)
- Mette K Andersen
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, DK-2200, Copenhagen N, Denmark.
| |
Collapse
|
4
|
Xie Z, Chang C, Huang G, Zhou Z. The Role of Epigenetics in Type 1 Diabetes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1253:223-257. [PMID: 32445098 DOI: 10.1007/978-981-15-3449-2_9] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Type 1 diabetes (T1D) is an autoimmune disease caused by the interaction between genetic alterations and environmental factors. More than 60 susceptible genes or loci of T1D have been identified. Among them, HLA regions are reported to contribute about 50% of genetic susceptibility in Caucasians. There are many environmental factors involved in the pathogenesis of T1D. Environmental factors may change the expression of genes through epigenetic mechanisms, thus inducing individuals with susceptible genes to develop T1D; however, the underlying mechanisms remain poorly understood. The major epigenetic modifications include DNA methylation, histone modification, and non-coding RNA. There has been extensive research on the role of epigenetic mechanisms including aberrant DNA methylation, histone modification, and microRNA in the pathogenesis of T1D. DNA methylation and microRNA have been proposed as biomarkers to predict islet β cell death, which needs further confirmation before any clinical application can be developed. Small molecule inhibitors of histone deacetylases, histone methylation, and DNA methylation are potentially important for preventing T1D or in the reprogramming of insulin-producing cells. This chapter mainly focuses on T1D-related DNA methylation, histone modification, and non-coding RNA, as well as their possible translational potential in the early diagnosis and treatment of T1D.
Collapse
Affiliation(s)
- Zhiguo Xie
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.,Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, National Clinical Research Center for Metabolic Diseases, Changsha, 410011, Hunan, China
| | - Christopher Chang
- Division of Pediatric Immunology and Allergy, Joe DiMaggio Children's Hospital, Hollywood, FL, 33021, USA.,Division of Rheumatology, Allergy and Clinical Immunology, University of California Davis, Davis, CA, 95616, USA
| | - Gan Huang
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.,Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, National Clinical Research Center for Metabolic Diseases, Changsha, 410011, Hunan, China
| | - Zhiguang Zhou
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China. .,Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, National Clinical Research Center for Metabolic Diseases, Changsha, 410011, Hunan, China.
| |
Collapse
|
5
|
Kamel AM, Mira MF, Ebid GTA, Kassem SH, Radwan ER, Mamdouh M, Amin M, Badawy N, Bazaraa H, Ibrahim A, Salah N. Association of insulin gene VNTR INS -23/Hph1 A>T (rs689) polymorphism with type 1 diabetes mellitus in Egyptian children. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2019. [DOI: 10.1186/s43042-019-0017-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Type1 diabetes mellitus (T1DM) has a multi-factorial pathogenesis; the interplay between genetic susceptibility and environmental factors is thought to provide the fundamental element for the disease. Apart from HLA, more than 50 genetic variants are associated with T1DM. INS -23/Hph1 A>T (rs689) is one of the effective loci with inconsistent reports in the literature. Accordingly, this study was designed to define the frequencies of INS -23/Hph1 A>T polymorphism and its association with T1DM in Egyptian diabetic children and their non-diabetic family members as compared to healthy controls.
Methods
Using polymerase chain reaction-restriction fragment length polymorphism methodology, analysis of insulin gene VNTR polymorphism was performed for 496 samples (91 patients, 179 parents, 130 siblings, and 96 controls); parents and siblings were apparently healthy.
Results
INS genotypes and allele frequencies were comparable between patients, non-diabetic siblings, and parents (p = 0.97 and 0.77, respectively). However, the TT/AT genotype and T allele were over-presented in the three family groups compared to controls (p = 0.0015 and 0.0029, respectively).
Comparing patients to controls, the T allele is considered a risk factor for the development of TIDM (OR 2.56, 95% CI 1.42–4.62, p = 0.0017).
INS -23/Hph1 A>T polymorphism showed concordance between patients and their mothers (Kappa = 0.446, p = 0.000) but not with their fathers (Kappa = 0.031, p = 0.765).
Conclusions
INS -23/Hph1 A>T gene polymorphism was shown to be a risk factor for the development of TIDM. This is in agreement with some and in disagreement with other reports. Studies of risk susceptibility factors have to be carried out locally in each community; results cannot be extrapolated from one ethnic group to another.
Collapse
|
6
|
Rasool SUA, Ashraf S, Nabi M, Rashid F, Masoodi SR, Fazili KM, Amin S. Insulin gene VNTR class III allele is a risk factor for insulin resistance in Kashmiri women with polycystic ovary syndrome. Meta Gene 2019. [DOI: 10.1016/j.mgene.2019.100597] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
7
|
Ramu D, Perumal V, Paul SFD. Association of common type 1 and type 2 diabetes gene variants with latent autoimmune diabetes in adults: A meta-analysis. J Diabetes 2019; 11:484-496. [PMID: 30456822 DOI: 10.1111/1753-0407.12879] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 11/09/2018] [Accepted: 11/13/2018] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND The aim of this meta-analysis was to determine the association of common type 1 diabetes (T1D) and type 2 diabetes (T2D) gene variants (protein tyrosine phosphatase non-receptor 22 [PTPN22] rs2476601C/T, insulin [INS] rs689A/T and transcription factor 7-like 2 [TCF7L2] rs7903146C/T) with latent autoimmune diabetes in adults (LADA). METHODS A systematic search of electronic databases was conducted up to 2017 and data from 16 independent case-control studies for three gene variants were pooled. The pooled allele and genotype frequencies for each T1D and T2D gene variant were used to calculate odds ratios (ORs) with 95% confidence intervals (CIs) to assess the strength of the association. Heterogeneity tests and evaluation of publication bias were performed for all studies. RESULTS In all, 8869 cases and 20 829 controls pooled from 16 case-control studies were included in the analysis. For rs2476601, a significant association was found for homozygote TT (OR 2.67; 95% CI 1.92-3.70; P < 0.0001), heterozygote CT (OR 1.61; 95% CI 1.44-1.79; P < 0.0001), and the T allele (OR 1.62; 95% CI 1.48-1.78; P < 0.0001). Overall, a significant inverse association was observed for rs689 in the TT genotype (OR 0.43; 95% CI 0.30-0.64; P < 0.0001), AT genotype (OR 0.53; 95% CI 0.45-0.62; P < 0.0001), and T allele (OR 0.61; 95% CI 0.52-0.71; P < 0.0001). For the rs7903146 polymorphism, the T allele (OR 1.19; 95% CI 1.00-1.40; P = 0.04) may be associated with the risk of LADA. CONCLUSION The rs2476601C/T, rs689A/T, and rs7903146C/T polymorphisms were found to be associated with the risk of LADA, thereby indicating that, genetically, LADA could be an admixture of both T1D and T2D.
Collapse
Affiliation(s)
- Deepika Ramu
- Department of Human Genetics, Sri Ramachandra Institute of Higher Education and Research, Chennai, India
| | | | - Solomon F D Paul
- Department of Human Genetics, Sri Ramachandra Institute of Higher Education and Research, Chennai, India
| |
Collapse
|
8
|
Andersen MK, Hansen T. Genetic Aspects of Latent Autoimmune Diabetes in Adults: A Mini-Review. Curr Diabetes Rev 2019; 15:194-198. [PMID: 30058494 DOI: 10.2174/1573399814666180730123226] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 07/25/2018] [Accepted: 07/28/2018] [Indexed: 02/07/2023]
Abstract
Diabetes is a multifactorial disease, caused by a complex interplay between environmental and genetic risk factors. Genetic determinants of particularly Type 1 Diabetes (T1D) and Type 2 Diabetes (T2D) have been studied extensively, whereas well-powered studies of Latent Autoimmune Diabetes in Adults (LADA) are lacking. So far available studies support a clear genetic overlap between LADA and T1D, however, with smaller effect sizes of the T1D-risk variants in LADA as compared to T1D. A genetic overlap between LADA and T2D is less clear. However, recent studies, including large numbers of LADA patients, provide different lines of evidence to support a genetic overlap between T2D and LADA. The genetic predisposition to LADA is yet to be explored in a study design, like a genome- wide association study, which allows for analyses of the genetic predisposition independently of prior hypothesis about potential candidate genes. This type of study may facilitate the discovery of risk variants associated with LADA independently of T1D and T2D, and is central in order to determine if LADA should be considered as an independent diabetic subtype. Extended knowledge about the genetic predisposition to LADA may also facilitate stratification of the heterogeneous group of LADA patients, which may assist the choice of treatment. This mini-review summarizes current knowledge of the genetics of LADA, and discusses the perspectives for future studies.
