1
|
Kilroe SP, Von Ruff ZD, Arentson-Lantz EJ, Romsdahl TB, Linares JJ, Kalenta H, Marchant ED, Volpi E, Paddon-Jones D, Russell WK, Rasmussen BB. Human skeletal muscle disuse atrophy has profound and negative effects on the muscle metabolome and lipidome. Am J Physiol Endocrinol Metab 2025; 328:E962-E978. [PMID: 40298387 DOI: 10.1152/ajpendo.00012.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 02/06/2025] [Accepted: 04/21/2025] [Indexed: 04/30/2025]
Abstract
We investigated how short-term muscle disuse altered the skeletal muscle metabolome, lipidome, and transcriptome in middle-aged adults. We report that the energy metabolism pathways: nicotinate and nicotinamide metabolism, glycolysis, and TCA cycle, were reduced after 7 days of muscle disuse. These changes in the metabolome were reflected by changes in the transcriptome where multiple genes involved in glycolysis and TCA pathways were reduced after short-term disuse. Phenylalanine, tyrosine, and tryptophan metabolism pathways showed the same response and were reduced after short-term disuse. The skeletal muscle lipidome showed a decrease in phosphatidylinositols but an increase in phosphatidylglycerols and diacylglycerols after short-term muscle disuse. We conclude that short-term muscle disuse in humans has profound and negative effects on the muscle metabolome and lipidome. These include significant downregulation of muscle glycolytic, amino acid, and TCA cycle intermediates. In contrast, skeletal muscle lipids had a divergent response to disuse (e.g., increased phosphatidylglycerols and diacylglycerols, but reduced phosphatidylinositols).NEW & NOTEWORTHY We present the first study that has applied a multiomic analysis (metabolomics, lipidomics, and transcriptomics) of short-term disuse in middle-aged adults. We identified an altered lipidomic and metabolic signature after disuse that included increases in lipids associated with lipotoxicity (e.g., sphingomyelin and diacylglycerol) and reductions in phosphatidylinositol. Energy pathway metabolites for glycolysis and the TCA cycle were reduced after short-term disuse. The lipidomics and metabolomics data were supported by changes in the associated gene expression.
Collapse
Affiliation(s)
- Sean P Kilroe
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States
- Barshop Institute for Longevity and Aging Studies, Center for Metabolic Health, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States
| | - Zachary D Von Ruff
- Graduate School of Biomedical Sciences, University of Texas Medical Branch, Galveston, Texas, United States
| | - Emily J Arentson-Lantz
- Department of Nutrition & Metabolism, University of Texas Medical Branch, Galveston, Texas, United States
| | - Trevor B Romsdahl
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, United States
- Mass Spectrometry Facility, University of Texas Medical Branch, Galveston, Texas, United States
| | - Jennifer J Linares
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, United States
- Mass Spectrometry Facility, University of Texas Medical Branch, Galveston, Texas, United States
| | - Hanna Kalenta
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States
- Barshop Institute for Longevity and Aging Studies, Center for Metabolic Health, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States
| | - Erik D Marchant
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States
- Barshop Institute for Longevity and Aging Studies, Center for Metabolic Health, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States
| | - Elena Volpi
- Barshop Institute for Longevity and Aging Studies, Center for Metabolic Health, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States
| | - Douglas Paddon-Jones
- Department of Nutrition & Metabolism, University of Texas Medical Branch, Galveston, Texas, United States
| | - William K Russell
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, United States
- Mass Spectrometry Facility, University of Texas Medical Branch, Galveston, Texas, United States
| | - Blake B Rasmussen
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States
- Barshop Institute for Longevity and Aging Studies, Center for Metabolic Health, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States
| |
Collapse
|
2
|
Zhang T, Liu Y, Yang Y, Luo J, Hao C. The Effect and Mechanism of Regular Exercise on Improving Insulin Impedance: Based on the Perspective of Cellular and Molecular Levels. Int J Mol Sci 2025; 26:4199. [PMID: 40362436 PMCID: PMC12071773 DOI: 10.3390/ijms26094199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Revised: 04/20/2025] [Accepted: 04/23/2025] [Indexed: 05/15/2025] Open
Abstract
Insulin resistance is more common in the elderly, and with the improvement in people's living standards and changes in lifestyle habits, the incidence of insulin resistance in other age groups is also increasing year by year. Overweight and obesity caused by abnormal fat metabolism or accumulation can significantly reduce glucose intake, which is the direct cause of insulin resistance and the trigger for the occurrence and development of type II diabetes. This article reviews and analyzes relevant literature on empirical research on the effect of regular exercise on improving insulin resistance. It was found that the most important step in carbohydrate metabolism is the translocation of glucose transporter 4 (GLUT4) to the cell membrane, carrying water-soluble glucose through the lipid soluble cell membrane to complete carbohydrate transport. The process of glucose transporter protein translocation to the cell membrane can be driven by two different signaling pathways: one is the insulin information transfer pathway (ITP), the second is to induce the ITP of monophosphate-activated protein kinase (AMPK) through hypoxia or muscle contraction. For type II diabetes patients, the insulin signal transmission pathway through insulin receptors (IRS1, IRS2) and phosphatidylinositol 3-kinase (PI3K) (PI3K) is damaged, which results in the decrease in glucose absorption stimulated by insulin in skeletal muscle, while the noninsulin signal transmission pathway of AMPK in these patients is normal. It can be seen that regular exercise can regulate glucose intake and the metabolism of skeletal muscle, improve insulin resistance, reduce fasting blood glucose and glycosylated hemoglobin in diabetes patients, and thus, effectively regulate blood glucose. However, many steps in the molecular mechanism of how exercise training improves systemic insulin resistance are still not fully understood, and further discussion is needed in the future.
Collapse
Affiliation(s)
- Tingran Zhang
- College of Physical Education, Southwest University, Chongqing 400715, China; (T.Z.); (Y.L.); (Y.Y.); (J.L.)
| | - Yongsen Liu
- College of Physical Education, Southwest University, Chongqing 400715, China; (T.Z.); (Y.L.); (Y.Y.); (J.L.)
| | - Yi Yang
- College of Physical Education, Southwest University, Chongqing 400715, China; (T.Z.); (Y.L.); (Y.Y.); (J.L.)
| | - Jiong Luo
- College of Physical Education, Southwest University, Chongqing 400715, China; (T.Z.); (Y.L.); (Y.Y.); (J.L.)
| | - Chen Hao
- College of Physical Education, Chongqing University, Chongqing 401331, China
| |
Collapse
|
3
|
Xiao M, Zhou N, Tian Z, Sun C. Endogenous Metabolites in Metabolic Diseases: Pathophysiologic Roles and Therapeutic Implications. J Nutr 2025:S0022-3166(25)00227-5. [PMID: 40250565 DOI: 10.1016/j.tjnut.2025.04.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2025] [Accepted: 04/14/2025] [Indexed: 04/20/2025] Open
Abstract
Breakthroughs in metabolomics technology have revealed the direct regulatory role of metabolites in physiology and disease. Recent data have highlighted the bioactive metabolites involved in the etiology and prevention and treatment of metabolic diseases such as obesity, nonalcoholic fatty liver disease, type 2 diabetes mellitus, and atherosclerosis. Numerous studies reveal that endogenous metabolites biosynthesized by host organisms or gut microflora regulate metabolic responses and disorders. Lipids, amino acids, and bile acids, as endogenous metabolic modulators, regulate energy metabolism, insulin sensitivity, and immune response through multiple pathways, such as insulin signaling cascade, chemical modifications, and metabolite-macromolecule interactions. Furthermore, the gut microbial metabolites short-chain fatty acids, as signaling regulators have a variety of beneficial impacts in regulating energy metabolic homeostasis. In this review, we will summarize information about the roles of bioactive metabolites in the pathogenesis of many metabolic diseases. Furthermore, we discuss the potential value of metabolites in the promising preventive and therapeutic perspectives of human metabolic diseases.
Collapse
Affiliation(s)
- Mengjie Xiao
- National Key Discipline, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, P. R. China; Department of Nutrition and Food Hygiene, School of Public Health, Key Laboratory of Precision Nutrition and Health, Ministry of Education, Harbin Medical University, Heilongjiang, Harbin, P. R. China
| | - Ning Zhou
- National Key Discipline, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, P. R. China; Department of Nutrition and Food Hygiene, School of Public Health, Key Laboratory of Precision Nutrition and Health, Ministry of Education, Harbin Medical University, Heilongjiang, Harbin, P. R. China
| | - Zhen Tian
- National Key Discipline, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, P. R. China; Department of Nutrition and Food Hygiene, School of Public Health, Key Laboratory of Precision Nutrition and Health, Ministry of Education, Harbin Medical University, Heilongjiang, Harbin, P. R. China.
| | - Changhao Sun
- National Key Discipline, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, P. R. China; Department of Nutrition and Food Hygiene, School of Public Health, Key Laboratory of Precision Nutrition and Health, Ministry of Education, Harbin Medical University, Heilongjiang, Harbin, P. R. China.
| |
Collapse
|
4
|
Ying Y, Zhang C, Wu S, Wang S, Lian J, Lin Y, Guan H, Cai D. Health Implications Associated with Fat-Free Mass: A Phenome-Wide Mendelian Randomization Study. Cardiorenal Med 2025; 15:295-308. [PMID: 40179848 DOI: 10.1159/000545641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 03/18/2025] [Indexed: 04/05/2025] Open
Abstract
INTRODUCTION Fat-free mass (FFM) is a critical component of the human body, with implications for various diseases. METHODS We conducted a comprehensive analysis integrating a phenome-wide association study (PheWAS), a two-sample Mendelian randomization (MR) analysis, and a systematic review to investigate the associations between FFM and health outcomes. RESULTS PheWAS identified 183 phenotypes enriched for FFM associations, including diseases, body composition, and lifestyle factors. A two-sample MR analysis using the FinnGen and UK Biobank dataset revealed significant associations between genetically determined FFM and 36 disease outcomes, including cardiovascular diseases, metabolic disorders, and musculoskeletal conditions. The mediation MR analysis indicates that FFM indirectly influences the levels of five biomarkers in visceral adipose tissue. A systematic review identified consistent associations between FFM and several diseases, including type 2 diabetes and cervical disc disorders. Moreover, new associations such as low back pain and ovarian cancer were discovered. CONCLUSION These findings challenge the conventional notion of FFM as a protective factor in health, suggesting that higher FFM levels may be linked to an increased risk of various diseases. Further clinical studies are warranted to validate these findings and elucidate the underlying mechanisms.
Collapse
Affiliation(s)
- Yuchen Ying
- Department of cardiology, Ningbo Medical Center of Lihuili Hospital, Ningbo, China
| | - Chunxia Zhang
- Department of cardiology, Ningbo Medical Center of Lihuili Hospital, Ningbo, China
| | - Shanshan Wu
- Cardiac Care Unit, Ningbo Medical Center of Lihuili Hospital, Ningbo, China
| | - Shudan Wang
- Department of cardiology, Ningbo Medical Center of Lihuili Hospital, Ningbo, China
| | - Jiangfang Lian
- Department of cardiology, Ningbo Medical Center of Lihuili Hospital, Ningbo, China
- Ningbo Institute of Innovation for Combined Medicine and Engineering, Ningbo, China
| | - Yupin Lin
- Department of cardiology, Ningbo Medical Center of Lihuili Hospital, Ningbo, China
| | - Haiwang Guan
- Department of cardiology, Ningbo Medical Center of Lihuili Hospital, Ningbo, China
| | - Dihui Cai
- Department of cardiology, Ningbo Medical Center of Lihuili Hospital, Ningbo, China
| |
Collapse
|
5
|
Kinanti RG, Weningtyas A, Ariesaka KM, Puspitasari ST, Arsani NLKA, Liao HE. Identification of differentially expressed genes in resting human skeletal muscle of sedentary versus strength and endurance- trained individuals using bioinformatics analysis and in vitro validation. NARRA J 2025; 5:e1764. [PMID: 40352223 PMCID: PMC12059816 DOI: 10.52225/narra.v5i1.1764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 01/02/2025] [Indexed: 05/14/2025]
Abstract
Understanding the molecular mechanisms underlying skeletal muscle adaptation to different training regimens is essential for advancing muscle health and performance interventions. The aim of this study was to investigate molecular and genetic adaptations in the resting skeletal muscle of sedentary individuals compared to strength- and endurance-trained athletes using bioinformatics and in vitro validation. Differentially expressed genes (DEG) analysis of the GSE9405 dataset was conducted. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were performed, followed by protein-protein interaction (PPI) network analysis and receiver operating characteristic (ROC) analysis. To validate the bioinformatics findings, the expression of two identified genes was assessed using real-time polymerase chain reaction (PCR) in professional athletes and age-matched non-athletes. Analysis of RNA expression profiles from the GSE9405 dataset identified 426 DEGs, with 165 upregulated and 261 downregulated in trained individuals. Enrichment analysis highlighted pathways related to metabolic efficiency, mitochondrial function, and muscle remodeling, all crucial for athletic performance. PRKACA and CALM3 were identified as key upregulated genes in trained individuals with central roles in these pathways. The area under the curve (AUC) values for CALM3 and PRKACA were 0.8558 and 0.8846, respectively, for differentiating the two groups. Validation in human samples confirmed that CALM3 expression was significantly higher in athletes (p = 0.00i), suggesting its critical role in muscle adaptation. However, PRKACA expression differences between the groups were not statistically significant (p = 0.32i). These findings provide insights into gene-level responses to long-term training, offering a basis for targeted interventions to enhance muscle health and athletic performance.
Collapse
Affiliation(s)
- Rias G. Kinanti
- Department of Medicine, Faculty of Medicine, Universitas Negeri Malang, Malang, Indonesia
| | - Anditri Weningtyas
- Department of Medicine, Faculty of Medicine, Universitas Negeri Malang, Malang, Indonesia
- Doctoral Program in Medical Science, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia
| | - Kiky M. Ariesaka
- Department of Medicine, Faculty of Medicine, Universitas Negeri Malang, Malang, Indonesia
| | - Sendhi T. Puspitasari
- Department of Medicine, Faculty of Medicine, Universitas Negeri Malang, Malang, Indonesia
- Doctoral Program in Healthcare Administration, College of Medical and Health Science, Asia University, Taiwan
| | - Ni LKA. Arsani
- Department of Medicine, Faculty of Medicine, Universitas Pendidikan Ganesha, Bali, Indonesia
| | - Hung E. Liao
- Department of Healthcare Administration, College of Medical and Health Science, Asia University, Taichung, Taiwan
| |
Collapse
|
6
|
Cataldi D, Bennett JP, Quon BK, Leong L, Kelly TL, Binder AM, Evans WJ, Prado CM, Heymsfield SB, Shepherd JA. Association of body composition measures to muscle strength using DXA, D 3Cr, and BIA in collegiate athletes. Sci Rep 2025; 15:5839. [PMID: 39966425 PMCID: PMC11836400 DOI: 10.1038/s41598-025-87918-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 01/22/2025] [Indexed: 02/20/2025] Open
Abstract
Muscle mass and strength are crucial for physiological function and performance in athletes, playing a significant role in maintaining health and optimal athletic performance. Skeletal muscle, which constitutes the majority of lean soft tissue (LST) and appendicular lean soft tissue (ALST) when measured by dual-energy X-ray absorptiometry (DXA), represents a commonly used surrogate for strength. Research has investigated alternative measures of body composition, such as the assessment of ALST through bioelectrical impedance analysis (BIA) and the determination of whole-body muscle mass from creatine pool size using the deuterated creatine (D3Cr) dilution method, for their associations to strength. While the relationship between body composition measures and strength has been studied in older adults, this relationship remains unexplored in athletic populations. This study examined muscle body composition measures using DXA, D3Cr, and BIA and their association with strength in a sample of collegiate athletes. The study enrolled 80 collegiate athletes (40 females) of differing sports disciplines who consumed a 60 mg dose of D3Cr and completed DXA and BIA measures in addition to trunk and leg strength tests. Analysis was sex-stratified using Pearson's correlations, linear regression, and quartile p trend significance. With an average participant age of 21.8 years, whole-body DXA correlations to muscle strength surpassed height- or mass-normalized values. This trend was especially pronounced in trunk strength's relationship with body composition over leg strength, across measurement methods. While DXA LST values were higher than BIA and D3Cr in predicting strength, the values did not differ significantly. Adjustments for age, BMI, and BIA variables didn't enhance this association. A significant trend between DXA LST and all strength measures underscored the equal relevance of DXA and D3Cr muscle mass to strength, favoring whole-body over regional assessments. This calls for future research on muscle mass's effects on LST and functional outcomes in broader groups, highlighting the importance of comprehensive body composition analysis in athletic performance studies.
