1
|
Alazwari A, Tafakori L, Johnstone A, Abdollahian M. Modeling the number of new cases of childhood type 1 diabetes using Poisson regression and machine learning methods; a case study in Saudi Arabia. PLoS One 2025; 20:e0321480. [PMID: 40279367 PMCID: PMC12027261 DOI: 10.1371/journal.pone.0321480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 03/06/2025] [Indexed: 04/27/2025] Open
Abstract
Diabetes mellitus stands out as one of the most prevalent chronic conditions affecting pediatric populations. The escalating incidence of childhood type 1 diabetes (T1D) globally is a matter of increasing concern. Developing an effective model that leverages Key Performance Indicators (KPIs) to understand the incidence of T1D in children would significantly assist medical practitioners in devising targeted monitoring strategies. This study models the number of monthly new cases of T1D and its associated KPIs among children aged 0 to 14 in Saudi Arabia. The study involved collecting de-identified data (n=377) from diagnoses made between 2010 and 2020, sourced from pediatric diabetes centers in three cities across Saudi Arabia. Poisson regression (PR), and various machine learning (ML) techniques, including random forest (RF), support vector machine (SVM), and K-nearest neighbor (KNN), were employed to model the monthly number of new T1D cases using the local data. The performance of these models was assessed using both numbers of KPIs and metrics such as the coefficient of determination ([Formula: see text]), root mean squared error (RMSE), and mean absolute error (MAE). Among various Poisson and ML models, both model considering birth weight over 3.5 kg, maternal age over 25 years at the child's birth, family history of T1D, and nutrition history, specifically early introduction to cow milk and model taking into account birth weight over 3.5 kg, maternal age over 25 years at the child's birth, and nutrition history (early introduction to cow milk) emerged as the best-reduced models. They achieved [Formula: see text] of (0.89,0.88), RMSE (0.82, 0.95) and MAE(0.62,0.67). Additionally, models with fewer KPIs, like model that considers maternal age over 25 years and early introduction to cow milk, achieved consistently high [Formula: see text] values ranging from 0.80 to 0.83 across all models. Notably, this model demonstrated smaller values of RMSE (0.92) and MAE (0.67) in the KNN model. Simplified models facilitate the efficient creation and monitoring of KPIs profiles. The findings can assist healthcare providers in collecting and monitoring influential KPIs, enabling the development of targeted strategies to potentially reduce, or reverse, the increasing incidence rate of childhood T1D in Saudi Arabia.
Collapse
Affiliation(s)
- Ahood Alazwari
- School of Science, RMIT University, Melbourne, Victoria, Australia
- School of Science, Al-Baha University, Al-Baha, Saudi Arabia
| | - Laleh Tafakori
- School of Science, RMIT University, Melbourne, Victoria, Australia
| | - Alice Johnstone
- School of Science, RMIT University, Melbourne, Victoria, Australia
| | - Mali Abdollahian
- School of Science, RMIT University, Melbourne, Victoria, Australia
| |
Collapse
|
2
|
Delgadillo-Silva LF, Salazar S, Lopez Noriega L, Provencher-Girard A, Larouche S, Prat A, Rutter GA. Exploration of individual beta cell function over time in vivo: effects of hyperglycemia and glucagon-like peptide-1 receptor (GLP1R) agonism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.31.646461. [PMID: 40236128 PMCID: PMC11996457 DOI: 10.1101/2025.03.31.646461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
The coordinated function of beta cells within the pancreatic islet is required for the normal regulation of insulin secretion and is partly controlled by specialized "leader" and highly connected "hub" beta-cell subpopulations. Whether cells within these subpopulations are functionally stable in vivo remains unclear. Here, we establish an approach to monitor Ca 2+ dynamics within individual beta cells over time, after engraftment into the anterior eye chamber, where continuous blood perfusion and near normal innervation pertain. Under normoglycemic conditions, islet network dynamics, and the behavior of individual leaders and hubs, remain stable for at least seven days. Hyperglycemia, resulting from high-fat diet feeding or the loss of a host Gck allele, caused engrafted islets to display incomplete and abortive Ca 2+ waves and overall connectivity was diminished. Whereas hub cell numbers were lowered profoundly in both disease models, leaders largely persisted. Treatment with the GLP1R agonist Exendin-4 led to a recovery of islet-wide Ca 2+ dynamics and the re-emergence of hub cells within minutes, with the effects of the incretin mimetic being more marked than those observed after analogous treatments in vitro . Similar observations were made using 3-dimensional imaging across the whole islet. Our findings thus suggest that incretins may act both directly and indirectly on beta cells in vivo. The approach described may provide broad applicability to the exploration of individual cell function over time in the living animal.
Collapse
|
3
|
Zhao M, Han M, Guo S, Tang Z. CXCL12 as a Potential Hub Gene for N-Acetylcysteine Treatment of T1DM Liver Disease. Biomolecules 2025; 15:176. [PMID: 40001479 PMCID: PMC11853168 DOI: 10.3390/biom15020176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/11/2025] [Accepted: 01/22/2025] [Indexed: 02/27/2025] Open
Abstract
The etiology of type 1 diabetes mellitus (T1DM) is intricate, leading to its classification as an autoimmune metabolic disorder. T1DM often coexists with various visceral diseases. N-acetylcysteine (NAC) is widely acknowledged for its potent antioxidant properties. Studies have demonstrated that the combination of NAC and insulin can effectively alleviate iron-induced nephropathy in T1DM and mitigate oxidative stress injury in skeletal muscle associated with the condition. However, the potential impact of NAC alone on liver disease in individuals with T1DM remains uncertain. In this study, a beagle model was established to simulate T1DM, enabling investigation into the role of NAC in liver disease using RNA-seq biogenic analysis and subsequent validation through molecular biological methods. The findings revealed suppressed expression of CXCL12 chemokine in the livers of individuals with T1DM, while treatment with NAC induced specific activation of CXCL12 within the liver affected by T1DM. These results suggest that CXCL12 may serve as a regulatory factor involved in the therapeutic effects of NAC on liver disease associated with TIDM. This discovery holds significant implications for utilizing NAC as an adjunctive therapy for managing complicated liver diseases accompanying type 1 diabetes mellitus.
Collapse
Affiliation(s)
| | | | | | - Zhaoxin Tang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (M.Z.); (M.H.); (S.G.)
| |
Collapse
|
4
|
Ezzedine K, Tannous R, Pearson TF, Harris JE. Recent clinical and mechanistic insights into vitiligo offer new treatment options for cell-specific autoimmunity. J Clin Invest 2025; 135:e185785. [PMID: 39817457 PMCID: PMC11735104 DOI: 10.1172/jci185785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2025] Open
Abstract
Vitiligo is an autoimmune disease that has been recognized, stigmatized, and treated for millennia. Recent translational research has revealed key mechanisms of disease, including cellular stress, innate immune activation, T cell-mediated elimination of melanocytes from the skin resulting in clinically apparent white spots, as well as stem cell regeneration that reverses established lesions. Many of these pathways have been targeted therapeutically, leading to the first FDA-approved medication to reverse the disease, with many more in clinical trials. Despite these impressive advances, many questions remain, which will be answered through integration of additional basic, translational, and clinical research studies. This vitiligo revolution has led to great excitement for individuals with vitiligo, those who know them, and the dermatologists who care for their patients. But just as importantly, these advances have great potential to shed light on autoimmune diseases that are more difficult to study, possibly leading to treatment advances that could not be achieved otherwise.
Collapse
Affiliation(s)
- Khaled Ezzedine
- Department of Dermatology, Hôpital Henri Mondor, Université Paris-Est Créteil Val de Marne-Université Paris, Paris, France
- EpidermE, Université Paris-Est Créteil (UPEC), Créteil, France
| | - Rim Tannous
- Department of Dermatology, Hôpital Henri Mondor, Université Paris-Est Créteil Val de Marne-Université Paris, Paris, France
| | - Todd F. Pearson
- Department of Dermatology, UMass Chan Medical School, Worcester, Massachusetts, USA
| | - John E. Harris
- Department of Dermatology, UMass Chan Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
5
|
Bhattacharjee P, Pakusch M, Lacorcia M, Tresoldi E, Rubin AF, Foster A, King L, Chiu CY, Kay TWH, Karas JA, Cameron FJ, Mannering SI. Proinsulin C-peptide is a major source of HLA-DQ8 restricted hybrid insulin peptides recognized by human islet-infiltrating CD4 + T cells. PNAS NEXUS 2024; 3:pgae491. [PMID: 39554513 PMCID: PMC11565411 DOI: 10.1093/pnasnexus/pgae491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 10/11/2024] [Indexed: 11/19/2024]
Abstract
Type 1 diabetes (T1D) is an autoimmune disease that develops when T cells destroy the insulin-producing beta cells that reside in the pancreatic islets. Immune cells, including T cells, infiltrate the islets and gradually destroy the beta cells. Human islet-infiltrating CD4+ T cells recognize peptide epitopes derived from proinsulin, particularly C-peptide. Hybrid insulin peptides (HIPs) are neoepitopes formed by the fusion of two peptides derived from beta cell granule proteins and are known to be the targets of pathogenic CD4+ T cells in the non-obese diabetic (NOD) mouse and human islet-infiltrating CD4+ T cells. Proinsulin is widely recognized as a central antigen in T1D, but its role in forming HIPs is unclear. We developed a method to functionally screen TCRs derived from human islet-infiltrating CD4+ T cells and applied this to the identification of new proinsulin-derived HIPs. We generated a library of 4,488 candidate HIPs formed by fusion of proinsulin fragments and predicted to bind to HLA-DQ8. This library was screened against 109 islet-infiltrating CD4+ T cell receptors (TCRs) isolated from four organ donors who had T1D. We identified 13 unique HIPs recognized by nine different TCRs from two organ donors. HIP-specific T cell avatars responded specifically to a peptide extract from human islets. These new HIPs predominantly stimulated CD4+ T cell proliferation in peripheral blood mononuclear cells from individuals with T1D in contrast to HLA-matched controls. This is the first unbiased functional, islet-infiltrating T cell based, screen to identify proinsulin-derived HIPs. It has revealed many new HIPs and a central role of proinsulin C-peptide in their formation.
Collapse
Affiliation(s)
- Pushpak Bhattacharjee
- Immunology and Diabetes Unit, St. Vincent's Institute of Medical Research, 9 Princes St, Fitzroy, VIC 3065, Australia
| | - Miha Pakusch
- Immunology and Diabetes Unit, St. Vincent's Institute of Medical Research, 9 Princes St, Fitzroy, VIC 3065, Australia
| | - Matthew Lacorcia
- Immunology and Diabetes Unit, St. Vincent's Institute of Medical Research, 9 Princes St, Fitzroy, VIC 3065, Australia
| | - Eleonora Tresoldi
- Immunology and Diabetes Unit, St. Vincent's Institute of Medical Research, 9 Princes St, Fitzroy, VIC 3065, Australia
| | - Alan F Rubin
- Bioinformatics Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Melbourne, VIC 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Melbourne, VIC 3010, Australia
| | - Abby Foster
- Immunology and Diabetes Unit, St. Vincent's Institute of Medical Research, 9 Princes St, Fitzroy, VIC 3065, Australia
| | - Laura King
- Immunology and Diabetes Unit, St. Vincent's Institute of Medical Research, 9 Princes St, Fitzroy, VIC 3065, Australia
| | - Chris Y Chiu
- Immunology and Diabetes Unit, St. Vincent's Institute of Medical Research, 9 Princes St, Fitzroy, VIC 3065, Australia
| | - Thomas W H Kay
- Immunology and Diabetes Unit, St. Vincent's Institute of Medical Research, 9 Princes St, Fitzroy, VIC 3065, Australia
| | - John A Karas
- School of Chemistry, University of Melbourne, Parkville, Melbourne, VIC 3010, Australia
| | - Fergus J Cameron
- Department of Endocrinology and Diabetes, Royal Children's Hospital, Parkville, Melbourne, VIC 3052, Australia
- Murdoch Children's Research Institute, Parkville, Melbourne, VIC 3052, Australia
- Department of Paediatrics, University of Melbourne, Parkville, Melbourne, VIC 3010, Australia
| | - Stuart I Mannering
- Immunology and Diabetes Unit, St. Vincent's Institute of Medical Research, 9 Princes St, Fitzroy, VIC 3065, Australia
- Murdoch Children's Research Institute, Parkville, Melbourne, VIC 3052, Australia
- Department of Paediatrics, University of Melbourne, Parkville, Melbourne, VIC 3010, Australia
- Department of Medicine, University of Melbourne, St. Vincent's Hospital, Fitzroy, VIC 3065, Australia
| |
Collapse
|
6
|
Rutter GA, Gresch A, Delgadillo Silva L, Benninger RKP. Exploring pancreatic beta-cell subgroups and their connectivity. Nat Metab 2024; 6:2039-2053. [PMID: 39117960 DOI: 10.1038/s42255-024-01097-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 07/05/2024] [Indexed: 08/10/2024]
Abstract
Functional pancreatic islet beta cells are essential to ensure glucose homeostasis across species from zebrafish to humans. These cells show significant heterogeneity, and emerging studies have revealed that connectivity across a hierarchical network is required for normal insulin release. Here, we discuss current thinking and areas of debate around intra-islet connectivity, cellular hierarchies and potential "controlling" beta-cell populations. We focus on methodologies, including comparisons of different cell preparations as well as in vitro and in vivo approaches to imaging and controlling the activity of human and rodent islet preparations. We also discuss the analytical approaches that can be applied to live-cell data to identify and study critical subgroups of cells with a disproportionate role in control Ca2+ dynamics and thus insulin secretion (such as "first responders", "leaders" and "hubs", as defined by Ca2+ responses to glucose stimulation). Possible mechanisms by which this hierarchy is achieved, its physiological relevance and how its loss may contribute to islet failure in diabetes mellitus are also considered. A glossary of terms and links to computational resources are provided.