Collapse
Affiliation(s)
- Mette Korre Andersen
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Torben Hansen
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
9
|
Liu SH, Yu J, Sanchez R, Liu X, Heidt D, Willey J, Nemunaitis J, Brunicardi FC. A novel synthetic human insulin super promoter for targeting PDX-1-expressing pancreatic cancer. Cancer Lett 2018; 418:75-83. [PMID: 29309817 DOI: 10.1016/j.canlet.2018.01.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 12/19/2017] [Accepted: 01/03/2018] [Indexed: 02/07/2023]
Abstract
Our previous studies have shown that a rat insulin promoter II fragment (RIP) was used to effectively target pancreatic adenocarcinoma (PDAC) and insulinoma that over-express pancreatic and duodenal homeobox-1 (PDX-1). To enhance the activity and specificity of the human insulin promoter, we engineered a synthetic human insulin super-promoter (SHIP). Reporter assay demonstrated that SHIP1 was the most powerful promoter among all of the SHIPs and had far greater activity than the endogenous human insulin promoters and RIP in PDAC expressing PDX-1. Over-expression, knockdown and competitive inhibition of PDX-1 expression assay proved that PDX-1 is a critical transcript factor to regulate the activity of SHIP1. SHIP1-driven viral thymidine kinase followed by ganciclovir (SHIP1-TK/GCV) resulted in cytotoxicity to PDAC cells in vitro. Systemic delivery of SHIP1-TK/GCV in PDAC xenograft mice significantly suppressed PANC-1 tumor growth in vivo greater than RIP-TK/GCV and CMV-TK/GCV controls (p < .05). These preclinical data suggest that SHIP1 is a powerful novel promoter that can be used to target human PDAC expressing PDX-1 in clinical trials. Furthermore, this novel strategy of engineering synthetic super-promoters could be used for other cancer targets.
Collapse
Affiliation(s)
- Shi-He Liu
- Department of Surgery, University of Toledo College of Medicine & Life Sciences, Toledo OH, USA
| | - Juehua Yu
- Department of Surgery, University of California at Los Angeles, CA, USA
| | - Robbi Sanchez
- Department of Surgery, University of California at Los Angeles, CA, USA
| | - Xiaochen Liu
- Department of Surgery, University of Toledo College of Medicine & Life Sciences, Toledo OH, USA
| | - David Heidt
- Department of Surgery, University of Toledo College of Medicine & Life Sciences, Toledo OH, USA
| | - James Willey
- Department of Medicine, University of Toledo College of Medicine & Life Sciences, Toledo OH, USA
| | - John Nemunaitis
- Department of Medicine, University of Toledo College of Medicine & Life Sciences, Toledo OH, USA
| | | |
Collapse
|
10
|
Khoshroo M, Khamseh ME, Amir Zargar AA, Malek M, Falak R, Shekarabi M. The Relationship between insulin variable number of tandem repeats (INS-VNTR) -23 A/T and cytotoxic Tlymphocyte associated protein-4 (CTLA-4) +49 A/G polymorphisms with islet autoantibodies in persons with diabetes. Med J Islam Repub Iran 2017; 31:83. [PMID: 29951384 PMCID: PMC6014810 DOI: 10.18869/mjiri.31.83] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Indexed: 11/25/2022] Open
Abstract
Background: Both genetic and environmental factors are important in pathogenesis of diabetes. Non HLA (Human Leukocyte Antigen) genes such as INS-VNTR and CTLA-4 in addition of HLA genes have influence on genetic susceptibility for diabetes mellitus. In this study the association of +49 A/G CTLA-4 and -23 A/T INS-VNTR polymorphisms with diabetes and their association with islet autoantibodies were investigated. Methods: Thirty four autoantibody positive adult persons with diabetes mellitus and 39 persons with Type 1diabetes mellitus (T1DM), 40 autoantibody negative Type 2 diabetes mellitus (T2DM) patients and 40 healthy controls were studied using Polymerase Chain Reaction-Restriction Fragment Length Polymorphism (PCR-RFLP) technique. Results: The frequencies of -23 A/T INS-VNTR genotypes were not significantly different among study groups. It was shown that the distribution of the +49A/G CTLA-4 allele and genotype frequencies did not differ between T1DM patients, autoantibody positive adult patients and controls. With increasing CTLA-4 G allele and GG/AG genotypes, the frequency of Glutamic Acid Decarboxylase Autoantibody (GADA), Islet Cell Autoantibody (ICA) and Islet Antigen 2 Antibody (IA2A) positive patients were increased. Conclusion: Our results suggest that susceptibility allele A of -23A/T INS-VNTR does not have any role in the pathogenesis of diabetes in our patients and susceptibility allele G of +49 A/G CTLA-4 if not, has a small role in pathogenesis of diabetes in T1DM and autoantibody positive adult patients and in spite of significant increase in autoantibody negative T2DM group it does not have any role in disease pathogenesis.
Collapse
Affiliation(s)
- Mohammad Khoshroo
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Ebrahim Khamseh
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Akbar Amir Zargar
- Molecular Immunology Research Center, Tehran University of Medical Science, Tehran, Iran
| | - Mojtaba Malek
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences, Tehran, Iran
| | - Reza Falak
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mehdi Shekarabi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran & Immunology Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
11
|
Mishra R, Chesi A, Cousminer DL, Hawa MI, Bradfield JP, Hodge KM, Guy VC, Hakonarson H, Mauricio D, Schloot NC, Yderstræde KB, Voight BF, Schwartz S, Boehm BO, Leslie RD, Grant SFA. Relative contribution of type 1 and type 2 diabetes loci to the genetic etiology of adult-onset, non-insulin-requiring autoimmune diabetes. BMC Med 2017; 15:88. [PMID: 28438156 PMCID: PMC5404312 DOI: 10.1186/s12916-017-0846-0] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 03/29/2017] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND In adulthood, autoimmune diabetes can present as non-insulin-requiring diabetes, termed as 'latent autoimmune diabetes in adults' (LADA). In this study, we investigated established type 1 diabetes (T1D) and type 2 diabetes (T2D) genetic loci in a large cohort of LADA cases to assess where LADA is situated relative to these two well-characterized, classic forms of diabetes. METHODS We tested the association of T1D and T2D GWAS-implicated loci in 978 LADA cases and 1057 non-diabetic controls of European ancestry using a linear mixed model. We then compared the associations of T1D and T2D loci between LADA and T1D and T2D cases, respectively. We quantified the difference in genetic risk between each given disease at each locus, and also calculated genetic risk scores to quantify how genetic liability to T1D and T2D distinguished LADA cases from controls. RESULTS Overall, our results showed that LADA is genetically more similar to T1D, with the exception of an association at the T2D HNF1A locus. Several T1D loci were associated with LADA, including the major histocompatibility complex region, as well as at PTPN22, SH2B3, and INS. Contrary to previous studies, the key T2D risk allele at TCF7L2 (rs7903146-T) had a significantly lower frequency in LADA cases, suggesting that this locus does not play a role in LADA etiology. When constrained on antibody status, the similarity between LADA and T1D became more apparent; however, the HNF1A and TCF7L2 observations persisted. CONCLUSION LADA is genetically closer to T1D than T2D, although the genetic load of T1D risk alleles is less than childhood-onset T1D, particularly at the major histocompatibility complex region, potentially accounting for the later disease onset. Our results show that the genetic spectrum of T1D extends into adult-onset diabetes, where it can clinically masquerade as T2D. Furthermore, T2D genetic risk plays a small role in LADA, with a degree of evidence for the HNF1A locus, highlighting the potential for genetic risk scores to contribute towards defining diabetes subtypes.