Collapse
Affiliation(s)
- Devon Cataldi
- Department of Epidemiology, University of Hawai'i Cancer Center, Honolulu, USA.
| | - Jonathan P Bennett
- Department of Epidemiology, University of Hawai'i Cancer Center, Honolulu, USA
| | - Brandon K Quon
- Department of Epidemiology, University of Hawai'i Cancer Center, Honolulu, USA
| | - Lambert Leong
- Department of Epidemiology, University of Hawai'i Cancer Center, Honolulu, USA
| | | | - Alexandra M Binder
- Department of Epidemiology, University of Hawai'i Cancer Center, Honolulu, USA
| | - William J Evans
- Department of Nutrition Sciences, University of California, Berkeley, USA
| | - Carla M Prado
- Department of Agricultural, Life and Environmental Sciences, University of Alberta, Edmonton, AB, Canada
| | - Steven B Heymsfield
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, USA
| | - John A Shepherd
- Department of Epidemiology, University of Hawai'i Cancer Center, Honolulu, USA
| |
Collapse
|
7
|
Horowitz JF, Goodpaster BH. Mechanistic Insights Into the Exercise-Induced Changes in Muscle Lipids and Insulin Sensitivity-Expanding on the "Athlete's Paradox": Revisiting a 2011 Diabetes Classic by Amati et al. Diabetes 2025; 74:134-137. [PMID: 39836884 PMCID: PMC11755679 DOI: 10.2337/dbi24-0030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 10/30/2024] [Indexed: 01/23/2025]
Abstract
Endurance exercise is widely recognized for its role in mitigating insulin resistance, yet the precise mechanisms remain unclear. In this Classics in Diabetes article, we revisit the article by Amati et al., "Skeletal Muscle Triglycerides, Diacylglycerols, and Ceramides in Insulin Resistance: Another Paradox in Endurance-Trained Athletes?" Published in the October 2011 issue of Diabetes, this article was among the first to highlight the nuanced roles of exercise-induced changes in bioactive lipids such as ceramide and diacylglycerol (DAG) in insulin signaling. The authors' groundbreaking work challenged some existing paradigms, revealing a more complex relationship between DAGs and insulin resistance than previously thought. Their findings helped lay the foundation for further exploration to unravel the intricate biochemical pathways through which exercise influences insulin sensitivity and metabolic health.
Collapse
|
8
|
Gianazza E, Papaianni GG, Brocca L, Banfi C, Mallia A. Omics Approaches to Study Perilipins and Their Significant Biological Role in Cardiometabolic Disorders. Int J Mol Sci 2025; 26:557. [PMID: 39859272 PMCID: PMC11765208 DOI: 10.3390/ijms26020557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/07/2025] [Accepted: 01/08/2025] [Indexed: 01/27/2025] Open
Abstract
Lipid droplets (LDs), highly dynamic cellular organelles specialized in lipid storage and maintenance of lipid homeostasis, contain several proteins on their surface, among which the perilipin (Plin) family stands out as the most abundant group of LD-binding proteins. They play a pivotal role in influencing the behavior and functionality of LDs, regulating lipase activity, and preserving a balance between lipid synthesis and degradation, which is crucial in the development of obesity and abnormal accumulation of fat in non-adipose tissues, causing negative adverse biological effects, such as insulin resistance, mitochondrial dysfunction, and inflammation. The expression levels of Plins are often associated with various diseases, such as hepatic steatosis and atherosclerotic plaque formation. Thus, it becomes of interest to investigate the Plin roles by using appropriate "omics" approaches that may provide additional insight into the mechanisms through which these proteins contribute to cellular and tissue homeostasis. This review is intended to give an overview of the most significant omics studies focused on the characterization of Plin proteins and the identification of their potential targets involved in the development and progression of cardiovascular and cardiometabolic complications, as well as their interactors that could be useful for more efficient therapeutic and preventive approaches for patients.
Collapse
Affiliation(s)
| | | | | | - Cristina Banfi
- Unit of Functional Proteomics, Metabolomics and Network Analysis, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (E.G.); (G.G.P.); (L.B.); (A.M.)
| | | |
Collapse
|
9
|
Pesta D, Anadol-Schmitz E, Sarabhai T, Op den Kamp Y, Gancheva S, Trinks N, Zaharia OP, Mastrototaro L, Lyu K, Habets I, Op den Kamp-Bruls YMH, Dewidar B, Weiss J, Schrauwen-Hinderling V, Zhang D, Gaspar RC, Strassburger K, Kupriyanova Y, Al-Hasani H, Szendroedi J, Schrauwen P, Phielix E, Shulman GI, Roden M. Determinants of increased muscle insulin sensitivity of exercise-trained versus sedentary normal weight and overweight individuals. SCIENCE ADVANCES 2025; 11:eadr8849. [PMID: 39742483 PMCID: PMC11691647 DOI: 10.1126/sciadv.adr8849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 11/26/2024] [Indexed: 01/03/2025]
Abstract
The athlete's paradox states that intramyocellular triglyceride accumulation associates with insulin resistance in sedentary but not in endurance-trained humans. Underlying mechanisms and the role of muscle lipid distribution and composition on glucose metabolism remain unclear. We compared highly trained athletes (ATHL) with sedentary normal weight (LEAN) and overweight-to-obese (OVWE) male and female individuals. This observational study found that ATHL show higher insulin sensitivity, muscle mitochondrial content, and capacity, but lower activation of novel protein kinase C (nPKC) isoforms, despite higher diacylglycerol concentrations. Notably, sedentary but insulin sensitive OVWE feature lower plasma membrane-to-mitochondria sn-1,2-diacylglycerol ratios. In ATHL, calpain-2, which cleaves nPKC, negatively associates with PKCε activation and positively with insulin sensitivity along with higher GLUT4 and hexokinase II content. These findings contribute to explaining the athletes' paradox by demonstrating lower nPKC activation, increased calpain, and mitochondrial partitioning of bioactive diacylglycerols, the latter further identifying an obesity subtype with increased insulin sensitivity (NCT03314714).
Collapse
Affiliation(s)
- Dominik Pesta
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Düsseldorf, Düsseldorf, Germany
- Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
- Centre for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| | - Evrim Anadol-Schmitz
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Düsseldorf, Düsseldorf, Germany
| | - Theresia Sarabhai
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Düsseldorf, Düsseldorf, Germany
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital, Heinrich-Heine University, Düsseldorf, Germany
| | - Yvo Op den Kamp
- Department of Nutrition and Movement Sciences, School for Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands
| | - Sofiya Gancheva
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Düsseldorf, Düsseldorf, Germany
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital, Heinrich-Heine University, Düsseldorf, Germany
| | - Nina Trinks
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Düsseldorf, Düsseldorf, Germany
| | - Oana-Patricia Zaharia
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Düsseldorf, Düsseldorf, Germany
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital, Heinrich-Heine University, Düsseldorf, Germany
| | - Lucia Mastrototaro
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Düsseldorf, Düsseldorf, Germany
| | - Kun Lyu
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Ivo Habets
- Department of Nutrition and Movement Sciences, School for Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands
| | - Yvonne M. H. Op den Kamp-Bruls
- Department of Nutrition and Movement Sciences, School for Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands
| | - Bedair Dewidar
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Düsseldorf, Düsseldorf, Germany
| | - Jürgen Weiss
- German Center for Diabetes Research (DZD), Partner Düsseldorf, Düsseldorf, Germany
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University Düsseldorf, Medical Faculty, Düsseldorf, Germany
| | - Vera Schrauwen-Hinderling
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Düsseldorf, Düsseldorf, Germany
- Department of Nutrition and Movement Sciences, School for Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands
| | - Dongyan Zhang
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | | | - Klaus Strassburger
- German Center for Diabetes Research (DZD), Partner Düsseldorf, Düsseldorf, Germany
- Institute for Biometrics and Epidemiology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
| | - Yuliya Kupriyanova
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Düsseldorf, Düsseldorf, Germany
| | - Hadi Al-Hasani
- German Center for Diabetes Research (DZD), Partner Düsseldorf, Düsseldorf, Germany
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University Düsseldorf, Medical Faculty, Düsseldorf, Germany
| | - Julia Szendroedi
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Düsseldorf, Düsseldorf, Germany
- Department of Endocrinology, Diabetology and Clinical Chemistry (Internal Medicine 1), Heidelberg University Hospital, Heidelberg, Germany
| | - Patrick Schrauwen
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University, Düsseldorf, Germany
- Leiden University Medical Center, Clinical Epidemiology, Leiden, Netherlands
| | - Esther Phielix
- Department of Nutrition and Movement Sciences, School for Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands
| | - Gerald I. Shulman
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
- Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT, USA
| | - Michael Roden
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Düsseldorf, Düsseldorf, Germany
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital, Heinrich-Heine University, Düsseldorf, Germany
| |
Collapse
|
10
|
Mastrototaro L, Apostolopoulou M, Hartwig S, Strassburger K, Lipaeva P, Trinks N, Karusheva Y, Gancheva S, Trenkamp S, Lehr S, Al-Hasani H, Szendroedi J, Roden M. The role of exosomes for sustained specific cardiorespiratory and metabolic improvements in males with type 2 diabetes after detraining. EBioMedicine 2024; 110:105471. [PMID: 39626509 DOI: 10.1016/j.ebiom.2024.105471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 10/28/2024] [Accepted: 11/08/2024] [Indexed: 12/15/2024] Open
Abstract
BACKGROUND High-intensity interval training (HIIT) has been shown to improve cardiorespiratory fitness (V˙O2 max) but may ameliorate insulin sensitivity only in insulin-resistant humans. It is yet unclear whether these benefits persist after detraining and to which extent duration and effectiveness of metabolic improvements differ between individuals without and with prediabetes or type 2 diabetes (T2D). Understanding these differences is relevant for developing targeted exercise training modes for individuals with different stages of dysglycemia. METHODS Men with (20 T2D) and without T2D (12 insulin-sensitive, IS-NDM; 10 insulin-resistant, IR-NDM) underwent hyperinsulinemic-euglycemic clamps, spiroergometry, ectopic lipid quantification and muscle biopsies at baseline, after 12-week HIIT and after 4-week detraining. FINDINGS After detraining, the HIIT-stimulated V˙O2 max declined in T2D and IR-NDM, but remained higher compared to baseline in all groups. The HIIT-induced changes in hepatic insulin sensitivity and ectopic lipid content were sustained after detraining in T2D and IR-NDM, whereas improvements of whole-body insulin sensitivity were abolished in T2D. T2D and IR-NDM showed persistent increases in the number of small extracellular vesicles, which carry among others antioxidant proteins. The ratio of reduced-to-oxidized glutathione further decreased after detraining in all groups, whereas changes in proteins involved in mitochondrial turnover were dependent on insulin sensitivity, with some evidence for upregulation of fusion and mitophagy in T2D and IR-NDM and upregulation of fission in IS-NDM. Levels of different lipolytic proteins were reduced in all participants after detraining. INTERPRETATION HIIT offers sustained improvement of energy metabolism and hepatic insulin sensitivity in insulin-resistant humans, but long-term adherence is required to maintain these benefits. FUNDING Funding bodies that contributed to this study are listed in the Acknowledgements section.
Collapse
Affiliation(s)
- Lucia Mastrototaro
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University Düsseldorf, Düsseldorf, Germany; German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany
| | - Maria Apostolopoulou
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University Düsseldorf, Düsseldorf, Germany; German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany; Department of Endocrinology and Diabetology, Medical Faculty and University Hospital, Heinrich-Heine-University, Düsseldorf, Germany
| | - Sonja Hartwig
- German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany; Institute for Clinical Biochemistry and Pathobiochemistry German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Klaus Strassburger
- German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany; Institute for Biometrics and Epidemiology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Polina Lipaeva
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University Düsseldorf, Düsseldorf, Germany; German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany; Department of Endocrinology and Diabetology, Medical Faculty and University Hospital, Heinrich-Heine-University, Düsseldorf, Germany; Institute for Medical Biometry and Bioinformatics, Medical Faculty and University Hospital, Heinrich Heine University, Düsseldorf, Germany
| | - Nina Trinks
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University Düsseldorf, Düsseldorf, Germany; German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany
| | - Yanislava Karusheva
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University Düsseldorf, Düsseldorf, Germany; German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany
| | - Sofiya Gancheva
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University Düsseldorf, Düsseldorf, Germany; German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany; Department of Endocrinology and Diabetology, Medical Faculty and University Hospital, Heinrich-Heine-University, Düsseldorf, Germany
| | - Sandra Trenkamp
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University Düsseldorf, Düsseldorf, Germany; German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany
| | - Stefan Lehr
- German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany; Institute for Clinical Biochemistry and Pathobiochemistry German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Hadi Al-Hasani
- German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany; Institute for Clinical Biochemistry and Pathobiochemistry German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Julia Szendroedi
- Department of Medicine I and Clinical Chemistry, University Hospital of Heidelberg, Heidelberg, Germany
| | - Michael Roden
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University Düsseldorf, Düsseldorf, Germany; German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany; Department of Endocrinology and Diabetology, Medical Faculty and University Hospital, Heinrich-Heine-University, Düsseldorf, Germany.
| |
Collapse
|
11
|
Wang Q, Chen L, Zhang J, Liu Y, Jin Y, Wu J, Ren Z. High temperature ameliorates high-fat diet-induced obesity by promoting ceramide breakdown in skeletal muscle tissue. LIFE METABOLISM 2024; 3:loae012. [PMID: 39872144 PMCID: PMC11749596 DOI: 10.1093/lifemeta/loae012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 03/03/2024] [Accepted: 04/02/2024] [Indexed: 01/29/2025]
Abstract
Obesity is considered an epidemic often accompanied by insulin resistance (IR). Heat treatment (HT) has been shown to prevent high-fat diet-induced IR in skeletal muscle, but the underlying mechanisms are poorly understood. In this study, we discovered that high temperature alleviated the hallmarks of obesity by promoting glycogen synthesis and lowering blood glucose levels in skeletal muscle tissue (SMT). Additionally, HT maintained the decay phase of heat shock factor 1 (HSF1), leading to the activation of gene expression of heat shock proteins (HSPs), which contributed to the alleviation of IR in SMT of diet-induced obese (DIO) mice. Metabolomics and lipidomics analyses showed that HT promoted ceramide (Cer) breakdown, resulting in an elevation of both sphingomyelin (SM) and sphingosine, which further contributed to the amelioration of IR in SMT of DIO mice. Importantly, the increase in sphingosine was attributed to the heightened expression of the acid ceramidase N-acylsphingosine amidohydrolase 1 (ASAH1), and the inhibition of ASAH1 attenuated HT-relieved IR in SMT of DIO mice. Surprisingly, high temperature increased the composition of Cer and cholesteryl ester in lipid droplets of skeletal muscle cells. This not only helped alleviate IR but also prevented lipotoxicity in SMT of DIO mice. These findings revealed a previously unknown connection between a high-temperature environment and sphingolipid metabolism in obesity, suggesting that high temperature can improve IR by promoting Cer catabolism in SMT of obese mice.
Collapse
Affiliation(s)
- Qiankun Wang
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan 471000, China
| | - Lupeng Chen
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Junzhi Zhang
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yue Liu
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yi Jin
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Jian Wu
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Zhuqing Ren
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, Hubei 430070, China
- Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China
| |
Collapse
|
12
|
Januszewski AS, Grzelka-Wozniak A, Flotynska J, Jenkins AJ, Zozulinska-Ziolkiewicz DA, Uruska AA. An online tool using clinical factors to estimate the probability of partial clinical remission of adult-onset Type 1 diabetes. J Diabetes Complications 2024; 38:108828. [PMID: 39084177 DOI: 10.1016/j.jdiacomp.2024.108828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/20/2024] [Accepted: 07/23/2024] [Indexed: 08/02/2024]
Abstract
A type 1 diabetes (T1D) diagnosis is often followed by a period of reduced exogenous insulin requirement, with acceptable glucose control, called partial clinical remission (pCR). Various criteria exist to define pCR, which is associated with better clinical outcomes. We aimed to develop formulae and a related online calculator to predict the probability of pCR at 3- and 12-months post-T1D diagnosis. We analysed data from 133 adults at their T1D diagnosis (mean ± SD age: 27 ± 6 yrs., HbA1c 11.1 ± 2.0 %, 98 ± 22 mmol/mol), 3- and 12-months later. All patients were enrolled in the prospective observational InLipoDiab1 study (NCT02306005). We compared four definitions of pCR: 1) stimulated C-peptide >300 pmol/l; 2) insulin dose-adjusted HbA1c ≤9 %; 3) insulin dose <0.3 IU/kg/24 h; and HbA1c ≤6.4 % (46 mmol/mol); and 4) insulin dose <0.5 IU/kg/24 h and HbA1c <7 % (53 mmol/mol). Using readily available demographics and clinical chemistry data exhaustive search methodology was used to model pCR probability. There was low concordance between pCR definitions (kappa 0.10). The combination of age, HbA1c, diastolic blood pressure, triglycerides and smoking at T1D onset predicted pCR at 12-months with an area under the curve (AUC) = 0.87. HbA1c, triglycerides and insulin dose 3-mths post-diagnosis had an AUC = 0.89. A related calculator for pCR in adult-onset T1D is available at http://www.bit.ly/T1D-partial-remission.