Collapse
Affiliation(s)
- Guy A Rutter
- CHUM Research Center and Faculty of Medicine, University of Montréal, Montréal, QC, Canada.
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK.
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore.
| | - Anne Gresch
- Department of Bioengineering, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Luis Delgadillo Silva
- CHUM Research Center and Faculty of Medicine, University of Montréal, Montréal, QC, Canada
| | - Richard K P Benninger
- Department of Bioengineering, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
7
|
Ansari MA, Chauhan W, Shoaib S, Alyahya SA, Ali M, Ashraf H, Alomary MN, Al-Suhaimi EA. Emerging therapeutic options in the management of diabetes: recent trends, challenges and future directions. Int J Obes (Lond) 2023; 47:1179-1199. [PMID: 37696926 DOI: 10.1038/s41366-023-01369-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 07/04/2023] [Accepted: 08/17/2023] [Indexed: 09/13/2023]
Abstract
Diabetes is a serious health issue that causes a progressive dysregulation of carbohydrate metabolism due to insufficient insulin hormone, leading to consistently high blood glucose levels. According to the epidemiological data, the prevalence of diabetes has been increasing globally, affecting millions of individuals. It is a long-term condition that increases the risk of various diseases caused by damage to small and large blood vessels. There are two main subtypes of diabetes: type 1 and type 2, with type 2 being the most prevalent. Genetic and molecular studies have identified several genetic variants and metabolic pathways that contribute to the development and progression of diabetes. Current treatments include gene therapy, stem cell therapy, statin therapy, and other drugs. Moreover, recent advancements in therapeutics have also focused on developing novel drugs targeting these pathways, including incretin mimetics, SGLT2 inhibitors, and GLP-1 receptor agonists, which have shown promising results in improving glycemic control and reducing the risk of complications. However, these treatments are often expensive, inaccessible to patients in underdeveloped countries, and can have severe side effects. Peptides, such as glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1), are being explored as a potential therapy for diabetes. These peptides are postprandial glucose-dependent pancreatic beta-cell insulin secretagogues and have received much attention as a possible treatment option. Despite these advances, diabetes remains a major health challenge, and further research is needed to develop effective treatments and prevent its complications. This review covers various aspects of diabetes, including epidemiology, genetic and molecular basis, and recent advancements in therapeutics including herbal and synthetic peptides.
Collapse
Affiliation(s)
- Mohammad Azam Ansari
- Department of Epidemic Disease Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, 31441, Saudi Arabia.
| | - Waseem Chauhan
- Department of Hematology, Duke University, Durham, NC, 27710, USA
| | - Shoaib Shoaib
- Department of Biochemistry, Faculty of Medicine, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Sami A Alyahya
- Wellness and Preventive Medicine Institute, King Abdulaziz City for Science and Technology (KACST), Riyadh, 11442, Saudi Arabia
| | - Mubashshir Ali
- USF Health Byrd Alzheimer's Center and Neuroscience Institute, Department of Molecular Medicine, Tampa, FL, USA
| | - Hamid Ashraf
- Rajiv Gandhi Center for Diabetes and Endocrinology, Faculty of Medicine, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Mohammad N Alomary
- Advanced Diagnostic and Therapeutic Institute, King Abdulaziz City for Science and Technology (KACST), Riyadh, 11442, Saudi Arabia.
| | - Ebtesam A Al-Suhaimi
- King Abdulaziz & his Companions Foundation for Giftedness & Creativity, Riyadh, Saudi Arabia.
| |
Collapse
|
8
|
Xie QY, Oh S, Wong A, Yau C, Herold KC, Danska JS. Immune responses to gut bacteria associated with time to diagnosis and clinical response to T cell-directed therapy for type 1 diabetes prevention. Sci Transl Med 2023; 15:eadh0353. [PMID: 37878676 DOI: 10.1126/scitranslmed.adh0353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 10/02/2023] [Indexed: 10/27/2023]
Abstract
Immune-targeted therapies have efficacy for treatment of autoinflammatory diseases. For example, treatment with the T cell-specific anti-CD3 antibody teplizumab delayed disease onset in participants at high risk for type 1 diabetes (T1D) in the TrialNet 10 (TN-10) trial. However, heterogeneity in therapeutic responses in TN-10 and other immunotherapy trials identifies gaps in understanding disease progression and treatment responses. The intestinal microbiome is a potential source of biomarkers associated with future T1D diagnosis and responses to immunotherapy. We previously reported that antibody responses to gut commensal bacteria were associated with T1D diagnosis, suggesting that certain antimicrobial immune responses may help predict disease onset. Here, we investigated anticommensal antibody (ACAb) responses against a panel of taxonomically diverse intestinal bacteria species in sera from TN-10 participants before and after teplizumab or placebo treatment. We identified IgG2 responses to three species that were associated with time to T1D diagnosis and with teplizumab treatment responses that delayed disease onset. These antibody responses link human intestinal bacteria with T1D progression, adding predictive value to known T1D risk factors. ACAb analysis provides a new approach to elucidate heterogeneity in responses to immunotherapy and identify individuals who may benefit from teplizumab, recently approved by the U.S. Food and Drug Administration for delaying T1D onset.
Collapse
Affiliation(s)
- Quin Yuhui Xie
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5T2S8, Canada
- Genetics and Genome Biology, Hospital for Sick Children, Toronto, Ontario M5G1X8, Canada
| | - Sean Oh
- Genetics and Genome Biology, Hospital for Sick Children, Toronto, Ontario M5G1X8, Canada
| | - Anthony Wong
- Genetics and Genome Biology, Hospital for Sick Children, Toronto, Ontario M5G1X8, Canada
| | - Christopher Yau
- Genetics and Genome Biology, Hospital for Sick Children, Toronto, Ontario M5G1X8, Canada
- Department of Immunology, University of Toronto, Toronto, Ontario M5T2S8, Canada
| | - Kevan C Herold
- Department of Immunobiology, Yale University, New Haven, CT 06520, USA
- Department of Internal Medicine, Yale University, New Haven, CT 06520, USA
| | - Jayne S Danska
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5T2S8, Canada
- Genetics and Genome Biology, Hospital for Sick Children, Toronto, Ontario M5G1X8, Canada
- Department of Immunology, University of Toronto, Toronto, Ontario M5T2S8, Canada
| |
Collapse
|
9
|
Gao J, Yang T, Song B, Ma X, Ma Y, Lin X, Wang H. Abnormal tryptophan catabolism in diabetes mellitus and its complications: Opportunities and challenges. Biomed Pharmacother 2023; 166:115395. [PMID: 37657259 DOI: 10.1016/j.biopha.2023.115395] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 08/20/2023] [Accepted: 08/26/2023] [Indexed: 09/03/2023] Open
Abstract
In recent years, the incidence rate of diabetes mellitus (DM), including type 1 diabetes mellitus(T1DM), type 2 diabetes mellitus(T2DM), and gestational diabetes mellitus (GDM), has increased year by year and has become a major global health problem. DM can lead to serious complications of macrovascular and microvascular. Tryptophan (Trp) is an essential amino acid for the human body. Trp is metabolized in the body through the indole pathway, kynurenine (Kyn) pathway and serotonin (5-HT) pathway, and is regulated by intestinal microorganisms to varying degrees. These three metabolic pathways have extensive regulatory effects on the immune, endocrine, neural, and energy metabolism systems of the body, and are related to the physiological and pathological processes of various diseases. The key enzymes and metabolites in the Trp metabolic pathway are also deeply involved in the pathogenesis of DM, playing an important role in pancreatic function, insulin resistance (IR), intestinal barrier, and angiogenesis. In DM and its complications, there is a disruption of Trp metabolic balance. Several therapy approaches for DM and complications have been proven to modify tryptophan metabolism. The metabolism of Trp is becoming a new area of focus for DM prevention and care. This paper reviews the impact of the three metabolic pathways of Trp on the pathogenesis of DM and the alterations in Trp metabolism in these diseases, expecting to provide entry points for the treatment of DM and its complications.
Collapse
Affiliation(s)
- Jialiang Gao
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Ting Yang
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Bohan Song
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xiaojie Ma
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yichen Ma
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xiaowei Lin
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Hongwu Wang
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
10
|
Wright JJ, Dulaney A, Williams JM, Hilmes MA, Du L, Kang H, Powers AC, Moore DJ, Virostko J. Longitudinal MRI Shows Progressive Decline in Pancreas Size and Altered Pancreas Shape in Type 1 Diabetes. J Clin Endocrinol Metab 2023; 108:2699-2707. [PMID: 36938587 PMCID: PMC10505530 DOI: 10.1210/clinem/dgad150] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/30/2023] [Accepted: 03/16/2023] [Indexed: 03/21/2023]
Abstract
CONTEXT Individuals with type 1 diabetes (T1D) have a smaller pancreas, but longitudinal changes in pancreas size and shape are unclear. OBJECTIVE We monitored changes in pancreas size and shape after diagnosis with T1D. DESIGN We conducted a prospective cohort study at an academic medical center between 2014 and 2022. PATIENTS AND HEALTHY CONTROLS Individuals with T1D (n = 91) or controls (n = 90) underwent magnetic resonance imaging (MRI) of the pancreas, including longitudinal MRI in 53 individuals with new-onset T1D. INTERVENTION Interventions included MRI and continuous glucose monitoring (CGM). MAIN OUTCOME MEASURES Pancreas size and shape were measured from MRI. For participants who used CGM, measures of glycemic variability were calculated. RESULTS On longitudinal imaging, pancreas volume and pancreas volume index normalized for body weight declined during the first year after diagnosis. Pancreas volume index continued to decline through the fifth year after diagnosis. A cross-sectional study of individuals with diabetes duration up to 60 years demonstrated that pancreas size in adults negatively correlated with age and disease duration, whereas pancreas volume and pancreas volume index remained stable in controls. Pancreas volume index correlated inversely with low blood glucose index, a measure of risk for hypoglycemia. Pancreas shape was altered in individuals with T1D and further diverged from controls over the first 5 years after diagnosis. Pancreas size and shape are altered in nondiabetic individuals at genetic risk for T1D. Combined pancreas size and shape analysis better distinguished the pancreas of individuals with T1D from controls than size alone. CONCLUSIONS Pancreas size declines most rapidly near the clinical diagnosis of T1D and continues to decline throughout adulthood. Declines in pancreas size are accompanied by changes in pancreas shape.
Collapse
Affiliation(s)
- Jordan J Wright
- Division of Diabetes, Endocrinology, and Metabolism, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Aidan Dulaney
- Department of Diagnostic Medicine, Dell Medical School, University of Texas at Austin, Austin, TX 78712, USA
| | - Jonathan M Williams
- Department of Diagnostic Medicine, Dell Medical School, University of Texas at Austin, Austin, TX 78712, USA
| | - Melissa A Hilmes
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Liping Du
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Hakmook Kang
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Alvin C Powers
- Department of Diagnostic Medicine, Dell Medical School, University of Texas at Austin, Austin, TX 78712, USA
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
- VA Tennessee Valley Healthcare System, Nashville, TN 37212, USA
| | - Daniel J Moore
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Pathology, Immunology, and Microbiology, Vanderbilt University, Nashville, TN 37232, USA
| | - John Virostko
- Department of Diagnostic Medicine, Dell Medical School, University of Texas at Austin, Austin, TX 78712, USA
- Livestrong Cancer Institutes, Dell Medical School, University of Texas at Austin, Austin, TX 78712, USA
- Department of Oncology, Dell Medical School, University of Texas at Austin, Austin, TX 78712, USA
- Oden Institute for Computational Engineering and Sciences, University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
11
|
Atkinson MA, Mirmira RG. The pathogenic "symphony" in type 1 diabetes: A disorder of the immune system, β cells, and exocrine pancreas. Cell Metab 2023; 35:1500-1518. [PMID: 37478842 PMCID: PMC10529265 DOI: 10.1016/j.cmet.2023.06.018] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/22/2023] [Accepted: 06/28/2023] [Indexed: 07/23/2023]
Abstract
Type 1 diabetes (T1D) is widely considered to result from the autoimmune destruction of insulin-producing β cells. This concept has been a central tenet for decades of attempts seeking to decipher the disorder's pathogenesis and prevent/reverse the disease. Recently, this and many other disease-related notions have come under increasing question, particularly given knowledge gained from analyses of human T1D pancreas. Perhaps most crucial are findings suggesting that a collective of cellular constituents-immune, endocrine, and exocrine in origin-mechanistically coalesce to facilitate T1D. This review considers these emerging concepts, from basic science to clinical research, and identifies several key remaining knowledge voids.