Collapse
Affiliation(s)
- Rajashree Mishra
- Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Alessandra Chesi
- Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Diana L Cousminer
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Mohammad I Hawa
- Department of Immunobiology, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Jonathan P Bradfield
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Kenyaita M Hodge
- Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Vanessa C Guy
- Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Hakon Hakonarson
- Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Didac Mauricio
- Hospital Universitari Germans Trias i Pujol, Barcelona, Spain
| | | | | | - Benjamin F Voight
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Bernhard O Boehm
- Department of Internal Medicine I, Ulm University Medical Centre, Ulm, Germany.,LKC School of Medicine, Nanyang Technological University, Singapore and Imperial College, London, UK
| | - Richard David Leslie
- Department of Immunobiology, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK. .,Department of Immunobiology, Blizard Institute, 4 Newark Street, London, E1 2AT, UK.
| | - Struan F A Grant
- Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA. .,Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA. .,Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA. .,Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA. .,Divisions of Human Genetics and Endocrinology, The Children's Hospital of Philadelphia, 3615 Civic Center Boulevard, Room 1102D, Philadelphia, PA, 19104, USA.
| |
Collapse
|
12
|
Zhang N, Huang W, Dong F, Liu Y, Zhang B, Jing L, Wang M, Yang G, Jing C. Insulin gene VNTR polymorphisms -2221MspI and -23HphI are associated with type 1 diabetes and latent autoimmune diabetes in adults: a meta-analysis. Acta Diabetol 2015; 52:1143-55. [PMID: 26362169 DOI: 10.1007/s00592-015-0805-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 08/21/2015] [Indexed: 12/16/2022]
Abstract
AIMS A variable number of tandem repeat (VNTRs) region in the insulin gene (INS) possibly influences the progression of type 1 diabetes (T1D) and latent autoimmune diabetes in adults (LADA). However, effects of INS VNTR polymorphisms in these contexts remain inconclusive. METHODS We performed a systematic review of work on the INS VNTR -2221MspI and -23HphI polymorphisms to estimate the overall effects thereof on disease susceptibility; we included 17,498 T1D patients and 24,437 controls, and 1960 LADA patients and 5583 controls. RESULTS For T1D, the C allele at -2221MspI and the A allele at -23HphI were associated with estimated relative risks of 2.13 (95 % CI 1.94, 2.35) and 0.46 (95 % CI 0.44, 0.48), which contributed to absolute increases of 46.76 and 46.98 % in the risk of all T1D, respectively. The estimated lambda values were 0.44 and 0.42, respectively, suggesting that a co-dominant model most likely explained the effects of -2221MspI and -23HphI on T1D. For -23HphI, the A allele carried an estimated relative risk of 0.55 (95 % CI 0.50, 0.61) for LADA and increased the risk of all LADA by 36.94 %. The λ value was 0.43, suggesting that a co-dominant model most likely explained the effect of -23HphI on LADA. CONCLUSIONS Our results support the existence of associations of INS with T1D and LADA.
Collapse
Affiliation(s)
- Na Zhang
- Department of Epidemiology, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Weihuang Huang
- Department of Epidemiology, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Fang Dong
- Department of Epidemiology, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Yang Liu
- Department of Epidemiology, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Baohuan Zhang
- Department of Epidemiology, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Lipeng Jing
- Department of Epidemiology, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Man Wang
- Department of Epidemiology, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Guang Yang
- Department of Parasitology, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, China.
| | - Chunxia Jing
- Department of Epidemiology, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, China.
| |
Collapse
|
13
|
Ionescu-Tîrgovişte C, Gagniuc PA, Guja C. Structural Properties of Gene Promoters Highlight More than Two Phenotypes of Diabetes. PLoS One 2015; 10:e0137950. [PMID: 26379145 PMCID: PMC4574929 DOI: 10.1371/journal.pone.0137950] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 08/25/2015] [Indexed: 01/20/2023] Open
Abstract
Genome-wide association studies (GWAS) published in the last decade raised the number of loci associated with type 1 (T1D) and type 2 diabetes (T2D) to more than 50 for each of these diabetes phenotypes. The environmental factors seem to play an important role in the expression of these genes, acting through transcription factors that bind to promoters. Using the available databases we examined the promoters of various genes classically associated with the two main diabetes phenotypes. Our comparative analyses have revealed significant architectural differences between promoters of genes classically associated with T1D and T2D. Nevertheless, five gene promoters (about 16%) belonging to T1D and six gene promoters (over 19%) belonging to T2D have shown some intermediary structural properties, suggesting a direct relationship to either LADA (Latent Autoimmune Diabetes in Adults) phenotype or to non-autoimmune type 1 phenotype. The distribution of these promoters in at least three separate classes seems to indicate specific pathogenic pathways. The image-based patterns (DNA patterns) generated by promoters of genes associated with these three phenotypes support the clinical observation of a smooth link between specific cases of typical T1D and T2D. In addition, a global distribution of these DNA patterns suggests that promoters of genes associated with T1D appear to be evolutionary more conserved than those associated with T2D. Though, the image based patterns obtained by our method might be a new useful parameter for understanding the pathogenetic mechanism and the diabetogenic gene networks.
Collapse
Affiliation(s)
| | - Paul Aurelian Gagniuc
- National Institute of Diabetes, Nutrition and Metabolic Diseases “N.C. Paulescu”, Bucharest, Romania
- National Institute of Pathology "Victor Babes", Bucharest, Romania
- Department of Genetics, University of Bucharest, Aleea Portocalelor 1–3, Sector 6, Bucharest, Romania
- * E-mail:
| | - Cristian Guja
- National Institute of Diabetes, Nutrition and Metabolic Diseases “N.C. Paulescu”, Bucharest, Romania
| |
Collapse
|
14
|
Xie Z, Chang C, Zhou Z. Molecular Mechanisms in Autoimmune Type 1 Diabetes: a Critical Review. Clin Rev Allergy Immunol 2014; 47:174-92. [DOI: 10.1007/s12016-014-8422-2] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
15
|
Abstract
Diabetes is a much more heterogeneous disease than the present subdivision into types 1 and 2 assumes; type 1 and type 2 diabetes probably represent extremes on a range of diabetic disorders. Both type 1 and type 2 diabetes seem to result from a collision between genes and environment. Although genetic predisposition establishes susceptibility, rapid changes in the environment (ie, lifestyle factors) are the most probable explanation for the increase in incidence of both forms of diabetes. Many patients have genetic predispositions to both forms of diabetes, resulting in hybrid forms of diabetes (eg, latent autoimmune diabetes in adults). Obesity is a strong modifier of diabetes risk, and can account for not only a large proportion of the epidemic of type 2 diabetes in Asia but also the ever-increasing number of adolescents with type 2 diabetes. With improved characterisation of patients with diabetes, the range of diabetic subgroups will become even more diverse in the future.
Collapse
Affiliation(s)
- Tiinamaija Tuomi
- Department of Medicine, Helsinki University Hospital, Helsinki, Finland; Folkhälsan Research Center, Helsinki, Finland; Research Programs Unit, Diabetes and Obesity, University of Helsinki, Helsinki, Finland
| | - Nicola Santoro
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT, USA
| | - Sonia Caprio
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT, USA
| | - Mengyin Cai
- Department of Endocrinology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jianping Weng
- Department of Endocrinology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Leif Groop
- Department of Clinical Sciences, Diabetes and Endocrinology, Lund University, Malmö, Sweden; Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland.
| |
Collapse
|
16
|
Basile KJ, Guy VC, Schwartz S, Grant SFA. Overlap of genetic susceptibility to type 1 diabetes, type 2 diabetes, and latent autoimmune diabetes in adults. Curr Diab Rep 2014; 14:550. [PMID: 25189437 DOI: 10.1007/s11892-014-0550-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Despite the notion that there is a degree of commonality to the biological etiology of type 1 diabetes (T1D) and type 2 diabetes (T2D), the lack of overlap in the genetic factors underpinning each of them suggests very distinct mechanisms. A disorder considered to be at the "intersection" of these two diseases is "latent autoimmune diabetes in adults" (LADA). Interestingly, genetic signals from both T1D and T2D are also seen in LADA, including the key HLA and transcription factor 7-like 2 (TCF7L2) loci, but the magnitudes of these effects are more complex than just pointing to LADA as being a simple admixture of T1D and T2D. We review the current status of the understanding of the genetics of LADA and place it in the context of what is known about the genetics of its better-studied "cousins," T1D and T2D, especially with respect to the myriad of discoveries made over the last decade through genome-wide association studies.
