1
|
Cao R, Zhang M, Qi M, Zhang Z, Morisseau C, Zhou C, Sun T, Zhuang J, Chen L, Xu C, Liu Z, Hammock BD, Chen G. Structure-Based Design and Optimization Lead to the Identification of a Novel Potent sEH Inhibitor with PPARγ Partial Agonist Activity against Inflammatory and Metabolic-Related Diseases. J Med Chem 2025; 68:8729-8767. [PMID: 40186327 DOI: 10.1021/acs.jmedchem.5c00402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2025]
Abstract
The peroxisome proliferator-activated receptor-γ (PPARγ) serves as a pivotal regulator of lipid balance, adipogenesis, and inflammatory processes. PPARγ full agonists display strong curative effects but also serious adverse effects. Here, we found a novel 4-(cyclohexyloxy)phenyl acetate scaffold with partial PPARγ agonist activity, and its structure-activity relationship was studied. We also describe the structure-guided lead optimization of orally bioavailable SP-C01 as a dual modulator of soluble epoxide hydrolase (sEH) and partial PPARγ, which can inhibit Ser273 phosphorylation. In mice, oral administration of SP-C01 at a dose of 5 g/kg resulted in excellent safety; a significant reduction in the negative consequences of lipid accumulation and water-sodium retention; and no gastrointestinal adverse effects, weight gain, or cardiotoxicity. In addition, SP-C01 has shown a better effect than pioglitazone (Pio.) in type 2 diabetes and nonalcoholic steatohepatitis. Additionally, SP-C01 has demonstrated potent anti-inflammatory and analgesic properties in models of both neuropathic and inflammatory pain.
Collapse
Affiliation(s)
- Ruolin Cao
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Maoying Zhang
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Minggang Qi
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Zhen Zhang
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Christophe Morisseau
- Department of Entomology and Nematology and UC Davis Comprehensive Cancer Center, University of California Davis, Davis California 95616, United States
| | - Chunwei Zhou
- Shimadzu Enterprise Management (China) Co., Ltd, Shenyang 110016, People's Republic of China
| | - Tianqi Sun
- Life Science and Biology Pharmacy College, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Junning Zhuang
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Lu Chen
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Cheng Xu
- Life Science and Biology Pharmacy College, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Zhongbo Liu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Bruce D Hammock
- Department of Entomology and Nematology and UC Davis Comprehensive Cancer Center, University of California Davis, Davis California 95616, United States
| | - Guoliang Chen
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| |
Collapse
|
2
|
Kadasah SF, Radwan MO. Overview of Ursolic Acid Potential for the Treatment of Metabolic Disorders, Autoimmune Diseases, and Cancers via Nuclear Receptor Pathways. Biomedicines 2023; 11:2845. [PMID: 37893218 PMCID: PMC10604592 DOI: 10.3390/biomedicines11102845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023] Open
Abstract
Nuclear receptors (NRs) form a family of druggable transcription factors that are regulated by ligand binding to orchestrate multifaceted physiological functions, including reproduction, immunity, metabolism, and growth. NRs represent attractive and valid targets for the management and treatment of a vast array of ailments. Pentacyclic triterpenes (PTs) are ubiquitously distributed natural products in medicinal and aromatic plants, of which ursolic acid (UA) is an extensively studied member, due to its diverse bio-pertinent activities against different cancers, inflammation, aging, obesity, diabetes, dyslipidemia, and liver injury. In fact, PTs share a common lipophilic structure that resembles NRs' endogenous ligands. Herein, we present a review of the literature on UA's effect on NRs, showcasing the resulting health benefits and potential therapeutic outcomes. De facto, UA exhibited numerous pharmacodynamic effects on PPAR, LXR, FXR, and PXR, resulting in remarkable anti-inflammatory, anti-hyperlipidemic, and hepatoprotective properties, by lowering lipid accumulation in hepatocytes and mitigating non-alcoholic steatohepatitis (NASH) and its subsequent liver fibrosis. Furthermore, UA reversed valproate and rifampicin-induced hepatic lipid accumulation. Additionally, UA showed great promise for the treatment of autoimmune inflammatory diseases such as multiple sclerosis and autoimmune arthritis by antagonizing RORγ. UA exhibited antiproliferative effects against skin, prostate, and breast cancers, partially via PPARα and RORγ pathways. Herein, for the first time, we explore and provide insights into UA bioactivity with respect to NR modulation.
Collapse
Affiliation(s)
- Sultan F. Kadasah
- Department of Biology, Faculty of Science, University of Bisha, P.O. Box 551, Bisha 61922, Saudi Arabia
| | - Mohamed O. Radwan
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, Kumamoto 862-0973, Japan
| |
Collapse
|
3
|
Radwan MO, Kadasah SF, Aljubiri SM, Alrefaei AF, El-Maghrabey MH, El Hamd MA, Tateishi H, Otsuka M, Fujita M. Harnessing Oleanolic Acid and Its Derivatives as Modulators of Metabolic Nuclear Receptors. Biomolecules 2023; 13:1465. [PMID: 37892147 PMCID: PMC10604226 DOI: 10.3390/biom13101465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 09/25/2023] [Accepted: 09/27/2023] [Indexed: 10/29/2023] Open
Abstract
Nuclear receptors (NRs) constitute a superfamily of ligand-activated transcription factors with a paramount role in ubiquitous physiological functions such as metabolism, growth, and reproduction. Owing to their physiological role and druggability, NRs are deemed attractive and valid targets for medicinal chemists. Pentacyclic triterpenes (PTs) represent one of the most important phytochemical classes present in higher plants, where oleanolic acid (OA) is the most studied PTs representative owing to its multitude of biological activities against cancer, inflammation, diabetes, and liver injury. PTs possess a lipophilic skeleton that imitates the NRs endogenous ligands. Herein, we report a literature overview on the modulation of metabolic NRs by OA and its semi-synthetic derivatives, highlighting their health benefits and potential therapeutic applications. Indeed, OA exhibited varying pharmacological effects on FXR, PPAR, LXR, RXR, PXR, and ROR in a tissue-specific manner. Owing to these NRs modulation, OA showed prominent hepatoprotective properties comparable to ursodeoxycholic acid (UDCA) in a bile duct ligation mice model and antiatherosclerosis effect as simvastatin in a model of New Zealand white (NZW) rabbits. It also demonstrated a great promise in alleviating non-alcoholic steatohepatitis (NASH) and liver fibrosis, attenuated alpha-naphthol isothiocyanate (ANIT)-induced cholestatic liver injury, and controlled blood glucose levels, making it a key player in the therapy of metabolic diseases. We also compiled OA semi-synthetic derivatives and explored their synthetic pathways and pharmacological effects on NRs, showcasing their structure-activity relationship (SAR). To the best of our knowledge, this is the first review article to highlight OA activity in terms of NRs modulation.
Collapse
Affiliation(s)
- Mohamed O. Radwan
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, Kumamoto 862-0973, Japan; (H.T.); (M.O.); (M.F.)
| | - Sultan F. Kadasah
- Department of Biology, Faculty of Science, University of Bisha, Bisha 61922, Saudi Arabia;
| | - Salha M. Aljubiri
- Department of Chemistry, College of Science, University of Bisha, Bisha 61922, Saudi Arabia;
| | | | - Mahmoud H. El-Maghrabey
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt;
| | - Mohamed A. El Hamd
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Shaqra 11961, Saudi Arabia
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, South Valley University, Qena 83523, Egypt
| | - Hiroshi Tateishi
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, Kumamoto 862-0973, Japan; (H.T.); (M.O.); (M.F.)
| | - Masami Otsuka
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, Kumamoto 862-0973, Japan; (H.T.); (M.O.); (M.F.)
- Department of Drug Discovery, Science Farm Ltd., Kumamoto 862-0976, Japan
| | - Mikako Fujita
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, Kumamoto 862-0973, Japan; (H.T.); (M.O.); (M.F.)
| |
Collapse
|
4
|
Identification of Selective PPAR-γ Modulators by Combining Pharmacophore Modeling, Molecular Docking, and Adipogenesis Assay. Appl Biochem Biotechnol 2023; 195:1014-1041. [PMID: 36264481 DOI: 10.1007/s12010-022-04190-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/28/2022] [Indexed: 01/24/2023]
Abstract
The clinically used glitazones (rosiglitazone and pioglitazone) for type 2 diabetes mellitus therapy have been linked to serious side effects such as fluid retention, congestive heart failure, weight gain, bone loss, and an increased risk of bladder cancer. The complete activation of PPAR-γ receptors in target tissues is linked to these effects. Many studies have demonstrated that partial PPAR-γ activators (GW0072, PAT5A, GQ16) give equivalent therapeutic benefits to full PPAR-γ agonists without the associated side effects. These breakthroughs cleared the path for the development of partial agonists or selective PPAR-γ modulators (SPPARγMs). This study combined pharmacophore modeling, molecular docking, and an adipogenesis experiment to identify thiazolidine analogs as SPPARMs/partial agonists. A custom library of 220 molecules was created and virtual screened to discover 90 compounds as SPPARγMs/ partial agonists. The chosen eight compounds were synthesized and tested for adipogenesis using 3T3L1 cell lines. These compounds' partial agonistic activity was evaluated in 3T3L1 cell lines by comparing their capacity to stimulate PPAR-γ mediated adipogenesis to that of a full agonist, rosiglitazone. The findings of the adipogenesis experiment demonstrate that all eight compounds examined had a partial potential to stimulate adipogenesis when compared to the full agonist, rosiglitazone. The current investigation identified eight possible PPAR-γ partial agonists or SPPARγMs that may be effective in the treatment of type 2 diabetes mellitus.