Collapse
Affiliation(s)
- Mark A Atkinson
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL 32610, USA.
| | - Raghavendra G Mirmira
- Departments of Medicine and Pediatrics, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
12
|
Alazwari A, Johnstone A, Tafakori L, Abdollahian M, AlEidan AM, Alfuhigi K, Alghofialy MM, Albunyan AA, Al Abbad H, AlEssa MH, Alareefy AKH, Alshamrani MA. Predicting the development of T1D and identifying its Key Performance Indicators in children; a case-control study in Saudi Arabia. PLoS One 2023; 18:e0282426. [PMID: 36857368 PMCID: PMC9977054 DOI: 10.1371/journal.pone.0282426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 02/15/2023] [Indexed: 03/02/2023] Open
Abstract
The increasing incidence of type 1 diabetes (T1D) in children is a growing global concern. It is known that genetic and environmental factors contribute to childhood T1D. An optimal model to predict the development of T1D in children using Key Performance Indicators (KPIs) would aid medical practitioners in developing intervention plans. This paper for the first time has built a model to predict the risk of developing T1D and identify its significant KPIs in children aged (0-14) in Saudi Arabia. Machine learning methods, namely Logistic Regression, Random Forest, Support Vector Machine, Naive Bayes, and Artificial Neural Network have been utilised and compared for their relative performance. Analyses were performed in a population-based case-control study from three Saudi Arabian regions. The dataset (n = 1,142) contained demographic and socioeconomic status, genetic and disease history, nutrition history, obstetric history, and maternal characteristics. The comparison between case and control groups showed that most children (cases = 68% and controls = 88%) are from urban areas, 69% (cases) and 66% (control) were delivered after a full-term pregnancy and 31% of cases group were delivered by caesarean, which was higher than the controls (χ2 = 4.12, P-value = 0.042). Models were built using all available environmental and family history factors. The efficacy of models was evaluated using Area Under the Curve, Sensitivity, F Score and Precision. Full logistic regression outperformed other models with Accuracy = 0.77, Sensitivity, F Score and Precision of 0.70, and AUC = 0.83. The most significant KPIs were early exposure to cow's milk (OR = 2.92, P = 0.000), birth weight >4 Kg (OR = 3.11, P = 0.007), residency(rural) (OR = 3.74, P = 0.000), family history (first and second degree), and maternal age >25 years. The results presented here can assist healthcare providers in collecting and monitoring influential KPIs and developing intervention strategies to reduce the childhood T1D incidence rate in Saudi Arabia.
Collapse
Affiliation(s)
- Ahood Alazwari
- School of Science, RMIT University, Melbourne, Victoria, Australia
- School of Science, Al-Baha University, Al-Baha, Saudi Arabia
- * E-mail:
| | - Alice Johnstone
- School of Science, RMIT University, Melbourne, Victoria, Australia
| | - Laleh Tafakori
- School of Science, RMIT University, Melbourne, Victoria, Australia
| | - Mali Abdollahian
- School of Science, RMIT University, Melbourne, Victoria, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Al Yafei Z, Mack SJ, Alvares M, Ali BR, Afandi B, Beshyah SA, Sharma C, Osman W, Mirghani R, Nasr A, Al Remithi S, Al Jubeh J, Almawi WY, AlKaabi J, ElGhazali G. HLA-DRB1 and -DQB1 Alleles, Haplotypes and Genotypes in Emirati Patients with Type 1 Diabetes Underscores the Benefits of Evaluating Understudied Populations. Front Genet 2022; 13:841879. [PMID: 35419034 PMCID: PMC8997289 DOI: 10.3389/fgene.2022.841879] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 01/31/2022] [Indexed: 02/05/2023] Open
Abstract
Background: HLA class II (DR and DQ) alleles and antigens have historically shown strong genetic predisposition to type 1 diabetes (T1D). This study evaluated the association of DRB1 and DQB1 alleles, genotypes, and haplotypes with T1D in United Arab Emirates. Materials and Methods: Study subjects comprised 149 patients with T1D, and 147 normoglycemic control subjects. Cases and controls were Emiratis and were HLA-DRB1 and -DQB1 genotyped using sequence-based typing. Statistical analysis was performed using Bridging Immunogenomic Data-Analysis Workflow Gaps R package. Results: In total, 15 DRB1 and 9 DQB1 alleles were identified in the study subjects, of which the association of DRB1*03:01, DRB1*04:02, DRB1*11:01, DRB1*16:02, and DQB1*02:01, DQB1*03:02, DQB1*03:01, and DQB1*06:01 with altered risk of T1D persisted after correcting for multiple comparisons. Two-locus haplotype analysis identified DRB1*03:01∼DQB1*02:01 [0.44 vs. 0.18, OR (95% CI) = 3.44 (2.33-5.1), Pc = 3.48 × 10-10]; DRB1*04:02∼DQB1*03:02 [0.077 vs. 0.014, OR = 6.06 (2.03-24.37), Pc = 2.3 × 10-3] and DRB1*04:05∼DQB1*03:02 [0.060 vs. 0.010, OR = 6.24 (1.79-33.34), Pc = 0.011] as positively associated, and DRB1*16:02∼DQB1*05:02 [0.024 vs. 0.075, OR = 0.3 (0.11-0.74), Pc = 0.041] as negatively associated with T1D, after applying Bonferroni correction. Furthermore, the highest T1D risk was observed for DR3/DR4 [0.104 vs. 0.006, OR = 25.03 (8.23-97.2), Pc = 2.6 × 10-10], followed by DR3/DR3 [0.094 vs. 0.010, OR = 8.72 (3.17-25.32), Pc = 3.18 × 10-8] diplotypes. Conclusion: While DRB1 and DQB1 alleles and haplotypes associated with T1D in Emiratis showed similarities to Caucasian and non-Caucasian populations, several alleles and haplotypes associated with T1D in European, African, and Asian populations, were not observed. This underscores the contribution of ethnic diversity and possible diverse associations between DRB1 and DQB1 and T1D across different populations.
Collapse
Affiliation(s)
- Zain Al Yafei
- Sheikh Khalifa Medical City, Purehealth, Abu Dhabi, United Arab Emirates
| | - Steven J. Mack
- Department of Pediatrics, University of California, San Francisco, San Francisco, CA, United States
| | - Marion Alvares
- Sheikh Khalifa Medical City, Purehealth, Abu Dhabi, United Arab Emirates
| | - Bassam R. Ali
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Bachar Afandi
- Department of Internal Medicine, Tawam Hospital, Al Ain, United Arab Emirates
| | - Salem A. Beshyah
- Department of Medicine, Dubai Medical College, Dubai, United Arab Emirates
| | - Charu Sharma
- Department of Internal Medicine, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Wael Osman
- College of Arts and Sciences, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Rajaa Mirghani
- Higher College of Technology, Abu Dhabi, United Arab Emirates
| | - Amre Nasr
- Department of Basic Medical Sciences, College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Sareea Al Remithi
- Sheikh Khalifa Medical City, Purehealth, Abu Dhabi, United Arab Emirates
| | - Jamal Al Jubeh
- Sheikh Khalifa Medical City, Purehealth, Abu Dhabi, United Arab Emirates
| | - Wasim Y. Almawi
- Department of Biomedical Sciences, Nazarbayev University School of Medicine, Astana, Kazakhstan
| | - Juma AlKaabi
- Department of Internal Medicine, Tawam Hospital, Al Ain, United Arab Emirates
- Department of Internal Medicine, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Gehad ElGhazali
- Sheikh Khalifa Medical City, Purehealth, Abu Dhabi, United Arab Emirates
- Department of Internal Medicine, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
14
|
Alazwari A, Abdollahian M, Tafakori L, Johnstone A, Alshumrani RA, Alhelal MT, Alsaheel AY, Almoosa ES, Alkhaldi AR. Predicting age at onset of type 1 diabetes in children using regression, artificial neural network and Random Forest: A case study in Saudi Arabia. PLoS One 2022; 17:e0264118. [PMID: 35226685 PMCID: PMC8884498 DOI: 10.1371/journal.pone.0264118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 02/03/2022] [Indexed: 11/18/2022] Open
Abstract
The rising incidence of type 1 diabetes (T1D) among children is an increasing concern globally. A reliable estimate of the age at onset of T1D in children would facilitate intervention plans for medical practitioners to reduce the problems with delayed diagnosis of T1D. This paper has utilised Multiple Linear Regression (MLR), Artificial Neural Network (ANN) and Random Forest (RF) to model and predict the age at onset of T1D in children in Saudi Arabia (S.A.) which is ranked as the 7th for the highest number of T1D and 5th in the world for the incidence rate of T1D. De-identified data between (2010-2020) from three cities in S.A. were used to model and predict the age at onset of T1D. The best subset model selection criteria, coefficient of determination, and diagnostic tests were deployed to select the most significant variables. The efficacy of models for predicting the age at onset was assessed using multi-prediction accuracy measures. The average age at onset of T1D is 6.2 years and the most common age group for onset is (5-9) years. Most of the children in the sample (68%) are from urban areas of S.A., 75% were delivered after a full term pregnancy length and 31% were delivered through a cesarean section. The models of best fit were the MLR and RF models with R2 = (0.85 and 0.95), the root mean square error = (0.25 and 0.15) and mean absolute error = (0.19 and 0.11) respectively for logarithm of age at onset. This study for the first time has utilised MLR, ANN and RF models to predict the age at onset of T1D in children in S.A. These models can effectively aid health care providers to monitor and create intervention strategies to reduce the impact of T1D in children in S.A.
Collapse
Affiliation(s)
- Ahood Alazwari
- School of Science, RMIT University, Melbourne, Victoria, Australia
- School of Science, Al-Baha University, Moundq, Saudi Arabia
- * E-mail:
| | - Mali Abdollahian
- School of Science, RMIT University, Melbourne, Victoria, Australia
| | - Laleh Tafakori
- School of Science, RMIT University, Melbourne, Victoria, Australia
| | - Alice Johnstone
- School of Science, RMIT University, Melbourne, Victoria, Australia
| | - Rahma A. Alshumrani
- Pediatric Endocrine Department, Al Aziziyah Maternal and Children Hospital, Jeddah, Saudi Arabia
| | - Manal T. Alhelal
- Pediatric Endocrine Department, Maternal and Children Hospital, Al-Ahsa, Saudi Arabia
| | | | - Eman S. Almoosa
- Pediatric Endocrine Department, Maternal and Children Hospital, Al-Ahsa, Saudi Arabia
| | - Aseel R. Alkhaldi
- Pediatric Endocrine Department, King Fahad Medical City (KFMC), Riyadh, Saudi Arabia
| |
Collapse
|
15
|
Schumacher NSG, Fernandes LGR, de Lima Zollner R. Aqueous extract of Passiflora alata leaves modulates in vitro the indoleamine 2,3-dioxygenase (IDO) and CD86 expression in bone marrow-derived professional antigen-presenting cells polarizing NOD mice T cells to a Treg profile. Cytokine 2022; 152:155832. [PMID: 35202987 DOI: 10.1016/j.cyto.2022.155832] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 02/03/2022] [Accepted: 02/15/2022] [Indexed: 12/18/2022]
Abstract
Dendritic cells (DCs) and macrophages are professional antigen-presenting cells (pAPCs), numerous in the pancreas of nonobese diabetic (NOD) mice and playing an essential role in the autoimmune response of type 1 diabetes. The expression of the enzyme indoleamine 2,3-dioxygenase (IDO) is a critical factor for the tolerogenic activity of pAPCs, acting in the catabolism of tryptophan, providing metabolites that suppress the T cell effectors and induce T regulatory cells differentiation. Here we investigated the in vitro mechanisms of lyophilized aqueous extract from Passiflora alata leaves (LAEPAL) that modulates bone marrow-derived professional antigen-presenting cells (BM-pAPCs), affecting their ability to polarize T cells. A cell culture model was defined using mixed cultures of BM-pAPCs and T lymphocytes NOD mice with stressed MIN-6 cells as a source of pancreatic β cells antigens. We showed that the treatment with 300 µg/mL of LAEPAL induces a significant decrease in the CD4 and CD8 T effector lymphocytes proliferation from diabetic but not in non-diabetic mice, followed by a reduction of the IL-6 and IFN-γ cytokines release in the cell cultures supernatants. Moreover, we observed an increase of CD4+CD25+FoxP3+ Tregs in the cell cultures from diabetic mice. These results could be partially explained by the LAEPAL modulatory effects in BM-pAPCs, downregulating the CD86 co-stimulatory molecule expression, and increasing IDO-1 expression in F4/80+ BM-pAPCs. These results contribute to a better understanding of the polyphenols' immunomodulatory properties, meaning they could induce tolerogenic antigen-presenting cells, which could polarize T cells to a Treg profile and decrease the activity of CD4+ and CD8+ T effector cells.