Collapse
Affiliation(s)
- Andrzej S Januszewski
- NHMRC Clinical Trials Centre, University of Sydney, Sydney, NSW, Australia; Sydney Pharmacy School, University of Sydney, Sydney, NSW, Australia.
| | - Agata Grzelka-Wozniak
- Department of Internal Medicine and Diabetology, Poznan University of Medical Sciences, Poland
| | - Justyna Flotynska
- Department of Internal Medicine and Diabetology, Poznan University of Medical Sciences, Poland
| | - Alicia J Jenkins
- NHMRC Clinical Trials Centre, University of Sydney, Sydney, NSW, Australia; Department of Medicine, University of Melbourne, Fitzroy, VIC, Australia; Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | | | - Aleksandra A Uruska
- Department of Internal Medicine and Diabetology, Poznan University of Medical Sciences, Poland
| |
Collapse
|
13
|
Jollet M, Tramontana F, Jiang LQ, Borg ML, Savikj M, Kuefner MS, Massart J, de Castro Barbosa T, Mannerås-Holm L, Checa A, Pillon NJ, Chibalin AV, Björnholm M, Zierath JR. Diacylglycerol kinase delta overexpression improves glucose clearance and protects against the development of obesity. Metabolism 2024; 158:155939. [PMID: 38843995 DOI: 10.1016/j.metabol.2024.155939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/22/2024] [Accepted: 05/28/2024] [Indexed: 07/06/2024]
Abstract
BACKGROUND AND AIM Diacylglycerol kinase (DGK) isoforms catalyze an enzymatic reaction that removes diacylglycerol (DAG) and thereby terminates protein kinase C signaling by converting DAG to phosphatidic acid. DGKδ (type II isozyme) downregulation causes insulin resistance, metabolic inflexibility, and obesity. Here we determined whether DGKδ overexpression prevents these metabolic impairments. METHODS We generated a transgenic mouse model overexpressing human DGKδ2 under the myosin light chain promoter (DGKδ TG). We performed deep metabolic phenotyping of DGKδ TG mice and wild-type littermates fed chow or high-fat diet (HFD). Mice were also provided free access to running wheels to examine the effects of DGKδ overexpression on exercise-induced metabolic outcomes. RESULTS DGKδ TG mice were leaner than wild-type littermates, with improved glucose tolerance and increased skeletal muscle glycogen content. DGKδ TG mice were protected against HFD-induced glucose intolerance and obesity. DGKδ TG mice had reduced epididymal fat and enhanced lipolysis. Strikingly, DGKδ overexpression recapitulated the beneficial effects of exercise on metabolic outcomes. DGKδ overexpression and exercise had a synergistic effect on body weight reduction. Microarray analysis of skeletal muscle revealed common gene ontology signatures of exercise and DGKδ overexpression that were related to lipid storage, extracellular matrix, and glycerophospholipids biosynthesis pathways. CONCLUSION Overexpression of DGKδ induces adaptive changes in both skeletal muscle and adipose tissue, resulting in protection against HFD-induced obesity. DGKδ overexpression recapitulates exercise-induced adaptations on energy homeostasis and skeletal muscle gene expression profiles.
Collapse
Affiliation(s)
- Maxence Jollet
- Department of Molecular Medicine and Surgery, Section for Integrative Physiology, Karolinska Institutet, Stockholm, Sweden
| | - Flavia Tramontana
- Department of Physiology and Pharmacology, Section for Integrative Physiology, Karolinska Institutet, Stockholm, Sweden
| | - Lake Q Jiang
- Department of Physiology and Pharmacology, Section for Integrative Physiology, Karolinska Institutet, Stockholm, Sweden
| | - Melissa L Borg
- Department of Physiology and Pharmacology, Section for Integrative Physiology, Karolinska Institutet, Stockholm, Sweden
| | - Mladen Savikj
- Department of Molecular Medicine and Surgery, Section for Integrative Physiology, Karolinska Institutet, Stockholm, Sweden
| | - Michael S Kuefner
- Department of Molecular Medicine and Surgery, Section for Integrative Physiology, Karolinska Institutet, Stockholm, Sweden
| | - Julie Massart
- Department of Molecular Medicine and Surgery, Section for Integrative Physiology, Karolinska Institutet, Stockholm, Sweden
| | - Thais de Castro Barbosa
- Department of Physiology and Pharmacology, Section for Integrative Physiology, Karolinska Institutet, Stockholm, Sweden
| | - Louise Mannerås-Holm
- Department of Physiology and Pharmacology, Section for Integrative Physiology, Karolinska Institutet, Stockholm, Sweden
| | - Antonio Checa
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Nicolas J Pillon
- Department of Physiology and Pharmacology, Section for Integrative Physiology, Karolinska Institutet, Stockholm, Sweden
| | - Alexander V Chibalin
- Department of Molecular Medicine and Surgery, Section for Integrative Physiology, Karolinska Institutet, Stockholm, Sweden
| | - Marie Björnholm
- Department of Molecular Medicine and Surgery, Section for Integrative Physiology, Karolinska Institutet, Stockholm, Sweden
| | - Juleen R Zierath
- Department of Molecular Medicine and Surgery, Section for Integrative Physiology, Karolinska Institutet, Stockholm, Sweden; Department of Physiology and Pharmacology, Section for Integrative Physiology, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
14
|
McKenna CF, Stierwalt HD, Zemski Berry KA, Ehrlicher SE, Robinson MM, Zarini S, Kahn DE, Snell-Bergeon JK, Perreault L, Bergman BC, Newsom SA. Intramuscular diacylglycerol accumulates with acute hyperinsulinemia in insulin-resistant phenotypes. Am J Physiol Endocrinol Metab 2024; 327:E183-E193. [PMID: 38895980 PMCID: PMC11427097 DOI: 10.1152/ajpendo.00368.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 05/30/2024] [Accepted: 06/02/2024] [Indexed: 06/21/2024]
Abstract
Elevated skeletal muscle diacylglycerols (DAGs) and ceramides can impair insulin signaling, and acylcarnitines (acylCNs) reflect impaired mitochondrial fatty acid oxidation, thus, the intramuscular lipid profile is indicative of insulin resistance. Acute (i.e., postprandial) hyperinsulinemia has been shown to elevate lipid concentrations in healthy muscle and is an independent risk factor for type 2 diabetes (T2D). However, it is unclear how the relationship between acute hyperinsulinemia and the muscle lipidome interacts across metabolic phenotypes, thus contributing to or exacerbating insulin resistance. We therefore investigated the impact of acute hyperinsulinemia on the skeletal muscle lipid profile to help characterize the physiological basis in which hyperinsulinemia elevates T2D risk. In a cross-sectional comparison, endurance athletes (n = 12), sedentary lean adults (n = 12), and individuals with obesity (n = 13) and T2D (n = 7) underwent a hyperinsulinemic-euglycemic clamp with muscle biopsies. Although there were no significant differences in total 1,2-DAG fluctuations, there was a 2% decrease in athletes versus a 53% increase in T2D during acute hyperinsulinemia (P = 0.087). Moreover, C18 1,2-DAG species increased during the clamp with T2D only, which negatively correlated with insulin sensitivity (P < 0.050). Basal muscle C18:0 total ceramides were elevated with T2D (P = 0.029), but not altered by clamp. Acylcarnitines were universally lowered during hyperinsulinemia, with more robust reductions of 80% in athletes compared with only 46% with T2D (albeit not statistically significant, main effect of group, P = 0.624). Similar fluctuations with acute hyperinsulinemia increasing 1,2 DAGs in insulin-resistant phenotypes and universally lowering acylcarnitines were observed in male mice. In conclusion, acute hyperinsulinemia elevates muscle 1,2-DAG levels with insulin-resistant phenotypes. This suggests a possible dysregulation of intramuscular lipid metabolism in the fed state in individuals with low insulin sensitivity, which may exacerbate insulin resistance.NEW & NOTEWORTHY Postprandial hyperinsulinemia is a risk factor for type 2 diabetes and may increase muscle lipids. However, it is unclear how the relationship between acute hyperinsulinemia and the muscle lipidome interacts across metabolic phenotypes, thus contributing to insulin resistance. We observed that acute hyperinsulinemia elevates muscle 1,2-DAGs in insulin-resistant phenotypes, whereas ceramides were unaltered. Insulin-mediated acylcarnitine reductions are also hindered with high-fat feeding. The postprandial period may exacerbate insulin resistance in metabolically unhealthy phenotypes.
Collapse
Affiliation(s)
- Colleen F McKenna
- Division of Endocrinology, Metabolism and Diabetes, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Harrison D Stierwalt
- School of Exercise, Sport, and Health Sciences, College of Health, Oregon State University, Corvallis, Oregon, United States
| | - Karin A Zemski Berry
- Division of Endocrinology, Metabolism and Diabetes, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Sarah E Ehrlicher
- School of Exercise, Sport, and Health Sciences, College of Health, Oregon State University, Corvallis, Oregon, United States
| | - Matthew M Robinson
- School of Exercise, Sport, and Health Sciences, College of Health, Oregon State University, Corvallis, Oregon, United States
| | - Simona Zarini
- Division of Endocrinology, Metabolism and Diabetes, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Darcy E Kahn
- Division of Endocrinology, Metabolism and Diabetes, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Janet K Snell-Bergeon
- Division of Endocrinology, Metabolism and Diabetes, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Leigh Perreault
- Division of Endocrinology, Metabolism and Diabetes, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Bryan C Bergman
- Division of Endocrinology, Metabolism and Diabetes, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Sean A Newsom
- School of Exercise, Sport, and Health Sciences, College of Health, Oregon State University, Corvallis, Oregon, United States
| |
Collapse
|
15
|
Brandao CFC, Krempf M, Giolo de Carvalho F, Aguesse A, Junqueira-Franco MVM, Batitucci G, de Freitas EC, Noronha NY, Rodrigues GDS, Junqueira GP, Borba DA, Billon-Crossouard S, Croyal M, Marchini JS. Sphingolipid and Trimethylamine-N-Oxide (TMAO) Levels in Women with Obesity after Combined Physical Training. Metabolites 2024; 14:398. [PMID: 39195494 DOI: 10.3390/metabo14080398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/03/2024] [Accepted: 07/07/2024] [Indexed: 08/29/2024] Open
Abstract
Obesity causes metabolic changes, such as the development of cardiovascular diseases. Moreover, physical exercise promotes protection against these diseases. Thus, the objective of the present study was to evaluate whether combined physical training can improve the metabolic system of women with obesity, reducing plasma concentrations of trimethylamine N-oxide (TMAO) and sphingolipids, regardless of weight loss. Fourteen obese women (BMI 30-40 kg/m2), aged 20-40 years, sedentary, were submitted to 8 weeks of combined physical training (strength and aerobic exercises). The training was performed three times/week, 55 min/session, at 75-90% maximum heart rate. All participants were evaluated pre- and post-exercise intervention, and their body composition, plasma TMAO, creatinine, lipid profile, and sphingolipid concentrations were recorded. Maximum oxygen consumption (VO2max), Speed lactate threshold 1 (SpeedLT1), and Speed lactate threshold 2 (SpeedLT2) evaluated physical performance. Results: After combined exercise, it did not change body composition, but TMAO, total cholesterol, and sphingolipid concentrations significantly decreased (p < 0.05). There was an increase in physical performance by improving VO2max, SpeedLT1, and SpeedLT2 (p < 0.05). The combined physical exercise could induce cardiovascular risk protection by decreasing TMAO in obese women, parallel to physical performance improvement, independent of weight loss.
Collapse
Affiliation(s)
- Camila Fernanda Cunha Brandao
- Ribeirão Preto Medical School, University of São Paulo, Av. Bandeirantes 3900, Ribeirão Preto 14000-000, São Paulo, Brazil
- Department of Physical Education, State University of Minas Gerais, Divinópolis 35500-000, Minas Gerais, Brazil
| | - Michel Krempf
- NUN, INRA, The Research Unit of the Thorax Institute, CHU Nantes, UMR 1280, PhAN, IMAD, CRNH-O, F-44000 Nantes, France
| | - Flávia Giolo de Carvalho
- School of Physical Education and Sport of Ribeirão Preto, University of São Paulo, Av. Bandeirantes 3900, Ribeirão Preto 14000-000, São Paulo, Brazil
| | - Audrey Aguesse
- NUN, INRA, The Research Unit of the Thorax Institute, CHU Nantes, UMR 1280, PhAN, IMAD, CRNH-O, F-44000 Nantes, France
| | | | - Gabriela Batitucci
- Department of Food and Nutrition, School of Pharmaceutical Sciences of Araraquara, State University of São Paulo, Rod. Araraquara-Jau Km 1, Araraquara 14800-000, São Paulo, Brazil
| | - Ellen Cristini de Freitas
- School of Physical Education and Sport of Ribeirão Preto, University of São Paulo, Av. Bandeirantes 3900, Ribeirão Preto 14000-000, São Paulo, Brazil
- Department of Food and Nutrition, School of Pharmaceutical Sciences of Araraquara, State University of São Paulo, Rod. Araraquara-Jau Km 1, Araraquara 14800-000, São Paulo, Brazil
| | - Natalia Yumi Noronha
- Ribeirão Preto Medical School, University of São Paulo, Av. Bandeirantes 3900, Ribeirão Preto 14000-000, São Paulo, Brazil
| | - Guilherme da Silva Rodrigues
- Ribeirão Preto Medical School, University of São Paulo, Av. Bandeirantes 3900, Ribeirão Preto 14000-000, São Paulo, Brazil
| | - Gizela Pedroso Junqueira
- Ribeirão Preto Medical School, University of São Paulo, Av. Bandeirantes 3900, Ribeirão Preto 14000-000, São Paulo, Brazil
| | - Diego Alcantara Borba
- Department of Physical Education, State University of Minas Gerais, Divinópolis 35500-000, Minas Gerais, Brazil
| | - Stéphanie Billon-Crossouard
- NUN, INRA, The Research Unit of the Thorax Institute, CHU Nantes, UMR 1280, PhAN, IMAD, CRNH-O, F-44000 Nantes, France
| | - Mikael Croyal
- NUN, INRA, The Research Unit of the Thorax Institute, CHU Nantes, UMR 1280, PhAN, IMAD, CRNH-O, F-44000 Nantes, France
| | - Julio Sergio Marchini
- Ribeirão Preto Medical School, University of São Paulo, Av. Bandeirantes 3900, Ribeirão Preto 14000-000, São Paulo, Brazil
| |
Collapse
|
16
|
Dimet-Wiley AL, Latham CM, Brightwell CR, Neelakantan H, Keeble AR, Thomas NT, Noehren H, Fry CS, Watowich SJ. Nicotinamide N-methyltransferase inhibition mimics and boosts exercise-mediated improvements in muscle function in aged mice. Sci Rep 2024; 14:15554. [PMID: 38969654 PMCID: PMC11226645 DOI: 10.1038/s41598-024-66034-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 06/26/2024] [Indexed: 07/07/2024] Open
Abstract
Human hallmarks of sarcopenia include muscle weakness and a blunted response to exercise. Nicotinamide N-methyltransferase inhibitors (NNMTis) increase strength and promote the regenerative capacity of aged muscle, thus offering a promising treatment for sarcopenia. Since human hallmarks of sarcopenia are recapitulated in aged (24-month-old) mice, we treated mice from 22 to 24 months of age with NNMTi, intensive exercise, or a combination of both, and compared skeletal muscle adaptations, including grip strength, longitudinal running capacity, plantarflexor peak torque, fatigue, and muscle mass, fiber type, cross-sectional area, and intramyocellular lipid (IMCL) content. Exhaustive proteome and metabolome analyses were completed to identify the molecular mechanisms underlying the measured changes in skeletal muscle pathophysiology. Remarkably, NNMTi-treated aged sedentary mice showed ~ 40% greater grip strength than sedentary controls, while aged exercised mice only showed a 20% increase relative to controls. Importantly, the grip strength improvements resulting from NNMTi treatment and exercise were additive, with NNMTi-treated exercised mice developing a 60% increase in grip strength relative to sedentary controls. NNMTi treatment also promoted quantifiable improvements in IMCL content and, in combination with exercise, significantly increased gastrocnemius fiber CSA. Detailed skeletal muscle proteome and metabolome analyses revealed unique molecular mechanisms associated with NNMTi treatment and distinct molecular mechanisms and cellular processes arising from a combination of NNMTi and exercise relative to those given a single intervention. These studies suggest that NNMTi-based drugs, either alone or combined with exercise, will be beneficial in treating sarcopenia and a wide range of age-related myopathies.
Collapse
Affiliation(s)
| | - Christine M Latham
- Center for Muscle Biology, College of Health Sciences, University of Kentucky, Lexington, KY, USA
| | - Camille R Brightwell
- Center for Muscle Biology, College of Health Sciences, University of Kentucky, Lexington, KY, USA
| | | | - Alexander R Keeble
- Center for Muscle Biology, College of Health Sciences, University of Kentucky, Lexington, KY, USA
| | - Nicholas T Thomas
- Center for Muscle Biology, College of Health Sciences, University of Kentucky, Lexington, KY, USA
| | - Haley Noehren
- Center for Muscle Biology, College of Health Sciences, University of Kentucky, Lexington, KY, USA
| | - Christopher S Fry
- Center for Muscle Biology, College of Health Sciences, University of Kentucky, Lexington, KY, USA
| | - Stanley J Watowich
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA.
| |
Collapse
|
17
|
Spaggiari R, Angelini S, Di Vincenzo A, Scaglione G, Morrone S, Finello V, Fagioli S, Castaldo F, Sanz JM, Sergi D, Passaro A. Ceramides as Emerging Players in Cardiovascular Disease: Focus on Their Pathogenetic Effects and Regulation by Diet. Adv Nutr 2024; 15:100252. [PMID: 38876397 PMCID: PMC11263787 DOI: 10.1016/j.advnut.2024.100252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/16/2024] [Accepted: 06/10/2024] [Indexed: 06/16/2024] Open
Abstract
Impaired lipid metabolism is a pivotal driver of cardiovascular disease (CVD). In this regard, the accumulation of ceramides within the circulation as well as in metabolically active tissues and atherosclerotic plaques is a direct consequence of derailed lipid metabolism. Ceramides may be at the nexus between impaired lipid metabolism and CVD. Indeed, although on one hand ceramides have been implicated in the pathogenesis of CVD, on the other specific ceramide subspecies have also been proposed as predictors of major adverse cardiovascular events. This review will provide an updated overview of the role of ceramides in the pathogenesis of CVD, as well as their pathogenetic mechanisms of action. Furthermore, the manuscript will cover the importance of ceramides as biomarkers to predict cardiovascular events and the role of diet, both in terms of nutrients and dietary patterns, in modulating ceramide metabolism and homeostasis.