Collapse
|
5
|
Structural Basis for PPARs Activation by The Dual PPARα/γ Agonist Sanguinarine: A Unique Mode of Ligand Recognition. Molecules 2021; 26:molecules26196012. [PMID: 34641558 PMCID: PMC8512631 DOI: 10.3390/molecules26196012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 11/22/2022] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) play crucial roles in glucose and lipid metabolism and inflammation. Sanguinarine is a natural product that is isolated from Sanguinaria Canadensis, a potential therapeutic agent for intervention in chronic diseases. In this study, biochemical and cell-based promoter-reporter gene assays revealed that sanguinarine activated both PPARα and PPARγ, and enhanced their transcriptional activity; thus, sanguinarine was identified as a dual agonist of PPARα/γ. Similar to fenofibrate, sanguinarine upregulates the expression of PPARα-target genes in hepatocytes. Sanguinarine also modulates the expression of key PPARγ-target genes and promotes adipocyte differentiation, but with a lower adipogenic activity compared with rosiglitazone. We report the crystal structure of sanguinarine bound to PPARα, which reveals a unique ligand-binding mode of sanguinarine, dissimilar to the classic Y-shaped binding pocket, which may represent a new pharmacophore that can be optimized for selectively targeting PPARα. Further structural and functional studies uncover the molecular basis for the selectivity of sanguinarine toward PPARα/γ among all three PPARs. In summary, our study identifies a PPARα/γ dual agonist with a unique ligand-binding mode, and provides a promising and viable novel template for the design of dual-targeting PPARs ligands.
Collapse
|
6
|
Exploring conformational changes of PPAR-Ɣ complexed with novel kaempferol, quercetin, and resveratrol derivatives to understand binding mode assessment: a small-molecule checkmate to cancer therapy. J Mol Model 2020; 26:242. [DOI: 10.1007/s00894-020-04488-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 07/27/2020] [Indexed: 12/11/2022]
|
7
|
Kaupang Å, Hansen TV. The PPAR Ω Pocket: Renewed Opportunities for Drug Development. PPAR Res 2020; 2020:9657380. [PMID: 32695150 PMCID: PMC7351019 DOI: 10.1155/2020/9657380] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 05/13/2020] [Indexed: 12/13/2022] Open
Abstract
The past decade of PPARγ research has dramatically improved our understanding of the structural and mechanistic bases for the diverging physiological effects of different classes of PPARγ ligands. The discoveries that lie at the heart of these developments have enabled the design of a new class of PPARγ ligands, capable of isolating central therapeutic effects of PPARγ modulation, while displaying markedly lower toxicities than previous generations of PPARγ ligands. This review examines the emerging framework around the design of these ligands and seeks to unite its principles with the development of new classes of ligands for PPARα and PPARβ/δ. The focus is on the relationships between the binding modes of ligands, their influence on PPAR posttranslational modifications, and gene expression patterns. Specifically, we encourage the design and study of ligands that primarily bind to the Ω pockets of PPARα and PPARβ/δ. In support of this development, we highlight already reported ligands that if studied in the context of this new framework may further our understanding of the gene programs regulated by PPARα and PPARβ/δ. Moreover, recently developed pharmacological tools that can be utilized in the search for ligands with new binding modes are also presented.
Collapse
Affiliation(s)
- Åsmund Kaupang
- Section for Pharmaceutical Chemistry, Department of Pharmacy, University of Oslo, 0316 Oslo, Norway
| | - Trond Vidar Hansen
- Section for Pharmaceutical Chemistry, Department of Pharmacy, University of Oslo, 0316 Oslo, Norway
| |
Collapse
|
8
|
Laghezza A, Piemontese L, Tortorella P, Loiodice F. An update about the crucial role of stereochemistry on the effects of Peroxisome Proliferator-Activated Receptor ligands. Eur J Med Chem 2019; 176:326-342. [PMID: 31112893 DOI: 10.1016/j.ejmech.2019.05.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 04/16/2019] [Accepted: 05/06/2019] [Indexed: 10/26/2022]
Abstract
Peroxisome Proliferator-Activated Receptors (PPARs) are ligand-activated transcription factors that govern lipid and glucose homeostasis playing a central role in cardiovascular disease, obesity, and diabetes. These receptors show a high degree of stereoselectivity towards several classes of drugs. This review covers the most relevant findings that have been made in the last decade and takes into consideration only those compounds in which stereochemistry led to unexpected results or peculiar interactions with the receptors. These cases are reviewed and discussed with the aim to show how enantiomeric recognition originates at the molecular level. The structural characterization by crystallographic methods and docking experiments of complexes formed by PPARs with their ligands turns out to be an essential tool to explain receptor stereoselectivity.
Collapse
Affiliation(s)
- Antonio Laghezza
- Dipartimento Farmacia-Scienze Del Farmaco, Università Degli Studi di Bari "Aldo Moro", Via Orabona 4, 70125, Bari, Italy.
| | - Luca Piemontese
- Dipartimento Farmacia-Scienze Del Farmaco, Università Degli Studi di Bari "Aldo Moro", Via Orabona 4, 70125, Bari, Italy.
| | - Paolo Tortorella
- Dipartimento Farmacia-Scienze Del Farmaco, Università Degli Studi di Bari "Aldo Moro", Via Orabona 4, 70125, Bari, Italy.
| | - Fulvio Loiodice
- Dipartimento Farmacia-Scienze Del Farmaco, Università Degli Studi di Bari "Aldo Moro", Via Orabona 4, 70125, Bari, Italy.
| |
Collapse
|
9
|
Shen HQ, Xie HP, Sun L, Zhou YG. Enantioselective Carbene Insertion into O–H of Phenols with Chiral Palladium/2,2′-Biimidazole Complexes. Organometallics 2019. [DOI: 10.1021/acs.organomet.9b00219] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Hong-Qiang Shen
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Huan-Ping Xie
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People’s Republic of China
| | - Lei Sun
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People’s Republic of China
| | - Yong-Gui Zhou
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People’s Republic of China
| |
Collapse
|
10
|
Mirza AZ, Althagafi II, Shamshad H. Role of PPAR receptor in different diseases and their ligands: Physiological importance and clinical implications. Eur J Med Chem 2019; 166:502-513. [DOI: 10.1016/j.ejmech.2019.01.067] [Citation(s) in RCA: 187] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 01/27/2019] [Accepted: 01/28/2019] [Indexed: 12/15/2022]
|
11
|
Jeon YW, Lim JY, Im KI, Kim N, Nam YS, Song YJ, Cho SG. Enhancement of Graft-Versus-Host Disease Control Efficacy by Adoptive Transfer of Type 1 Regulatory T Cells in Bone Marrow Transplant Model. Stem Cells Dev 2018; 28:129-140. [PMID: 30381994 DOI: 10.1089/scd.2018.0113] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Interleukin (IL)-10-producing type 1 regulatory T (Tr1) cells, which are Foxp3-memory T lymphocytes, play important roles in peripheral immune tolerance. We investigated whether Tr1 cells exert immunoregulatory effects in a mouse model of acute graft-versus-host disease (GVHD). Mouse CD4+ T cells were induced to differentiate in vitro into Tr1 cells using vitamin D3 and dexamethasone, and these donor-derived Tr1 cells were infused on the day of bone marrow transplantation. The Tr1 cell-transferred group showed less weight-loss and a twofold higher survival rate than the GVHD group, together with markedly decreased histopathologic grades. It was associated with the expansion of CD4+IL-4+ type 2 T-helper (Th2) cells and CD4+CD25+Foxp3+ regulatory T (Treg) cells. Furthermore, Tr1 cells decreased the numbers of CD4+interferon-γ+ Th1 and CD4+IL-17+ Th17 cells. Recipient mice harbored some Foxp3+ Tregs due to adoptive transfer of Tr1 cells, together with the upregulated expression of costimulatory molecules, including cytotoxic T lymphocyte-associated antigen-4 (CTLA-4) and inducible T-cell costimulator (ICOS); however, the Treg cells did not show the plasticity. Therefore, adoptive Tr1 cell therapy may be effective against manifestations of GVHD, exert immunomodulatory effects in a manner dependent on CTLA-4 and ICOS, and induce differentiation of the transferred Tr1 cells into Foxp3+ Treg cells.