Collapse
Affiliation(s)
- Nayara Simon Gonzalez Schumacher
- Laboratory of Translational Immunology, School of Medical Sciences, University of Campinas (UNICAMP), Campinas 13083-888, Brazil.
| | - Luís Gustavo Romani Fernandes
- Laboratory of Translational Immunology, School of Medical Sciences, University of Campinas (UNICAMP), Campinas 13083-888, Brazil.
| | - Ricardo de Lima Zollner
- Laboratory of Translational Immunology, School of Medical Sciences, University of Campinas (UNICAMP), Campinas 13083-888, Brazil.
| |
Collapse
|
16
|
Zeynaloo E, Stone LD, Dikici E, Ricordi C, Deo SK, Bachas LG, Daunert S, Lanzoni G. Delivery of therapeutic agents and cells to pancreatic islets: Towards a new era in the treatment of diabetes. Mol Aspects Med 2022; 83:101063. [PMID: 34961627 PMCID: PMC11328325 DOI: 10.1016/j.mam.2021.101063] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 12/09/2021] [Accepted: 12/13/2021] [Indexed: 02/07/2023]
Abstract
Pancreatic islet cells, and in particular insulin-producing beta cells, are centrally involved in the pathogenesis of diabetes mellitus. These cells are of paramount importance for the endocrine control of glycemia and glucose metabolism. In Type 1 Diabetes, islet beta cells are lost due to an autoimmune attack. In Type 2 Diabetes, beta cells become dysfunctional and insufficient to counterbalance insulin resistance in peripheral tissues. Therapeutic agents have been developed to support the function of islet cells, as well as to inhibit deleterious immune responses and inflammation. Most of these agents have undesired effects due to systemic administration and off-target effects. Typically, only a small fraction of therapeutic agent reaches the desired niche in the pancreas. Because islets and their beta cells are scattered throughout the pancreas, access to the niche is limited. Targeted delivery to pancreatic islets could dramatically improve the therapeutic effect, lower the dose requirements, and lower the side effects of agents administered systemically. Targeted delivery is especially relevant for those therapeutics for which the manufacturing is difficult and costly, such as cells, exosomes, and microvesicles. Along with therapeutic agents, imaging reagents intended to quantify the beta cell mass could benefit from targeted delivery. Several methods have been developed to improve the delivery of agents to pancreatic islets. Intra-arterial administration in the pancreatic artery is a promising surgical approach, but it has inherent risks. Targeted delivery strategies have been developed based on ligands for cell surface molecules specific to islet cells or inflamed vascular endothelial cells. Delivery methods range from nanocarriers and vectors to deliver pharmacological agents to viral and non-viral vectors for the delivery of genetic constructs. Several strategies demonstrated enhanced therapeutic effects in diabetes with lower amounts of therapeutic agents and lower off-target side effects. Microvesicles, exosomes, polymer-based vectors, and nanocarriers are gaining popularity for targeted delivery. Notably, liposomes, lipid-assisted nanocarriers, and cationic polymers can be bioengineered to be immune-evasive, and their advantages to transport cargos into target cells make them appealing for pancreatic islet-targeted delivery. Viral vectors have become prominent tools for targeted gene delivery. In this review, we discuss the latest strategies for targeted delivery of therapeutic agents and imaging reagents to pancreatic islet cells.
Collapse
Affiliation(s)
- Elnaz Zeynaloo
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, USA; Department of Chemistry, University of Miami, FL, USA.
| | - Logan D Stone
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA; Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA.
| | - Emre Dikici
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, USA; Dr. John T. Macdonald Foundation Biomedical Nanotechnology Institute - BioNIUM at University of Miami, Miami, FL, USA
| | - Camillo Ricordi
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA; Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Sapna K Deo
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, USA; Dr. John T. Macdonald Foundation Biomedical Nanotechnology Institute - BioNIUM at University of Miami, Miami, FL, USA
| | - Leonidas G Bachas
- Department of Chemistry, University of Miami, FL, USA; Dr. John T. Macdonald Foundation Biomedical Nanotechnology Institute - BioNIUM at University of Miami, Miami, FL, USA
| | - Sylvia Daunert
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, USA; Dr. John T. Macdonald Foundation Biomedical Nanotechnology Institute - BioNIUM at University of Miami, Miami, FL, USA; Clinical and Translational Science Institute, University of Miami, Miami, FL, USA
| | - Giacomo Lanzoni
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, USA; Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA; Dr. John T. Macdonald Foundation Biomedical Nanotechnology Institute - BioNIUM at University of Miami, Miami, FL, USA.
| |
Collapse
|
17
|
Brænne I, Onengut-Gumuscu S, Chen R, Manichaikul AW, Rich SS, Chen WM, Farber CR. Dynamic changes in immune gene co-expression networks predict development of type 1 diabetes. Sci Rep 2021; 11:22651. [PMID: 34811390 PMCID: PMC8609030 DOI: 10.1038/s41598-021-01840-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 11/01/2021] [Indexed: 01/13/2023] Open
Abstract
Significant progress has been made in elucidating genetic risk factors influencing Type 1 diabetes (T1D); however, features other than genetic variants that initiate and/or accelerate islet autoimmunity that lead to the development of clinical T1D remain largely unknown. We hypothesized that genetic and environmental risk factors can both contribute to T1D through dynamic alterations of molecular interactions in physiologic networks. To test this hypothesis, we utilized longitudinal blood transcriptomic profiles in The Environmental Determinants of Diabetes in the Young (TEDDY) study to generate gene co-expression networks. In network modules that contain immune response genes associated with T1D, we observed highly dynamic differences in module connectivity in the 600 days (~ 2 years) preceding clinical diagnosis of T1D. Our results suggest that gene co-expression is highly plastic and that connectivity differences in T1D-associated immune system genes influence the timing and development of clinical disease.
Collapse
Affiliation(s)
- Ingrid Brænne
- Center for Public Health Genomics, University of Virginia, P.O. Box 800717, Charlottesville, VA, 22908, USA
| | - Suna Onengut-Gumuscu
- Center for Public Health Genomics, University of Virginia, P.O. Box 800717, Charlottesville, VA, 22908, USA
- Department of Public Health Sciences, University of Virginia, Charlottesville, VA, 22908, USA
| | - Ruoxi Chen
- Center for Public Health Genomics, University of Virginia, P.O. Box 800717, Charlottesville, VA, 22908, USA
| | - Ani W Manichaikul
- Center for Public Health Genomics, University of Virginia, P.O. Box 800717, Charlottesville, VA, 22908, USA
- Department of Public Health Sciences, University of Virginia, Charlottesville, VA, 22908, USA
| | - Stephen S Rich
- Center for Public Health Genomics, University of Virginia, P.O. Box 800717, Charlottesville, VA, 22908, USA
- Department of Public Health Sciences, University of Virginia, Charlottesville, VA, 22908, USA
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, 22908, USA
| | - Wei-Min Chen
- Center for Public Health Genomics, University of Virginia, P.O. Box 800717, Charlottesville, VA, 22908, USA
- Department of Public Health Sciences, University of Virginia, Charlottesville, VA, 22908, USA
| | - Charles R Farber
- Center for Public Health Genomics, University of Virginia, P.O. Box 800717, Charlottesville, VA, 22908, USA.
- Department of Public Health Sciences, University of Virginia, Charlottesville, VA, 22908, USA.
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, 22908, USA.
| |
Collapse
|
18
|
Joshi K, Cameron F, Tiwari S, Mannering SI, Elefanty AG, Stanley EG. Modeling Type 1 Diabetes Using Pluripotent Stem Cell Technology. Front Endocrinol (Lausanne) 2021; 12:635662. [PMID: 33868170 PMCID: PMC8047192 DOI: 10.3389/fendo.2021.635662] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 03/03/2021] [Indexed: 12/26/2022] Open
Abstract
Induced pluripotent stem cell (iPSC) technology is increasingly being used to create in vitro models of monogenic human disorders. This is possible because, by and large, the phenotypic consequences of such genetic variants are often confined to a specific and known cell type, and the genetic variants themselves can be clearly identified and controlled for using a standardized genetic background. In contrast, complex conditions such as autoimmune Type 1 diabetes (T1D) have a polygenic inheritance and are subject to diverse environmental influences. Moreover, the potential cell types thought to contribute to disease progression are many and varied. Furthermore, as HLA matching is critical for cell-cell interactions in disease pathogenesis, any model that seeks to test the involvement of particular cell types must take this restriction into account. As such, creation of an in vitro model of T1D will require a system that is cognizant of genetic background and enables the interaction of cells representing multiple lineages to be examined in the context of the relevant environmental disease triggers. In addition, as many of the lineages critical to the development of T1D cannot be easily generated from iPSCs, such models will likely require combinations of cell types derived from in vitro and in vivo sources. In this review we imagine what an ideal in vitro model of T1D might look like and discuss how the required elements could be feasibly assembled using existing technologies. We also examine recent advances towards this goal and discuss potential uses of this technology in contributing to our understanding of the mechanisms underlying this autoimmune condition.
Collapse
Affiliation(s)
- Kriti Joshi
- Department of Endocrinology and Metabolism, All India Institute of Medical Sciences Rishikesh, Uttarakhand, India
- Department of Molecular Medicine & Biotechnology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
- Department of Cell Biology, Murdoch Children’s Research Institute, Parkville, Vic, Australia
| | - Fergus Cameron
- Department of Cell Biology, Murdoch Children’s Research Institute, Parkville, Vic, Australia
- Department of Endocrinology and Diabetes, The Royal Children’s Hospital, Parkville, Vic, Australia
- Department of Paediatrics, University of Melbourne, Parkville, Vic, Australia
| | - Swasti Tiwari
- Department of Molecular Medicine & Biotechnology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| | - Stuart I. Mannering
- Immunology and Diabetes Unit, St. Vincent’s Institute of Medical Research, Fitzroy, Vic, Australia
| | - Andrew G. Elefanty
- Department of Cell Biology, Murdoch Children’s Research Institute, Parkville, Vic, Australia
- Department of Paediatrics, University of Melbourne, Parkville, Vic, Australia
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Vic, Australia
| | - Edouard G. Stanley
- Department of Cell Biology, Murdoch Children’s Research Institute, Parkville, Vic, Australia
- Department of Paediatrics, University of Melbourne, Parkville, Vic, Australia
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Vic, Australia
| |
Collapse
|
19
|
Plaza-Rojas L, Guevara-Patiño JA. The Role of the NKG2D in Vitiligo. Front Immunol 2021; 12:624131. [PMID: 33717132 PMCID: PMC7952755 DOI: 10.3389/fimmu.2021.624131] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 02/02/2021] [Indexed: 12/16/2022] Open
Abstract
Vitiligo is an acquired multifactorial disease that affects melanocytes and results in skin depigmentation. In this review, we examine the role of cells stress and self-reactive T cells responses. Given the canonical and non-canonical functions of NKG2D, such as authenticating stressed target and enhance TCR signaling, we examine how melanocyte stress leads to the expression of ligands that are recognized by the activating receptor NKG2D, and how its signaling results in the turning of T cells against self (melanocyte suicide by proxy). We also discuss how this initiation phase is followed by T cell perpetuation, as NKG2D signaling results in self-sustained long-lasting T cells, with improved cytolytic properties.
Collapse
Affiliation(s)
- Lourdes Plaza-Rojas
- Department of Cancer Biology, Loyola University Chicago, Chicago, IL, United States
| | | |
Collapse
|
20
|
Dai YD, Dias P, Margosiak A, Marquardt K, Bashratyan R, Hu WY, Haskins K, Evans LH. Endogenous retrovirus Gag antigen and its gene variants are unique autoantigens expressed in the pancreatic islets of non-obese diabetic mice. Immunol Lett 2020; 223:62-70. [PMID: 32335144 DOI: 10.1016/j.imlet.2020.04.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/09/2020] [Accepted: 04/14/2020] [Indexed: 12/16/2022]
Abstract
Endogenous retrovirus (ERV) are remnants of ancient retroviruses that have been incorporated into the genome and evidence suggests that they may play a role in the etiology of T1D. We previously identified a murine leukemia retrovirus-like ERV whose Env and Gag antigens are involved in autoimmune responses in non-obese diabetic (NOD) mice. In this study, we show that the Gag antigen is present in the islet stromal cells. Although Gag gene transcripts were present, Gag protein was not detected in diabetes-resistant mice. Cloning and sequencing analysis of individual Gag genes revealed that NOD islets express Gag gene variants with complete open-reading frames (ORFs), in contrast to the diabetes-resistant mice, whose islet Gag gene transcripts are mostly non-ORFs. Importantly, the ORFs obtained from the NOD islets are extremely heterogenous, coding for various mutants that are absence in the genome. We further show that Gag antigens are stimulatory for autoreactive T cells and identified one islet-expressing Gag variant that contains an altered peptide ligand capable of inducing IFN-gamma release by the T cells. The data highlight a unique retrovirus-like factor in the islets of the NOD mouse strain, which may participate in key events triggering autoimmunity and T1D.