Collapse
Affiliation(s)
- Kevin J Basile
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | | | | | | |
Collapse
|
17
|
Lundgren VM, Andersen MK, Isomaa B, Tuomi T. Family history of Type 1 diabetes affects insulin secretion in patients with 'Type 2' diabetes. Diabet Med 2013; 30:e163-9. [PMID: 23157220 DOI: 10.1111/dme.12069] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Revised: 10/16/2012] [Accepted: 11/08/2012] [Indexed: 12/15/2022]
Abstract
AIMS The aim was to evaluate the impact of family history of diabetes on the phenotype of patients diagnosed with Type 2 diabetes and the frequency of susceptibility genotypes. METHODS Patients with Type 2 diabetes with family history for both Type 1 and Type 2 diabetes (FH(MIX, n) = 196) or Type 2 diabetes only (FH(T2), n = 139) matched for age, sex, BMI and age at diagnosis, underwent an oral glucose tolerance test and a combined glucagon test and insulin tolerance test. Glutamic acid decarboxylase (GAD) antibodies and major Type 1 and Type 2 diabetes susceptibility gene variants were analysed. Patients were stratified into groups according to family history or GAD antibody positivity (GADA+, GADA-) or a combination of these (GADA+/FH(MIX), GADA+/FH(T2), GADA-/FH(MIX), GADA-/FH(T2)). RESULTS Compared with other patients, those with FH(MIX) more often had GAD antibodies (14.3 vs. 4.3%, P = 0.003), and those with both FH(MIX) and GAD antibodies had the highest frequency of insulin deficiency (stimulated serum C-peptide < 0.7 nmol/l, GADA+/FH(MIX) 46.4% vs. GADA-/FH(MIX) 9.5% (P < 0.00001), GADA-/FH(T2) 4.5% (P < 0.00001), GADA+/FH(T2) 0%). Patients with GADA+/FH(MIX) more often had HLA-DQB1 risk genotypes compared with patients with GADA-/FH(MIX) or GADA-/FH(T2D) (47 vs. 23 or 14%, P = 0.05 and P < 0.00001, respectively). In logistic regression analyses, FH(MIX), GAD antibody positivity and HLA risk genotypes were independently associated with insulin deficiency. CONCLUSION A family history for both type 1 and type 2 diabetes was associated with higher prevalence of GAD antibodies and HLA-DQB1 risk genotypes than a family history of type 2 diabetes only, and was associated with earlier and more severe development of insulin deficiency, which was only partially explained by GAD antibodies and HLA.
Collapse
Affiliation(s)
- V M Lundgren
- Department of Medicine, Helsinki University Central Hospital, Research Program of Molecular Medicine, University of Helsinki, Folkhalsan Research Centre, Helsinki, Finland.
| | | | | | | |
Collapse
|
18
|
Catchpole B, Adams JP, Holder AL, Short AD, Ollier WER, Kennedy LJ. Genetics of canine diabetes mellitus: are the diabetes susceptibility genes identified in humans involved in breed susceptibility to diabetes mellitus in dogs? Vet J 2012; 195:139-47. [PMID: 23265864 DOI: 10.1016/j.tvjl.2012.11.013] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Revised: 11/09/2012] [Accepted: 11/15/2012] [Indexed: 01/22/2023]
Abstract
Diabetes mellitus is a common endocrinopathy in companion animals, characterised by hyperglycaemia, glycosuria and weight loss, resulting from an absolute or relative deficiency in the pancreatic hormone insulin. There are breed differences in susceptibility to diabetes mellitus in dogs, with the Samoyed breed being overrepresented, while Boxers are relatively absent in the UK population of diabetic dogs, suggesting that genetic factors play an important role in determining susceptibility to the disease. A number of genes, linked with susceptibility to diabetes mellitus in humans, are associated with an increased risk of diabetes mellitus in dogs, some of which appear to be relatively breed-specific. Diabetes mellitus in dogs has been associated with major histocompatibility complex (MHC) class II genes (dog leucocyte antigen; DLA), with similar haplotypes and genotypes being identified in the most susceptible breeds. A region containing a variable number of tandem repeats (VNTR) and several polymorphisms have been identified in the canine insulin gene, with some alleles associated with susceptibility or resistance to diabetes mellitus in a breed-specific manner. Polymorphisms in the canine CTLA4 promoter and in other immune response genes are associated with susceptibility to diabetes mellitus in a number of pedigree breeds. Genome wide association studies are currently underway that should shed further light on the genetic factors responsible for the breed profile seen in the diabetic dog population.
Collapse
Affiliation(s)
- Brian Catchpole
- Department of Pathology and Infectious Diseases, Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, Hertfordshire AL9 7TA, UK.
| | | | | | | | | | | |
Collapse
|
19
|
Okruszko A, Szepietowska B, Wawrusiewicz-Kurylonek N, Górska M, Krętowski A, Szelachowska M. HLA-DR, HLA-DQB1 and PTPN22 gene polymorphism: association with age at onset for autoimmune diabetes. Arch Med Sci 2012; 8. [PMID: 23185198 PMCID: PMC3506241 DOI: 10.5114/aoms.2012.31619] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
INTRODUCTION Autoimmune diabetes has different clinical manifestations related to the age at onset. It is divided into several subtypes, including "classical" type 1 diabetes (T1D) and latent autoimmune diabetes in adults (LADA). The LADA is considered a slowly progressing subtype of autoimmune diabetes, although the clinical picture is more similar to type 2 diabetes. MATERIAL AND METHODS The aim of this study is to investigate whether genetic predisposition influences age at onset in autoimmune diabetes. We studied rs2476601 PTPN22 gene polymorphism and HLA DR, HLA-DQB1 in 175 patients with classical type 1 diabetes, 80 LADA, and 151 control subjects from north-east Poland. RESULTS The frequencies of the PTPN22 TT genotype were higher in the group of patients with classical type 1 diabetes (6.3%) and LADA (11.3%) than in control subjects (0.7%) (p = 0.02 and p = 0007, respectively). In patients with classical type 1 diabetes we observed an increasing trend in frequencies of genotype TT dependent on age at onset (3.9% (0-5 year olds), 6.0% (6-15 year-olds), 8.2% (16-25 year olds), p = 0.048). The incidence of predisposing human leukocyte antigen (HLA) genotypes HLA DR3/DQB1*02 and DR4/DQB1*0302 was found to decrease in the group with type 1 diabetes in relation to age at onset and LADA (HLA DR3/DQB1*02 - 69.2% (0-5 year olds), 57.0% (6-15 year olds), 51.0% (16-25 year olds), 46.3% (LADA), p = 0.032; HLA DR4/DQB1*0302 - 80.8% (0-5 year olds), 63.0% (6-15 year olds), 51.0% (16-25 year olds), 43.8% (LADA), p = 0.0003), and to increase for the protective allele DQB1*0602 (0.0% (0-5 year olds), 1.0% (6-15 year olds), 2.0% (16-25 year olds), 6.3% (LADA), p = 0.029). CONCLUSIONS Thus, age at onset for autoimmune diabetes appears to be related to a combination of predisposing and protective HLA alleles. Against a background of HLA genetic predisposition, other non-HLA loci may influence age at onset for late autoimmune diabetes.
Collapse
Affiliation(s)
- Anna Okruszko
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, Poland
| | | | | | | | | | | |
Collapse
|
20
|
Howson JMM, Rosinger S, Smyth DJ, Boehm BO, Todd JA. Genetic analysis of adult-onset autoimmune diabetes. Diabetes 2011; 60:2645-53. [PMID: 21873553 PMCID: PMC3178303 DOI: 10.2337/db11-0364] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Accepted: 07/09/2011] [Indexed: 12/16/2022]
Abstract
OBJECTIVE In contrast with childhood-onset type 1 diabetes, the genetics of autoimmune diabetes in adults are not well understood. We have therefore investigated the genetics of diabetes diagnosed in adults positive for autoantibodies. RESEARCH DESIGN AND METHODS GAD autoantibodies (GADAs), insulinoma-associated antigen-2 antibodies (IA-2As), and islet cell autoantibodies were measured at time of diagnosis. Autoantibody-positive diabetic subjects (n = 1,384) and population-based control subjects (n = 2,235) were genotyped at 20 childhood-onset type 1 diabetes loci and FCRL3, GAD2, TCF7L2, and FTO. RESULTS PTPN22 (1p13.2), STAT4 (2q32.2), CTLA4 (2q33.2), HLA (6p21), IL2RA (10p15.1), INS (11p15.5), ERBB3 (12q13.2), SH2B3 (12q24.12), and CLEC16A (16p13.13) were convincingly associated with autoimmune diabetes in adults (P ≤ 0.002), with consistent directions of effect as reported for pediatric type 1 diabetes. No evidence of an HLA-DRB1*03/HLA-DRB1*04 (DR3/4) genotype effect was obtained (P = 0.55), but it remained highly predisposing (odds ratio 26.22). DR3/4 was associated with a lower age at diagnosis of disease, as was DR4 (P = 4.67 × 10(-6)) but not DR3. DR3 was associated with GADA positivity (P = 6.03 × 10(-6)) but absence of IA-2A (P = 3.22 × 10(-7)). DR4 was associated with IA-2A positivity (P = 5.45 × 10(-6)). CONCLUSIONS Our results are consistent with the hypothesis that the genetics of autoimmune diabetes in adults and children are differentiated by only relatively few age-dependent genetic effects. The slower progression toward autoimmune insulin deficiency in adults is probably due to a lower genetic load overall combined with subtle variation in the HLA class II gene associations and autoreactivity.