Collapse
Affiliation(s)
- Young-Woo Jeon
- 1 Institute for Translational Research and Molecular Imaging, College of Medicine, The Catholic University of Korea, Seoul, Korea.,2 Laboratory of Immune Regulation, Convergent Research Consortium for Immunologic Disease, College of Medicine, The Catholic University of Korea, Seoul, Korea.,3 Lymphoma-Myeloma Center, Catholic Hematology Hospital, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jung-Yeon Lim
- 1 Institute for Translational Research and Molecular Imaging, College of Medicine, The Catholic University of Korea, Seoul, Korea.,2 Laboratory of Immune Regulation, Convergent Research Consortium for Immunologic Disease, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Keon-Il Im
- 1 Institute for Translational Research and Molecular Imaging, College of Medicine, The Catholic University of Korea, Seoul, Korea.,2 Laboratory of Immune Regulation, Convergent Research Consortium for Immunologic Disease, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Nayoun Kim
- 1 Institute for Translational Research and Molecular Imaging, College of Medicine, The Catholic University of Korea, Seoul, Korea.,2 Laboratory of Immune Regulation, Convergent Research Consortium for Immunologic Disease, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Young-Sun Nam
- 1 Institute for Translational Research and Molecular Imaging, College of Medicine, The Catholic University of Korea, Seoul, Korea.,2 Laboratory of Immune Regulation, Convergent Research Consortium for Immunologic Disease, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Yun-Jin Song
- 1 Institute for Translational Research and Molecular Imaging, College of Medicine, The Catholic University of Korea, Seoul, Korea.,2 Laboratory of Immune Regulation, Convergent Research Consortium for Immunologic Disease, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Seok-Goo Cho
- 1 Institute for Translational Research and Molecular Imaging, College of Medicine, The Catholic University of Korea, Seoul, Korea.,2 Laboratory of Immune Regulation, Convergent Research Consortium for Immunologic Disease, College of Medicine, The Catholic University of Korea, Seoul, Korea.,3 Lymphoma-Myeloma Center, Catholic Hematology Hospital, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
12
|
Christensen NL, Kejs AMT, Jakobsen E, Dalton SO, Rasmussen TR. Early death in Danish stage I lung cancer patients: a population-based case study. Acta Oncol 2018; 57:1561-1566. [PMID: 30169986 DOI: 10.1080/0284186x.2018.1497298] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OBJECTIVE Clinical stage (c-stage) at diagnosis is the most significant prognostic marker for patients with cancer, where 1- and 5-year survival rates as main landmarks when assessing outcomes. This is a population-based case study of Danish c-stage I lung cancer patients who were considered candidates for curative therapy and then died within 1 year after diagnosis (cases). Cases were identified in the Danish Lung Cancer Register (DLCR), and medical records were used to retrieve treatment details and cause of death (CoD). Our aims were, if possible, to identify and describe clusters of patients, in terms of CoD and treatment modality at risk for an adverse short-term outcome. RESULTS Patients who died early were more frequently male, older, had squamous-cell histology, were less frequently surgically treated and generally had a higher burden of comorbidity. In terms of CoD, 29% died of lung cancer with distant recurrence (DR) as the most common type of recurrence (55%). Death from co-morbidity occurred for 23%, where the largest proportion (36%) died from another cancer. Nineteen percentage died from treatment complications, with the majority being male (p < .001). The remainder died of unknown or other causes. CONCLUSIONS Lung cancer with DR remains the most common CoD. Identifying and accordingly treating patients at risk for DR could potentially improve outcomes. Further studies of the predominantly male subgroup of patients who die of treatment complications are needed. Death from co-morbidity especially in patients with another cancer is a significant CoD and when assessing the quality of lung cancer care a competing event.
Collapse
Affiliation(s)
- Niels Lyhne Christensen
- Department of Documentation and Quality, Danish Cancer Society, Copenhagen Ø, Denmark
- Department of Respiratory Diseases and Allergy, Aarhus University Hospital, Aarhus, Denmark
| | | | - Erik Jakobsen
- The Danish Lung Cancer Registry, Department of Thoracic Surgery, Odense University Hospital, Odense, Denmark
| | | | - Torben Riis Rasmussen
- Department of Respiratory Diseases and Allergy, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
13
|
Identification of a novel selective PPARγ ligand with a unique binding mode and improved therapeutic profile in vitro. Sci Rep 2017; 7:41487. [PMID: 28128331 PMCID: PMC5270246 DOI: 10.1038/srep41487] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 12/21/2016] [Indexed: 01/11/2023] Open
Abstract
Thiazolidinediones (TZD) function as potent anti-diabetic drugs through their direct action on the nuclear receptor peroxisome proliferator-activated receptor γ (PPARγ), but their therapeutic benefits are compromised by severe side effects. To address this concern, here we developed a potent “hit” compound, VSP-51, which is a novel selective PPARγ-modulating ligand with improved therapeutic profiles in vitro compared to the multi-billion dollar TZD drug rosiglitazone (Rosi). Unlike Rosi, VSP-51 is a partial agonist of PPARγ with improved insulin sensitivity due to its ability to bind PPARγ with high affinity without stimulating adipocyte differentiation and the expression of adipogenesis-related genes. We have determined the crystal structure of the PPARγ ligand-binding domain (LBD) in complex with VSP-51, which revealed a unique mode of binding for VSP-51 and provides the molecular basis for the discrimination between VSP-51 from TZDs and other ligands such as telmisartan, SR1663 and SR1664. Taken together, our findings demonstrate that: a) VSP-51 can serve as a promising candidate for anti-diabetic drug discovery; and b) provide a rational basis for the development of future pharmacological agents targeting PPARγ with advantages over current TZD drugs.
Collapse
|
14
|
Zhang J, Liu X, Xie XB, Cheng XC, Wang RL. Multitargeted bioactive ligands for PPARs discovered in the last decade. Chem Biol Drug Des 2016; 88:635-663. [PMID: 27317624 DOI: 10.1111/cbdd.12806] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 05/20/2016] [Indexed: 12/13/2022]
Abstract
Type 2 diabetes took insulin resistance as the main clinical manifestation. PPARs have been reported to be the therapeutic targets of metabolic disorders, such as obesity, hypertension, diabetes, and cardiovascular disease. Previously, PPARγ agonist rosiglitazone was restricted in clinic due to cardiomyocytes infarction, weight gain, and other serious side-effects, which were mainly due to the single and selective PPARγ agonism. In recent years, multitarget-directed PPAR agonists with synergistic reaction as well as fewer side-effect have been the hot topic in designing promising agents. In this review, we updated and generalized the development of PPARγ partial agonists, PPARγ antagonists, PPARα/γ dual agonists, PPARδ partial agonists, PPARδ antagonists, PPARα/δ dual agonists, PPARγ/δ dual agonists, and PPARα/γ/δ pan-agonists published in recent decade. Most of these molecules were modified from known structures or came from high-throughput screening. Among these molecules, some were expected to be promising drugs against metabolic disorders, while others seemed to provide new insight for designing novel PPAR agents.
Collapse
Affiliation(s)
- Jun Zhang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Xin Liu
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Xian-Bin Xie
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Xian-Chao Cheng
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, China.
| | - Run-Ling Wang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, China
| |
Collapse
|
15
|
Youssef J, Badr M. Peroxisome Proliferator-Activated Receptors Features, Functions, and Future. NUCLEAR RECEPTOR RESEARCH 2015. [DOI: 10.11131/2015/101188] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
16
|
Review of the Structural and Dynamic Mechanisms of PPARγ Partial Agonism. PPAR Res 2015; 2015:816856. [PMID: 26435709 PMCID: PMC4578752 DOI: 10.1155/2015/816856] [Citation(s) in RCA: 148] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 08/19/2015] [Indexed: 01/02/2023] Open
Abstract
PPARγ (peroxisome proliferator activated receptor γ) is a ligand activated transcription factor of the nuclear receptor superfamily that controls the expression of a variety of genes involved in fatty acid metabolism, adipogenesis, and insulin sensitivity. While endogenous ligands of PPARγ include fatty acids and eicosanoids, synthetic full agonists of the receptor, including members of the thiazolidinedione (TZD) class, have been widely prescribed for the treatment of type II diabetes mellitus (T2DM). Unfortunately, the use of full agonists has been hampered by harsh side effects with some removed from the market in many countries. In contrast, partial agonists of PPARγ have been shown to retain favourable insulin sensitizing effects while exhibiting little to no side effects and thus represent a new potential class of therapeutics for the treatment of T2DM. Partial agonists have been found to not only display differences in transcriptional and cellular outcomes, but also act through distinct structural and dynamic mechanisms within the ligand binding cavity compared to full agonists.