Collapse
Affiliation(s)
- Yang D Dai
- Biomedical Research Institute of Southern California, Oceanside, CA, USA; Department of Immunology, Scripps Research, San Diego, CA, USA.
| | - Peter Dias
- Biomedical Research Institute of Southern California, Oceanside, CA, USA
| | - Amanda Margosiak
- Biomedical Research Institute of Southern California, Oceanside, CA, USA
| | | | | | | | - Kathryn Haskins
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Denver, CO, USA
| | - Leonard H Evans
- Laboratory of Persistent Viral Diseases, National Institute of Allergy and Infectious Diseases, Hamilton, MT, USA
| |
Collapse
|
21
|
Davidson HW, Zhang L. Immune therapies for autoimmune diabetes targeting pathogenic peptide-MHC complexes. J Mol Cell Biol 2020; 12:759-763. [PMID: 32663282 PMCID: PMC7816664 DOI: 10.1093/jmcb/mjaa037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 06/19/2020] [Accepted: 07/08/2020] [Indexed: 01/02/2023] Open
Affiliation(s)
- Howard W Davidson
- Barbara Davis Center for Childhood Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Li Zhang
- Department of Medicine, Endocrinology, Diabetes & Metabolism, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
22
|
Wyatt RC, Lanzoni G, Russell MA, Gerling I, Richardson SJ. What the HLA-I!-Classical and Non-classical HLA Class I and Their Potential Roles in Type 1 Diabetes. Curr Diab Rep 2019; 19:159. [PMID: 31820163 PMCID: PMC6901423 DOI: 10.1007/s11892-019-1245-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
PURPOSE OF REVIEW Hyperexpression of classical HLA class I (HLA-I) molecules in insulin-containing islets has become a widely accepted hallmark of type 1 diabetes pathology. In comparison, relatively little is known about the expression, function and role of non-classical subtypes of HLA-I. This review focuses on the current understanding of the non-classical HLA-I subtypes: HLA-E, HLA-F and HLA-G, within and outside the field of type 1 diabetes, and considers the possible impacts of these molecules on disease etiology. RECENT FINDINGS Evidence is growing to suggest that non-classical HLA-I proteins are upregulated, both at the RNA and protein levels in the pancreas of individuals with recent-onset type 1 diabetes. Moreover, associations between non-classical HLA-I genotypes and age at onset of type 1 diabetes have been reported in some studies. As with classical HLA-I, it is likely that hyperexpression of non-classical HLA-I is driven by the release of diffusible interferons by stressed β cells (potentially driven by viral infection) and exacerbated by release of cytokines from infiltrating immune cells. Non-classical HLA-I proteins predominantly (but not exclusively) transduce negative signals to immune cells infiltrating at the site of injury/inflammation. We propose a model in which the islet endocrine cells, through expression of non-classical HLA-I are fighting back against the infiltrating immune cells. By inhibiting the activity and function on NK, B and select T cells, the non-classical HLA-I, proteins will reduce the non-specific bystander effects of inflammation, while at the same time still allowing the targeted destruction of β cells by specific islet-reactive CD8+ T cells.
Collapse
Affiliation(s)
- Rebecca C. Wyatt
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, RILD Building, Barrack Road, Exeter, EX2 5DW UK
| | - Giacomo Lanzoni
- Diabetes Research Institute, University of Miami – Miller School of Medicine, 1450 NW 10th Avenue, Miami, FL 33136 USA
- Department of Biochemistry and Molecular Biology, University of Miami – Miller School of Medicine, 1011 NW 15th Street, Miami, FL 33136 USA
| | - Mark A. Russell
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, RILD Building, Barrack Road, Exeter, EX2 5DW UK
| | - Ivan Gerling
- Department of Medicine University of Tennessee Health Science Center and VA Medical Center Research Service, 1030 Jefferson Avenue, Memphis, TN 38128 USA
| | - Sarah J. Richardson
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, RILD Building, Barrack Road, Exeter, EX2 5DW UK
| |
Collapse
|
23
|
Human Leukocyte Antigen (HLA) and Islet Autoantibodies Are Tools to Characterize Type 1 Diabetes in Arab Countries: Emphasis on Kuwait. DISEASE MARKERS 2019; 2019:9786078. [PMID: 31827651 PMCID: PMC6886320 DOI: 10.1155/2019/9786078] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 07/15/2019] [Accepted: 09/20/2019] [Indexed: 12/11/2022]
Abstract
The incidence rate of type 1 diabetes in Kuwait had been increasing exponentially and has doubled in children ≤ 14 years old within almost two decades. Therefore, there is a dire need for a careful systematic familial cohort study. Several immunogenetic factors affect the pathogenesis of the disease. The human leukocyte antigen (HLA) accounts for the major genetic susceptibility to the disease. The triggering agents initiate disease onset by type 1 destruction of pancreatic β-cells. Both HLA and anti-islet antibodies can be used to characterize, predict susceptibility to the disease, innovate, or delay the β-cell destruction. Evidence from prospective longitudinal studies suggested that the underlying disease process represents a continuum that begins before the symptoms are clinically evident. Autoimmunity of the functional pancreatic β-cells results in symptomatic type 1 diabetes and lifelong insulin dependence. The autoantibodies against glutamic acid decarboxylase (GADA), insulinoma antigen-2 (IA-2A), insulin (IAA), and zinc transporter-8 (ZnT-8A) comprise the most reliable biomarkers for type 1 diabetes in both children and adults. Although Kuwait is the second among the top 10 countries with a high incidence rate of type 1 diabetes, there have been no proper diagnostic and prediction tools as per the World Health Organization. The Kuwaiti Type 1 Diabetes Study (KADS) was initiated to understand the disease pathogenesis as well as the HLA and anti-islet autoantibody profile of type 1 diabetes in Kuwait. Understanding the disease sequela in a homogenous gene pool and highly consanguineous population of Kuwaitis could help solve the challenges and pathogenesis, as well as hasten the prevention, of type 1 diabetes.
Collapse
|
24
|
Jahromi M, Al-Mulla F, Al-Ozairi E. Autoimmune signatures for prediction and diagnosis of autoimmune diabetes in Kuwait. Autoimmun Rev 2019; 18:642-644. [PMID: 30959212 DOI: 10.1016/j.autrev.2019.02.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 02/02/2019] [Indexed: 12/26/2022]
Affiliation(s)
- Mohamed Jahromi
- Clinical Care Research, Medical Division, Dasman Diabetes Institute, Kuwait.
| | - Fahd Al-Mulla
- Research Division, Dasman Diabetes Institute, Kuwait
| | | |
Collapse
|
25
|
Harnessing CXCL12 signaling to protect and preserve functional β-cell mass and for cell replacement in type 1 diabetes. Pharmacol Ther 2019; 193:63-74. [DOI: 10.1016/j.pharmthera.2018.08.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
26
|
Okuno M, Ayabe T, Yokota I, Musha I, Shiga K, Kikuchi T, Kikuchi N, Ohtake A, Nakamura A, Nakabayashi K, Okamura K, Momozawa Y, Kubo M, Suzuki J, Urakami T, Kawamura T, Amemiya S, Ogata T, Sugihara S, Fukami M. Protein-altering variants of PTPN2 in childhood-onset Type 1A diabetes. Diabet Med 2018; 35:376-380. [PMID: 29247561 DOI: 10.1111/dme.13566] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/12/2017] [Indexed: 12/31/2022]
Abstract
AIM To examine the contribution of PTPN2 coding variants to the risk of childhood-onset Type 1A diabetes. METHODS PTPN2 mutation analysis was carried out for 169 unrelated Japanese people with childhood-onset Type 1A diabetes. We searched for coding variants that were absent or extremely rare in the general population and were scored as damaging by multiple in silico programs. We performed mRNA analysis and three-dimensional structural prediction of the detected variants, when possible. We also examined possible physical links between these variants and previously reported risk SNPs as well as clinical information from variant-positive children. RESULTS One frameshift variant (p.Q286Yfs*24) and two probably damaging missense substitutions (p.C232W and p.R350Q) were identified in one child each. Of these, p.Q286Yfs*24 and p.C232W were hitherto unreported, while p.R350Q accounted for 2/121,122 alleles of the exome datasets. The p.Q286Yfs*24 variant did not encode stable mRNA, and p.C232W appeared to affect the structure of the tyrosine-protein phosphatase domain. The three variants were physically unrelated to known risk SNPs. The variant-positive children manifested Type 1A diabetes without additional clinical features and invariably carried risk human leukocyte antigen alleles. CONCLUSIONS The results provide the first indication that PTPN2 variants contribute to the risk of Type 1A diabetes, independently of known risk SNPs. PTPN2 coding variants possibly induce non-specific Type 1A diabetes phenotypes in individuals with human leukocyte antigen-mediated disease susceptibility. Our findings warrant further validation.
Collapse
Affiliation(s)
- M Okuno
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo
- Department of Paediatrics and Child Health, Nihon University School of Medicine, Tokyo
| | - T Ayabe
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo
| | - I Yokota
- Department of Paediatrics, Division of Paediatric Endocrinology and Metabolism, Shikoku Medical Centre for Children and Adults, Kagawa
| | - I Musha
- Department of Paediatrics, Saitama Medical University, Faculty of Medicine, Saitama
| | - K Shiga
- Department of Paediatrics, Children's Medical Centre, Yokohama City University Medical Centre, Yokohama
| | - T Kikuchi
- Department of Paediatrics, Saitama Medical University, Faculty of Medicine, Saitama
| | - N Kikuchi
- Department of Paediatrics, Yokohama City Minato Red Cross Hospital, Yokohama
| | - A Ohtake
- Department of Paediatrics, Saitama Medical University, Faculty of Medicine, Saitama
| | - A Nakamura
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo
| | - K Nakabayashi
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Tokyo
| | - K Okamura
- Systems BioMedicine, National Research Institute for Child Health and Development, Tokyo
| | - Y Momozawa
- Laboratory for Genotyping Development, Riken Centre for Integrative Medical Sciences, Kanagawa
| | - M Kubo
- Laboratory for Genotyping Development, Riken Centre for Integrative Medical Sciences, Kanagawa
| | - J Suzuki
- Department of Paediatrics and Child Health, Nihon University School of Medicine, Tokyo
| | - T Urakami
- Department of Paediatrics and Child Health, Nihon University School of Medicine, Tokyo
| | - T Kawamura
- Department of Paediatrics, Osaka City University School of Medicine, Osaka
| | - S Amemiya
- Department of Paediatrics, Saitama Medical University, Faculty of Medicine, Saitama
| | - T Ogata
- Department of Paediatrics, Hamamatsu University School of Medicine, Hamamatsu
| | - S Sugihara
- Department of Paediatrics, Tokyo Women's Medical University Medical Centre East, Tokyo, Japan
| | - M Fukami
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo
| |
Collapse
|
27
|
Gerasimou P, Nicolaidou V, Skordis N, Picolos M, Monos D, Costeas PA. Combined effect of glutamine at position 70 of HLA-DRB1 and alanine at position 57 of HLA-DQB1 in type 1 diabetes: An epitope analysis. PLoS One 2018; 13:e0193684. [PMID: 29494662 PMCID: PMC5832312 DOI: 10.1371/journal.pone.0193684] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 02/15/2018] [Indexed: 02/06/2023] Open
Abstract
The contribution of specific HLA Class II alleles in type 1 diabetes is determined by polymorphic amino acid epitopes that direct antigen binding therefore, along with conventional allele frequency analysis, epitope analysis can provide important insights into disease susceptibility. We analyzed the highly heterogeneous Cypriot population for the HLA class II loci of T1DM patients and controls and we report for the first time their allele frequencies. Within our patient cohort we identified a subgroup that did not carry the DRB1*03:01-DQA1*05:01-DQB1*02:01 and DRB1*04:xx-DQA1*03:01-DQB1*03:02 risk haplotypes but a novel recombinant one, DRB1*04:XX-DQA1*03:01-DQB1*02:01 designated DR4-DQ2.3. Through epitope analysis we identified established susceptibility (DQB1 A57, DRB1 H13) and resistance (DQB1 D57) residues as well as other novel susceptibility residues DRB1 Q70, DQB1 L26 and resistance residues DRB1 D70, R70 and DQB1 Y47. Prevalence of susceptibility epitopes was higher in patients and was not exclusively a result of linkage disequilibrium. Residues DRB1 Q70, DQB1 L26 and A57 and a 10 amino acid epitope of DQA1 were the most significant in discriminating risk alleles. An extended haplotype containing these epitopes was carried by 92% of our patient cohort. Sharing of susceptibility epitopes could also explain the absence of risk haplotypes in patients. Finally, many significantly associated epitopes were non-pocket residues suggesting that critical immune functions may exist spanning further from the binding pockets.