Collapse
Affiliation(s)
- Joanna M M Howson
- Department of Medical Genetics, Juvenile Diabetes Research Foundation/Wellcome Trust Diabetes and Inflammation Laboratory, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, U.K.
| | | | | | | | | |
Collapse
|
21
|
Eerligh P, van Lummel M, Zaldumbide A, Moustakas AK, Duinkerken G, Bondinas G, Koeleman BPC, Papadopoulos GK, Roep BO. Functional consequences of HLA-DQ8 homozygosity versus heterozygosity for islet autoimmunity in type 1 diabetes. Genes Immun 2011; 12:415-27. [PMID: 21562577 DOI: 10.1038/gene.2011.24] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Human leukocyte antigen (HLA) class II haplotypes are established risk factors in type 1 diabetes (T1D). The heterozygous DQ2/8 genotype confers the highest risk, whereas the DQ6/8 genotype is protective. We hypothesized that DQ2/8 trans-molecules composed of α and β chains from DQ2 and DQ8 express unique β-cell epitopes, whereas DQ6 may interfere with peptide binding to DQ8. Here we show that a single insulin epitope (InsB13-21) within the T1D prototype antigenic InsB6-22 peptide can bind to both cis- and trans-dimers, although these molecules display different peptide binding patterns. DQ6 binds a distinct insulin epitope (InsB6-14). The phenotype of DQ8-restricted T cells from a T1D patient changed from proinflammatory to anti-inflammatory in the presence of DQ6. Our data provide new insights into both susceptible and protective mechanism of DQ, where protecting HLA molecules bind autoantigens in a different (competing) binding register leading to 'epitope stealing', thereby inducing a regulatory, rather than a pathogenic immune response.
Collapse
Affiliation(s)
- P Eerligh
- Department of Immunohaematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
HLA class II alleles susceptibility markers of type 1 diabetes fail to specify phenotypes of ketosis-prone diabetes in adult Tunisian patients. EXPERIMENTAL DIABETES RESEARCH 2011; 2011:964160. [PMID: 21461382 PMCID: PMC3063415 DOI: 10.1155/2011/964160] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Revised: 12/28/2010] [Accepted: 01/10/2011] [Indexed: 11/18/2022]
Abstract
We aimed to characterize the different subgroups of ketosis-prone diabetes (KPD) in a sample of Tunisian patients using the Aβ scheme based on the presence or absence of β-cell autoantibodies (A+ or A-) and β-cell functional reserve (β+ or β-) and we investigated whether HLA class II alleles could contribute to distinct KPD phenotypes. We enrolled 43 adult patients with a first episode of ketosis. For all patients we evaluated clinical parameters, β-cell autoimmunity, β-cell function and HLA class II alleles. Frequency distribution of the 4 subgroups was 23.3% A+β-, 23.3% A-β-, 11.6% A+β+ and 41.9% A-β+. Patients from the group A+β- were significantly younger than those from the group A-β- (P = .002). HLA susceptibility markers were significantly more frequent in patients with autoantibodies (P = .003). These patients also had resistance alleles but they were more frequent in A+β+ than A+β- patients (P = .04). Insulin requirement was not associated to the presence or the absence of HLA susceptibility markers. HLA class II alleles associated with susceptibility to autoimmune diabetes have not allowed us to further define Tunisian KPD groups. However, high prevalence of HLA resistance alleles in our patients may reflect a particular genetic background of Tunisian KPD population.
Collapse
|
23
|
Andersen MK, Lundgren V, Turunen JA, Forsblom C, Isomaa B, Groop PH, Groop L, Tuomi T. Latent autoimmune diabetes in adults differs genetically from classical type 1 diabetes diagnosed after the age of 35 years. Diabetes Care 2010; 33:2062-4. [PMID: 20805278 PMCID: PMC2928363 DOI: 10.2337/dc09-2188] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVE We studied differences between patients with latent autoimmune diabetes in adults (LADA), type 2 diabetes, and classical type 1 diabetes diagnosed after age 35 years. RESEARCH DESIGN AND METHODS Polymorphisms in HLA-DQB1, INS, PTPN22, and CTLA4 were genotyped in patients with LADA (n = 213), type 1 diabetes diagnosed at >35 years of age (T1D(>35y); n = 257) or <20 years of age (T1D(<20y); n = 158), and type 2 diabetes. RESULTS Although patients with LADA had an increased frequency of HLA-DQB1 and PTPN22 risk genotypes and alleles compared with type 2 diabetic subjects, the frequency was significantly lower compared with T1D(>35y) patients. Genotype frequencies, measures of insulin secretion, and metabolic traits within LADA differed according to GAD antibody (GADA) quartiles, but even the highest quartile differed from type 1 diabetes. Having two or more risk genotypes was associated with lower C-peptide concentrations in LADA. CONCLUSIONS LADA patients differed genetically and phenotypically from both T1D(>35y) and type 2 diabetic patients in a manner dependent on GADA levels.
Collapse
Affiliation(s)
- Mette K Andersen
- Research Program for Molecular Medicine, Helsinki University, Helsinki, Finland
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Grant SFA, Hakonarson H, Schwartz S. Can the genetics of type 1 and type 2 diabetes shed light on the genetics of latent autoimmune diabetes in adults? Endocr Rev 2010; 31:183-93. [PMID: 20007922 DOI: 10.1210/er.2009-0029] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The pathophysiology of latent autoimmune diabetes in adults (LADA) is considered less understood than its much better characterized counterparts of type 1 and type 2 diabetes (T1D and T2D), where its clinical presentation exhibits some features of each of these two main diseases, earning it a reputation as being "type 1.5 diabetes". The etiology of LADA remains unknown, but a genetic component has been implicated from recent reports of T1D and T2D genes playing a role in its pathogenesis. One way to shed much needed light on the classification of LADA is to determine the discrete genetic factors conferring risk to the pathogenesis of this specific phenotype and to determine to what extent LADA shares genetic similarities with T1D and T2D. For instance, no conclusive support for a role of the T1D-associated INS gene has been reported in T2D; conversely, but similarly, no evidence has been found for the role of the T2D-associated genes IDE/HHEX, SLC30A8, CDKAL1, CDKN2A/B, IGF2BP2, FTO, and TCF7L2 in T1D. However, and somewhat at odds with current thinking, TCF7L2, the most strongly associated gene with T2D to date, is strongly associated with LADA, a disorder considered by the World Health Organization to be a slowly progressing form of T1D. In this review, we address recent advances in the genetics of T1D and T2D and how such discoveries have in turn shed some light on the genetics of LADA as being potentially at the "genetic intersection" of these two major diseases.
Collapse
Affiliation(s)
- Struan F A Grant
- Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA.
| | | | | |
Collapse
|
25
|
Raha O, Chowdhury S, Dasgupta S, Raychaudhuri P, Sarkar BN, Raju PV, Rao VR. Approaches in type 1 diabetes research: A status report. Int J Diabetes Dev Ctries 2010; 29:85-101. [PMID: 20142874 PMCID: PMC2812756 DOI: 10.4103/0973-3930.53126] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2008] [Accepted: 05/29/2009] [Indexed: 12/18/2022] Open
Abstract
Type 1 diabetes is a multifactorial disease with an early age of onset, in which the insulin producing beta cell of the pancreas are destroyed because of autoimmunity. It is the second most common chronic disease in children and account for 5% to 10% of all diagnosed cases of diabetes. India is having an incidence of 10.6 cases/year/100,000, and recent studies indicate that the prevalence of type 1 diabetes in India is increasing. However in view of poor health care network, there is no monitoring system in the country. Of the 18 genomic intervals implicated for the risk to develop type 1 diabetes, the major histocompatibility complex (MHC) region on chromosome 6p21.31 has been the major contributor estimated to account for 40-50%, followed by 10% frequency of INS-VNTR at 5' flanking region of the insulin gene on chromosome 11p15.5. However, population studies suggest that > 95% of type 1 diabetes have HLA-DR3 or DR4, or both, and in family studies, sibling pairs affected with type 1 diabetes have a non-random distribution of shared HLA haplotypes. As predisposing genetic factors such as HLA alleles are known, immunological interventions to prevent type 1 diabetes are of great interest. In the present study we have reviewed the status of molecular genetics of the disease and the approaches that need to be adopted in terms of developing patient and suitable control cohorts in the country.