Collapse
|
17
|
Chigurupati S, Dhanaraj SA, Balakumar P. A step ahead of PPARγ full agonists to PPARγ partial agonists: therapeutic perspectives in the management of diabetic insulin resistance. Eur J Pharmacol 2015; 755:50-57. [PMID: 25748601 DOI: 10.1016/j.ejphar.2015.02.043] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 02/25/2015] [Accepted: 02/25/2015] [Indexed: 01/04/2023]
Abstract
Described since long as a member of the nuclear receptor superfamily, peroxisome proliferator-activated receptors (PPARs) regulate the gene expression of proteins involved in glucose and lipid metabolism. PPARs indeed regulate several physiologic processes, including lipid homeostasis, adipogenesis, inflammation, and wound healing. PPARs bind natural or synthetic PPAR ligands can function as cellular sensors to regulate the gene transcription. Dyslipidemia, and type 2 diabetes mellitus (T2DM) with insulin resistance are treated using agonists of PPARα and PPARγ, respectively. The PPARγ is a key regulator of insulin sensitization and glucose metabolism, and therefore is considered as an imperative pharmacological target to combat diabetic metabolic disease and insulin resistance. Of note, currently available PPARγ full agonists like rosiglitazone display serious adverse effects such as fluid retention/oedema, weight gain, and increased incidence of cardiovascular events. On the other hand, PPARγ partial agonists are being suggested to devoid or having less incidence of these undesirable events, and are under developmental stages. Current research is on the way for the development of novel PPARγ partial agonists with enhanced therapeutic efficacy and reduced adverse effects. This review sheds lights on the current status of development of PPARγ partial agonists, for the management of T2DM, having comparatively less or no adverse effects to that of PPARγ full agonists.
Collapse
Affiliation(s)
- Sridevi Chigurupati
- Pharmaceutical Chemistry Unit, Faculty of Pharmacy, AIMST University, Semeling, 08100 Bedong, Malaysia
| | - Sokkalingam A Dhanaraj
- Pharmaceutical Technology Unit, Faculty of Pharmacy, AIMST University, Semeling, 08100 Bedong, Malaysia
| | - Pitchai Balakumar
- Pharmacology Unit, Faculty of Pharmacy, AIMST University, Semeling, 08100 Bedong, Kedah Darul Aman, Malaysia.
| |
Collapse
|
18
|
Li QY, Chen L, Yan MM, Shi XJ, Zhong MK. Tectorigenin regulates adipogenic differentiation and adipocytokines secretion via PPARγ and IKK/NF-κB signaling. PHARMACEUTICAL BIOLOGY 2015; 53:1567-1575. [PMID: 25856699 DOI: 10.3109/13880209.2014.993038] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
CONTEXT Obesity is associated with a number of diseases with metabolic abnormalities such as type 2 diabetes (T2D). OBJECTIVE We investigate the effects of tectorigenin on 3T3-L1 preadipocyte differentiation and adipocytokines secretion. MATERIALS AND METHODS The effects of tectorigenin on adipocyte differentiation were studied using Oil Red O staining. Effects of tectorigenin on adipogenesis-related genes expression and adipocytokines secretion were measured by the real-time quantitative RT-PCR and ELISA method, respectively. Reporter gene assays were performed to determine the PPARγ and NF-κB transactivation. We also used [(3)H]-2-deoxy-d-glucose to study the glucose uptake, and the IKK/NF-κB signaling pathway was assessed by western blot analysis. HFD/STZ rats were used to evaluate the therapeutic efficacies of tectorigenin. RESULTS Tectorigenin 10, 25, 50, and 75 μM inhibited 3T3-L1 adipogenesis and related genes transcription. TNF-α-induced changes of IL-6, MCP-1, as well as adiponectin in 3T3-L1 were markedly reversed by tectorigenin at 75 μM. Further investigation using reporter gene revealed that tectorigenin was a partial PPARγ agonist with an IC50 value of 13.3 μM. Tectorigenin improved basal and insulin-stimulated glucose uptake in mature 3T3-L1 adipocytes. Moreover, tectorigenin antagonized TNF-α-induced NF-κB transactivation and p65 nuclear translocation. Although tectorigenin (50 and 100 mg/kg) displayed the ability to promote insulin sensitivity and improve glucose metabolism in HFD/STZ rats, it did not cause significant side effects such as body weight gain, fluid retention, or cardiac hypertrophy. DISCUSSION AND CONCLUSION These results suggest that tectorigenin may ameliorate hyperglycemia by blocking preadipocyte differentiation and adipocytokines secretion in which PPARγ and NF-κB signaling pathways were involved.
Collapse
Affiliation(s)
- Qun-Yi Li
- Clinical Pharmacy Laboratory, Huashan Hospital, Fudan University , Shanghai , China
| | | | | | | | | |
Collapse
|
19
|
Laghezza A, Montanari R, Lavecchia A, Piemontese L, Pochetti G, Iacobazzi V, Infantino V, Capelli D, De Bellis M, Liantonio A, Pierno S, Tortorella P, Conte Camerino D, Loiodice F. On the metabolically active form of metaglidasen: improved synthesis and investigation of its peculiar activity on peroxisome proliferator-activated receptors and skeletal muscles. ChemMedChem 2015; 10:555-65. [PMID: 25641779 DOI: 10.1002/cmdc.201402462] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Indexed: 01/27/2023]
Abstract
Metaglidasen is a fibrate-like drug reported as a selective modulator of peroxisome proliferator-activated receptor γ (PPARγ), able to lower plasma glucose levels in the absence of the side effects typically observed with thiazolidinedione antidiabetic agents in current use. Herein we report an improved synthesis of metaglidasen's metabolically active form halofenic acid (R)-2 and that of its enantiomer (S)-2. The activity of the two stereoisomers was carefully examined on PPARα and PPARγ subtypes. As expected, both showed partial agonist activity toward PPARγ; the investigation of PPARα activity, however, led to unexpected results. In particular, (S)-2 was found to act as a partial agonist, whereas (R)-2 behaved as an antagonist. X-ray crystallographic studies with PPARγ were carried out to gain more insight on the molecular-level interactions and to propose a binding mode. Given the adverse effects provoked by fibrate drugs on skeletal muscle function, we also investigated the capacity of (R)-2 and (S)-2 to block conductance of the skeletal muscle membrane chloride channel. The results showed a more beneficial profile for (R)-2, the activity of which on skeletal muscle function, however, should not be overlooked in the ongoing clinical trials studying its long-term effects.
Collapse
Affiliation(s)
- Antonio Laghezza
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari "Aldo Moro", 70126 Bari (Italy)
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
L312, a novel PPARγ ligand with potent anti-diabetic activity by selective regulation. Biochim Biophys Acta Gen Subj 2015; 1850:62-72. [DOI: 10.1016/j.bbagen.2014.09.027] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 09/12/2014] [Accepted: 09/29/2014] [Indexed: 01/19/2023]
|
21
|
Yang C, Li Q, Li Y. Targeting nuclear receptors with marine natural products. Mar Drugs 2014; 12:601-35. [PMID: 24473166 PMCID: PMC3944506 DOI: 10.3390/md12020601] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 12/20/2013] [Accepted: 01/07/2014] [Indexed: 02/07/2023] Open
Abstract
Nuclear receptors (NRs) are important pharmaceutical targets because they are key regulators of many metabolic and inflammatory diseases, including diabetes, dyslipidemia, cirrhosis, and fibrosis. As ligands play a pivotal role in modulating nuclear receptor activity, the discovery of novel ligands for nuclear receptors represents an interesting and promising therapeutic approach. The search for novel NR agonists and antagonists with enhanced selectivities prompted the exploration of the extraordinary chemical diversity associated with natural products. Recent studies involving nuclear receptors have disclosed a number of natural products as nuclear receptor ligands, serving to re-emphasize the translational possibilities of natural products in drug discovery. In this review, the natural ligands of nuclear receptors will be described with an emphasis on their mechanisms of action and their therapeutic potentials, as well as on strategies to determine potential marine natural products as nuclear receptor modulators.
Collapse
Affiliation(s)
- Chunyan Yang
- State Key Laboratory of Cellular Stress Biology, Innovation Center of Cell Biology Research, School of Life Sciences, Xiamen University, Xiamen 361102, China.
| | - Qianrong Li
- State Key Laboratory of Cellular Stress Biology, Innovation Center of Cell Biology Research, School of Life Sciences, Xiamen University, Xiamen 361102, China.
| | - Yong Li
- State Key Laboratory of Cellular Stress Biology, Innovation Center of Cell Biology Research, School of Life Sciences, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
22
|
Mansour M. The Roles of Peroxisome Proliferator-Activated Receptors in the Metabolic Syndrome. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2014; 121:217-66. [DOI: 10.1016/b978-0-12-800101-1.00007-7] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
23
|
Abstract
Traumatic injury or disease of the spinal cord and brain elicits multiple cellular and biochemical reactions that together cause or are associated with neuropathology. Specifically, injury or disease elicits acute infiltration and activation of immune cells, death of neurons and glia, mitochondrial dysfunction, and the secretion of substrates that inhibit axon regeneration. In some diseases, inflammation is chronic or non-resolving. Ligands that target PPARs (peroxisome proliferator-activated receptors), a group of ligand-activated transcription factors, are promising therapeutics for neurologic disease and CNS injury because their activation affects many, if not all, of these interrelated pathologic mechanisms. PPAR activation can simultaneously weaken or reprogram the immune response, stimulate metabolic and mitochondrial function, promote axon growth and induce progenitor cells to differentiate into myelinating oligodendrocytes. PPAR activation has beneficial effects in many pre-clinical models of neurodegenerative diseases and CNS injury; however, the mechanisms through which PPARs exert these effects have yet to be fully elucidated. In this review we discuss current literature supporting the role of PPAR activation as a therapeutic target for treating traumatic injury and degenerative diseases of the CNS.