Collapse
Affiliation(s)
- Riccardo Spaggiari
- Department of Translational Medicine, University of Ferrara, Via Luigi Borsari, Ferrara, Italy
| | - Sharon Angelini
- Department of Translational Medicine, University of Ferrara, Via Luigi Borsari, Ferrara, Italy
| | - Alessandra Di Vincenzo
- Department of Translational Medicine, University of Ferrara, Via Luigi Borsari, Ferrara, Italy
| | - Gerarda Scaglione
- Department of Translational Medicine, University of Ferrara, Via Luigi Borsari, Ferrara, Italy
| | - Sara Morrone
- Department of Translational Medicine, University of Ferrara, Via Luigi Borsari, Ferrara, Italy
| | - Veronica Finello
- Department of Translational Medicine, University of Ferrara, Via Luigi Borsari, Ferrara, Italy
| | - Sofia Fagioli
- Department of Translational Medicine, University of Ferrara, Via Luigi Borsari, Ferrara, Italy
| | - Fabiola Castaldo
- Department of Translational Medicine, University of Ferrara, Via Luigi Borsari, Ferrara, Italy
| | - Juana M Sanz
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via Luigi Borsari, Ferrara, Italy
| | - Domenico Sergi
- Department of Translational Medicine, University of Ferrara, Via Luigi Borsari, Ferrara, Italy.
| | - Angelina Passaro
- Department of Translational Medicine, University of Ferrara, Via Luigi Borsari, Ferrara, Italy
| |
Collapse
|
18
|
Wilkerson JL, Tatum SM, Holland WL, Summers SA. Ceramides are fuel gauges on the drive to cardiometabolic disease. Physiol Rev 2024; 104:1061-1119. [PMID: 38300524 PMCID: PMC11381030 DOI: 10.1152/physrev.00008.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 01/23/2024] [Accepted: 01/25/2024] [Indexed: 02/02/2024] Open
Abstract
Ceramides are signals of fatty acid excess that accumulate when a cell's energetic needs have been met and its nutrient storage has reached capacity. As these sphingolipids accrue, they alter the metabolism and survival of cells throughout the body including in the heart, liver, blood vessels, skeletal muscle, brain, and kidney. These ceramide actions elicit the tissue dysfunction that underlies cardiometabolic diseases such as diabetes, coronary artery disease, metabolic-associated steatohepatitis, and heart failure. Here, we review the biosynthesis and degradation pathways that maintain ceramide levels in normal physiology and discuss how the loss of ceramide homeostasis drives cardiometabolic pathologies. We highlight signaling nodes that sense small changes in ceramides and in turn reprogram cellular metabolism and stimulate apoptosis. Finally, we evaluate the emerging therapeutic utility of these unique lipids as biomarkers that forecast disease risk and as targets of ceramide-lowering interventions that ameliorate disease.
Collapse
Affiliation(s)
- Joseph L Wilkerson
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah, United States
| | - Sean M Tatum
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah, United States
| | - William L Holland
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah, United States
| | - Scott A Summers
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah, United States
| |
Collapse
|
19
|
Mezincescu AM, Rudd A, Cheyne L, Horgan G, Philip S, Cameron D, van Loon L, Whitfield P, Gribbin R, Hu MK, Delibegovic M, Fielding B, Lobley G, Thies F, Newby DE, Gray S, Henning A, Dawson D. Comparison of intramyocellular lipid metabolism in patients with diabetes and male athletes. Nat Commun 2024; 15:3690. [PMID: 38750012 PMCID: PMC11096352 DOI: 10.1038/s41467-024-47843-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 04/05/2024] [Indexed: 05/18/2024] Open
Abstract
Despite opposing insulin sensitivity and cardiometabolic risk, both athletes and patients with type 2 diabetes have increased skeletal myocyte fat storage: the so-called "athlete's paradox". In a parallel non-randomised, non-blinded trial (NCT03065140), we characterised and compared the skeletal myocyte lipid signature of 29 male endurance athletes and 30 patients with diabetes after undergoing deconditioning or endurance training respectively. The primary outcomes were to assess intramyocellular lipid storage of the vastus lateralis in both cohorts and the secondary outcomes were to examine saturated and unsaturated intramyocellular lipid pool turnover. We show that athletes have higher intramyocellular fat saturation with very high palmitate kinetics, which is attenuated by deconditioning. In contrast, type 2 diabetes patients have higher unsaturated intramyocellular fat and blunted palmitate and linoleate kinetics but after endurance training, all were realigned with those of deconditioned athletes. Improved basal insulin sensitivity was further associated with better serum cholesterol/triglycerides, glycaemic control, physical performance, enhanced post insulin receptor pathway signalling and metabolic sensing. We conclude that insulin-resistant, maladapted intramyocellular lipid storage and turnover in patients with type 2 diabetes show reversibility after endurance training through increased contributions of the saturated intramyocellular fatty acid pools. Clinical Trial Registration: NCT03065140: Muscle Fat Compartments and Turnover as Determinant of Insulin Sensitivity (MISTY).
Collapse
Affiliation(s)
- Alice M Mezincescu
- Aberdeen Cardiovascular and Diabetes Centre, University of Aberdeen, Aberdeen, UK
| | - Amelia Rudd
- Aberdeen Cardiovascular and Diabetes Centre, University of Aberdeen, Aberdeen, UK
| | - Lesley Cheyne
- Aberdeen Cardiovascular and Diabetes Centre, University of Aberdeen, Aberdeen, UK
| | | | - Sam Philip
- Aberdeen Cardiovascular and Diabetes Centre, University of Aberdeen, Aberdeen, UK
| | - Donnie Cameron
- C.J. Gorter MRI Center, Leiden University Medical Center, Leiden, The Netherlands
| | - Luc van Loon
- University of Maastricht, Maastricht, The Netherlands
| | | | | | - May Khei Hu
- Aberdeen Cardiovascular and Diabetes Centre, University of Aberdeen, Aberdeen, UK
| | - Mirela Delibegovic
- Aberdeen Cardiovascular and Diabetes Centre, University of Aberdeen, Aberdeen, UK
| | | | - Gerald Lobley
- Aberdeen Cardiovascular and Diabetes Centre, University of Aberdeen, Aberdeen, UK
| | - Frank Thies
- Aberdeen Cardiovascular and Diabetes Centre, University of Aberdeen, Aberdeen, UK
| | - David E Newby
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | | | | | - Dana Dawson
- Aberdeen Cardiovascular and Diabetes Centre, University of Aberdeen, Aberdeen, UK.
| |
Collapse
|
20
|
Myćka G, Ropka-Molik K, Cywińska A, Szmatoła T, Stefaniuk-Szmukier M. Molecular insights into the lipid-carbohydrates metabolism switch under the endurance effort in Arabian horses. Equine Vet J 2024; 56:586-597. [PMID: 37565649 DOI: 10.1111/evj.13984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 07/20/2023] [Indexed: 08/12/2023]
Abstract
BACKGROUND Recent studies have shown that in Arabian horse muscle, long-term exercise-induced expression of genes related to fatty acid degradation and the downregulation of genes belonging to the glycolysis/gluconeogenesis and insulin signalling pathways. Long-lasting physical exertion may trigger the metabolism to switch the main energy source from carbohydrates to lipids due to higher caloric content. OBJECTIVES To describe the metabolism adaptation at the whole transcriptome of blood to endurance effort in Arabian horses. STUDY DESIGN In vivo experiment. METHODS Venous blood samples from 10 Arabian horses were taken before and after a 120 km long endurance ride to isolate the RNA and perform the high-throughput NGS transcriptome sequencing. RESULTS The results, including KEGG (Kyoto Encyclopaedia of Genes and Genomes) and GO (Gene Ontology) analyses, allowed us to describe the most significantly upregulated-ARV1, DGAT2, LIPE, APOA2, MOGAT1, MOGAT2, GYS1, GYS2 and downregulated-ACACA, ACACB, FADS1, FADS2 genes involved in carbohydrate and lipid metabolism. Also, the increased expression of RAF1, KRAS and NRAS genes involved in the Insulin pathway and PI3K-Akt was shown. MAIN LIMITATIONS Limited sample size, Arabians used for endurance racing were not compared to Arabians from other equestrian disciplines. CONCLUSIONS This general insight into the processes described supports the thesis of the lipid-carbohydrates metabolism switch in endurance Arabian horses and provides the basis for further research.
Collapse
Affiliation(s)
- Grzegorz Myćka
- Department of Animal Molecular Biology, National Research Institute of Animal Production, Balice, Poland
| | - Katarzyna Ropka-Molik
- Department of Animal Molecular Biology, National Research Institute of Animal Production, Balice, Poland
| | - Anna Cywińska
- Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Torun, Torun, Poland
| | - Tomasz Szmatoła
- Department of Animal Molecular Biology, National Research Institute of Animal Production, Balice, Poland
- Center for Experimental and Innovative Medicine, University of Agriculture in Krakow, Krakow, Poland
| | - Monika Stefaniuk-Szmukier
- Department of Animal Molecular Biology, National Research Institute of Animal Production, Balice, Poland
| |
Collapse
|
21
|
Noone J, Mucinski JM, DeLany JP, Sparks LM, Goodpaster BH. Understanding the variation in exercise responses to guide personalized physical activity prescriptions. Cell Metab 2024; 36:702-724. [PMID: 38262420 DOI: 10.1016/j.cmet.2023.12.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/11/2023] [Accepted: 12/20/2023] [Indexed: 01/25/2024]
Abstract
Understanding the factors that contribute to exercise response variation is the first step in achieving the goal of developing personalized exercise prescriptions. This review discusses the key molecular and other mechanistic factors, both extrinsic and intrinsic, that influence exercise responses and health outcomes. Extrinsic characteristics include the timing and dose of exercise, circadian rhythms, sleep habits, dietary interactions, and medication use, whereas intrinsic factors such as sex, age, hormonal status, race/ethnicity, and genetics are also integral. The molecular transducers of exercise (i.e., genomic/epigenomic, proteomic/post-translational, transcriptomic, metabolic/metabolomic, and lipidomic elements) are considered with respect to variability in physiological and health outcomes. Finally, this review highlights the current challenges that impede our ability to develop effective personalized exercise prescriptions. The Molecular Transducers of Physical Activity Consortium (MoTrPAC) aims to fill significant gaps in the understanding of exercise response variability, yet further investigations are needed to address additional health outcomes across all populations.
Collapse
Affiliation(s)
- John Noone
- Translational Research Institute, AdventHealth, Orlando, FL 32804, USA
| | | | - James P DeLany
- Translational Research Institute, AdventHealth, Orlando, FL 32804, USA
| | - Lauren M Sparks
- Translational Research Institute, AdventHealth, Orlando, FL 32804, USA
| | - Bret H Goodpaster
- Translational Research Institute, AdventHealth, Orlando, FL 32804, USA.
| |
Collapse
|
22
|
Alqallaf J, Orange ST, Matu J, Griffiths A, Johnson K, Stavropoulos-Kalinoglou A, Holliday A, Wilson O. The Effect of High-Fat Diet on Intramyocellular Lipid Content in Healthy Adults: A Systematic Review, Meta-Analysis, and Meta-Regression. J Nutr 2024; 154:1087-1100. [PMID: 38417551 PMCID: PMC11007750 DOI: 10.1016/j.tjnut.2024.02.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/20/2024] [Accepted: 02/23/2024] [Indexed: 03/01/2024] Open
Abstract
Fatty acids are stored within the muscle as intramyocellular lipids (IMCL). Some, but not all, studies indicate that following a high-fat diet (HFD), IMCL may accumulate and affect insulin sensitivity. This systematic review and meta-analysis aimed to quantify the effects of an HFD on IMCL. It also explored the potential modifying effects of HFD fat content and duration, IMCL measurement technique, physical activity status, and the associations of IMCL with insulin sensitivity. Five databases were systematically searched for studies that examined the effect of ≥3 d of HFD (>35% daily energy intake from fat) on IMCL content in healthy individuals. Meta-regressions were used to investigate associations of the HFD total fat content, duration, physical activity status, IMCL measurement technique, and insulin sensitivity with IMCL responses. Changes in IMCL content and insulin sensitivity (assessed by hyperinsulinemic-euglycemic clamp) are presented as standardized mean difference (SMD) using a random effects model with 95% confidence intervals (95% CIs). Nineteen studies were included in the systematic review and 16 in the meta-analysis. IMCL content increased following HFD (SMD = 0.63; 95% CI: 0.31, 0.94, P = 0.001). IMCL accumulation was not influenced by total fat content (P = 0.832) or duration (P = 0.844) of HFD, physical activity status (P = 0.192), or by the IMCL measurement technique (P > 0.05). Insulin sensitivity decreased following HFD (SMD = -0.34; 95% CI: -0.52, -0.16; P = 0.003), but this was not related to the increase in IMCL content following HFD (P = 0.233). Consumption of an HFD (>35% daily energy intake from fat) for ≥3 d significantly increases IMCL content in healthy individuals regardless of HFD total fat content and duration of physical activity status. All IMCL measurement techniques detected the increased IMCL content following HFD. The dissociation between changes in IMCL and insulin sensitivity suggests that other factors may drive HFD-induced impairments in insulin sensitivity in healthy individuals. This trial was registered at PROSPERO as CRD42021257984.
Collapse
Affiliation(s)
- Jasem Alqallaf
- Carnegie School of Sport, Leeds Beckett University, United Kingdom
| | - Samuel T Orange
- School of Biomedical, Nutritional, and Sport Sciences, Faculty of Medical Sciences, Newcastle University, United Kingdom; Newcastle University Centre for Cancer, Newcastle University, United Kingdom
| | - Jamie Matu
- School of Health, Leeds Beckett University, United Kingdom
| | - Alex Griffiths
- School of Health, Leeds Beckett University, United Kingdom
| | - Kelsie Johnson
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, United Kingdom
| | | | - Adrian Holliday
- School of Biomedical, Nutritional, and Sport Sciences, Faculty of Medical Sciences, Newcastle University, United Kingdom
| | - Oliver Wilson
- Carnegie School of Sport, Leeds Beckett University, United Kingdom.
| |
Collapse
|
23
|
Bubak MP, Mann SN, Borowik AK, Pranay A, Batushansky A, Vieira de Sousa Neto I, Mondal SA, Doidge SM, Davidyan A, Szczygiel MM, Peelor FF, Rigsby S, Broomfield ME, Lacy CI, Rice HC, Stout MB, Miller BF. 17α-Estradiol alleviates high-fat diet-induced inflammatory and metabolic dysfunction in skeletal muscle of male and female mice. Am J Physiol Endocrinol Metab 2024; 326:E226-E244. [PMID: 38197793 PMCID: PMC11193529 DOI: 10.1152/ajpendo.00215.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 12/14/2023] [Accepted: 12/22/2023] [Indexed: 01/11/2024]
Abstract
17α-estradiol (17α-E2) is a naturally occurring nonfeminizing diastereomer of 17β-estradiol that has life span-extending effects in rodent models. To date, studies of the systemic and tissue-specific benefits of 17α-E2 have largely focused on the liver, brain, and white adipose tissue with far less focus on skeletal muscle. Skeletal muscle has an important role in metabolic and age-related disease. Therefore, this study aimed to determine whether 17α-E2 treatment has positive, tissue-specific effects on skeletal muscle during a high-fat feeding. We hypothesized that male, but not female, mice, would benefit from 17α-E2 treatment during a high-fat diet (HFD) with changes in the mitochondrial proteome to support lipid oxidation and subsequent reductions in diacylglycerol (DAG) and ceramide content. To test this hypothesis, we used a multiomics approach to determine changes in lipotoxic lipid intermediates, metabolites, and proteins related to metabolic homeostasis. Unexpectedly, we found that 17α-E2 had marked, but different, beneficial effects within each sex. In male mice, we show that 17α-E2 alleviates HFD-induced metabolic detriments of skeletal muscle by reducing the accumulation of diacylglycerol (DAG), and inflammatory cytokine levels, and altered the abundance of most of the proteins related to lipolysis and β-oxidation. Similar to male mice, 17α-E2 treatment reduced fat mass while protecting muscle mass in female mice but had little muscle inflammatory cytokine levels. Although female mice were resistant to HFD-induced changes in DAGs, 17α-E2 treatment induced the upregulation of six DAG species. In female mice, 17α-E2 treatment changed the relative abundance of proteins involved in lipolysis, β-oxidation, as well as structural and contractile proteins but to a smaller extent than male mice. These data demonstrate the metabolic benefits of 17α-E2 in skeletal muscle of male and female mice and contribute to the growing literature of the use of 17α-E2 for multi tissue health span benefits.NEW & NOTEWORTHY Using a multiomics approach, we show that 17α-E2 alleviates HFD-induced metabolic detriments in skeletal muscle by altering bioactive lipid intermediates, inflammatory cytokines, and the abundance of proteins related to lipolysis and muscle contraction. The positive effects of 17α-E2 in skeletal muscle occur in both sexes but differ in their outcome.