Collapse
Affiliation(s)
- Petroula Gerasimou
- Karaiskakio Foundation, Nicosia, Cyprus
- University of Cyprus, Department of Biological Sciences, Nicosia, Cyprus
| | - Vicky Nicolaidou
- Department of Life and Health Sciences, School of Sciences and Engineering, University of Nicosia, Nicosia Cyprus
| | - Nicos Skordis
- Division of Paediatric Endocrinology, Paedi Centre for Specialized Paediatrics, Nicosia, Cyprus
| | | | - Demetrios Monos
- Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | | |
Collapse
|
28
|
Zazzeroni L, Lanzoni G, Pasquinelli G, Ricordi C. Considerations on the harvesting site and donor derivation for mesenchymal stem cells-based strategies for diabetes. CELLR4-- REPAIR, REPLACEMENT, REGENERATION, & REPROGRAMMING 2017; 5:e2435. [PMID: 30505879 PMCID: PMC6267851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Mesenchymal Stem Cells (MSCs) possess important characteristics that could be exploited in therapeutic strategies for Type 1 Diabetes (T1D) and for certain complications of Type 2 Diabetes (T2D). MSCs can inhibit autoimmune, alloimmune and inflammatory processes. Moreover, they can promote the function of endogenous and transplanted pancreatic islets. Furthermore, they can stimulate angiogenesis. MSC functions are largely mediated by their secretome, which includes growth factors, exosomes, and other extracellular vesicles. MSCs have shown a good safety profile in clinical trials. MSC-derived exosomes are emerging as an alternative to the transplantation of live MSCs. MSCs harvested from different anatomical locations (e.g. bone marrow, umbilical cord, placenta, adipose tissue, and pancreas) have shown differences in gene expression profiles and function. Data from clinical trials suggest that umbilical cord-derived MSCs could be superior to bone marrow-derived MSCs for the treatment of T1D. Autologous MSCs from diabetic patients may present abnormal functions. BM-MSCs from T1D patients exhibit gene expression differences that may impact in vivo function. BM-MSCs from T2D patients seem to be significantly impaired due to the T2D diabetic milieu. In this review, we highlight how the harvesting site and donor derivation can affect the efficacy of MSC-based treatments for T1D and T2D.
Collapse
Affiliation(s)
- L Zazzeroni
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - G Lanzoni
- Diabetes Research Institute, University of Miami, Miami, FL, USA
| | - G Pasquinelli
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - C Ricordi
- Diabetes Research Institute, University of Miami, Miami, FL, USA
| |
Collapse
|
29
|
Abstract
PURPOSE OF REVIEW The current standard therapy for type 1 diabetes (T1D) is insulin replacement. Autoimmune diseases are typically treated with broad immunosuppression, but this has multiple disadvantages. Induction of antigen-specific tolerance is preferable. The application of nanomedicine to the problem of T1D can take different forms, but one promising way is the development of tolerogenic nanoparticles, the aim of which is to mitigate the islet-destroying autoimmunity. We review the topic and highlight recent strategies to produce tolerogenic nanoparticles for the purpose of treating T1D. RECENT FINDINGS Several groups are making progress in applying tolerogenic nanoparticles to rodent models of T1D, while others are using nanotechnology to aid other potential T1D treatments such as islet transplant and islet encapsulation. The strategies behind how nanoparticles achieve tolerance are varied. It is likely the future will see even greater diversity in tolerance induction strategies as well as a greater focus on how to translate this technology from preclinical use in mice to treatment of T1D in humans.
Collapse
Affiliation(s)
- Tobias Neef
- Department of Microbiology-Immunology and Interdepartmental Immunobiology Center, Feinberg School of Medicine, Northwestern University, 6-713 Tarry Building, 303 E. Chicago Avenue, Chicago, IL, 60611, USA
| | - Stephen D Miller
- Department of Microbiology-Immunology and Interdepartmental Immunobiology Center, Feinberg School of Medicine, Northwestern University, 6-713 Tarry Building, 303 E. Chicago Avenue, Chicago, IL, 60611, USA.
| |
Collapse
|
30
|
Abstract
Type 1 diabetes (T1D) is a chronic autoimmune disease that causes severe loss of pancreatic β cells. Autoreactive T cells are key mediators of β cell destruction. Studies of organ donors with T1D that have examined T cells in pancreas, the diabetogenic insulitis lesion, and lymphoid tissues have revealed a broad repertoire of target antigens and T cell receptor (TCR) usage, with initial evidence of public TCR sequences that are shared by individuals with T1D. Neoepitopes derived from post-translational modifications of native antigens are emerging as novel targets that are more likely to evade self-tolerance. Further studies will determine whether T cell responses to neoepitopes are major disease drivers that could impact prediction, prevention, and therapy. This Review provides an overview of recent progress in our knowledge of autoreactive T cells that has emerged from experimental and clinical research as well as pathology investigations.
Collapse
|
31
|
Buzzetti R, Prudente S, Copetti M, Dauriz M, Zampetti S, Garofolo M, Penno G, Trischitta V. Clinical worthlessness of genetic prediction of common forms of diabetes mellitus and related chronic complications: A position statement of the Italian Society of Diabetology. Nutr Metab Cardiovasc Dis 2017; 27:99-114. [PMID: 28063875 DOI: 10.1016/j.numecd.2016.08.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 08/01/2016] [Accepted: 08/13/2016] [Indexed: 02/08/2023]
Abstract
AIM We are currently facing several attempts aimed at marketing genetic data for predicting multifactorial diseases, among which diabetes mellitus is one of the more prevalent. The present document primarily aims at providing to practicing physicians a summary of available data regarding the role of genetic information in predicting diabetes and its chronic complications. DATA SYNTHESIS Firstly, general information about characteristics and performance of risk prediction tools will be presented in order to help clinicians to get acquainted with basic methodological information related to the subject at issue. Then, as far as type 1 diabetes is concerned, available data indicate that genetic information and counseling may be useful only in families with many affected individuals. However, since no disease prevention is possible, the utility of predicting this form of diabetes is at question. In the case of type 2 diabetes, available data really question the utility of adding genetic information on top of well performing, easy available and inexpensive non-genetic markers. Finally, the possibility of using the few available genetic data on diabetic complications for improving our ability to predict them will also be presented and discussed. For cardiovascular complication, the addition of genetic information to models based on clinical features does not translate in a substantial improvement in risk discrimination. For all other diabetic complications genetic information are currently very poor and cannot, therefore, be used for improving risk stratification. CONCLUSIONS In all, nowadays the use of genetic testing for predicting diabetes and its chronic complications is definitively of little value in clinical practice.
Collapse
Affiliation(s)
- R Buzzetti
- Department of Experimental Medicine, "Sapienza" University of Rome, Rome, Italy; UOC Diabetology, Polo Pontino, "Sapienza" University of Rome, Rome, Italy
| | - S Prudente
- Mendel Laboratory, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - M Copetti
- Unit of Biostatistics, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - M Dauriz
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Verona School of Medicine and Hospital Trust of Verona, Verona, Italy
| | - S Zampetti
- Department of Experimental Medicine, "Sapienza" University of Rome, Rome, Italy; UOC Diabetology, Polo Pontino, "Sapienza" University of Rome, Rome, Italy
| | - M Garofolo
- Section of Diabetes and Metabolic Disease, Department of Clinical and Experimental Medicine, University of Pisa and Azienda Ospedaliero Universitaria Pisana, Pisa, Italy
| | - G Penno
- Section of Diabetes and Metabolic Disease, Department of Clinical and Experimental Medicine, University of Pisa and Azienda Ospedaliero Universitaria Pisana, Pisa, Italy
| | - V Trischitta
- Department of Experimental Medicine, "Sapienza" University of Rome, Rome, Italy; Mendel Laboratory, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy; Research Unit of Diabetes and Endocrine Diseases, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy.
| |
Collapse
|
32
|
Wallet MA, Santostefano KE, Terada N, Brusko TM. Isogenic Cellular Systems Model the Impact of Genetic Risk Variants in the Pathogenesis of Type 1 Diabetes. Front Endocrinol (Lausanne) 2017; 8:276. [PMID: 29093700 PMCID: PMC5651267 DOI: 10.3389/fendo.2017.00276] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 10/02/2017] [Indexed: 12/31/2022] Open
Abstract
At least 57 independent loci within the human genome confer varying degrees of risk for the development of type 1 diabetes (T1D). The majority of these variants are thought to contribute to overall genetic risk by modulating host innate and adaptive immune responses, ultimately resulting in a loss of immunological tolerance to β cell antigens. Early efforts to link specific risk variants with functional alterations in host immune responses have employed animal models or genotype-selected individuals from clinical bioresource banks. While some notable genotype:phenotype associations have been described, there remains an urgent need to accelerate the discovery of causal variants and elucidate the molecular mechanisms by which susceptible alleles alter immune functions. One significant limitation has been the inability to study human T1D risk loci on an isogenic background. The advent of induced pluripotent stem cells (iPSCs) and genome-editing technologies have made it possible to address a number of these outstanding questions. Specifically, the ability to drive multiple cell fates from iPSC under isogenic conditions now facilitates the analysis of causal variants in multiple cellular lineages. Bioinformatic analyses have revealed that T1D risk genes cluster within a limited number of immune signaling pathways, yet the relevant immune cell subsets and cellular activation states in which candidate risk genes impact cellular activities remain largely unknown. In this review, we summarize the functional impact of several candidate risk variants on host immunity in T1D and present an isogenic disease-in-a-dish model system for interrogating risk variants, with the goal of expediting precision therapeutics in T1D.
Collapse
Affiliation(s)
- Mark A. Wallet
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida Diabetes Institute, College of Medicine, Gainesville, FL, United States
| | - Katherine E. Santostefano
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida Diabetes Institute, College of Medicine, Gainesville, FL, United States
| | - Naohiro Terada
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida Diabetes Institute, College of Medicine, Gainesville, FL, United States
| | - Todd M. Brusko
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida Diabetes Institute, College of Medicine, Gainesville, FL, United States
- *Correspondence: Todd M. Brusko,
| |
Collapse
|
33
|
Abstract
Throughout biology, function is intimately linked with form. Across scales ranging from subcellular to multiorganismal, the identity and organization of a biological structure's subunits dictate its properties. The field of molecular morphogenesis has traditionally been concerned with describing these links, decoding the molecular mechanisms that give rise to the shape and structure of cells, tissues, organs, and organisms. Recent advances in synthetic biology promise unprecedented control over these molecular mechanisms; this opens the path to not just probing morphogenesis but directing it. This review explores several frontiers in the nascent field of synthetic morphogenesis, including programmable tissues and organs, synthetic biomaterials and programmable matter, and engineering complex morphogenic systems de novo. We will discuss each frontier's objectives, current approaches, constraints and challenges, and future potential.
Collapse
Affiliation(s)
- Brian P Teague
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Patrick Guye
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Ron Weiss
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| |
Collapse
|
34
|
Singh S, Usha, Singh G, Agrawal NK, Singh RG, Kumar SB. Prevalence of Autoantibodies and HLA DR, DQ in Type 1 Diabetes Mellitus. J Clin Diagn Res 2016; 10:EC09-13. [PMID: 27630850 DOI: 10.7860/jcdr/2016/18657.8163] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Accepted: 05/23/2016] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Type I diabetes Mellitus (T1DM) is caused by autoimmune destruction of β-cells of pancreas. Two forms of T1DM are known called as 1A (autoimmune) and 1B (idiopathic). AIM Aim was to study the prevalence of Anti-TTG IgA, Anti-TPO, GADA, ZnT8 and IA-2 autoantibodies and HLA DR and DQ genes and its diagnostic value in T1DM. MATERIALS AND METHODS Thirty four T1DM patients, 59 type 2 diabetes mellitus (T2DM) patients and 28 healthy controls were included in study. Antibodies levels were estimated by ELISA and HLA typing was performed by SSP-PCR method. RESULT The prevalence of various autoantibodies in T1DM were Anti-TTG 14.7%, Anti-TPO 17.65%, GADA 38.23%, ZnT8 11.76% and IA-2 5.88%. Only GADA and ZnT8 were significantly positive in T1DM. GADA (66.67%) and ZnT8 (33.33%) positivity was more in patients below 15 years age while levels of other antibodies were higher after 15 years age. All autoantibodies were detected in higher frequency in T1DM than in T2DM and controls. HLA DR and DQ typing showed highly significant increase in DRB1*0301 (61.76%, p=0.00) and DQB1*0201 (64.71%, p=0.00) in T1DM. Subjects with HLA DRB1*0301 and DQB1*0201 had 80-100% positive prevalence of GADA, ZnT8, IA-2, Anti-TTG and Anti-TPO autoantibodies. CONCLUSION Combination of GADA antibody with DRB1 and DQB1 estimation improved diagnosis of T1A than insulin antigen specific antibodies alone.