Collapse
|
24
|
SAR and Computer-Aided Drug Design Approaches in the Discovery of Peroxisome Proliferator-Activated Receptor γ Activators: A Perspective. ACTA ACUST UNITED AC 2013. [DOI: 10.1155/2013/406049] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Activators of PPARγ, Troglitazone (TGZ), Rosiglitazone (RGZ), and Pioglitazone (PGZ) were introduced for treatment of Type 2 diabetes, but TGZ and RGZ have been withdrawn from the market along with other promising leads due cardiovascular side effects and hepatotoxicity. However, the continuously improving understanding of the structure/function of PPARγ and its interactions with potential ligands maintain the importance of PPARγ as an antidiabetic target. Extensive structure activity relationship (SAR) studies have thus been performed on a variety of structural scaffolds by various research groups. Computer-aided drug discovery (CADD) approaches have also played a vital role in the search and optimization of potential lead compounds. This paper focuses on these approaches adopted for the discovery of PPARγ ligands for the treatment of Type 2 diabetes. Key concepts employed during the discovery phase, classification based on agonistic character, applications of various QSAR, pharmacophore mapping, virtual screening, molecular docking, and molecular dynamics studies are highlighted. Molecular level analysis of the dynamic nature of ligand-receptor interaction is presented for the future design of ligands with better potency and safety profiles. Recently identified mechanism of inhibition of phosphorylation of PPARγ at SER273 by ligands is reviewed as a new strategy to identify novel drug candidates.
Collapse
|
25
|
Zheng W, Feng X, Qiu L, Pan Z, Wang R, Lin S, Hou D, Jin L, Li Y. Identification of the antibiotic ionomycin as an unexpected peroxisome proliferator-activated receptor γ (PPARγ) ligand with a unique binding mode and effective glucose-lowering activity in a mouse model of diabetes. Diabetologia 2013. [PMID: 23178929 DOI: 10.1007/s00125-012-2777-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
AIMS/HYPOTHESIS Existing thiazolidinedione (TZD) drugs for diabetes have severe side effects. The aim of this study is to develop alternative peroxisome proliferator-activated receptor γ (PPARγ) ligands that retain the benefits in improving insulin resistance but with reduced side effects. METHODS We used AlphaScreen assay to screen for new PPARγ ligands from compound libraries. In vitro biochemical binding affinity assay and in vivo cell-based reporter assay were used to validate ionomycin as a partial ligand of PPARγ. A mouse model of diabetes was used to assess the effects of ionomycin in improving insulin sensitivity. Crystal structure of PPARγ complexed with ionomycin revealed the unique binding mode of ionomycin, which elucidated the molecular mechanisms allowing the discrimination of ionomycin from TZDs. RESULTS We found that the antibiotic ionomycin is a novel modulating ligand for PPARγ. Both the transactivation and binding activity of PPARγ by ionomycin can be blocked by PPARγ specific antagonist GW9662. Ionomycin interacts with the PPARγ ligand-binding domain in a unique binding mode with properties and epitopes distinct from those of TZD drugs. Ionomycin treatment effectively improved hyperglycaemia and insulin resistance, but had reduced side effects compared with TZDs in the mouse model of diabetes. In addition, ionomycin effectively blocked the phosphorylation of PPARγ at Ser273 by cyclin-dependent kinase 5 both in vitro and in vivo. CONCLUSIONS/INTERPRETATION Our studies suggest that ionomycin may represent a unique template for designing novel PPARγ ligands with advantages over current TZD drugs.
Collapse
Affiliation(s)
- W Zheng
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Fujian, China
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Lamplot JD, Denduluri S, Liu X, Wang J, Yin L, Li R, Shui W, Zhang H, Wang N, Nan G, Angeles J, Shi LL, Haydon RC, Luu HH, Ho S, He TC. Major Signaling Pathways Regulating the Proliferation and Differentiation of Mesenchymal Stem Cells. ESSENTIALS OF MESENCHYMAL STEM CELL BIOLOGY AND ITS CLINICAL TRANSLATION 2013:75-100. [DOI: 10.1007/978-94-007-6716-4_6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
|
27
|
Abstract
Nuclear receptor (NR)-targeted therapies comprise a large class of clinically employed drugs. A number of drugs currently being used against this protein class were designed as structural analogs of the endogenous ligand of these receptors. In recent years, there has been significant interest in developing newer strategies to target NRs, especially those that rely on mechanistic pathways of NR function. Prominent among these are noncanonical means of targeting NRs, which include selective NR modulation, NR coactivator interaction inhibition, inhibition of NR DNA binding, modulation of NR cellular localization, modulation of NR ligand biosynthesis and downregulation of NR levels in target tissues. This article reviews each of these promising emerging strategies for NR drug development and highlights some of most significant successes achieved in using them.
Collapse
|
28
|
Inoue M, Tanabe H, Matsumoto A, Takagi M, Umegaki K, Amagaya S, Takahashi J. Astaxanthin functions differently as a selective peroxisome proliferator-activated receptor γ modulator in adipocytes and macrophages. Biochem Pharmacol 2012; 84:692-700. [PMID: 22732454 DOI: 10.1016/j.bcp.2012.05.021] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Revised: 05/22/2012] [Accepted: 05/31/2012] [Indexed: 11/26/2022]
Abstract
Astaxanthin (ASX), an oxygenated carotenoid (xanthophyll), has previously been shown to exert ameliorative effects on obesity and insulin resistance, but the underlying mechanisms were not clearly elucidated. In the present study, we investigated whether ASX serves as a novel selective peroxisome proliferator-activated receptor (PPAR) γ modulator. Analyses of PPARγ binding by CoA-BAP assays revealed that ASX bound to PPARγ in a dose-dependent manner. However, ASX was unable to activate transcription in PPARγ reporter assays, although it antagonized transcriptional activation by the PPARγ agonist rosiglitazone (RGZ). When the molecular interactions between PPARγ and three coactivators were examined, ASX increased the interactions of PPARγ with transcriptional intermediary factor 2 (TIF2) and steroid receptor coactivator-1 (SRC-1), but not cAMP responsive element-binding protein (CREB)-binding protein (CBP). In addition, ASX effectively blocked the increase in CBP recruitment to PPARγ mediated by RGZ. ASX alone did not stimulate 3T3-L1 cell differentiation, although it antagonized 3T3-L1 cell differentiation and lipid accumulation induced by RGZ, similar to the PPARγ antagonist GW9662. When the effects of cotreatment of 3T3-L1 cells with ASX and RGZ were determined based on the mRNA levels of PPARγ target genes, ASX effectively reduced the mRNA levels of aP2 and lipoprotein lipase, but not CD36. Intriguingly, ASX was capable of inducing PPARγ target genes such as liver X receptor, CD36 and ABCA1 in thioglycollate-elicited peritoneal macrophages. Collectively, the present findings indicate that ASX is a novel selective PPARγ modulator that acts as an antagonist or agonist depending on the cell context.
Collapse
Affiliation(s)
- Makoto Inoue
- Laboratory of Medicinal Resources, School of Pharmacy, Aichi Gakuin University, 1-100 Kusumoto-cho, Nagoya 464-8650, Japan.
| | | | | | | | | | | | | |
Collapse
|
29
|
|
30
|
Investigation of imatinib and other approved drugs as starting points for antidiabetic drug discovery with FXR modulating activity. Biochem Pharmacol 2012; 83:1674-81. [PMID: 22414727 DOI: 10.1016/j.bcp.2012.02.027] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Revised: 02/25/2012] [Accepted: 02/28/2012] [Indexed: 12/11/2022]
Abstract
A self-organizing map (SOM) is a virtual screening method used for correlation of molecular structure and potential biological activity on a certain target and offers a way to represent multi-dimensional data of large databases in a two-dimensional space. Large databases, for example the DrugBank database, provide information about biological activity and chemical structure of small molecules and are widely used in drug development for identification of new lead structures. The farnesoid X receptor (FXR) is a ligand activated transcription factor involved in key regulation mechanisms within glucose and lipid homeostasis. Although FXR became an established target in drug development for diseases associated with lipid, glucose or hepatic disorders during the last decade, none of the developed compounds have reached later phases of clinical development so far. We used a SOM trained with known FXR ligands to screen the DrugBank database for potential ligands for FXR. In this article, we report the successful identification of six approved drugs out of the Drugbank as FXR modulators (ketoconazole, pentamidine, dobutamine, imatinib, papaverine and montelukast) by using a SOM for screening of the DrugBank database. We show FXR modulation by selected compounds in a full length FXR transactivation assay and modulation of a FXR target gene by imatinib.