Collapse
Affiliation(s)
- Matthew P Bubak
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States
| | - Shivani N Mann
- Department of Neuroscience, University of Arizona, Tucson, Arizona, United States
| | - Agnieszka K Borowik
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States
| | - Atul Pranay
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States
| | - Albert Batushansky
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States
- Ilse Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, Beer-Sheba, Israel
| | - Ivo Vieira de Sousa Neto
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States
| | - Samim A Mondal
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States
| | - Stephen M Doidge
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States
| | - Arik Davidyan
- Department of Biological Sciences, California State University, Sacramento, California, United States
| | - Marcelina M Szczygiel
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States
| | - Frederick F Peelor
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States
| | - Sandra Rigsby
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States
| | - Matle E Broomfield
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States
| | - Charles I Lacy
- Department of Biochemistry and Molecular Biology, Oklahoma Center for Geroscience and Healthy Brain Aging, Oklahoma City, Oklahoma, United States
| | - Heather C Rice
- Department of Biochemistry and Molecular Biology, Oklahoma Center for Geroscience and Healthy Brain Aging, Oklahoma City, Oklahoma, United States
| | - Michael B Stout
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States
- Oklahoma City Veterans Affairs Medical Center, Oklahoma City, Oklahoma, United States
| | - Benjamin F Miller
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States
- Oklahoma City Veterans Affairs Medical Center, Oklahoma City, Oklahoma, United States
| |
Collapse
|
24
|
Methenitis S, Nomikos T, Mpampoulis T, Kontou E, Evangelidou E, Papadopoulos C, Papadimas G, Terzis G. Type IIx muscle fibers are related to poor body composition, glycemic and lipidemic blood profiles in young females: the protective role of type I and IIa muscle fibers. Eur J Appl Physiol 2024; 124:585-594. [PMID: 37656281 DOI: 10.1007/s00421-023-05302-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/23/2023] [Indexed: 09/02/2023]
Abstract
PURPOSE The aim of the present study was to investigate the association between muscle fiber composition, body composition, resting glycemic-lipidemic blood profiles, in apparently healthy, young, active females. METHODS Thirty-four young healthy female volunteers were allocated into two groups, depending on their Vastus Lateralis type IIx muscle fibers percent cross-sectional area (%CSA; H: high type IIx %CSA; L: low type IIx %CSA). Body composition was determined via dual-energy X-ray absorptiometry. Venous blood samples were collected for the determination of resting serum glucose, Insulin, Apo-A1, HOMA-IR, triglycerides (TG), total cholesterol (TC), High-density lipoprotein (HDL-C), and Low-density lipoprotein (LDL-C) concentrations. Nutritional intake was also evaluated. RESULTS Individuals of the H group have significantly higher body mass, body fat percentage-mass, and resting blood indices of glycemic and lipidemic profiles, compared to those of L group (p < 0.001). Increased type IIx and low type I, IIa muscle fibers %CSAs were linked with poorer body composition, glycemic and lipidemic blood profiles (r: - 0.722 to 0.740, p < 0.001). Linear regression analyses revealed that the impact of muscle fibers %CSA (B coefficients ranged between - 0.700 and 0.835) on the above parameters, was at least, of the same or even of greater magnitude as that of body composition and daily nutritional intake (B: - 0.700 to 0.666). CONCLUSION Increased type IIx and low Type I, IIa %CSAs are associated with poorer body composition and glycemic-lipidemic profiles in young healthy females. The contribution of the muscle fiber %CSA on health status seems to be comparable to that of nutrition and body composition.
Collapse
Affiliation(s)
- Spyridon Methenitis
- Sports Performance Laboratory, School of Physical Education and Sports Science, National and Kapodistrian University of Athens, 172 37, Ethnikis Antistassis 41, Daphne, Athens, Greece.
- Theseus, Physical Medicine and Rehabilitation Center, 17671, Athens, Greece.
| | - T Nomikos
- Department of Nutrition & Dietetics, School of Health Sciences and Education, Harokopio University, 17671, Athens, Greece
| | - T Mpampoulis
- Sports Performance Laboratory, School of Physical Education and Sports Science, National and Kapodistrian University of Athens, 172 37, Ethnikis Antistassis 41, Daphne, Athens, Greece
| | - E Kontou
- Sports Performance Laboratory, School of Physical Education and Sports Science, National and Kapodistrian University of Athens, 172 37, Ethnikis Antistassis 41, Daphne, Athens, Greece
- Theseus, Physical Medicine and Rehabilitation Center, 17671, Athens, Greece
| | - E Evangelidou
- Department of Infection Control, G.N.N. Ionias "Konstantopouleio-Patision" hospital, 142 33, N. Ionia, Greece
| | - C Papadopoulos
- A' Neurology Clinic, Aiginition Hospital, Medical School, National and Kapodistrian University of Athens, 15784, Zografou, Greece
| | - G Papadimas
- A' Neurology Clinic, Aiginition Hospital, Medical School, National and Kapodistrian University of Athens, 15784, Zografou, Greece
| | - G Terzis
- Sports Performance Laboratory, School of Physical Education and Sports Science, National and Kapodistrian University of Athens, 172 37, Ethnikis Antistassis 41, Daphne, Athens, Greece
| |
Collapse
|
25
|
Flockhart M, Larsen FJ. Continuous Glucose Monitoring in Endurance Athletes: Interpretation and Relevance of Measurements for Improving Performance and Health. Sports Med 2024; 54:247-255. [PMID: 37658967 PMCID: PMC10933193 DOI: 10.1007/s40279-023-01910-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/10/2023] [Indexed: 09/05/2023]
Abstract
Blood glucose regulation has been studied for well over a century as it is intimately related to metabolic health. Research in glucose transport and uptake has also been substantial within the field of exercise physiology as glucose delivery to the working muscles affects exercise capacity and athletic achievements. However, although exceptions exist, less focus has been on blood glucose as a parameter to optimize training and competition outcomes in athletes with normal glucose control. During the last years, measuring glucose has gained popularity within the sports community and successful endurance athletes have been seen with skin-mounted sensors for continuous glucose monitoring (CGM). The technique offers real-time recording of glucose concentrations in the interstitium, which is assumed to be equivalent to concentrations in the blood. Although continuous measurements of a parameter that is intimately connected to metabolism and health can seem appealing, there is no current consensus on how to interpret measurements within this context. Well-defined approaches to use glucose monitoring to improve endurance athletes' performance and health are lacking. In several studies, blood glucose regulation in endurance athletes has been shown to differ from that in healthy controls. Furthermore, endurance athletes regularly perform demanding training sessions and can be exposed to high or low energy and/or carbohydrate availability, which can affect blood glucose levels and regulation. In this current opinion, we aim to discuss blood glucose regulation in endurance athletes and highlight the existing research on glucose monitoring for performance and health in this population.
Collapse
Affiliation(s)
- Mikael Flockhart
- The Department of Physiology, Nutrition and Biomechanics, The Swedish School of Sport and Health Sciences, GIH, 114 33, Stockholm, Sweden.
| | - Filip J Larsen
- The Department of Physiology, Nutrition and Biomechanics, The Swedish School of Sport and Health Sciences, GIH, 114 33, Stockholm, Sweden.
| |
Collapse
|
26
|
Hong J, Raza SHA, Ma H, Cao W, Chong Y, Wu J, Xi D, Deng W. Multiple omics analysis reveals the regulation of SIRT5 on mitochondrial function and lipid metabolism during the differentiation of bovine preadipocytes. Genomics 2024; 116:110773. [PMID: 38158141 DOI: 10.1016/j.ygeno.2023.110773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/30/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
Preadipocyte differentiation represents a critical stage in adipogenesis, with mitochondria playing an undeniable pivotal role. Given the intricate interplay between transcription and metabolic signaling during adipogenesis, the regulation of sirtuin 5 (SIRT5) on mitochondrial function and lipid metabolism was revealed via multiple omics analysis. The findings suggest that SIRT5 plays a crucial role in promoting mitochondrial biosynthesis and maintaining mitochondrial function during preadipocyte differentiation. Moreover, SIRT5 modulates the metabolic levels of numerous bioactive substances by extensively regulating genes expression associated with differentiation, energy metabolism, lipid synthesis, and mitochondrial function. Finally, SIRT5 was found to suppress triacylglycerols (TAG) accumulation while enhancing the proportion and diversity of unsaturated fatty acids, and providing conditions for the expansion and stability of membrane structure during mitochondrial biosynthesis through numerous gene regulations. Our findings provide a foundation for the identification of crucial functional genes, signaling pathways, and metabolic substances associated with adipose tissue differentiation and metabolism.
Collapse
Affiliation(s)
- Jieyun Hong
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Sayed Haidar Abbas Raza
- Guangdong Provincial Key Laboratory of Food Quality and Safety / Nation-Local Joint Engineering Research Center for Machining and Safety of Livestock and Poultry Products, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Hongming Ma
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Weina Cao
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Yuqing Chong
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Jiao Wu
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Dongmei Xi
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Weidong Deng
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China.
| |
Collapse
|
27
|
Zupančič B, Ugwoke CK, Abdelmonaem MEA, Alibegović A, Cvetko E, Grdadolnik J, Šerbec A, Umek N. Exploration of macromolecular phenotype of human skeletal muscle in diabetes using infrared spectroscopy. Front Endocrinol (Lausanne) 2023; 14:1308373. [PMID: 38189046 PMCID: PMC10769457 DOI: 10.3389/fendo.2023.1308373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 11/29/2023] [Indexed: 01/09/2024] Open
Abstract
Introduction The global burden of diabetes mellitus is escalating, and more efficient investigative strategies are needed for a deeper understanding of underlying pathophysiological mechanisms. The crucial role of skeletal muscle in carbohydrate and lipid metabolism makes it one of the most susceptible tissues to diabetes-related metabolic disorders. In tissue studies, conventional histochemical methods have several technical limitations and have been shown to inadequately characterise the biomolecular phenotype of skeletal muscle to provide a holistic view of the pathologically altered proportions of macromolecular constituents. Materials and methods In this pilot study, we examined the composition of five different human skeletal muscles from male donors diagnosed with type 2 diabetes and non-diabetic controls. We analysed the lipid, glycogen, and collagen content in the muscles in a traditional manner with histochemical assays using different staining techniques. This served as a reference for comparison with the unconventional analysis of tissue composition using Fourier-transform infrared spectroscopy as an alternative methodological approach. Results A thorough chemometric post-processing of the infrared spectra using a multi-stage spectral decomposition allowed the simultaneous identification of various compositional details from a vibrational spectrum measured in a single experiment. We obtained multifaceted information about the proportions of the different macromolecular constituents of skeletal muscle, which even allowed us to distinguish protein constituents with different structural properties. The most important methodological steps for a comprehensive insight into muscle composition have thus been set and parameters identified that can be used for the comparison between healthy and diabetic muscles. Conclusion We have established a methodological framework based on vibrational spectroscopy for the detailed macromolecular analysis of human skeletal muscle that can effectively complement or may even serve as an alternative to histochemical assays. As this is a pilot study with relatively small sample sets, we remain cautious at this stage in drawing definitive conclusions about diabetes-related changes in skeletal muscle composition. However, the main focus and contribution of our work has been to provide an alternative, simple and efficient approach for this purpose. We are confident that we have achieved this goal and have brought our methodology to a level from which it can be successfully transferred to a large-scale study that allows the effects of diabetes on skeletal muscle composition and the interrelationships between the macromolecular tissue alterations due to diabetes to be investigated.
Collapse
Affiliation(s)
- Barbara Zupančič
- Laboratory for Molecular Structural Dynamics, Theory Department, National Institute of Chemistry, Ljubljana, Slovenia
| | | | - Mohamed Elwy Abdelhamed Abdelmonaem
- Laboratory for Molecular Structural Dynamics, Theory Department, National Institute of Chemistry, Ljubljana, Slovenia
- Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Armin Alibegović
- Department of Forensic Medicine and Deontology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Erika Cvetko
- Institute of Anatomy, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Jože Grdadolnik
- Laboratory for Molecular Structural Dynamics, Theory Department, National Institute of Chemistry, Ljubljana, Slovenia
| | - Anja Šerbec
- Institute of Anatomy, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Nejc Umek
- Institute of Anatomy, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
28
|
Mujammami M, Aleidi SM, Buzatto AZ, Alshahrani A, AlMalki RH, Benabdelkamel H, Al Dubayee M, Li L, Aljada A, Abdel Rahman AM. Lipidomics Profiling of Metformin-Induced Changes in Obesity and Type 2 Diabetes Mellitus: Insights and Biomarker Potential. Pharmaceuticals (Basel) 2023; 16:1717. [PMID: 38139843 PMCID: PMC10747765 DOI: 10.3390/ph16121717] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/06/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
Metformin is the first-line oral medication for treating type 2 diabetes mellitus (T2DM). In the current study, an untargeted lipidomic analytical approach was used to investigate the alterations in the serum lipidome of a cohort of 89 participants, including healthy lean controls and obese diabetic patients, and to examine the alterations associated with metformin administration. A total of 115 lipid molecules were significantly dysregulated (64 up-regulated and 51 down-regulated) in the obese compared to lean controls. However, the levels of 224 lipid molecules were significantly dysregulated (125 up-regulated and 99 down-regulated) in obese diabetic patients compared to the obese group. Metformin administration in obese diabetic patients was associated with significant dysregulation of 54 lipid molecule levels (20 up-regulated and 34 down-regulated). Levels of six molecules belonging to five lipid subclasses were simultaneously dysregulated by the effects of obesity, T2DM, and metformin. These include two putatively annotated triacylglycerols (TGs), one plasmenyl phosphatidylcholine (PC), one phosphatidylglycerol (PGs), one sterol lipid (ST), and one Mannosyl-phosphoinositol ceramide (MIPC). This study provides new insights into our understanding of the lipidomics alterations associated with obesity, T2DM, and metformin and offers a new platform for potential biomarkers for the progression of diabetes and treatment response in obese patients.
Collapse
Affiliation(s)
- Muhammad Mujammami
- University Diabetes Center, Medical City, King Saud University, Riyadh 11472, Saudi Arabia;
- Endocrinology and Diabetes Unit, Department of Medicine, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia
| | - Shereen M. Aleidi
- Department of Biopharmaceutics and Clinical Pharmacy, School of Pharmacy, The University of Jordan, Amman 11942, Jordan;
| | | | - Awad Alshahrani
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs, Riyadh 11426, Saudi Arabia; (A.A.); (M.A.D.)
| | - Reem H. AlMalki
- Metabolomics Section, Department of Clinical Genomics, Center for Genomics Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia;
| | - Hicham Benabdelkamel
- Proteomics Resource Unit, Obesity Research Center, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia;
| | - Mohammed Al Dubayee
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs, Riyadh 11426, Saudi Arabia; (A.A.); (M.A.D.)
| | - Liang Li
- The Metabolomics Innovation Center (TMIC), Edmonton, AB T6G 1C9, Canada; (A.Z.B.); (L.L.)
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | - Ahmad Aljada
- Department of Biochemistry and Molecular Medicine, College of Medicine, Al Faisal University, Riyadh 11461, Saudi Arabia
| | - Anas M. Abdel Rahman
- Metabolomics Section, Department of Clinical Genomics, Center for Genomics Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia;
- Department of Biochemistry and Molecular Medicine, College of Medicine, Al Faisal University, Riyadh 11461, Saudi Arabia
| |
Collapse
|
29
|
Irshad Z, Lund J, Sillars A, Løvsletten NG, Gharanei S, Salt IP, Freeman DJ, Gill JMR, Thoresen GH, Rustan AC, Zammit VA. The roles of DGAT1 and DGAT2 in human myotubes are dependent on donor patho-physiological background. FASEB J 2023; 37:e23209. [PMID: 37779421 PMCID: PMC10947296 DOI: 10.1096/fj.202300960rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 09/01/2023] [Accepted: 09/06/2023] [Indexed: 10/03/2023]
Abstract
The roles of DGAT1 and DGAT2 in lipid metabolism and insulin responsiveness of human skeletal muscle were studied using cryosections and myotubes prepared from muscle biopsies from control, athlete, and impaired glucose regulation (IGR) cohorts of men. The previously observed increases in intramuscular triacylglycerol (IMTG) in athletes and IGR were shown to be related to an increase in lipid droplet (LD) area in type I fibers in athletes but, conversely, in type II fibers in IGR subjects. Specific inhibition of both diacylglycerol acyltransferase (DGAT) 1 and 2 decreased fatty acid (FA) uptake by myotubes, whereas only DGAT2 inhibition also decreased fatty acid oxidation. Fatty acid uptake in myotubes was negatively correlated with the lactate thresholds of the respective donors. DGAT2 inhibition lowered acetate uptake and oxidation in myotubes from all cohorts whereas DGAT1 inhibition had no effect. A positive correlation between acetate oxidation in myotubes and resting metabolic rate (RMR) from fatty acid oxidation in vivo was observed. Myotubes from athletes and IGR had higher rates of de novo lipogenesis from acetate that were normalized by DGAT2 inhibition. Moreover, DGAT2 inhibition in myotubes also resulted in increased insulin-induced Akt phosphorylation. The differential effects of DGAT1 and DGAT2 inhibition suggest that the specialized role of DGAT2 in esterifying nascent diacylglycerols and de novo synthesized FA is associated with synthesis of a pool of triacylglycerol, which upon hydrolysis results in effectors that promote mitochondrial fatty acid oxidation but decrease insulin signaling in skeletal muscle cells.