Collapse
Affiliation(s)
- Shailja Singh
- Research Scholar, Department of Pathology, Institute of Medical Sciences, Banaras Hindu University , Varanasi, UP, India
| | - Usha
- Professor and Incharge, UGC Advanced Immunodiagnostic Training and Research Centre, Department of Pathology, Institute of Medical Sciences, Banaras Hindu University , Varanasi, UP, India
| | - Gyanendra Singh
- Junior Resident, Department of Pathology, Institute of Medical Sciences, Banaras Hindu University , Varanasi, UP, India
| | - Neeraj Kumar Agrawal
- Professor, Department of Endocrinology, Institute of Medical Sciences, Banaras Hindu University , Varanasi, UP, India
| | - Rana Gopal Singh
- Professor, Department of Nephrology, Institute of Medical Sciences, Banaras Hindu University , Varanasi, UP, India
| | - Shashi Bhushan Kumar
- Service Senior Resident, Department of Pathology, Institute of Medical Sciences, Banaras Hindu University , Varanasi, UP, India
| |
Collapse
|
35
|
von Herrath MG, Korsgren O, Atkinson MA. Factors impeding the discovery of an intervention-based treatment for type 1 diabetes. Clin Exp Immunol 2016; 183:1-7. [PMID: 25989477 PMCID: PMC4687509 DOI: 10.1111/cei.12656] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/13/2015] [Indexed: 12/31/2022] Open
Abstract
Type 1 diabetes (T1D) is one of the most common and severe chronic diseases affecting both children and adults. The aetiology of the disease remains unknown, and thus far no 'true' cure for those affected is available. Indeed, exogenous insulin replacement therapy to manage glucose metabolism to the best degree possible remains the current standard of care. However, despite a recent array of truly impressive improvements designed to enhance disease management (e.g. insulin analogues, continuous glucose monitoring, insulin pumps), it is still difficult for the vast majority of patients to reach recommended target HbA1C levels (< 7.0%). As a result of suboptimal disease management, far too many patients with T1D have an increased risk for disease-associated complications such as nephropathy, neuropathy and retinopathy, as well as hypoglycaemia. New treatment modalities are therefore needed urgently to bring a 'true' cure (disease prevention/disease reversal) to patients with T1D. Here we consider issues that collectively pose a major stumbling block in T1D research with respect to identifying a means to prevent and/or cure the disease. We begin this Perspective by discussing new insights emanating from studies of the pancreas in human T1D; findings which may, at least in part, explain why previous interventions seeking disease prevention/reversal have yielded insufficient benefit. We then turn to suggestions that could optimise the outcome of future clinical trials. Finally, we direct attention to recommendations for the global T1D research community; messages we deem to have the potential to improve our chances of finding the elusive T1D 'cure'.
Collapse
Affiliation(s)
- M. G. von Herrath
- Type 1 Diabetes Center, La Jolla Institute for Allergy and ImmunologyLa JollaCAUSA
- Novo Nordisk Diabetes Research and Development CenterSeattleWAUSA
| | - O. Korsgren
- Department of Clinical ImmunologyUniversity HospitalUppsalaSweden
| | - M. A. Atkinson
- Departments of Pathology and PediatricsUniversity of FloridaGainesvilleFLUSA
| |
Collapse
|
36
|
Rodriguez-Calvo T, Suwandi JS, Amirian N, Zapardiel-Gonzalo J, Anquetil F, Sabouri S, von Herrath MG. Heterogeneity and Lobularity of Pancreatic Pathology in Type 1 Diabetes during the Prediabetic Phase. J Histochem Cytochem 2015. [PMID: 26216138 DOI: 10.1369/0022155415576543] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Type 1 diabetes (T1D) is an autoimmune disease in which insulin-producing beta cells are destroyed in the islets of Langerhans. One of its main pathological manifestations is the hyper-expression of Major Histocompatibility Complex I (MHC-I) by beta cells, which was first described over 3 decades ago yet its cause remains unknown. It might not only be a sign of beta cell dysfunction but could also render the cells susceptible to autoimmune destruction; for example, by islet-infiltrating CD8 T cells. In this report, we studied pancreas tissue from a 22-year-old non-diabetic male cadaveric organ donor who had been at high risk of developing T1D, in which autoantibodies against GAD and IA-2 were detected. Pancreas sections were analyzed for signs of inflammation. Multiple insulin-containing islets were identified, which hyper-expressed MHC-I. However, islet density and MHC-I expression exhibited a highly lobular and heterogeneous pattern even within the same section. In addition, many islets with high expression of MHC-I presented higher levels of CD8 T cell infiltration than normal islets. These results demonstrate the heterogeneity of human pathology that occurs early during the pre-diabetic, autoantibody positive phase, and should contribute to the understanding of human T1D.
Collapse
Affiliation(s)
- Teresa Rodriguez-Calvo
- Type 1 Diabetes Center, La Jolla Institute for Allergy and Immunology, La Jolla, California (TRC, JSS, NA, JZG, FA, SS, MGVH)
| | - Jessica S Suwandi
- Type 1 Diabetes Center, La Jolla Institute for Allergy and Immunology, La Jolla, California (TRC, JSS, NA, JZG, FA, SS, MGVH),Department of Immunohematology & Blood Transfusion, Leiden University Medical Center, Leiden, Netherlands (JSS)
| | - Natalie Amirian
- Type 1 Diabetes Center, La Jolla Institute for Allergy and Immunology, La Jolla, California (TRC, JSS, NA, JZG, FA, SS, MGVH)
| | - Jose Zapardiel-Gonzalo
- Type 1 Diabetes Center, La Jolla Institute for Allergy and Immunology, La Jolla, California (TRC, JSS, NA, JZG, FA, SS, MGVH)
| | - Florence Anquetil
- Type 1 Diabetes Center, La Jolla Institute for Allergy and Immunology, La Jolla, California (TRC, JSS, NA, JZG, FA, SS, MGVH)
| | - Somayeh Sabouri
- Type 1 Diabetes Center, La Jolla Institute for Allergy and Immunology, La Jolla, California (TRC, JSS, NA, JZG, FA, SS, MGVH)
| | - Matthias G von Herrath
- Type 1 Diabetes Center, La Jolla Institute for Allergy and Immunology, La Jolla, California (TRC, JSS, NA, JZG, FA, SS, MGVH),Novo Nordisk Diabetes Research & Development Center, Seattle, Washington (MGVH)
| |
Collapse
|
37
|
Michels A, Zhang L, Khadra A, Kushner JA, Redondo MJ, Pietropaolo M. Prediction and prevention of type 1 diabetes: update on success of prediction and struggles at prevention. Pediatr Diabetes 2015; 16. [PMID: 26202050 PMCID: PMC4592445 DOI: 10.1111/pedi.12299] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Type 1 diabetes mellitus (T1DM) is the archetypal example of a T cell-mediated autoimmune disease characterized by selective destruction of pancreatic β cells. The pathogenic equation for T1DM presents a complex interrelation of genetic and environmental factors, most of which have yet to be identified. On the basis of observed familial aggregation of T1DM, it is certain that there is a decided heritable genetic susceptibility for developing T1DM. The well-known association of T1DM with certain human histocompatibility leukocyte antigen (HLA) alleles of the major histocompatibility complex (MHC) was a major step toward understanding the role of inheritance in T1DM. Type 1 diabetes is a polygenic disease with a small number of genes having large effects (e.g., HLA) and a large number of genes having small effects. Risk of T1DM progression is conferred by specific HLA DR/DQ alleles [e.g., DRB1*03-DQB1*0201 (DR3/DQ2) or DRB1*04-DQB1*0302 (DR4/DQ8)]. In addition, the HLA allele DQB1*0602 is associated with dominant protection from T1DM in multiple populations. A concordance rate lower than 100% between monozygotic twins indicates a potential involvement of environmental factors on disease development. The detection of at least two islet autoantibodies in the blood is virtually pre-diagnostic for T1DM. The majority of children who carry these biomarkers, regardless of whether they have an a priori family history of the disease, will develop insulin-requiring diabetes. Facilitating pre-diagnosis is the timing of seroconversion which is most pronounced in the first 2 yr of life. Unfortunately the significant progress in improving prediction of T1DM has not yet been paralleled by safe and efficacious intervention strategies aimed at preventing the disease. Herein we summarize the chequered history of prediction and prevention of T1DM, describing successes and failures alike, and thereafter examine future trends in the exciting, partially explored field of T1DM prevention.
Collapse
Affiliation(s)
- Aaron Michels
- Barbara Davis Center for Childhood Diabetes, University of Colorado Denver, Aurora, Colorado
| | - Li Zhang
- Barbara Davis Center for Childhood Diabetes, University of Colorado Denver, Aurora, Colorado
| | - Anmar Khadra
- Department of Physiology, McGill University, Montreal, QC Canada
| | - Jake A. Kushner
- Division of Diabetes Pediatric Endocrinology, Texas Children’s Hospital, Baylor College of Medicine, Houston, Texas
| | - Maria J. Redondo
- Division of Diabetes Pediatric Endocrinology, Texas Children’s Hospital, Baylor College of Medicine, Houston, Texas
| | - Massimo Pietropaolo
- Division of Diabetes, Endocrinology and Metabolism, McNair Medical Institute, Baylor College of Medicine, Houston, Texas,To Whom Correspondence May be Addressed: Massimo Pietropaolo, M.D., Division of Diabetes, Endocrinology and Metabolism, Alkek Building for Biomedical Research, R 609, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030
| |
Collapse
|
38
|
Mannering SI, Pathiraja V, Kay TWH. The case for an autoimmune aetiology of type 1 diabetes. Clin Exp Immunol 2015; 183:8-15. [PMID: 26313217 DOI: 10.1111/cei.12699] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/25/2015] [Indexed: 01/10/2023] Open
Abstract
Type 1 diabetes (T1D) develops when there are insufficient insulin-producing beta cells to maintain glucose homeostasis. The prevailing view has been that T1D is caused by immune-mediated destruction of the pancreatic beta cells. However, several recent papers have challenged the long-standing paradigm describing T1D as a tissue-specific autoimmune disease. These authors have highlighted the gaps in our knowledge and understanding of the aetiology of T1D in humans. Here we review the evidence and argue the case for the autoimmune basis of human T1D. In particular, recent analysis of human islet-infiltrating T cells brings important new evidence to this question. Further data in support of the autoimmune basis of T1D from many fields, including genetics, experimental therapies and immunology, is discussed. Finally, we highlight some of the persistent questions relating to the pathogenesis of human type 1 diabetes that remain to be answered.
Collapse
Affiliation(s)
- S I Mannering
- Immunology and Diabetes Unit, St Vincent's Institute of Medical Research.,Department of Medicine, St Vincent's Hospital, University of Melbourne, Fitzroy, VIC, Australia
| | - V Pathiraja
- Immunology and Diabetes Unit, St Vincent's Institute of Medical Research.,Department of Medicine, St Vincent's Hospital, University of Melbourne, Fitzroy, VIC, Australia
| | - T W H Kay
- Immunology and Diabetes Unit, St Vincent's Institute of Medical Research.,Department of Medicine, St Vincent's Hospital, University of Melbourne, Fitzroy, VIC, Australia
| |
Collapse
|
39
|
Rekers NV, von Herrath MG, Wesley JD. Immunotherapies and immune biomarkers in Type 1 diabetes: A partnership for success. Clin Immunol 2015; 161:37-43. [PMID: 26122172 DOI: 10.1016/j.clim.2015.05.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 05/13/2015] [Accepted: 05/17/2015] [Indexed: 12/16/2022]
Abstract
The standard of care (SoC) for Type 1 diabetes (T1D) today is much the same as it was in the early 1920s, simply with more insulin options-fast-acting, slow-acting, injectable, and inhalable insulins. However, these well-tolerated treatments only manage the symptoms and complications, but do nothing to halt the underlying immune response. There is an unmet need for better treatment options for T1D that address all aspects of the disease. For decades, we have successfully treated T1D in preclinical animal models with immune-modifying therapies that have not demonstrated comparable efficacy in humans. The path to bringing such options to the clinic will depend on the implementation and standard inclusion of biomarkers of immune and therapeutic efficacy in T1D clinical trials, and dictate if we can create a new SoC that treats the underlying autoimmunity as well as the symptoms it causes.
Collapse
Affiliation(s)
- Niels V Rekers
- Type 1 Diabetes R&D Center, Novo Nordisk Inc., Seattle, WA, USA; Pacific Northwest Diabetes Research Institute, Seattle, WA, USA
| | | | - Johnna D Wesley
- Type 1 Diabetes R&D Center, Novo Nordisk Inc., Seattle, WA, USA.
| |
Collapse
|
40
|
Kiani J, Hajilooi M, Furst D, Rezaei H, Shahryari-Hesami S, Kowsarifard S, Zamani A, Solgi G. HLA class II susceptibility pattern for type 1 diabetes (T1D) in an Iranian population. Int J Immunogenet 2015; 42:279-86. [DOI: 10.1111/iji.12216] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2014] [Revised: 04/28/2015] [Accepted: 05/25/2015] [Indexed: 01/09/2023]
Affiliation(s)
- J. Kiani
- Division of Endocrinology; Department of Internal Medicine; School of Medicine; Hamadan University of Medical Sciences; Hamadan Iran
| | - M. Hajilooi
- Department of Immunology; School of Medicine; Hamadan University of Medical Sciences; Hamadan Iran
| | - D. Furst
- Department of Transplantation Immunology; Institute for Clinical Transfusion Medicine and Immunogenetics Ulm; University of Ulm & German Red Cross Blood Donor Services Baden-Württemberg-Hessia; Ulm Germany
| | - H. Rezaei
- Department of Immunology; School of Medicine; Hamadan University of Medical Sciences; Hamadan Iran
| | - S. Shahryari-Hesami
- Department of Immunology; School of Medicine; Hamadan University of Medical Sciences; Hamadan Iran
| | - S. Kowsarifard
- Division of Endocrinology; Department of Internal Medicine; School of Medicine; Hamadan University of Medical Sciences; Hamadan Iran
| | - A. Zamani
- Department of Immunology; School of Medicine; Hamadan University of Medical Sciences; Hamadan Iran
| | - G. Solgi
- Department of Immunology; School of Medicine; Hamadan University of Medical Sciences; Hamadan Iran
- Psoriasis Research Center; Department of Dermatology; Farshchian Hospital; Hamadan University of Medical Sciences; Hamadan Iran
| |
Collapse
|
41
|
Nassar W, Mostafa MA. Biopsy of the pancreas: the predictive value and therapeutic impact on autoimmune diabetes. THE EGYPTIAN JOURNAL OF INTERNAL MEDICINE 2015. [DOI: 10.4103/1110-7782.159449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
42
|
|
43
|
Abstract
In the nearly 100 years since the discovery of therapeutic insulin, significant research efforts have been directed at finding the underlying cause of type 1 diabetes (T1D) and developing a "cure" for the disease. While progress has clearly been made toward each of these goals, neither vision has been fulfilled. With increasing pressure from both public and private funders of diabetes research, growing impatience of those with T1D at the lack of practical discoveries, increased competition for research funds, uncertainties on the reproducibility of published scientific data, and questions regarding the value of animal models, the current research environment has become extraordinarily difficult to traverse from the perspective of investigators. As a result, there is an increasing pressure toward performance of what might be considered "safe" research, where the aim is to affirm existing dogmas rather than to pioneer efforts involving unconventional thought. Psychologists refer to this practice as "observational bias" while cartoonists label the process the "streetlight effect." In this Perspective, we consider notions in T1D research that should be subject to bold question and provide additional concepts, many somewhat orphan to research efforts, whose investigation could lead to a means for truly identifying the cause of and a cure for T1D.