Collapse
|
31
|
Youssef J, Badr M. Peroxisome proliferator-activated receptors and cancer: challenges and opportunities. Br J Pharmacol 2012; 164:68-82. [PMID: 21449912 DOI: 10.1111/j.1476-5381.2011.01383.x] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs), members of the nuclear hormone receptor superfamily, function as transcription factors and modulators of gene expression. These actions allow PPARs to regulate a variety of biological processes and to play a significant role in several diseases and conditions. The current literature describes frequently opposing and paradoxical roles for the three PPAR isotypes, PPARα, PPARβ/δ and PPARγ, in cancer. While some studies have implicated PPARs in the promotion and development of cancer, others, in contrast, have presented evidence for a protective role for these receptors against cancer. In some tissues, the expression level of these receptors and/or their activation correlates with a positive outcome against cancer, while, in other tissue types, their expression and activation have the opposite effect. These disparate findings raise the possibility of (i) PPAR receptor-independent effects, including effects on receptors other than PPARs by the utilized ligands; (ii) cancer stage-specific effect; and/or (iii) differences in essential ligand-related pharmacokinetic considerations. In this review, we highlight the latest available studies on the role of the various PPAR isotypes in cancer in several major organs and present challenges as well as promising opportunities in the field.
Collapse
Affiliation(s)
- Jihan Youssef
- University of Missouri-Kansas City, Kansas City, MO 64108, USA
| | | |
Collapse
|
32
|
Fracchiolla G, Laghezza A, Piemontese L, Parente M, Lavecchia A, Pochetti G, Montanari R, Di Giovanni C, Carbonara G, Tortorella P, Novellino E, Loiodice F. Synthesis, biological evaluation and molecular investigation of fluorinated peroxisome proliferator-activated receptors α/γ dual agonists. Bioorg Med Chem 2012; 20:2141-51. [PMID: 22341573 DOI: 10.1016/j.bmc.2012.01.025] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Revised: 01/13/2012] [Accepted: 01/16/2012] [Indexed: 10/14/2022]
Abstract
PPARs are transcription factors that govern lipid and glucose homeostasis and play a central role in cardiovascular disease, obesity, and diabetes. Thus, there is significant interest in developing new agonists for these receptors. Given that the introduction of fluorine generally has a profound effect on the physical and/or biological properties of the target molecule, we synthesized a series of fluorinated analogs of the previously reported compound 2, some of which turned out to be remarkable PPARα and PPARγ dual agonists. Docking experiments were also carried out to gain insight into the interactions of the most active derivatives with both receptors.
Collapse
Affiliation(s)
- Giuseppe Fracchiolla
- Dipartimento Farmaco-Chimico, Università degli Studi di Bari 'Aldo Moro', Via Orabona 4, 70126 Bari, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Porcelli L, Gilardi F, Laghezza A, Piemontese L, Mitro N, Azzariti A, Altieri F, Cervoni L, Fracchiolla G, Giudici M, Guerrini U, Lavecchia A, Montanari R, Di Giovanni C, Paradiso A, Pochetti G, Simone GM, Tortorella P, Crestani M, Loiodice F. Synthesis, Characterization and Biological Evaluation of Ureidofibrate-Like Derivatives Endowed with Peroxisome Proliferator-Activated Receptor Activity. J Med Chem 2011; 55:37-54. [DOI: 10.1021/jm201306q] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- L. Porcelli
- Laboratorio di Oncologia Sperimentale Clinica, Istituto Tumori “Giovanni Paolo II”, 70124 Bari, Italy
| | - F. Gilardi
- Dipartimento di Scienze Farmacologiche, Università degli Studi di Milano, 20133 Milano,
Italy
| | - A. Laghezza
- Dipartimento Farmaco-Chimico, Università degli Studi di Bari “Aldo Moro”, 70126 Bari, Italy
| | - L. Piemontese
- Dipartimento Farmaco-Chimico, Università degli Studi di Bari “Aldo Moro”, 70126 Bari, Italy
| | - N. Mitro
- Dipartimento di Scienze Farmacologiche, Università degli Studi di Milano, 20133 Milano,
Italy
| | - A. Azzariti
- Laboratorio di Oncologia Sperimentale Clinica, Istituto Tumori “Giovanni Paolo II”, 70124 Bari, Italy
| | - F. Altieri
- Dipartimento
di Scienze Biochimiche
“A. Rossi Fanelli”, Università di Roma “La Sapienza”, 00185 Roma, Italy
| | - L. Cervoni
- Dipartimento
di Scienze Biochimiche
“A. Rossi Fanelli”, Università di Roma “La Sapienza”, 00185 Roma, Italy
| | - G. Fracchiolla
- Dipartimento Farmaco-Chimico, Università degli Studi di Bari “Aldo Moro”, 70126 Bari, Italy
| | - M. Giudici
- Dipartimento di Scienze Farmacologiche, Università degli Studi di Milano, 20133 Milano,
Italy
| | - U. Guerrini
- Dipartimento di Scienze Farmacologiche, Università degli Studi di Milano, 20133 Milano,
Italy
| | - A. Lavecchia
- Dipartimento di Chimica Farmaceutica
e Tossicologica, Università di Napoli “Federico II”, 80131 Napoli, Italy
| | - R. Montanari
- Istituto di Cristallografia, Consiglio
Nazionale delle Ricerche, Montelibretti, 00015 Monterotondo Stazione,
Roma, Italy
| | - C. Di Giovanni
- Dipartimento di Chimica Farmaceutica
e Tossicologica, Università di Napoli “Federico II”, 80131 Napoli, Italy
| | - A. Paradiso
- Laboratorio di Oncologia Sperimentale Clinica, Istituto Tumori “Giovanni Paolo II”, 70124 Bari, Italy
| | - G. Pochetti
- Istituto di Cristallografia, Consiglio
Nazionale delle Ricerche, Montelibretti, 00015 Monterotondo Stazione,
Roma, Italy
| | - G. M. Simone
- Laboratorio di Oncologia Sperimentale Clinica, Istituto Tumori “Giovanni Paolo II”, 70124 Bari, Italy
| | - P. Tortorella
- Dipartimento Farmaco-Chimico, Università degli Studi di Bari “Aldo Moro”, 70126 Bari, Italy
| | - M. Crestani
- Dipartimento di Scienze Farmacologiche, Università degli Studi di Milano, 20133 Milano,
Italy
| | - F. Loiodice
- Dipartimento Farmaco-Chimico, Università degli Studi di Bari “Aldo Moro”, 70126 Bari, Italy
| |
Collapse
|
34
|
Zhang F, Lavan BE, Gregoire FM. Selective Modulators of PPAR-gamma Activity: Molecular Aspects Related to Obesity and Side-Effects. PPAR Res 2011; 2007:32696. [PMID: 17389769 PMCID: PMC1783742 DOI: 10.1155/2007/32696] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2006] [Revised: 11/21/2006] [Accepted: 11/22/2006] [Indexed: 01/23/2023] Open
Abstract
Peroxisome proliferator-activated receptor gamma (PPAR-gamma) is a key regulator of lipid metabolism and energy balance implicated in the development of insulin resistance and obesity. The identification of putative natural and synthetic ligands and activators of PPAR-gamma has helped to unravel the molecular basis of its function, including molecular details regarding ligand binding, conformational changes of the receptor, and cofactor binding, leading to the emergence of the concept of selective PPAR-gamma modulators (SPPARgammaMs). SPPARgammaMs bind in distinct manners to the ligand-binding pocket of PPAR-gamma, leading to alternative receptor conformations, differential cofactor recruitment/displacement, differential gene expression, and ultimately differential biological responses. Based on this concept, new and improved antidiabetic agents for the treatment of diabetes are in development. This review summarizes the current knowledge on the mechanism of action and biological effects of recently characterized SPPARgammaMs, including metaglidasen/halofenate, PA-082, and the angiotensin receptor antagonists, recently characterized as a new class of SPPARgammaMs.