Collapse
Affiliation(s)
- Oindrila Raha
- Anthropological Survey of India, 27-Jawaharlal Nehru Road, Kolkata, West-Bengal - 700 016, India
| | | | | | | | | | | | | |
Collapse
|
26
|
Owen KR, McCarthy MI. Type 1 and type 2 diabetes-chalk and cheese? Diabetologia 2009; 52:1983-6. [PMID: 19649612 DOI: 10.1007/s00125-009-1471-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2009] [Accepted: 07/10/2009] [Indexed: 12/19/2022]
Affiliation(s)
- K R Owen
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Headington, UK
| | | |
Collapse
|
27
|
Ferguson LA, Docherty HM, MacKenzie AE, Docherty K. An engineered zinc finger protein reveals a role for the insulin VNTR in the regulation of the insulin and adjacent IGF2 genes. FEBS Lett 2009; 583:3181-6. [PMID: 19733567 DOI: 10.1016/j.febslet.2009.08.041] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2009] [Revised: 08/05/2009] [Accepted: 08/29/2009] [Indexed: 01/27/2023]
Abstract
An engineered zinc finger protein (eZFP) was isolated from a library based on its ability to activate expression of the endogenous insulin gene in HEK-293 cells. Using a panel of insulin promoter constructs, the eZFP was shown to act through the variable number of tandem repeat (VNTR) region located 365 base pairs upstream of the transcription start site. The eZFP also activated expression of the IGF2 gene that lies close to INS on chromosome 11p15. These results demonstrate that the INSVNTR controls expression of the insulin and IGF2 genes and provide a mechanistic explanation for previous studies that demonstrated an association between INSVNTR genotypes and placental levels of IGF2.
Collapse
Affiliation(s)
- Laura A Ferguson
- School of Medical Sciences, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, UK
| | | | | | | |
Collapse
|
28
|
Bakhtadze E, Cervin C, Lindholm E, Borg H, Nilsson P, Arnqvist HJ, Bolinder J, Eriksson JW, Gudbjörnsdottir S, Nyström L, Agardh CD, Landin-Olsson M, Sundkvist G, Groop LC. Common variants in the TCF7L2 gene help to differentiate autoimmune from non-autoimmune diabetes in young (15-34 years) but not in middle-aged (40-59 years) diabetic patients. Diabetologia 2008; 51:2224-32. [PMID: 18839133 DOI: 10.1007/s00125-008-1161-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2008] [Accepted: 08/20/2008] [Indexed: 02/05/2023]
Abstract
AIMS/HYPOTHESIS Type 1 diabetes in children is characterised by autoimmune destruction of pancreatic beta cells and the presence of certain risk genotypes. In adults the same situation is often referred to as latent autoimmune diabetes in adults (LADA). We tested whether genetic markers associated with type 1 or type 2 diabetes could help to discriminate between autoimmune and non-autoimmune diabetes in young (15-34 years) and middle-aged (40-59 years) diabetic patients. METHODS In 1,642 young and 1,619 middle-aged patients we determined: (1) HLA-DQB1 genotypes; (2) PTPN22 and INS variable-number tandem repeat (VNTR) polymorphisms; (3) two single nucleotide polymorphisms (rs7903146 and rs10885406) in the TCF7L2 gene; (4) glutamic acid decarboxylase (GAD) and IA-2-protein tyrosine phosphatase-like protein (IA-2) antibodies; and (5) fasting plasma C-peptide. RESULTS Frequency of risk genotypes HLA-DQB1 (60% vs 25%, p = 9.4 x 10(-34); 45% vs 18%, p = 1.4 x 10(-16)), PTPN22 CT/TT (34% vs 26%, p = 0.0023; 31% vs 23%, p = 0.034), INS VNTR class I/I (69% vs 53%, p = 1.3 x 10(-8); 69% vs 51%, p = 8.5 x 10(-5)) and INS VNTR class IIIA/IIIA (75% vs 63%, p = 4.3 x 10(-6); 73% vs 60%, p = 0.008) was increased in young and middle-aged GAD antibodies (GADA)-positive compared with GADA-negative patients. The type 2 diabetes-associated genotypes of TCF7L2 CT/TT of rs7903146 were significantly more common in young GADA-negative than in GADA-positive patients (53% vs 43%; p = 0.0004). No such difference was seen in middle-aged patients, in whom the frequency of the CT/TT genotypes of TCF7L2 was similarly increased in GADA-negative and GADA-positive groups (55% vs 56%). CONCLUSIONS/INTERPRETATION Common variants in the TCF7L2 gene help to differentiate young but not middle-aged GADA-positive and GADA-negative diabetic patients, suggesting that young GADA-negative patients have type 2 diabetes and that middle-aged GADA-positive patients are different from their young GADA-positive counterparts and share genetic features with type 2 diabetes.
Collapse
Affiliation(s)
- E Bakhtadze
- Department of Clinical Sciences-Diabetes and Endocrinology, Lund University Diabetes Center, Malmö, Sweden.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Leslie RDG, Kolb H, Schloot NC, Buzzetti R, Mauricio D, De Leiva A, Yderstraede K, Sarti C, Thivolet C, Hadden D, Hunter S, Schernthaner G, Scherbaum W, Williams R, Pozzilli P. Diabetes classification: grey zones, sound and smoke: Action LADA 1. Diabetes Metab Res Rev 2008; 24:511-9. [PMID: 18615859 DOI: 10.1002/dmrr.877] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Diseases gain identity from clinical phenotype as well as genetic and environmental aetiology. The definition of type 1 diabetes is clinically exclusive, comprising patients who are considered insulin dependent at diagnosis, whilst the definition of type 2 diabetes is inclusive, only excluding those who are initially insulin dependent. Ketosis-prone diabetes (KPD) and latent autoimmune diabetes in adults (LADA) are each exclusive forms of diabetes which are, at least initially, clinically distinct from type 2 diabetes and type 1 diabetes, and each have a different natural history from these major types of diabetes.KPD can be diagnosed unequivocally as diabetes presenting with the categorical clinical feature, ketoacidosis. In contrast, LADA can be diagnosed by the co-occurrence of three traits, not one of which is categorical or exclusive to the condition: adult-onset non-insulin-requiring diabetes, an islet autoantibody such as glutamic acid decarboxylase autoantibodies (GADA) or cytoplasmic islet cell autoantibodies (ICA), and no need for insulin treatment for several months post-diagnosis. But while some would split diabetes into distinct subtypes, there is a strong case that these subtypes form a continuum of varying severity of immune and metabolic dysfunction modified by genetic and non-genetic factors. This article discusses the nature of disease classification in general, and KPD and LADA in particular, emphasizing the potential value and pitfalls in classifying diabetes and suggesting a need for more research in this area.
Collapse
Affiliation(s)
- R D G Leslie
- Institute of Cell and Molecular Science, University of London, London, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
Latent autoimmune diabetes in adults (LADA) is characterised by a relatively mild diabetes onset, autoantibody positivity and eventual requirement for insulin therapy. Twelve per cent of newly diagnosed, UK Prospective Diabetes Study (UKPDS) patients were positive for autoantibodies to GAD65 (GADA) and/or insulinoma-associated antigen-2A (IA-2A) and managed as if they had Type 2 diabetes according to the UKPDS protocol. Here, we compare data from UKPDS LADA patients with that from other cohorts. In common with other groups, UKPDS LADA patients required insulin therapy earlier post-diagnosis than non-LADA patients. Reduction of islet function was similar in UKPDS LADA groups randomised to oral glucose-lowering agents or insulin replacement therapy, contesting the current hypothesis of reduced decline of insulin secretion in LADA by immediate insulin therapy. Disease progression was not predicted by post-diagnosis GADA levels or epitope specificities as has been suggested. Slowly progressing insulitis and pancreatic beta-cell loss at post-mortem are consistent with sustained retention of residual C-peptide secretion in LADA. Genetic association patterns at the human leucocyte antigen (HLA) and insulin gene (INS) regions are similar in UKPDS LADA patients and individuals with adult and childhood-onset Type 1 diabetes. The combined evidence suggests that LADA is an adult-onset form of Type 1 diabetes, rather than a separate condition or an intermediate state in a continuum of phenotype from Type 1 to Type 2 diabetes.