Collapse
Affiliation(s)
- Manuela Battaglia
- Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Mark A Atkinson
- Departments of Pathology and Pediatrics, University of Florida, Gainesville, FL
| |
Collapse
|
44
|
Daycare attendance, breastfeeding, and the development of type 1 diabetes: the diabetes autoimmunity study in the young. BIOMED RESEARCH INTERNATIONAL 2015; 2015:203947. [PMID: 25883944 PMCID: PMC4389988 DOI: 10.1155/2015/203947] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 09/08/2014] [Indexed: 11/17/2022]
Abstract
BACKGROUND The hygiene hypothesis attributes the increased incidence of type 1 diabetes (T1D) to a decrease of immune system stimuli from infections. We evaluated this prospectively in the Diabetes Autoimmunity Study in the Young (DAISY) by examining daycare attendance during the first two years of life (as a proxy for infections) and the risk of T1D. METHODS DAISY is a prospective cohort of children at increased T1D risk. Analyses were limited to 1783 children with complete daycare and breastfeeding data from birth to 2 years of age; 58 children developed T1D. Daycare was defined as supervised time with at least one other child at least 3 times a week. Breastfeeding duration was evaluated as a modifier of the effect of daycare. Cox proportional hazards regression was used for analyses. RESULTS Attending daycare before the age of 2 years was not associated with T1D risk (HR: 0.89; CI: 0.54-1.47) after adjusting for HLA, first degree relative with T1D, ethnicity, and breastfeeding duration. Breastfeeding duration modified this association, where daycare attendance was associated with increased T1D risk in nonbreastfed children and a decreasing T1D risk with increasing breastfeeding duration (interaction P value=0.02). CONCLUSIONS These preliminary data suggest breastfeeding may modify the effect of daycare on T1D risk.
Collapse
|
45
|
Pathiraja V, Kuehlich JP, Campbell PD, Krishnamurthy B, Loudovaris T, Coates PTH, Brodnicki TC, O'Connell PJ, Kedzierska K, Rodda C, Bergman P, Hill E, Purcell AW, Dudek NL, Thomas HE, Kay TWH, Mannering SI. Proinsulin-specific, HLA-DQ8, and HLA-DQ8-transdimer-restricted CD4+ T cells infiltrate islets in type 1 diabetes. Diabetes 2015; 64:172-82. [PMID: 25157096 DOI: 10.2337/db14-0858] [Citation(s) in RCA: 135] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Type 1 diabetes (T1D) develops when insulin-secreting β-cells, found in the pancreatic islets of Langerhans, are destroyed by infiltrating T cells. How human T cells recognize β-cell-derived antigens remains unclear. Genetic studies have shown that HLA and insulin alleles are the most strongly associated with risk of T1D. These long-standing observations implicate CD4(+) T-cell responses against (pro)insulin in the pathogenesis of T1D. To dissect the autoimmune T-cell response against human β-cells, we isolated and characterized 53 CD4(+) T-cell clones from within the residual pancreatic islets of a deceased organ donor who had T1D. These 53 clones expressed 47 unique clonotypes, 8 of which encoded proinsulin-specific T-cell receptors. On an individual clone basis, 14 of 53 CD4(+) T-cell clones (26%) recognized 6 distinct but overlapping epitopes in the C-peptide of proinsulin. These clones recognized C-peptide epitopes presented by HLA-DQ8 and, notably, HLA-DQ8 transdimers that form in HLA-DQ2/-DQ8 heterozygous individuals. Responses to these epitopes were detected in the peripheral blood mononuclear cells of some people with recent-onset T1D but not in HLA-matched control subjects. Hence, proinsulin-specific, HLA-DQ8, and HLA-DQ8-transdimer-restricted CD4(+) T cells are strongly implicated in the autoimmune pathogenesis of human T1D.
Collapse
Affiliation(s)
- Vimukthi Pathiraja
- Immunology and Diabetes Unit, St. Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia
| | - Janine P Kuehlich
- Immunology and Diabetes Unit, St. Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia
| | - Peter D Campbell
- Immunology and Diabetes Unit, St. Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia
| | - Balasubramanian Krishnamurthy
- Immunology and Diabetes Unit, St. Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia Department of Medicine, University of Melbourne, St. Vincent's Hospital, Fitzroy, Victoria, Australia
| | - Thomas Loudovaris
- Immunology and Diabetes Unit, St. Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia
| | - P Toby H Coates
- Department of Medicine, University of Adelaide, Adelaide, South Australia, Australia
| | - Thomas C Brodnicki
- Immunology and Diabetes Unit, St. Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia Department of Medicine, University of Melbourne, St. Vincent's Hospital, Fitzroy, Victoria, Australia
| | - Philip J O'Connell
- National Pancreas Transplant Unit, University of Sydney at Westmead Hospital, Sydney, New South Wales, Australia
| | - Katherine Kedzierska
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Parkville, Victoria, Australia
| | - Christine Rodda
- University of Melbourne, NorthWest Academic Centre, Sunshine Hospital, St. Albans, Victoria, Australia
| | - Philip Bergman
- Department of Paediatrics, Monash University, Clayton, Victoria, Australia
| | - Erin Hill
- Department of Paediatrics, Monash University, Clayton, Victoria, Australia
| | - Anthony W Purcell
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Nadine L Dudek
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Helen E Thomas
- Immunology and Diabetes Unit, St. Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia Department of Medicine, University of Melbourne, St. Vincent's Hospital, Fitzroy, Victoria, Australia
| | - Thomas W H Kay
- Immunology and Diabetes Unit, St. Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia Department of Medicine, University of Melbourne, St. Vincent's Hospital, Fitzroy, Victoria, Australia
| | - Stuart I Mannering
- Immunology and Diabetes Unit, St. Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia Department of Medicine, University of Melbourne, St. Vincent's Hospital, Fitzroy, Victoria, Australia
| |
Collapse
|
46
|
Skyler JS. Immune therapy for treating type 1 diabetes: challenging existing paradigms. J Clin Invest 2014; 125:94-6. [PMID: 25500880 DOI: 10.1172/jci79190] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Patients with type 1 diabetes (T1D) rapidly lose β cell function and/or mass, leading to a life-long dependence on insulin therapy. β Cell destruction is mediated by aberrant immune responses; therefore, immune modulation has potential to ameliorate disease. While immune intervention in animal models of diabetes has shown promising results, treatment of patients with T1D with the same agents has not been as successful. In this issue of the JCI, Haller and colleagues present data from a small clinical trial that tested the efficacy of a combination of immunomodulatory agents, anti-thymocyte globulin and pegylated granulocyte CSF, neither of which have shown benefit for T1D as single treatment agents. Many patients that received combination therapy maintained β cell function at baseline levels up to a year after treatment. The results from this study challenge current trial design paradigm that for combined therapy to be successful individual agents should show benefit.
Collapse
|
47
|
Szablewski L. Role of immune system in type 1 diabetes mellitus pathogenesis. Int Immunopharmacol 2014; 22:182-91. [PMID: 24993340 DOI: 10.1016/j.intimp.2014.06.033] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 06/16/2014] [Accepted: 06/18/2014] [Indexed: 12/26/2022]
Abstract
The immune system is the body's natural defense system against invading pathogens. It protects the body from infection and works to communicate an individual's well-being through a complex network of interconnected cells and cytokines. This system is an associated host defense. An uncontrolled immune system has the potential to trigger negative complications in the host. Type 1 diabetes results from the destruction of pancreatic β-cells by a β-cell-specific autoimmune process. Examples of β-cell autoantigens are insulin, glutamic acid decarboxylase, tyrosine phosphatase, and insulinoma antigen. There are many autoimmune diseases, but type 1 diabetes mellitus is one of the well-characterized autoimmune diseases. The mechanisms involved in the β-cell destruction are still not clear; it is generally believed that β-cell autoantigens, macrophages, dendritic cells, B lymphocytes, and T lymphocytes are involved in the β-cell-specific autoimmune process. It is necessary to determine what exact factors are causing the immune system to become unregulated in such a manner as to promote an autoimmune response.
Collapse
Affiliation(s)
- Leszek Szablewski
- General Biology and Parasitology, Center of Biostructure Research, Medical University of Warsaw, 5 Chalubinskiego Str., 02-004 Warsaw, Poland.
| |
Collapse
|
48
|
Canivell S, Gomis R. Diagnosis and classification of autoimmune diabetes mellitus. Autoimmun Rev 2014; 13:403-7. [PMID: 24424179 DOI: 10.1016/j.autrev.2014.01.020] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/13/2013] [Indexed: 12/11/2022]
Abstract
Diabetes mellitus is increasing in prevalence worldwide. The economic costs and burden of the disease are considerable given the cardiovascular complications and co-morbidities that it may entail. Two major groups of diabetes mellitus have been defined, type 1, or immune-based, and type 2. In recent years, other subgroups have been described in-between these major groups. Correct classification of the disease is crucial in order to ascribe the most efficient preventive, diagnostic and treatment strategies for each patient. In the present review, we discuss the epidemiology, etiopathogenesis, diagnostic criteria and clinical classification of what is currently known as autoimmune diabetes. In addition, the other groups of diabetes mellitus will be regarded in relation to their pathogenesis and potential autoimmunity features.
Collapse
Affiliation(s)
- Silvia Canivell
- Department of Endocrinology and Nutrition, Hospital Clinic-Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Diabetes and Obesity Laboratory-Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Ramon Gomis
- Department of Endocrinology and Nutrition, Hospital Clinic-Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Diabetes and Obesity Laboratory-Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; University of Barcelona, Barcelona, Spain.
| |
Collapse
|
49
|
Wu YL, Ding YP, Gao J, Tanaka Y, Zhang W. Risk factors and primary prevention trials for type 1 diabetes. Int J Biol Sci 2013; 9:666-79. [PMID: 23904791 PMCID: PMC3729009 DOI: 10.7150/ijbs.6610] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2013] [Accepted: 07/09/2013] [Indexed: 12/15/2022] Open
Abstract
Type 1 diabetes mellitus (T1DM) is a chronic autoimmune disease resulting in the designated immune destruction of insulin producing β-cells, usually diagnosed in youth, and associated with important psychological, familial, and social disorders. Once diagnosed, patients need lifelong insulin treatment and will experience multiple disease-associated complications. There is no cure for T1DM currently. The last decade has witnessed great progress in elucidating the causes and treatment of the disease based on numerous researches both in rodent models of spontaneous diabetes and in humans. This article summarises our current understanding of the pathogenesis of T1DM, the roles of the immune system, genes, environment and other factors in the continuing and rapid increase in T1DM incidence at younger ages in humans. In addition, we discuss the strategies for primary and secondary prevention trials of T1DM. The purpose of this review is to provide an overview of this disorder's pathogenesis, risk factors that cause the disease, as well as to bring forward an ideal approach to prevent and cure the disorder.
Collapse
Affiliation(s)
- Yan-Ling Wu
- Virus Inspection Department, Zhejiang Provincial Center for Disease Control and Prevention, 630 Xincheng Road, Hangzhou, 310051, PR China.
| | | | | | | | | |
Collapse
|
50
|
Rewers M. The next big idea. Diabetes Technol Ther 2013; 15 Suppl 2:S2-29-S2-36. [PMID: 23786296 PMCID: PMC3676661 DOI: 10.1089/dia.2013.0141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
George S. Eisenbarth will remain in our memories as a brilliant scientist and great collaborator. His quest to discover the cause and prevention of type 1 (autoimmune) diabetes started from building predictive models based on immunogenetic markers. Despite his tremendous contributions to our understanding of the natural history of pre-type 1 diabetes and potential mechanisms, George left us with several big questions to answer before his quest is completed.
Collapse
Affiliation(s)
- Marian Rewers
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, Colorado 80045, USA.
| |
Collapse
|