Collapse
Affiliation(s)
- Fang Zhang
- Department of Biology, Metabolex Inc., 3876 Bay Center Place, Hayward, CA 94545, USA
| | - Brian E. Lavan
- Department of Biology, Metabolex Inc., 3876 Bay Center Place, Hayward, CA 94545, USA
| | - Francine M. Gregoire
- Department of Biology, Metabolex Inc., 3876 Bay Center Place, Hayward, CA 94545, USA
- *Francine M. Gregoire:
| |
Collapse
|
35
|
Cross-Species Differential Plasma Protein Binding of MBX-102/JNJ39659100: A Novel PPAR-gamma Agonist. PPAR Res 2011; 2008:465715. [PMID: 18815616 PMCID: PMC2535826 DOI: 10.1155/2008/465715] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2008] [Accepted: 07/15/2008] [Indexed: 11/24/2022] Open
Abstract
Drug binding to plasma proteins restricts their free and active concentrations, thereby affecting their pharmacokinetic properties. Species differences in plasma protein levels complicate the understanding of interspecies pharmacodynamic and toxicological effects. MBX-102 acid/JNJ39659100 is a novel PPAR-γ agonist in development for the treatment of type 2 diabetes. Studies were performed to evaluate plasma protein binding to MBX-102 acid and evaluate species differences in free drug levels. Equilibrium dialysis studies demonstrated that MBX-102 acid is highly bound (>98%) to human, rat and mouse albumin and that free MBX-102 acid levels are higher in rodent than in human plasma. Interspecies differences in free drug levels were further studied using PPAR-γ transactivation assays and a newly developed PPAR-γ corepressor displacement (biochemical) assay. PPAR-γ transactivation and corepressor displacement by MBX-102 acid was higher in rat and mouse serum than human serum. These results confirm the relevance of interspecies differences in free MBX-102 acid levels.
Collapse
|
36
|
PPARgamma Inhibitors as Novel Tubulin-Targeting Agents. PPAR Res 2011; 2008:785405. [PMID: 18509498 PMCID: PMC2396401 DOI: 10.1155/2008/785405] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2008] [Accepted: 05/01/2008] [Indexed: 12/11/2022] Open
Abstract
The microtubule-targeting agents (MTAs) are a very successful class of cancer drugs with therapeutic benefits in both hematopoietic and solid tumors. However, resistance to these drugs is a significant problem. Current MTAs bind to microtubules, and/or to their constituent tubulin heterodimers, and affect microtubule polymerization and dynamics. The PPARγ inhibitor T0070907 can reduce tubulin levels in colorectal cancer cell lines and suppress tumor growth in a murine xenograft model. T0070907 does not alter microtubule polymerization in vitro, and does not appear to work by triggering modulation of tubulin RNA levels subsequent to decreased polymerization. This observation suggests the possible development of antimicrotubule drugs that work by a novel mechanism, and implies the presence of cancer therapeutic targets that have not yet been exploited. This review summarizes what is known about PPARγ inhibitors and cancer cell death, with emphasis on the tubulin phenotype and PPAR-dependence, and identifies potential mechanisms of action.
Collapse
|
37
|
Peroxisome Proliferators-Activated Receptor (PPAR) Modulators and Metabolic Disorders. PPAR Res 2011; 2008:679137. [PMID: 18566691 PMCID: PMC2430035 DOI: 10.1155/2008/679137] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2007] [Revised: 12/21/2007] [Accepted: 02/28/2008] [Indexed: 02/07/2023] Open
Abstract
Overweight and obesity lead to an increased risk for metabolic disorders such as impaired glucose regulation/insulin resistance, dyslipidemia, and hypertension. Several molecular drug targets with potential to prevent or treat metabolic disorders have been revealed. Interestingly, the activation of peroxisome proliferator-activated receptor (PPAR), which belongs to the nuclear receptor superfamily, has many beneficial clinical effects. PPAR directly modulates gene expression by binding to a specific ligand. All PPAR subtypes (alpha, gamma, and sigma) are involved in glucose metabolism, lipid metabolism, and energy balance. PPAR agonists play an important role in therapeutic aspects of metabolic disorders. However, undesired effects of the existing PPAR agonists have been reported. A great deal of recent research has focused on the discovery of new PPAR modulators with more beneficial effects and more safety without producing undesired side effects. Herein, we briefly review the roles of PPAR in metabolic disorders, the effects of PPAR modulators in metabolic disorders, and the technologies with which to discover new PPAR modulators.
Collapse
|
38
|
Novel PPARγ partial agonists with weak activity and no cytotoxicity; identified by a simple PPARγ ligand screening system. Mol Cell Biochem 2011; 358:75-83. [DOI: 10.1007/s11010-011-0923-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Accepted: 06/07/2011] [Indexed: 10/18/2022]
|
39
|
Ushiroda K, Maruta K, Takazawa T, Nagano T, Taiji M, Kohno T, Sato Y, Horai S, Yanagi K, Nagata R. Synthesis and pharmacological evaluation of novel benzoylazole-based PPAR α/γ activators. Bioorg Med Chem Lett 2011; 21:1978-82. [DOI: 10.1016/j.bmcl.2011.02.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Accepted: 02/09/2011] [Indexed: 02/05/2023]
|
40
|
Kim MK, Chae YN, Choi SH, Moon HS, Son MH, Bae MH, Choi HH, Hur Y, Kim E, Park YH, Park CS, Kim JG, Lim JI, Shin CY. PAM-1616, a selective peroxisome proliferator-activated receptor γ modulator with preserved anti-diabetic efficacy and reduced adverse effects. Eur J Pharmacol 2011; 650:673-81. [DOI: 10.1016/j.ejphar.2010.10.044] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2010] [Revised: 09/20/2010] [Accepted: 10/04/2010] [Indexed: 01/25/2023]
|
41
|
Ushiroda K, Maruta K, Kitoh M, Iwai K, Nagamine J, Tsuchida A, Taiji M, Nagata R. Development of a new class of benzoylpyrrole-based PPARα/γ activators. Bioorg Med Chem Lett 2011; 21:220-4. [PMID: 21130649 DOI: 10.1016/j.bmcl.2010.11.032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2010] [Revised: 11/02/2010] [Accepted: 11/04/2010] [Indexed: 12/14/2022]
Abstract
Starting with a subtle blood glucose-lowering effect of a TGF-β inhibitor, we designed and synthesized a series of benzoylpyrrole-based carboxylic acids as PPARs activators. Among these compounds, 10sNa exhibited favorable blood glucose-lowering effect without body weight gain. We assume that the beneficial effect of 10sNa is attributed to not only its compound PPARα agonistic activity but also its PPARγ partial agonistic activity.
Collapse
Affiliation(s)
- Kantaro Ushiroda
- Dainippon Sumitomo Pharma Co, Ltd, Drug Research Division, Chemistry Research Laboratories, Osaka, Japan
| | | | | | | | | | | | | | | |
Collapse
|
42
|
1,3-Diphenyl-1H-pyrazole derivatives as a new series of potent PPARγ partial agonists. Bioorg Med Chem 2010; 18:8315-23. [DOI: 10.1016/j.bmc.2010.09.068] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2010] [Revised: 09/26/2010] [Accepted: 09/28/2010] [Indexed: 11/21/2022]
|
43
|
Pharmacophore-driven identification of PPARγ agonists from natural sources. J Comput Aided Mol Des 2010; 25:107-16. [PMID: 21069556 DOI: 10.1007/s10822-010-9398-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Accepted: 10/26/2010] [Indexed: 01/14/2023]
Abstract
In a search for more effective and safe anti-diabetic compounds, we developed a pharmacophore model based on partial agonists of PPARγ. The model was used for the virtual screening of the Chinese Natural Product Database (CNPD), a library of plant-derived natural products primarily used in folk medicine. From the resulting hits, we selected methyl oleanonate, a compound found, among others, in Pistacia lentiscus var. Chia oleoresin (Chios mastic gum). The acid of methyl oleanonate, oleanonic acid, was identified as a PPARγ agonist through bioassay-guided chromatographic fractionations of Chios mastic gum fractions, whereas some other sub-fractions exhibited also biological activity towards PPARγ. The results from the present work are two-fold: on the one hand we demonstrate that the pharmacophore model we developed is able to select novel ligand scaffolds that act as PPARγ agonists; while at the same time it manifests that natural products are highly relevant for use in virtual screening-based drug discovery.
Collapse
|
44
|
Doshi LS, Brahma MK, Bahirat UA, Dixit AV, Nemmani KVS. Discovery and development of selective PPAR gamma modulators as safe and effective antidiabetic agents. Expert Opin Investig Drugs 2010; 19:489-512. [PMID: 20367191 DOI: 10.1517/13543781003640169] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
IMPORTANCE OF THE FIELD PPARgamma full agonists (pioglitazone and rosiglitazone) are the mainstay drugs for the treatment of type 2 diabetes; however, mechanism-based side effects have limited their full therapeutic potential. In recent years, much progress has been achieved in the discovery and development of selective PPARgamma modulators (SPPARgammaMs) as safer alternatives to PPARgamma full agonists. AREAS COVERED IN THIS REVIEW This review focuses on the preclinical and clinical data of all the SPPARgammaMs discovered so far, retrieved by searching PubMed, Prous Integrity database and company news updates from 1999 to date. WHAT THE READER WILL GAIN Here we thoroughly discuss SPPARgammaMs' mode of action, briefly examine new ways to identify superior SPPARgammaMs, and finally, compare and contrast the pharmacological and safety profile of various agents. TAKE HOME MESSAGE The preclinical and clinical findings clearly suggest that selective PPARgamma modulators have the potential to become the next generation of PPARgamma agonists: effective insulin sensitizers with a superior safety profile to that of PPARgamma full agonists.