Collapse
Affiliation(s)
- M Desai
- Diabetes Research Laboratories, Oxford Centre for Diabetes Endocrinology and Metabolism, Oxford, UK
| | | |
Collapse
|
31
|
Cervin C, Lyssenko V, Bakhtadze E, Lindholm E, Nilsson P, Tuomi T, Cilio CM, Groop L. Genetic similarities between latent autoimmune diabetes in adults, type 1 diabetes, and type 2 diabetes. Diabetes 2008; 57:1433-7. [PMID: 18310307 DOI: 10.2337/db07-0299] [Citation(s) in RCA: 173] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE Latent autoimmune diabetes in adults (LADA) is often considered a slowly progressing subtype of type 1 diabetes, although the clinical picture more resembles type 2 diabetes. One way to improve classification is to study whether LADA shares genetic features with type 1 and/or type 2 diabetes. RESEARCH DESIGN AND METHODS To accomplish this, we studied whether LADA shares variation in the HLA locus or INS VNTR and PTPN22 genes with type 1 diabetes or the TCF7L2 gene with type 2 diabetes in 361 LADA, 718 type 1 diabetic, and 1,676 type 2 diabetic patients, as well as 1,704 healthy control subjects from Sweden and Finland. RESULTS LADA subjects showed, compared with type 2 diabetic patients, increased frequency of risk for the HLA-DQB1 *0201/*0302 genotype (27 vs. 6.9%; P < 1 x 10(-6)), with similar frequency as with type 1 diabetes (36%). In addition, LADA subjects showed higher frequencies of protective HLA-DQB1 *0602(3)/X than type 1 diabetic patients (8.1 vs. 3.2%, P = 0.003). The AA genotype of rs689, referring to the class I allele in the INS VNTR, as well as the CT/TT genotypes of rs2476601 in the PTPN22 gene, were increased both in type 1 diabetic (P = 3 x 10(-14) and P = 1 x 10(-10), respectively) and LADA (P = 0.001 and P = 0.002) subjects compared with control subjects. Notably, the frequency of the type 2 diabetes-associated CT/TT genotypes of rs7903146 in the TCF7L2 were increased in LADA subjects (52.8%; P = 0.03), to the same extent as in type 2 diabetic subjects (54.1%, P = 3 x 10(-7)), compared with control subjects (44.8%) and type 1 diabetic subjects (43.3%). CONCLUSIONS LADA shares genetic features with both type 1 (HLA, INS VNTR, and PTPN22) and type 2 (TCF7L2) diabetes, which justifies considering LADA as an admixture of the two major types of diabetes.
Collapse
Affiliation(s)
- Camilla Cervin
- Department of Clinical Sciences-Diabetes & Endocrinology, Clinical Research Center, Malmö University Hospital, Lund University, S-205 02 Malmö, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
About 10% of patients with the clinical presentation of type 2 diabetes suffer from an autoimmune form of diabetes associated with a rapid decline of residual beta-cell mass and subsequent development of insulin dependency. In this condition, called latent autoimmune diabetes in adults (LADA), there are clinical and metabolic features intermediate between type 1 and type 2 diabetes. Recent studies provide novel information on the immune markers associated with progressive beta-cell loss in LADA patients. However, LADA pathogenesis is still poorly understood; further studies are needed to establish general recommendation for preventing and treating this subtype of autoimmune diabetes.
Collapse
Affiliation(s)
- Jochen Seissler
- Diabetes Center, Medical Clinic Innenstadt, Ludwig-Maximilians-University Munich, Ziemssenstrasse 1, München 80336, Germany.
| |
Collapse
|
33
|
Cejkova P, Novota P, Cerna M, Kolostova K, Novakova D, Kucera P, Novak J, Andel M, Weber P, Zdarsky E. HLA DRB1, DQB1 and insulin promoter VNTR polymorphisms: interactions and the association with adult-onset diabetes mellitus in Czech patients. Int J Immunogenet 2008; 35:133-40. [PMID: 18279373 DOI: 10.1111/j.1744-313x.2008.00749.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Both the human leucocyte antigen (HLA) DRB1 and the HLA DQB1 gene loci play a role in the development and progression of autoimmune diabetes mellitus (T1DM). Similarly, the insulin promoter variable number tandem repeats (INS-VNTR) polymorphism is also involved in the pathogenesis of diabetes mellitus (DM). We studied the association between each of these polymorphisms and DM diagnosed in patients older than age 35 years. Furthermore, we analysed possible interactions between HLA DRB1/DQB1 and INS-VNTR polymorphisms. Based on C-peptide and GADA levels we were able to distinguish three types of diabetes: T1DM, latent autoimmune diabetes in adults (LADA) and T2DM. INS-VNTR was genotyped indirectly by typing INS-23HphI A/T polymorphism. The genotype and allele frequencies of INS-23HphI did not differ between each of the diabetic groups and group of healthy subjects. We did, however, observe an association between the INS-23HphI alleles, genotypes and C-peptide secretion in all diabetic patients: A allele frequency was 86.2% in the C-peptide-negative group vs. 65.4% in the C-peptide-positive group (P(corr.) < 0.005); AA genotype was found to be 72.4% in the C-peptide-negative group vs. 42.6% in the C-peptide-positive groups (P(corr.) < 0.01). The HLA genotyping revealed a significantly higher frequency of HLA DRB1*03 allele in both T1DM and LADA groups when compared to healthy subjects: T1DM (25.7%) vs. control group (10.15%), odds ratio (OR) = 3.06, P < 0.05; LADA (27.6%) vs. control (10.15%), OR = 3.37, P < 0.01. The simultaneous presence of both HLA DRB1*04 and INS-23HphI AA genotype was detected in 37.5% of the T1DM group compared to only 9.2% of the healthy individuals group (OR = 5.9, P(corr.) < 0.007). We summarize that in the Central Bohemian population of the Czech Republic, the INS-23HphI A allele appears to be associated with a decrease in pancreatic beta cell secretory activity. HLA genotyping points to at least a partial difference in mechanism, which leads to T1DM and LADA development as well as a more diverse genetic predisposition in juvenile- and adult-onset diabetes. The simultaneous effect of HLA and INS-VNTR alleles/genotypes predispose individuals to an increased risk of diabetes development.
Collapse
Affiliation(s)
- P Cejkova
- Department of Cell and Molecular Biology, Third Faculty of Medicine, Charles University, Prague, Czech Republic.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Desai M, Cull CA, Horton VA, Christie MR, Bonifacio E, Lampasona V, Bingley PJ, Levy JC, Mackay IR, Zimmet P, Holman RR, Clark A. GAD autoantibodies and epitope reactivities persist after diagnosis in latent autoimmune diabetes in adults but do not predict disease progression: UKPDS 77. Diabetologia 2007; 50:2052-60. [PMID: 17657474 DOI: 10.1007/s00125-007-0745-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2007] [Accepted: 05/14/2007] [Indexed: 10/23/2022]
Abstract
AIMS/HYPOTHESIS Latent autoimmune diabetes in adults (LADA) is a slowly progressive form of autoimmune diabetes, with autoantibodies to islet proteins developing in older patients who have no immediate requirement for insulin therapy. Markers of its clinical course are uncharacterised. The aim of this study was to determine whether persistence of, or changes in, GAD65 autoantibodies (GADAs) in the LADA patients who participated in the United Kingdom Prospective Diabetes Study (UKPDS) were associated with disease progression or insulin requirement. METHODS GADA levels and their relative epitope reactivities to N-terminal, middle and C-terminal regions of human GAD65 were determined in 242 UKPDS patients who were GADA-positive at diagnosis; samples taken after 0.5, 3 and 6 years of follow-up were tested using a radiobinding assay. Comparisons were made of GADA status with clinical details and disease progression assessed by the requirement for intensified glucose-lowering therapy. RESULTS GADA levels fluctuated between 0.5 and 6 years but persisted in 225 of 242 patients. No association of GADA levels with disease progression or insulin requirement was observed. Antibody reactivity was directed to C-terminal and middle epitopes of GAD65 in >70% patients, and the N-terminal in <9%. There were no changes in epitope reactivity pattern over the 6 year follow-up period, nor any association between epitope reactivity and insulin requirement. CONCLUSIONS/INTERPRETATION GADAs persist for 6 years after diagnosis of LADA, but levels and reactivity to different GAD65 epitopes are not associated with disease progression.