Collapse
Affiliation(s)
- Zehra Irshad
- Translational and Experimental Medicine, Warwick Medical SchoolUniversity of WarwickCoventryUK
| | - Jenny Lund
- Section for Pharmacology and Pharmaceutical Biosciences, Department of PharmacyUniversity of OsloOsloNorway
| | - Anne Sillars
- School of Cardiovascular and Metabolic Health, College of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowUK
| | - Nils Gunnar Løvsletten
- Section for Pharmacology and Pharmaceutical Biosciences, Department of PharmacyUniversity of OsloOsloNorway
| | - Seley Gharanei
- Translational and Experimental Medicine, Warwick Medical SchoolUniversity of WarwickCoventryUK
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM)University Hospitals Coventry and Warwickshire NHS TrustCoventryUK
| | - Ian P. Salt
- School of Molecular Biosciences, College of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowUK
| | - Dilys J. Freeman
- School of Cardiovascular and Metabolic Health, College of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowUK
| | - Jason M. R. Gill
- School of Cardiovascular and Metabolic Health, College of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowUK
| | - G. Hege Thoresen
- Section for Pharmacology and Pharmaceutical Biosciences, Department of PharmacyUniversity of OsloOsloNorway
- Department of Pharmacology, Institute of Clinical MedicineUniversity of OsloOsloNorway
| | - Arild C. Rustan
- Section for Pharmacology and Pharmaceutical Biosciences, Department of PharmacyUniversity of OsloOsloNorway
| | - Victor A. Zammit
- Translational and Experimental Medicine, Warwick Medical SchoolUniversity of WarwickCoventryUK
| |
Collapse
|
30
|
Carrard J, Angst T, Weber N, Bienvenue J, Infanger D, Streese L, Hinrichs T, Croci I, Schmied C, Gallart-Ayala H, Höchsmann C, Koehler K, Hanssen H, Ivanisevic J, Schmidt-Trucksäss A. Investigating the circulating sphingolipidome response to a single high-intensity interval training session within healthy females and males in their twenties (SphingoHIIT): Protocol for a randomised controlled trial. F1000Res 2023; 11:1565. [PMID: 37533665 PMCID: PMC10390797 DOI: 10.12688/f1000research.128978.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/15/2023] [Indexed: 08/04/2023] Open
Abstract
Introduction: Growing scientific evidence indicates that sphingolipids predict cardiometabolic risk, independently of and beyond traditional biomarkers such as low-density lipoprotein cholesterol. To date, it remains largely unknown if and how exercise, a simple, low-cost, and patient-empowering modality to optimise cardiometabolic health, influences sphingolipid levels. The SphingoHIIT study aims to assess the response of circulating sphingolipid species to a single session of high-intensity interval training (HIIT). Methods: This single-centre randomised controlled trial (RCT) will last 11 days per participant and aim to include 32 young and healthy individuals aged 20-29 (50% females). Participants will be randomly allocated to the HIIT (n= 16) or control groups (physical rest, n= 16). Participants will self-sample fasted dried blood spots for three consecutive days before the intervention (HIIT versus rest) to determine baseline sphingolipid levels. Dried blood spots will also be collected at five time points (2, 15, 30, 60min, and 24h) following the intervention (HIIT versus rest). To minimise the dietary influence, participants will receive a standardised diet for four days, starting 24 hours before the first dried blood sampling. For females, interventions will be timed to fall within the early follicular phase to minimise the menstrual cycle's influence on sphingolipid levels. Finally, physical activity will be monitored for the whole study duration using a wrist accelerometer. Ethics and dissemination: The Ethics Committee of Northwest and Central Switzerland approved this protocol (ID 2022-00513). Findings will be disseminated in scientific journals and meetings. Trial Registration The trial was registered on www.clinicaltrials.gov (NCT05390866, https://clinicaltrials.gov/ct2/show/NCT05390866) on May 25, 2022.
Collapse
Affiliation(s)
- Justin Carrard
- Division of Sport and Exercise Medicine, Department of Sport, Exercise and Health, University of Basel, Basel, 4052, Switzerland
| | - Thomas Angst
- Division of Sport and Exercise Medicine, Department of Sport, Exercise and Health, University of Basel, Basel, 4052, Switzerland
| | - Nadia Weber
- Division of Sport and Exercise Medicine, Department of Sport, Exercise and Health, University of Basel, Basel, 4052, Switzerland
| | - Joëlle Bienvenue
- Division of Sport and Exercise Medicine, Department of Sport, Exercise and Health, University of Basel, Basel, 4052, Switzerland
| | - Denis Infanger
- Division of Sport and Exercise Medicine, Department of Sport, Exercise and Health, University of Basel, Basel, 4052, Switzerland
| | - Lukas Streese
- Division of Sport and Exercise Medicine, Department of Sport, Exercise and Health, University of Basel, Basel, 4052, Switzerland
| | - Timo Hinrichs
- Division of Sport and Exercise Medicine, Department of Sport, Exercise and Health, University of Basel, Basel, 4052, Switzerland
| | - Ilaria Croci
- Division of Sport and Exercise Medicine, Department of Sport, Exercise and Health, University of Basel, Basel, 4052, Switzerland
- Cardiac Exercise Research Group, Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway
| | - Christian Schmied
- Sports Cardiology Section, Department of Cardiology, University Heart Center Zurich,, University Hospital Zurich, Zurich, 8091, Switzerland
| | - Hector Gallart-Ayala
- Metabolomics Platform, Faculty of Biology and Medicine, University of Lausanne, Lausanne, 1005, Switzerland
| | - Christoph Höchsmann
- Department of Sport and Health Sciences, Technical University of Munich, Munich, Germany
| | - Karsten Koehler
- Department of Sport and Health Sciences, Technical University of Munich, Munich, Germany
| | - Henner Hanssen
- Division of Sport and Exercise Medicine, Department of Sport, Exercise and Health, University of Basel, Basel, 4052, Switzerland
| | - Julijana Ivanisevic
- Metabolomics Platform, Faculty of Biology and Medicine, University of Lausanne, Lausanne, 1005, Switzerland
| | - Arno Schmidt-Trucksäss
- Division of Sport and Exercise Medicine, Department of Sport, Exercise and Health, University of Basel, Basel, 4052, Switzerland
| |
Collapse
|
31
|
Bubak MP, Mann SN, Borowik AK, Pranay A, Batushansky A, Mondal SA, Diodge SM, Davidyan A, Szczygiel MM, Peelor FR, Rigsby S, Broomfield M, Lacy CI, Rice HC, Stout MB, Miller BF. 17α-estradiol Alleviates High-Fat Diet-Induced Inflammatory and Metabolic Dysfunction in Skeletal Muscle of Male and Female Mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.30.542870. [PMID: 37398463 PMCID: PMC10312580 DOI: 10.1101/2023.05.30.542870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Skeletal muscle has a central role in maintaining metabolic homeostasis. 17α-estradiol (17α-E2), a naturally-occurring non-feminizing diastereomer of 17β-estradiol that demonstrates efficacy for improving metabolic outcomes in male, but not female, mice. Despite several lines of evidence showing that 17α-E2 treatment improves metabolic parameters in middle-aged obese and old male mice through effects in brain, liver, and white adipose tissue little is known about how 17α-E2 alters skeletal muscle metabolism, and what role this may play in mitigating metabolic declines. Therefore, this study aimed to determine if 17α-E2 treatment improves metabolic outcomes in skeletal muscle from obese male and female mice following chronic high fat diet (HFD) administration. We hypothesized that male, but not female, mice, would benefit from 17α-E2 treatment during HFD. To test this hypothesis, we used a multi-omics approach to determine changes in lipotoxic lipid intermediates, metabolites, and proteins related to metabolic homeostasis. In male mice, we show that 17α-E2 alleviates HFD-induced metabolic detriments of skeletal muscle by reducing the accumulation of diacylglycerol (DAGs) and ceramides, inflammatory cytokine levels, and reduced the abundance of most of the proteins related to lipolysis and beta-oxidation. In contrast to males, 17α-E2 treatment in female mice had little effect on the DAGs and ceramides content, muscle inflammatory cytokine levels, or changes to the relative abundance of proteins involved in beta-oxidation. These data support to the growing evidence that 17α-E2 treatment could be beneficial for overall metabolic health in male mammals.
Collapse
|
32
|
Tomar M, Sharma A, Araniti F, Pateriya A, Shrivastava A, Tamrakar AK. Distinct Metabolomic Profiling of Serum Samples from High-Fat-Diet-Induced Insulin-Resistant Mice. ACS Pharmacol Transl Sci 2023; 6:771-782. [PMID: 37200804 PMCID: PMC10186361 DOI: 10.1021/acsptsci.3c00028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Indexed: 05/20/2023]
Abstract
High-fat-diet (HFD)-induced obesity is associated with an elevated risk of insulin resistance (IR), which may precede the onset of type 2 diabetes mellitus and associated metabolic complications. Being a heterogeneous metabolic condition, it is pertinent to understand the metabolites and metabolic pathways that are altered during the development and progression of IR toward T2DM. Serum samples were collected from C57BL/6J mice fed with HFD or chow diet (CD) for 16 weeks. Collected samples were analyzed by gas chromatography-tandem mass spectrometry (GC-MS/MS). Data on the identified raw metabolites were evaluated using a combination of univariate and multivariate statistical methods. Mice fed with HFD had glucose and insulin intolerance associated with impairment of insulin signaling in key metabolic tissues. From the GC-MS/MS analysis of serum samples, a total of 75 common annotated metabolites were identified between HFD- and CD-fed mice. In the t-test, 22 significantly altered metabolites were identified. Out of these, 16 metabolites were up-accumulated, whereas 6 metabolites were down-accumulated. Pathway analysis identified 4 significantly altered metabolic pathways. In particular, primary bile acid biosynthesis and linoleic acid metabolism were upregulated, whereas the TCA cycle and pentose and glucuronate interconversion were downregulated in HFD-fed mice in comparison to CD-fed mice. These results show the distinct metabolic profiles associated with the onset of IR that could provide promising metabolic biomarkers for diagnostic and clinical applications.
Collapse
Affiliation(s)
- Manendra
Singh Tomar
- Centre
for Advance Research, Faculty of Medicine, King George’s Medical University, Lucknow 226003, India
| | - Aditya Sharma
- Division
of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Fabrizio Araniti
- Dipartimento
di Scienze Agrarie e Ambientali—Produzione, Territorio, Agroenergia, Università degli Studi di Milano, Via Celoria 2, 20133 Milano, Italy
| | - Ankit Pateriya
- Centre
for Advance Research, Faculty of Medicine, King George’s Medical University, Lucknow 226003, India
| | - Ashutosh Shrivastava
- Centre
for Advance Research, Faculty of Medicine, King George’s Medical University, Lucknow 226003, India
| | - Akhilesh Kumar Tamrakar
- Division
of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Lucknow 226031, India
| |
Collapse
|
33
|
Bandet CL, Tan-Chen S, Ali-Berrada S, Campana M, Poirier M, Blachnio-Zabielska A, Pais-de-Barros JP, Rouch C, Ferré P, Foufelle F, Le Stunff H, Hajduch E. Ceramide analogue C2-cer induces a loss in insulin sensitivity in muscle cells through the salvage/recycling pathway. J Biol Chem 2023:104815. [PMID: 37178918 DOI: 10.1016/j.jbc.2023.104815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 05/01/2023] [Accepted: 05/02/2023] [Indexed: 05/15/2023] Open
Abstract
Ceramides have been shown to play a major role in the onset of skeletal muscle insulin resistance and therefore in the prevalence of type 2 diabetes (T2D). However, many of the studies involved in the discovery of deleterious ceramide actions used a non-physiological cell-permeable short-chain ceramide analogue, the C2-ceramide (C2-cer). In the present study, we determined how C2-cer promotes insulin resistance in muscle cells. We demonstrate that C2-cer enters the salvage/recycling pathway and becomes de-acylated, yielding sphingosine, re-acylation of which depends on the availability of long chain fatty acids provided by the lipogenesis pathway in muscle cells. Importantly, we show these salvaged ceramides are actually responsible for the inhibition of insulin signaling induced by C2-cer. Interestingly, we also show that the exogenous and endogenous mono-unsaturated fatty acid oleate prevents C2-cer to be recycled into endogenous ceramide species in a diacylglycerol O-acyltransferase 1 (DGAT1)-dependent mechanism, which forces free fatty acid metabolism towards triacylglyceride production. Altogether, the study highlights for the first time that C2-cer induces a loss in insulin sensitivity through the salvage/recycling pathway in muscle cells. This study also validates C2-cer as a convenient tool to decipher mechanisms by which long-chain ceramides mediate insulin resistance in muscle cells and suggests that in addition to the de novo ceramide synthesis, recycling of ceramide could contribute to muscle insulin resistance observed in obesity and T2D.
Collapse
Affiliation(s)
- Cécile L Bandet
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, F-75006 Paris, France; Institut Hospitalo-Universitaire ICAN, Paris, France
| | - Sophie Tan-Chen
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, F-75006 Paris, France; Institut Hospitalo-Universitaire ICAN, Paris, France
| | - Sarah Ali-Berrada
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, F-75006 Paris, France; Institut Hospitalo-Universitaire ICAN, Paris, France
| | - Mélanie Campana
- Université Paris-Saclay, CNRS UMR 9197, Institut des Neurosciences Paris-Saclay, CNRS UMR 9197, Saclay, France
| | - Maxime Poirier
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, F-75006 Paris, France; Institut Hospitalo-Universitaire ICAN, Paris, France
| | | | - Jean-Paul Pais-de-Barros
- Lipidomics Core Facility, INSERM UMR1231 - Université Bourgogne Franche Comté, 15 Boulevard Mal de Lattre de Tassigny, F-21000 Dijon, France
| | - Claude Rouch
- Université de Paris Cité, Functional and Adaptive Biology Unit, UMR 8251, CNRS, Paris, France
| | - Pascal Ferré
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, F-75006 Paris, France; Institut Hospitalo-Universitaire ICAN, Paris, France
| | - Fabienne Foufelle
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, F-75006 Paris, France; Institut Hospitalo-Universitaire ICAN, Paris, France
| | - Hervé Le Stunff
- Université Paris-Saclay, CNRS UMR 9197, Institut des Neurosciences Paris-Saclay, CNRS UMR 9197, Saclay, France
| | - Eric Hajduch
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, F-75006 Paris, France; Institut Hospitalo-Universitaire ICAN, Paris, France.
| |
Collapse
|
34
|
Santanasto AJ, Zmuda JM, Cvejkus RK, Gordon CL, Nair S, Carr JJ, Terry JG, Wheeler VW, Miljkovic I. Thigh and Calf Myosteatosis are Strongly Associated with Muscle and Physical Function in African Caribbean Men. J Gerontol A Biol Sci Med Sci 2023; 78:527-534. [PMID: 35661875 PMCID: PMC9977257 DOI: 10.1093/gerona/glac124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND African Caribbeans have higher levels of myosteatosis than other populations; however, little is known about the impact of myosteatosis on physical function in African Caribbeans. Herein, we examined the association between regional myosteatosis of the calf, thigh, and abdomen versus physical function in 850 African-Ancestry men aged 64.2 ± 8.9 (range 50-95) living on the Caribbean Island of Tobago. METHODS Myosteatosis was measured using computed tomography and included intermuscular adipose tissue (IMAT) and muscle density levels of the thigh, calf, psoas, and paraspinous muscles. Outcomes included grip strength, time to complete 5 chair-rises, and 4-meter gait speed. Associations were quantified using separate linear models for each myosteatosis depot and were adjusted for age, height, demographics, physical activity, and chronic diseases. Beta coefficients were presented per standard deviation of each myosteatosis depot. RESULTS Higher thigh IMAT was the only IMAT depot significantly associated with weaker grip strength (β = -1.3 ± 0.43 kg, p = .003). However, lower muscle density of all 4 muscle groups was associated with weaker grip strength (all p < .05). Calf and thigh myosteatosis (IMAT and muscle density) were significantly associated with both worse chair rise time and gait speed (all p < .05), whereas psoas IMAT and paraspinous muscle density were associated with gait speed. CONCLUSION Myosteatosis of the calf and thigh-but not the abdomen-were strongly associated with grip strength and performance measures of physical function in African Caribbean men. However, posterior abdominal myosteatosis may have some utility when abdominal images are all that are available.
Collapse
Affiliation(s)
- Adam J Santanasto
- Department of Epidemiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Joseph M Zmuda
- Department of Epidemiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Ryan K Cvejkus
- Department of Epidemiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | - Sangeeta Nair
- Department of Radiology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - J Jeffrey Carr
- Department of Radiology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - James G Terry
- Department of Radiology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Victor W Wheeler
- Tobago Health Studies Office, Scarborough, Tobago, Trinidad and Tobago
| | - Iva Miljkovic
- Department of Epidemiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
35
|
Skeletal muscle insulin resistance and adipose tissue hypertrophy persist beyond the reshaping of gut microbiota in young rats fed a fructose-rich diet. J Nutr Biochem 2023; 113:109247. [PMID: 36496062 DOI: 10.1016/j.jnutbio.2022.109247] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 10/17/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022]
Abstract
To investigate whether short term fructose-rich diet induces changes in the gut microbiota as well as in skeletal muscle and adipose tissue physiology and verify whether they persist even after fructose withdrawal, young rats of 30 d of age were fed for 3 weeks a fructose-rich or control diet. At the end of the 3-weeks period, half of the rats from each group were maintained for further 3 weeks on a control diet. Metagenomic analysis of gut microbiota and short chain fatty acids levels (faeces and plasma) were investigated. Insulin response was evaluated at the whole-body level and both in skeletal muscle and epididymal adipose tissue, together with skeletal muscle mitochondrial function, oxidative stress, and lipid composition. In parallel, morphology and physiological status of epididymal adipose tissue was also evaluated. Reshaping of gut microbiota and increased content of short chain fatty acids was elicited by the fructose diet and abolished by switching back to control diet. On the other hand, most metabolic changes elicited by fructose-rich diet in skeletal muscle and epididymal adipose tissue persisted after switching to control diet. Increased dietary fructose intake even on a short-time basis elicits persistent changes in the physiology of metabolically relevant tissues, such as adipose tissue and skeletal muscle, through mechanisms that go well beyond the reshaping of gut microbiota. This picture delineates a harmful situation, in particular for the young populations, posed at risk of metabolic modifications that may persist in their adulthood.