Collapse
Affiliation(s)
- Lalit S Doshi
- Department of Pharmacology, Piramal Life Sciences Limited, 1 Nirlon Complex, Goregaon (E), Mumbai - 400 063, India
| | | | | | | | | |
Collapse
|
45
|
Arck P, Toth B, Pestka A, Jeschke U. Nuclear receptors of the peroxisome proliferator-activated receptor (PPAR) family in gestational diabetes: from animal models to clinical trials. Biol Reprod 2010; 83:168-76. [PMID: 20427759 DOI: 10.1095/biolreprod.110.083550] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Gestational diabetes mellitus (GDM) is defined as impaired glucose tolerance and affects 2%-8% of all pregnancies. Among other complications, GDM can lead to the development of type 2 diabetes mellitus (DM 2) in both mother and child. Peroxisome proliferator-activated receptors (PPARs) are major regulators of glucose and lipid metabolism. Furthermore, PPARs are mediators of inflammation and angiogenesis and are involved in the maternal adaptational dynamics during pregnancy to serve the requirements of the growing fetus. PPARs were originally named for their ability to induce hepatic peroxisome proliferation in mice in response to xenobiotic stimuli. The expression of three PPAR isoforms, alpha, beta/delta, and gamma, have been described. Each of them is encoded by different genes; however, they share 60%-80% homology in their ligand-binding and DNA-binding domains. PPARs are involved in trophoblast differentiation, invasion, metabolism, and parturition and are expressed in invasive extravillous trophoblast and villous trophoblast cells. Nuclear receptors, to which PPARs belong, are promising targets for disease-specific treatment strategies because they act as transcription factors controlling cellular processes at the level of gene expression and may produce selective alterations in downstream gene expression. To date, PPAR agonists are therapeutically used in patients with DM 2 and in patients with reproductive disorders such as polycystic ovary syndrome. Because of safety concerns and limited data, PPAR agonists are not yet included in GDM-related treatment strategies. Our objective herein is to review newly emerging generations of selective PPAR modulators and panagonists, which may have potent therapeutic implications in the context of GDM.
Collapse
Affiliation(s)
- Petra Arck
- Center for Internal Medicine, Charité University Medicine Berlin, Berlin, Germany
| | | | | | | |
Collapse
|
46
|
Synthesis and anti-inflammatory activity of new arylidene-thiazolidine-2,4-diones as PPARgamma ligands. Bioorg Med Chem 2010; 18:3805-11. [PMID: 20471839 DOI: 10.1016/j.bmc.2010.04.045] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2010] [Revised: 04/14/2010] [Accepted: 04/16/2010] [Indexed: 11/24/2022]
Abstract
Eight new 5-arylidene-3-benzyl-thiazolidine-2,4-diones with halide groups on their benzyl rings were synthesized and assayed in vivo to investigate their anti-inflammatory activities. These compounds showed considerable biological efficacy when compared to rosiglitazone, a potent and well-known agonist of PPARgamma, which was used as a reference drug. This suggests that the substituted 5-arylidene and 3-benzylidene groups play important roles in the anti-inflammatory properties of this class of compounds. Docking studies with these compounds indicated that they exhibit specific interactions with key residues located in the site of the PPARgamma structure, which corroborates the hypothesis that these molecules are potential ligands of PPARgamma. In addition, competition binding assays showed that four of these compounds bound directly to the ligand-binding domain of PPARgamma, with reduced affinity when compared to rosiglitazone. An important trend was observed between the docking scores and the anti-inflammatory activities of this set of molecules. The analysis of the docking results, which takes into account the hydrophilic and hydrophobic interactions between the ligands and the target, explained why the 3-(2-bromo-benzyl)-5-(4-methanesulfonyl-benzylidene)-thiazolidine-2,4-dione compound had the best activity and the best docking score. Almost all of the stronger hydrophilic interactions occurred between the substituted 5-arylidene group of this compound and the residues of the binding site.
Collapse
|
47
|
Antidiabetic sulfonylureas modulate farnesoid X receptor activation and target gene transcription. Future Med Chem 2010; 2:575-86. [DOI: 10.4155/fmc.10.10] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Background: The sulfonylureas glibenclamide and glimepiride are oral antidiabetic drugs that stimulate insulin secretion by closing pancreatic ATP-dependent potassium channels. The farnesoid X receptor (FXR) is a ligand-activated transcription factor that regulates the expression of several target genes involved in bile acid metabolism and lipid and glucose homeostasis. Methods: In this study we investigated the potential effects of sulfonylureas on the signaling of FXR using a reporter-gene assay, real-time qPCR and computational methods such as molecular docking and molecular dynamic simulations. Results: We demonstrate that glibenclamide and glimepiride modulate FXR activation in a reporter-gene assay and induce FXR target genes in HepG2 cells. Within the docking experiments and molecular dynamics simulation, we found glibenclamide interacting with the ligand-binding domain of FXR and with helix 12. Conclusion: Glibenclamide and glimepiride are potential ligands of FXR and modulate activation and signaling.
Collapse
|
48
|
Thieme TM, Steri R, Proschak E, Paulke A, Schneider G, Schubert-Zsilavecz M. Rational design of a pirinixic acid derivative that acts as subtype-selective PPARγ modulator. Bioorg Med Chem Lett 2010; 20:2469-73. [DOI: 10.1016/j.bmcl.2010.03.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2010] [Revised: 03/01/2010] [Accepted: 03/02/2010] [Indexed: 10/19/2022]
|
49
|
Lefebvre B, Benomar Y, Guédin A, Langlois A, Hennuyer N, Dumont J, Bouchaert E, Dacquet C, Pénicaud L, Casteilla L, Pattou F, Ktorza A, Staels B, Lefebvre P. Proteasomal degradation of retinoid X receptor alpha reprograms transcriptional activity of PPARgamma in obese mice and humans. J Clin Invest 2010; 120:1454-68. [PMID: 20364085 DOI: 10.1172/jci38606] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2009] [Accepted: 01/27/2010] [Indexed: 12/14/2022] Open
Abstract
Obese patients have chronic, low-grade inflammation that predisposes to type 2 diabetes and results, in part, from dysregulated visceral white adipose tissue (WAT) functions. The specific signaling pathways underlying WAT dysregulation, however, remain unclear. Here we report that the PPARgamma signaling pathway operates differently in the visceral WAT of lean and obese mice. PPARgamma in visceral, but not subcutaneous, WAT from obese mice displayed increased sensitivity to activation by its agonist rosiglitazone. This increased sensitivity correlated with increased expression of the gene encoding the ubiquitin hydrolase/ligase ubiquitin carboxyterminal esterase L1 (UCH-L1) and with increased degradation of the PPARgamma heterodimerization partner retinoid X receptor alpha (RXRalpha), but not RXRbeta, in visceral WAT from obese humans and mice. Interestingly, increased UCH-L1 expression and RXRalpha proteasomal degradation was induced in vitro by conditions mimicking hypoxia, a condition that occurs in obese visceral WAT. Finally, PPARgamma-RXRbeta heterodimers, but not PPARgamma-RXRalpha complexes, were able to efficiently dismiss the transcriptional corepressor silencing mediator for retinoid and thyroid hormone receptors (SMRT) upon agonist binding. Increasing the RXRalpha/RXRbeta ratio resulted in increased PPARgamma responsiveness following agonist stimulation. Thus, the selective proteasomal degradation of RXRalpha initiated by UCH-L1 upregulation modulates the relative affinity of PPARgamma heterodimers for SMRT and their responsiveness to PPARgamma agonists, ultimately activating the PPARgamma-controlled gene network in visceral WAT of obese animals and humans.
Collapse
|
50
|
Therapeutic Implications of PPARgamma in Human Osteosarcoma. PPAR Res 2010; 2010:956427. [PMID: 20182546 PMCID: PMC2825651 DOI: 10.1155/2010/956427] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2009] [Revised: 11/21/2009] [Accepted: 11/24/2009] [Indexed: 12/21/2022] Open
Abstract
Osteosarcoma (OS) is the most common nonhematologic malignancy of bone in children and adults. Although dysregulation of tumor suppressor genes and oncogenes, such as Rb, p53, and the genes critical to cell cycle control, genetic stability, and apoptosis have been identified in OS, consensus genetic changes that lead to OS development are poorly understood. Disruption of the osteogenic differentiation pathway may be at least in part responsible for OS tumorigenesis. Current OS management involves chemotherapy and surgery. Peroxisome proliferator-activated receptor (PPAR) agonists and/or retinoids can inhibit OS proliferation and induce apoptosis and may inhibit OS growth by promoting osteoblastic terminal differentiation. Thus, safe and effective PPAR agonists and/or retinoid derivatives can be then used as adjuvant therapeutic drugs for OS therapy. Furthermore, these agents have the potential to be used as chemopreventive agents for the OS patients who undergo the resection of the primary bone tumors in order to prevent local recurrence and/or distal pulmonary metastasis.
Collapse
|