Collapse
Affiliation(s)
- M Desai
- Diabetes Research Laboratories, Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Bibliography. Current world literature. Diabetes and the endocrine pancreas II. Curr Opin Endocrinol Diabetes Obes 2007; 14:329-57. [PMID: 17940461 DOI: 10.1097/med.0b013e3282c3a898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
36
|
Haller K, Kisand K, Pisarev H, Salur L, Laisk T, Nemvalts V, Uibo R. Insulin gene VNTR, CTLA-4 +49A/G and HLA-DQB1 alleles distinguish latent autoimmune diabetes in adults from type 1 diabetes and from type 2 diabetes group. ACTA ACUST UNITED AC 2007; 69:121-7. [PMID: 17257313 DOI: 10.1111/j.1399-0039.2006.00745.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Recent research has underlined the need to explore pathogenic, genetic and clinical spectrum of adult onset autoimmune diabetes, also known as latent autoimmune diabetes in adults (LADA). We aimed to investigate whether genetic factors that are associated with type 1 diabetes (T1D) susceptibility, namely HLA-DQB1 alleles, cytotoxic T-lymphocyte antigen 4 gene (CTLA-4) and insulin gene (INS) polymorphisms, are also associated with an atypical subset of patients diagnosed with type 2 diabetes (T2D). The case-control study included 70 T1D, 305 T2D and 252 nondiabetic controls. The T2D group was divided into atypical T2D (LADA, n = 61) or typical T2D (n = 244) subgroups based on the presence of at least one pancreas-specific antibody. Our data suggested that HLA-DQB1 alleles of all three risk classes, INS variable number of tandem repeat (VNTR) I/I and CTLA-4 +49 GG or AG genotypes, were independent risk factors for developing LADA and could be used as a diagnostic tool to discriminate between LADA and T2D. Additionally, there was an increased association between LADA and CTLA-4 diabetes-susceptibility genotypes and decreased association with INS VNTR and high-risk HLA-DQB1 alleles, compared with T1D. Our study suggested the need for further investigation into the genetic background and functional genomics of LADA in comparison with T1D and T2D.
Collapse
Affiliation(s)
- K Haller
- Department of Immunology, Institute of General and Molecular Pathology, Centre of Molecular and Clinical Medicine, University of Tartu, Tartu, Estonia
| | | | | | | | | | | | | |
Collapse
|
37
|
Desai M, Zeggini E, Horton VA, Owen KR, Hattersley AT, Levy JC, Walker M, Gillespie KM, Bingley PJ, Hitman GA, Holman RR, McCarthy MI, Clark A. An association analysis of the HLA gene region in latent autoimmune diabetes in adults. Diabetologia 2007; 50:68-73. [PMID: 17143607 PMCID: PMC3076207 DOI: 10.1007/s00125-006-0513-z] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2006] [Accepted: 09/19/2006] [Indexed: 11/26/2022]
Abstract
AIMS/HYPOTHESIS Pathophysiological similarities between latent autoimmune diabetes in adults (LADA) and type 1 diabetes indicate an overlap in genetic susceptibility. HLA-DRB1 and HLA-DQB1 are major susceptibility genes for type 1 diabetes but studies of these genes in LADA have been limited. Our aim was to define patterns of HLA-encoded susceptibility/protection in a large, well characterised LADA cohort, and to establish association with disease and age at diagnosis. MATERIALS AND METHODS Patients with LADA (n = 387, including 211 patients from the UK Prospective Diabetes Study) and non-diabetic control subjects (n = 327) were of British/Irish European origin. The HLA-DRB1 and -DQB1 genes were genotyped by sequence-specific PCR. RESULTS As in type 1 diabetes mellitus, DRB1 0301_DQB1 0201 (odds ratio [OR] = 3.08, 95% CI 2.32-4.12, p = 1.2 x 10(-16)) and DRB1 0401_DQB1 0302 (OR = 2.57, 95% CI 1.80-3.73, p = 4.5 x 10(-8)) were the main susceptibility haplotypes in LADA, and DRB1 1501_DQB1 0602 was protective (OR = 0.21, 95% CI 0.13-0.34, p = 4.2 x 10(-13)). Differential susceptibility was conferred by DR4 subtypes: DRB1 0401 was predisposing (OR = 1.79, 95% CI 1.35-2.38, p = 2.7 x 10(-5)) whereas DRB1 0403 was protective (OR = 0.37, 95% CI 0.13-0.97, p = 0.033). The highest-risk genotypes were DRB1 0301/DRB1 0401 and DQB1 0201/DQB1 0302 (OR = 5.14, 95% CI 2.68-10.69, p = 1.3 x 10(-8); and OR = 6.88, 95% CI 3.54-14.68, p = 1.2 x 10(-11), respectively). These genotypes and those containing DRB1 0401 and DQB1 0302 associated with a younger age at diagnosis in LADA, whereas genotypes containing DRB1 1501 and DQB1 0602 associated with an older age at diagnosis. CONCLUSIONS/INTERPRETATION Patterns of susceptibility at the HLA-DRB1 and HLA-DQB1 loci in LADA are similar to those reported for type 1 diabetes, supporting the hypothesis that autoimmune diabetes occurring in adults is an age-related extension of the pathophysiological process presenting as childhood-onset type 1 diabetes.
Collapse
Affiliation(s)
- M. Desai
- Diabetes Research Laboratories, Oxford Centre for Diabetes, Endocrinology and Metabolism, Churchill Hospital, University of Oxford, Headington, Oxford OX3 7LJ, UK
| | - E. Zeggini
- Diabetes Research Laboratories, Oxford Centre for Diabetes, Endocrinology and Metabolism, Churchill Hospital, University of Oxford, Headington, Oxford OX3 7LJ, UK; Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - V. A. Horton
- Diabetes Research Laboratories, Oxford Centre for Diabetes, Endocrinology and Metabolism, Churchill Hospital, University of Oxford, Headington, Oxford OX3 7LJ, UK
| | - K. R. Owen
- Diabetes Research Laboratories, Oxford Centre for Diabetes, Endocrinology and Metabolism, Churchill Hospital, University of Oxford, Headington, Oxford OX3 7LJ, UK
| | - A. T. Hattersley
- Institute of Biomedical and Clinical Sciences, Peninsula Medical School, Exeter, UK
| | - J. C. Levy
- Diabetes Research Laboratories, Oxford Centre for Diabetes, Endocrinology and Metabolism, Churchill Hospital, University of Oxford, Headington, Oxford OX3 7LJ, UK
| | - M. Walker
- School of Clinical Medical Sciences, University of Newcastle, Newcastle, UK
| | - K. M. Gillespie
- Diabetes and Metabolism Unit, University of Bristol, Bristol, UK
| | - P. J. Bingley
- Diabetes and Metabolism Unit, University of Bristol, Bristol, UK
| | - G. A. Hitman
- Centre for Diabetes and Metabolic Medicine, Barts and The London, Queen Mary’s School of Medicine and Dentistry, London, UK
| | - R. R. Holman
- Diabetes Trials Unit, Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK
| | - M. I. McCarthy
- Diabetes Research Laboratories, Oxford Centre for Diabetes, Endocrinology and Metabolism, Churchill Hospital, University of Oxford, Headington, Oxford OX3 7LJ, UK; Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - A. Clark
- Diabetes Research Laboratories, Oxford Centre for Diabetes, Endocrinology and Metabolism, Churchill Hospital, University of Oxford, Headington, Oxford OX3 7LJ, UK,
| |
Collapse
|
38
|
Clark A, Desai M. Comment on: Gale EAM (2005) Latent autoimmune diabetes in adults: a guide for the perplexed. Diabetologia 48:2195-2199. Diabetologia 2006; 49:2222-4. [PMID: 16832661 DOI: 10.1007/s00125-006-0347-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2006] [Accepted: 06/05/2006] [Indexed: 12/18/2022]
|