Collapse
|
36
|
Gaspar RC, Lyu K, Hubbard BT, Leitner BP, Luukkonen PK, Hirabara SM, Sakuma I, Nasiri A, Zhang D, Kahn M, Cline GW, Pauli JR, Perry RJ, Petersen KF, Shulman GI. Distinct subcellular localisation of intramyocellular lipids and reduced PKCε/PKCθ activity preserve muscle insulin sensitivity in exercise-trained mice. Diabetologia 2023; 66:567-578. [PMID: 36456864 PMCID: PMC11194860 DOI: 10.1007/s00125-022-05838-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 09/30/2022] [Indexed: 12/03/2022]
Abstract
AIMS/HYPOTHESIS Athletes exhibit increased muscle insulin sensitivity, despite increased intramuscular triacylglycerol content. This phenomenon has been coined the 'athlete's paradox' and is poorly understood. Recent findings suggest that the subcellular distribution of sn-1,2-diacylglycerols (DAGs) in the plasma membrane leading to activation of novel protein kinase Cs (PKCs) is a crucial pathway to inducing insulin resistance. Here, we hypothesised that regular aerobic exercise would preserve muscle insulin sensitivity by preventing increases in plasma membrane sn-1,2-DAGs and activation of PKCε and PKCθ despite promoting increases in muscle triacylglycerol content. METHODS C57BL/6J mice were allocated to three groups (regular chow feeding [RC]; high-fat diet feeding [HFD]; RC feeding and running wheel exercise [RC-EXE]). We used a novel LC-MS/MS/cellular fractionation method to assess DAG stereoisomers in five subcellular compartments (plasma membrane [PM], endoplasmic reticulum, mitochondria, lipid droplets and cytosol) in the skeletal muscle. RESULTS We found that the HFD group had a greater content of sn-DAGs and ceramides in multiple subcellular compartments compared with the RC mice, which was associated with an increase in PKCε and PKCθ translocation. However, the RC-EXE mice showed, of particular note, a reduction in PM sn-1,2-DAG and ceramide content when compared with HFD mice. Consistent with the PM sn-1,2-DAG-novel PKC hypothesis, we observed an increase in phosphorylation of threonine1150 on the insulin receptor kinase (IRKT1150), and reductions in insulin-stimulated IRKY1162 phosphorylation and IRS-1-associated phosphoinositide 3-kinase activity in HFD compared with RC and RC-EXE mice, which are sites of PKCε and PKCθ action, respectively. CONCLUSIONS/INTERPRETATION These results demonstrate that lower PKCθ/PKCε activity and sn-1,2-DAG content, especially in the PM compartment, can explain the preserved muscle insulin sensitivity in RC-EXE mice.
Collapse
Affiliation(s)
- Rafael C Gaspar
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
- School of Applied Science, University of Campinas, Limeira, SP, Brazil
| | - Kun Lyu
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
- Department of Cellular & Molecular Physiology, Yale School of Medicine, New Haven, CT, USA
| | - Brandon T Hubbard
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
- Department of Cellular & Molecular Physiology, Yale School of Medicine, New Haven, CT, USA
| | - Brooks P Leitner
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
- Department of Cellular & Molecular Physiology, Yale School of Medicine, New Haven, CT, USA
| | - Panu K Luukkonen
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Sandro M Hirabara
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
- Institute of Physical Activity Science and Sports, Cruzeiro do Sul University, São Paulo, SP, Brazil
| | - Ikki Sakuma
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Ali Nasiri
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Dongyan Zhang
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Mario Kahn
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Gary W Cline
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | | | - Rachel J Perry
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
- Department of Cellular & Molecular Physiology, Yale School of Medicine, New Haven, CT, USA
| | - Kitt F Petersen
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Gerald I Shulman
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA.
- Department of Cellular & Molecular Physiology, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
37
|
Aldahhan RA, Motawei KH, Al-Hariri MT. Lipotoxicity-related sarcopenia: a review. J Med Life 2022; 15:1334-1339. [PMID: 36567835 PMCID: PMC9762358 DOI: 10.25122/jml-2022-0157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 07/27/2022] [Indexed: 12/27/2022] Open
Abstract
A body of literature supports the postulation that a persistent lipid metabolic imbalance causes lipotoxicity, "an abnormal fat storage in the peripheral organs". Hence, lipotoxicity could somewhat explain the process of sarcopenia, an aging-related, gradual, and involuntary decline in skeletal muscle strength and mass associated with several health complications. This review focuses on the recent mechanisms underlying lipotoxicity-related sarcopenia. A vicious cycle occurs between sarcopenia and ectopic fat storage via a complex interplay of mitochondrial dysfunction, pro-inflammatory cytokine production, oxidative stress, collagen deposition, extracellular matrix remodeling, and life habits. The repercussions of lipotoxicity exacerbation of sarcopenia can include increased disability, morbidity, and mortality. This suggests that appropriate lipotoxicity management should be considered the primary target for the prevention and/or treatment of chronic musculoskeletal and other aging-related disorders. Further advanced research is needed to understand the molecular details of lipotoxicity and its consequences for sarcopenia and sarcopenia-related comorbidities.
Collapse
Affiliation(s)
| | - Kamaluddin Hasan Motawei
- Department of Anatomy, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Mohammed Taha Al-Hariri
- Department of Physiology, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia,Corresponding Author: Mohammed Taha Al-Hariri, Department of Physiology, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia. E-mail:
| |
Collapse
|
38
|
Morgan HL, Furse S, Dias IHK, Shabir K, Castellanos M, Khan I, May ST, Holmes N, Carlile M, Sang F, Wright V, Koulman A, Watkins AJ. Paternal low protein diet perturbs inter-generational metabolic homeostasis in a tissue-specific manner in mice. Commun Biol 2022; 5:929. [PMID: 36075960 PMCID: PMC9458637 DOI: 10.1038/s42003-022-03914-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 08/30/2022] [Indexed: 11/11/2022] Open
Abstract
The underlying mechanisms driving paternally-programmed metabolic disease in offspring remain poorly defined. We fed male C57BL/6 mice either a control normal protein diet (NPD; 18% protein) or an isocaloric low protein diet (LPD; 9% protein) for a minimum of 8 weeks. Using artificial insemination, in combination with vasectomised male mating, we generated offspring using either NPD or LPD sperm but in the presence of NPD or LPD seminal plasma. Offspring from either LPD sperm or seminal fluid display elevated body weight and tissue dyslipidaemia from just 3 weeks of age. These changes become more pronounced in adulthood, occurring in conjunction with altered hepatic metabolic and inflammatory pathway gene expression. Second generation offspring also display differential tissue lipid abundance, with profiles similar to those of first generation adults. These findings demonstrate that offspring metabolic homeostasis is perturbed in response to a suboptimal paternal diet with the effects still evident within a second generation. Poor paternal diet leads to changes in offspring tissue lipid abundance that is still evident in a second generation.
Collapse
Affiliation(s)
- Hannah L Morgan
- Lifespan and Population Health, School of Medicine, University of Nottingham, Nottingham, NG7 2UH, UK
| | - Samuel Furse
- Core Metabolomics and Lipidomics Laboratory, Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Addenbrooke's Treatment Centre, Keith Day Road, Cambridge, CB2 0QQ, UK.,Wellcome-MRC Institute of Metabolic Science and Medical Research Council Metabolic Diseases Unit, University of Cambridge, Cambridge, CB2 0QQ, UK.,Biological Chemistry Group, Jodrell Laboratory, Royal Botanic Gardens Kew, Richmond, TW9 3AE, UK
| | - Irundika H K Dias
- Aston Medical School, Aston University, Aston Triangle, Birmingham, B4 7ET, UK
| | - Kiran Shabir
- Aston Medical School, Aston University, Aston Triangle, Birmingham, B4 7ET, UK
| | - Marcos Castellanos
- Nottingham Arabidopsis Stock Centre (NASC), University of Nottingham, Sutton Bonington Campus, Plant Science Building, School of Biosciences, Loughborough, LE12 5RD, UK
| | - Iqbal Khan
- Nottingham Arabidopsis Stock Centre (NASC), University of Nottingham, Sutton Bonington Campus, Plant Science Building, School of Biosciences, Loughborough, LE12 5RD, UK
| | - Sean T May
- Nottingham Arabidopsis Stock Centre (NASC), University of Nottingham, Sutton Bonington Campus, Plant Science Building, School of Biosciences, Loughborough, LE12 5RD, UK
| | - Nadine Holmes
- Deep Seq, School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, NG7 2UH, UK
| | - Matthew Carlile
- Deep Seq, School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, NG7 2UH, UK
| | - Fei Sang
- Deep Seq, School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, NG7 2UH, UK
| | - Victoria Wright
- Deep Seq, School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, NG7 2UH, UK
| | - Albert Koulman
- Core Metabolomics and Lipidomics Laboratory, Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Addenbrooke's Treatment Centre, Keith Day Road, Cambridge, CB2 0QQ, UK.,Wellcome-MRC Institute of Metabolic Science and Medical Research Council Metabolic Diseases Unit, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Adam J Watkins
- Lifespan and Population Health, School of Medicine, University of Nottingham, Nottingham, NG7 2UH, UK.
| |
Collapse
|
39
|
Nomikos T, Methenitis S, Panagiotakos DB. The emerging role of skeletal muscle as a modulator of lipid profile the role of exercise and nutrition. Lipids Health Dis 2022; 21:81. [PMID: 36042487 PMCID: PMC9425975 DOI: 10.1186/s12944-022-01692-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 08/16/2022] [Indexed: 11/10/2022] Open
Abstract
The present article aims to discuss the hypothesis that skeletal muscle per se but mostly its muscle fiber composition could be significant determinants of lipid metabolism and that certain exercise modalities may improve metabolic dyslipidemia by favorably affecting skeletal muscle mass, fiber composition and functionality. It discusses the mediating role of nutrition, highlights the lack of knowledge on mechanistic aspects of this relationship and proposes possible experimental directions in this field.
Collapse
Affiliation(s)
- Tzortzis Nomikos
- Department of Nutrition and Dietetics, School of Health Sciences & Education, Harokopio University, Athens, Greece.
| | - Spyridon Methenitis
- Sports Performance Laboratory, School of Physical Education and Sports. Science, National and Kapodistrian University of Athens, Athens, Greece.,Theseus, Physical Medicine and Rehabilitation Center, Athens, Greece
| | - Demosthenes B Panagiotakos
- Department of Nutrition and Dietetics, School of Health Sciences & Education, Harokopio University, Athens, Greece
| |
Collapse
|
40
|
Yoshiko A, Maeda H, Takahashi H, Koike T, Tanaka N, Akima H. Importance of skeletal muscle lipid levels for muscle function and physical function in older individuals. Appl Physiol Nutr Metab 2022; 47:649-658. [PMID: 35839289 DOI: 10.1139/apnm-2021-0685] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The skeletal muscle contains lipids inside (intramyocellular lipids, IMCL) or outside (extramyocellular lipids, EMCL) its cells. The muscle lipid content increases with age; however, the characteristics of IMCL and EMCL in older individuals are not well known. We aimed to examine the characteristics of skeletal muscle lipids by investigating their relationship with muscle function and physical functions. Seven elderly men and 16 elderly women participated. The skeletal muscle lipid content, including IMCL and EMCL, was measured in the vastus lateralis by proton magnetic resonance spectroscopy. Isometric knee extension with maximal voluntary contraction (MVC) and time-to-task failure for knee extension with 50% MVC were measured as muscle functions. The participants performed six physical function tests: preferred gait speed, maximal gait speed, Timed Up and Go, chair sit-to-stand, handgrip strength, and stand from the floor. The time to knee extension task failure had a significant relationship with the IMCL (rs = -0.43, P < 0.05), but not with the EMCL content. Significant relationships were confirmed in the EMCL content with the sit-to-stand (rs = -0.48, P < 0.05) and stand-from-the-floor (rs = 0.53, P < 0.05) tests. These findings indicated that muscle lipids are associated with muscle and physical functional performances in older individuals. Novelty: No relationship was confirmed between IMCL and EMCL in older individuals. Muscle endurance performance had a relationship with IMCL, but not with EMCL. Relationships between EMCL and physical functional tests (e.g., sit-to-stand and stand from the floor) were confirmed.
Collapse
Affiliation(s)
- Akito Yoshiko
- Faculty of Liberal Arts and Sciences, Chukyo University, Toyota, Aichi, Japan
| | - Hisashi Maeda
- Graduate School of Medicine, Nagoya University, Nagoya, Aichi, Japan
| | - Hideyuki Takahashi
- Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Teruhiko Koike
- Graduate School of Medicine, Nagoya University, Nagoya, Aichi, Japan.,Research Center of Health, Physical Fitness & Sports, Nagoya University, Nagoya, Aichi, Japan
| | - Noriko Tanaka
- Research Center of Health, Physical Fitness & Sports, Nagoya University, Nagoya, Aichi, Japan.,Graduate School of Education and Human Development, Nagoya University, Nagoya, Aichi, Japan
| | - Hiroshi Akima
- Research Center of Health, Physical Fitness & Sports, Nagoya University, Nagoya, Aichi, Japan.,Graduate School of Education and Human Development, Nagoya University, Nagoya, Aichi, Japan
| |
Collapse
|
41
|
Contribution of specific ceramides to obesity-associated metabolic diseases. Cell Mol Life Sci 2022; 79:395. [PMID: 35789435 PMCID: PMC9252958 DOI: 10.1007/s00018-022-04401-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 05/20/2022] [Accepted: 05/26/2022] [Indexed: 12/04/2022]
Abstract
Ceramides are a heterogeneous group of bioactive membrane sphingolipids that play specialized regulatory roles in cellular metabolism depending on their characteristic fatty acyl chain lengths and subcellular distribution. As obesity progresses, certain ceramide molecular species accumulate in metabolic tissues and cause cell-type-specific lipotoxic reactions that disrupt metabolic homeostasis and lead to the development of cardiometabolic diseases. Several mechanisms for ceramide action have been inferred from studies in vitro, but only recently have we begun to better understand the acyl chain length specificity of ceramide-mediated signaling in the context of physiology and disease in vivo. New discoveries show that specific ceramides affect various metabolic pathways and that global or tissue-specific reduction in selected ceramide pools in obese rodents is sufficient to improve metabolic health. Here, we review the tissue-specific regulation and functions of ceramides in obesity, thus highlighting the emerging concept of selectively inhibiting production or action of ceramides with specific acyl chain lengths as novel therapeutic strategies to ameliorate obesity-associated diseases.
Collapse
|
42
|
Blasco-Lafarga C, Monferrer-Marín J, Roldán A, Monteagudo P, Chulvi-Medrano I. Metabolic Flexibility and Mechanical Efficiency in Women Over-60. Front Physiol 2022; 13:869534. [PMID: 35464093 PMCID: PMC9019701 DOI: 10.3389/fphys.2022.869534] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 03/21/2022] [Indexed: 01/12/2023] Open
Abstract
Purpose: Aging deteriorates metabolic flexibility (MF). Moreover, recent studies show that glycolysis is barely increased despite impoverished lipid metabolism, in addition to increased relevance of muscle power in older adults. This study aims to analyze MF, i.e., fat and carbohydrates oxidation rates (FATox and CHOox), and the point of maximal fat oxidation (MFO), in a group of active women over-60. It also aims to delve into the role of power production and mechanical efficiency regarding MF. This will help to decipher their metabolic behavior in response to increasing intensity. Methods: Twenty-nine women (66.13 ± 5.62 years) performed a submaximal graded cycling test, increasing 10 W each 3-min15-s, from 30 W to the second ventilatory threshold (VT2). Muscle power was adjusted with a Saris-H3 roller, together with a continuous gas analysis by indirect calorimetry (Cosmed K4b2). Pre and post-test blood lactate (BLa) samples were included. Frayn's equations, MFO and CHOoxpeak (mg/min/kg FFM) were considered for MF analysis (accounting for average VO2 and VCO2 in each last 60-s), whilst delta and gross efficiencies (DE%, GE%), and exercise economy (EC), were added for Mechanical Efficiency. Mean comparisons regarding intensities 60, 80 and 100% at VT2, completed the study together with correlation analysis among the main variables. Results: MFO and CHOoxpeak were small (6.35 ± 3.59 and 72.79 ± 34.76 g/min/kgFFM respectively) for a reduced muscle power (78.21 ± 15.84 W). Notwithstanding, GE% and EC increased significantly (p < 0.01) with exercise intensity. Importantly, coefficients of variation were very large confirming heterogeneity. Whilst muscle power outcomes correlated significantly (p < 0.01) with MFO (r = 0.66) and age (r = -0.62), these latter failed to be associated. Only GE% correlated to CHOoxpeak (r = -0.61, p < 0.01) regarding mechanical efficiency. Conclusions: Despite being active, women over-60 confirmed impaired substrates switching in response to exercise, from both FAT and CHO pathways. This limits their power production affecting exercise capacity. Our data suggest that decreased power with age has a key role above age per se in this metabolic inflexibility. Vice versa, increasing power seems to protect from mitochondrial dysfunction with aging. New studies will confirm if this higher efficiency when coming close to VT2, where GE is the more informative variable, might be a protective compensatory mechanism.
Collapse
Affiliation(s)
- Cristina Blasco-Lafarga
- Sport Performance and Physical Fitness Research Group (UIRFIDE), Physical Education and Sport Department, University of Valencia, Valencia, Spain
| | - Jordi Monferrer-Marín
- Sport Performance and Physical Fitness Research Group (UIRFIDE), Physical Education and Sport Department, University of Valencia, Valencia, Spain
| | - Ainoa Roldán
- Sport Performance and Physical Fitness Research Group (UIRFIDE), Physical Education and Sport Department, University of Valencia, Valencia, Spain
| | - Pablo Monteagudo
- Sport Performance and Physical Fitness Research Group (UIRFIDE), Physical Education and Sport Department, University of Valencia, Valencia, Spain
- Department of Education and Specific Didactics, Jaume I University, Castellon, Spain
| | - Ivan Chulvi-Medrano
- Sport Performance and Physical Fitness Research Group (UIRFIDE), Physical Education and Sport Department, University of Valencia, Valencia, Spain
| |
Collapse
|
43
|
Barrett JS, Whytock KL, Strauss JA, Wagenmakers AJM, Shepherd SO. High intramuscular triglyceride turnover rates and the link to insulin sensitivity: influence of obesity, type 2 diabetes and physical activity. Appl Physiol Nutr Metab 2022; 47:343-356. [PMID: 35061523 DOI: 10.1139/apnm-2021-0631] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Large intramuscular triglyceride (IMTG) stores in sedentary, obese individuals have been linked to insulin resistance, yet well-trained athletes exhibit high IMTG levels whilst maintaining insulin sensitivity. Contrary to previous assumptions, it is now known that IMTG content per se does not result in insulin resistance. Rather, insulin resistance is caused, at least in part, by the presence of high concentrations of harmful lipid metabolites, such as diacylglycerols and ceramides in muscle. Several mechanistic differences between obese sedentary individuals and their highly trained counterparts have been identified, which determine the differential capacity for IMTG synthesis and breakdown in these populations. In this review, we first describe the most up-to-date mechanisms by which a low IMTG turnover rate (both breakdown and synthesis) leads to the accumulation of lipid metabolites and results in skeletal muscle insulin resistance. We then explore current and potential exercise and nutritional strategies that target IMTG turnover in sedentary obese individuals, to improve insulin sensitivity. Overall, improving IMTG turnover should be an important component of successful interventions that aim to prevent the development of insulin resistance in the ever-expanding sedentary, overweight and obese populations. Novelty: A description of the most up-to-date mechanisms regulating turnover of the IMTG pool. An exploration of current and potential exercise/nutritional strategies to target and enhance IMTG turnover in obese individuals. Overall, highlights the importance of improving IMTG turnover to prevent the development of insulin resistance.
Collapse
Affiliation(s)
- J S Barrett
- Research Institute for Sport & Exercise Sciences, Liverpool John Moores University, Liverpool, UK
| | - K L Whytock
- Translational Research Institute, AdventHealth, Orlando, FL 32804, USA
| | - J A Strauss
- Research Institute for Sport & Exercise Sciences, Liverpool John Moores University, Liverpool, UK
| | - A J M Wagenmakers
- Research Institute for Sport & Exercise Sciences, Liverpool John Moores University, Liverpool, UK
| | - S O Shepherd
- Research Institute for Sport & Exercise Sciences, Liverpool John Moores University, Liverpool, UK
| |
Collapse
|
44
|
KARABULUT A, ŞAHİN M. The effect of the COVID-19 pandemic on the increase of hyperlipidemia and metabolic syndrome in the Turkish population: a retrospective study. JOURNAL OF HEALTH SCIENCES AND MEDICINE 2022. [DOI: 10.32322/jhsm.1062633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
45
|
Kang BB, Chiang BH. A novel phenolic formulation for treating hepatic and peripheral insulin resistance by regulating GLUT4-mediated glucose uptake. J Tradit Complement Med 2022; 12:195-205. [PMID: 35528476 PMCID: PMC9072824 DOI: 10.1016/j.jtcme.2021.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 08/07/2021] [Accepted: 08/07/2021] [Indexed: 11/26/2022] Open
|
46
|
Lee-Ødegård S, Olsen T, Norheim F, Drevon CA, Birkeland KI. Potential Mechanisms for How Long-Term Physical Activity May Reduce Insulin Resistance. Metabolites 2022; 12:metabo12030208. [PMID: 35323652 PMCID: PMC8950317 DOI: 10.3390/metabo12030208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 02/20/2022] [Accepted: 02/22/2022] [Indexed: 02/06/2023] Open
Abstract
Insulin became available for the treatment of patients with diabetes 100 years ago, and soon thereafter it became evident that the biological response to its actions differed markedly between individuals. This prompted extensive research into insulin action and resistance (IR), resulting in the universally agreed fact that IR is a core finding in patients with type 2 diabetes mellitus (T2DM). T2DM is the most prevalent form of diabetes, reaching epidemic proportions worldwide. Physical activity (PA) has the potential of improving IR and is, therefore, a cornerstone in the prevention and treatment of T2DM. Whereas most research has focused on the acute effects of PA, less is known about the effects of long-term PA on IR. Here, we describe a model of potential mechanisms behind reduced IR after long-term PA to guide further mechanistic investigations and to tailor PA interventions in the therapy of T2DM. The development of such interventions requires knowledge of normal glucose metabolism, and we briefly summarize an integrated physiological perspective on IR. We then describe the effects of long-term PA on signaling molecules involved in cellular responses to insulin, tissue-specific functions, and whole-body IR.
Collapse
Affiliation(s)
- Sindre Lee-Ødegård
- Department of Clinical Medicine, Faculty of Medicine, University of Oslo, 0372 Oslo, Norway;
| | - Thomas Olsen
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, 0372 Oslo, Norway; (T.O.); (F.N.); (C.A.D.)
| | - Frode Norheim
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, 0372 Oslo, Norway; (T.O.); (F.N.); (C.A.D.)
| | - Christian Andre Drevon
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, 0372 Oslo, Norway; (T.O.); (F.N.); (C.A.D.)
- Vitas Ltd. Analytical Services, Oslo Science Park, 0349 Oslo, Norway
| | - Kåre Inge Birkeland
- Department of Clinical Medicine, Faculty of Medicine, University of Oslo, 0372 Oslo, Norway;
- Correspondence:
| |
Collapse
|
47
|
Mocciaro G, Gastaldelli A. Obesity-Related Insulin Resistance: The Central Role of Adipose Tissue Dysfunction. Handb Exp Pharmacol 2022; 274:145-164. [PMID: 35192055 DOI: 10.1007/164_2021_573] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Obesity is a key player in the onset and progression of insulin resistance (IR), a state by which insulin-sensitive cells fail to adequately respond to insulin action. IR is a reversible condition, but if untreated leads to type 2 diabetes alongside increasing cardiovascular risk. The link between obesity and IR has been widely investigated; however, some aspects are still not fully characterized.In this chapter, we introduce key aspects of the pathophysiology of IR and its intimate connection with obesity. Specifically, we focus on the role of adipose tissue dysfunction (quantity, quality, and distribution) as a driver of whole-body IR. Furthermore, we discuss the obesity-related lipidomic remodeling occurring in adipose tissue, liver, and skeletal muscle. Key mechanisms linking lipotoxicity to IR in different tissues and metabolic alterations (i.e., fatty liver and diabetes) and the effect of weight loss on IR are also reported while highlighting knowledge gaps.
Collapse
Affiliation(s)
- Gabriele Mocciaro
- Institute of Clinical Physiology, National Research Council, Pisa, Italy
| | - Amalia Gastaldelli
- Institute of Clinical Physiology, National Research Council, Pisa, Italy.
| |
Collapse
|
48
|
Han MJ, Choung SY. Codonopsis lanceolata ameliorates sarcopenic obesity via recovering PI3K/Akt pathway and lipid metabolism in skeletal muscle. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 96:153877. [PMID: 35026519 DOI: 10.1016/j.phymed.2021.153877] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 11/01/2021] [Accepted: 12/01/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND The incidence of sarcopenic obesity, muscle atrophy induced by obesity, has steadily increased and is emerging as a health problem. Although the anti-obesity effect of Codonopsis lanceolata (CL) is known, its efficacy against sarcopenic obesity has not been studied. PURPOSE We aimed to investigate the effect of CL on sarcopenic obesity and the changes in the related mechanisms to confirm the potential of CL as an effective natural therapeutic agent for sarcopenic obesity. METHODS C57BL/6 mice were fed a high-fat diet (HFD) for 9 weeks, and CL was administered for 6 weeks with HFD feeding. Body weight and grip strength were measured twice a week. After sacrifice, muscle fiber histological analysis, blood lipid analysis, muscle triglyceride extraction, western blot, and real-time PCR were performed. High-performance liquid chromatography (HPLC)-electrospray ionization (ESI)-mass spectrometry (MS) analysis and in vitro experiments using C2C12 cells were performed to verify the main and active compounds of CL. Confluent C2C12 cells were differentiated for 4 days, and then the main compound of CL was co-treated with palmitic acid for 24 h. RESULTS CL reduced body weight, mass of three fat tissues (epididymal fat, mesenteric fat, and perirenal fat), adipocyte cross-sectional area (CSA), and improved insulin signaling. Simultaneously, CL improved grip strength, mass of three muscle tissues (quadriceps, gastrocnemius, and soleus), and muscle fiber CSA. These results were due to the recovery of both the phosphatidylinositol-3-kinase (PI3K)/ protein kinase B (Akt) signaling pathway and lipid metabolisms in skeletal muscle. Lipids accumulated in skeletal muscle interrupt the PI3K/Akt pathway, but CL reduced intramyocellular triglyceride concentration by restoring gene expression of factors related to triglyceride synthesis and fatty acid oxidation. Therefore, the activated PI3K/Akt pathway enhanced muscle protein synthesis by increasing phosphorylation of ribosomal protein S6 kinase 1 and eIF4E-binding protein 1 and suppressed muscle protein degradation by decreasing expression of muscle ring finger-1 and muscle atrophy F-box protein. In addition, tangshenoside I (TS) was verified as the main compound of CL by HPLC-ESI-MS analysis, and its efficacy of inhibiting myotube atrophy and lipid accumulation in myotubes was confirmed, verifying that TS is an active compound. CONCLUSION CL is an effective natural material for sarcopenic obesity that suppresses muscle atrophy by inhibiting the accumulation of lipids in skeletal muscle through restoration of impaired PI3K/Akt pathway and lipid metabolism.
Collapse
Affiliation(s)
- Min Ji Han
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Se-Young Choung
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea; Department of Preventive Pharmacy and Toxicology, College of Pharmacy, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea.
| |
Collapse
|
49
|
von Loeffelholz C, Roth J, Coldewey SM, Birkenfeld AL. The Role of Physical Activity in Nonalcoholic and Metabolic Dysfunction Associated Fatty Liver Disease. Biomedicines 2021; 9:biomedicines9121853. [PMID: 34944668 PMCID: PMC8698784 DOI: 10.3390/biomedicines9121853] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 12/17/2022] Open
Abstract
Sedentary behavior constitutes a pandemic health threat contributing to the pathophysiology of obesity and type 2 diabetes (T2D). Sedentarism is further associated with liver disease and particularly with nonalcoholic/metabolic dysfunction associated fatty liver disease (NAFLD/MAFLD). Insulin resistance (IR) represents an early pathophysiologic key element of NAFLD/MAFLD, prediabetes and T2D. Current treatment guidelines recommend regular physical activity. There is evidence, that physical exercise has impact on a variety of molecular pathways, such as AMP-activated protein kinase and insulin signaling as well as glucose transporter 4 translocation, modulating insulin action, cellular substrate flow and in particular ectopic lipid and glycogen storage in a positive manner. Therefore, physical exercise can lead to substantial clinical benefit in persons with diabetes and/or NAFLD/MAFLD. However, experience from long term observational studies shows that the patients’ motivation to exercise regularly appears to be a major limitation. Strategies to integrate everyday physical activity (i.e., nonexercise activity thermogenesis) in lifestyle treatment schedules might be a promising approach. This review aggregates evidence on the impact of regular physical activity on selected molecular mechanisms as well as clinical outcomes of patients suffering from IR and NAFLD/MAFLD.
Collapse
Affiliation(s)
- Christian von Loeffelholz
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, 07747 Jena, Germany; (J.R.); (S.M.C.)
- Correspondence: ; Tel.: +49-3641-9323-177; Fax: +49-3641-9323-102
| | - Johannes Roth
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, 07747 Jena, Germany; (J.R.); (S.M.C.)
| | - Sina M. Coldewey
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, 07747 Jena, Germany; (J.R.); (S.M.C.)
- Septomics Research Center, Jena University Hospital, 07747 Jena, Germany
- Center for Sepsis Control and Care, Jena University Hospital, 07747 Jena, Germany
| | - Andreas L. Birkenfeld
- Department of Diabetology Endocrinology and Nephrology, Internal Medicine IV, University Hospital Tübingen, Eberhard Karls University Tübingen, 72074 Tübingen, Germany;
- Division of Translational Diabetology, Institute of Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich, Eberhard Karls University Tübingen, 72074 Tübingen, Germany
- Department of Diabetes, School of Life Course Science and Medicine, Kings College London, London WC2R 2LS, UK
| |
Collapse
|
50
|
Carrard J, Gallart-Ayala H, Weber N, Colledge F, Streese L, Hanssen H, Schmied C, Ivanisevic J, Schmidt-Trucksäss A. How Ceramides Orchestrate Cardiometabolic Health-An Ode to Physically Active Living. Metabolites 2021; 11:metabo11100675. [PMID: 34677390 PMCID: PMC8538837 DOI: 10.3390/metabo11100675] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 09/28/2021] [Accepted: 09/29/2021] [Indexed: 01/02/2023] Open
Abstract
Cardiometabolic diseases (CMD) represent a growing socioeconomic burden and concern for healthcare systems worldwide. Improving patients’ metabolic phenotyping in clinical practice will enable clinicians to better tailor prevention and treatment strategy to individual needs. Recently, elevated levels of specific lipid species, known as ceramides, were shown to predict cardiometabolic outcomes beyond traditional biomarkers such as cholesterol. Preliminary data showed that physical activity, a potent, low-cost, and patient-empowering means to reduce CMD-related burden, influences ceramide levels. While a single bout of physical exercise increases circulating and muscular ceramide levels, regular exercise reduces ceramide content. Additionally, several ceramide species have been reported to be negatively associated with cardiorespiratory fitness, which is a potent health marker reflecting training level. Thus, regular exercise could optimize cardiometabolic health, partly by reversing altered ceramide profiles. This short review provides an overview of ceramide metabolism and its role in cardiometabolic health and diseases, before presenting the effects of exercise on ceramides in humans.
Collapse
Affiliation(s)
- Justin Carrard
- Division of Sports and Exercise Medicine, Department of Sport, Exercise and Health, University of Basel, Birsstrasse 320B, 4052 Basel, Switzerland; (L.S.); (H.H.); (A.S.-T.)
- Correspondence:
| | - Hector Gallart-Ayala
- Metabolomics Platform, Faculty of Biology and Medicine, University of Lausanne, Quartier UNIL-CHUV, Rue du Bugnon 19, 1005 Lausanne, Switzerland; (H.G.-A.); (J.I.)
| | - Nadia Weber
- Medical School, Department of Health Sciences and Technology, Swiss Federal Institute of Technology, Universitätstrasse 2, 8092 Zurich, Switzerland;
| | - Flora Colledge
- Division of Sports Science, Department of Sport, Exercise and Health, University of Basel, Birsstrasse 320B, 4052 Basel, Switzerland;
| | - Lukas Streese
- Division of Sports and Exercise Medicine, Department of Sport, Exercise and Health, University of Basel, Birsstrasse 320B, 4052 Basel, Switzerland; (L.S.); (H.H.); (A.S.-T.)
| | - Henner Hanssen
- Division of Sports and Exercise Medicine, Department of Sport, Exercise and Health, University of Basel, Birsstrasse 320B, 4052 Basel, Switzerland; (L.S.); (H.H.); (A.S.-T.)
| | - Christian Schmied
- Sports Cardiology Section, Department of Cardiology, University Heart Center Zurich, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland;
| | - Julijana Ivanisevic
- Metabolomics Platform, Faculty of Biology and Medicine, University of Lausanne, Quartier UNIL-CHUV, Rue du Bugnon 19, 1005 Lausanne, Switzerland; (H.G.-A.); (J.I.)
| | - Arno Schmidt-Trucksäss
- Division of Sports and Exercise Medicine, Department of Sport, Exercise and Health, University of Basel, Birsstrasse 320B, 4052 Basel, Switzerland; (L.S.); (H.H.); (A.S.-T.)
| |
Collapse
|