1
|
Xiao J, Xu Z. Roles of noncoding RNAs in diabetic retinopathy: Mechanisms and therapeutic implications. Life Sci 2024; 357:123092. [PMID: 39368772 DOI: 10.1016/j.lfs.2024.123092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/20/2024] [Accepted: 09/28/2024] [Indexed: 10/07/2024]
Abstract
Diabetic retinopathy (DR) is a microvascular complication of diabetes that leads to vision loss. The striking features of DR are hard exudate, cotton-wool spots, hemorrhage, and neovascularization. The dysregulated retinal cells, encompassing microvascular endothelial cells, pericytes, Müller cells, and adjacent retinal pigment epithelial cells, are involved in the pathological processes of DR. According to recent research, oxidative stress, inflammation, ferroptosis, pyroptosis, apoptosis, and angiogenesis contribute to DR. Recent advancements have highlighted that noncoding RNAs could regulate diverse targets in pathological processes that contribute to DR. Noncoding RNAs, including long noncoding RNAs, microRNAs (miRNA), and circular RNAs, are dysregulated in DR, and interact with miRNA, mRNA, or proteins to control the pathological processes of DR. Hence, modulation of noncoding RNAs may have therapeutic effects on DR. Small extracellular vesicles may be valuable tools for transferring noncoding RNAs and regulating the genes involved in progression of DR. However, the roles of noncoding RNA in developing DR are not fully understood; it is critical to summarize the mechanisms for noncoding RNA regulation of pathological processes and pathways related to DR. This review provides a fundamental understanding of the relationship between noncoding RNAs and DR, exploring the mechanism of how noncoding RNA modulates different signaling pathways, and pave the way for finding potential therapeutic strategies for DR.
Collapse
Affiliation(s)
- Jing Xiao
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Zhuping Xu
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.
| |
Collapse
|
2
|
Wang HJ, Sin CH, Yang SH, Hsueh HM, Lo WY. miR-200b-3p accelerates diabetic wound healing through anti-inflammatory and pro-angiogenic effects. Biochem Biophys Res Commun 2024; 731:150388. [PMID: 39024974 DOI: 10.1016/j.bbrc.2024.150388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/20/2024] [Accepted: 07/09/2024] [Indexed: 07/20/2024]
Abstract
The poor healing characteristics of diabetic foot ulcers are partially attributed to diabetes-induced pro-inflammatory wounds. Our previous study reported that both miR-146a-5p and miR-200b-3p decrease endothelial inflammation in human aortic endothelial cells and db/db diabetic mice. Although miR-146a-5p has been reported to improve diabetic wound healing, the role of miR-200b-3p is not clear. This study compared the roles of these miRNAs in diabetic wound healing. Two 8-mm full-thickness wounds were created in 12-week-old male db/db mice on the left and right back. After surgery, 100 ng miR-146a-5p, miR-200b-3p, or miR-negative control (NC) was injected in each wound. Full-thickness skin samples were harvested from mice at the 14th day for real-time polymerase chain reaction and immunohistochemistry analyses. At the 14th day, the miR-200b-3p group showed better wound healing and greater granulation tissue thickness than the miR-146a-5p group. The miR-200b-3p group showed a significant decrease of IL-6 and IL-1β gene expression and a significant increase of Col3α1 gene expression compared to those in the miR-NC group. The miR-200b-3p group had the lowest gene expression of TGF-β1, followed by the miR-146a-5p and miR-NC groups. Our findings suggest that the miR-200b-3p group had better healing characteristics than the other two groups. Immunohistochemical staining revealed that CD68 immunoreactivity was significantly decreased in both the miR-146a-5p and miR-200b-3p groups compared with that in the miR-NC group. In addition, CD31 immunoreactivity was significantly higher in the miR-200b-3p group than in the miR-146a-5p group. In conclusion, these results suggest that miR-200b-3p is more effective than miR-146a-5p in promoting diabetic wound healing through its anti-inflammatory and pro-angiogenic effects.
Collapse
MESH Headings
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Animals
- Wound Healing/genetics
- Male
- Mice
- Transforming Growth Factor beta1/metabolism
- Transforming Growth Factor beta1/genetics
- Diabetic Foot/genetics
- Diabetic Foot/metabolism
- Diabetic Foot/pathology
- Neovascularization, Physiologic/genetics
- Interleukin-6/metabolism
- Interleukin-6/genetics
- Antigens, Differentiation, Myelomonocytic/metabolism
- Antigens, Differentiation, Myelomonocytic/genetics
- Interleukin-1beta/metabolism
- Interleukin-1beta/genetics
- Diabetes Mellitus, Experimental/complications
- Diabetes Mellitus, Experimental/genetics
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/pathology
- Antigens, CD/genetics
- Antigens, CD/metabolism
- Skin/metabolism
- Skin/pathology
- Inflammation/genetics
- Inflammation/pathology
- Inflammation/metabolism
- Mice, Inbred C57BL
- CD68 Molecule
Collapse
Affiliation(s)
- Huang-Joe Wang
- Division of Cardiovascular Medicine, Department of Medicine, China Medical University Hospital, No. 2, Yude Rd., North Dist., Taichung City 404327, Taiwan; School of Medicine, China Medical University, No. 91, Xueshi Rd., North Dist., Taichung City 404328, Taiwan
| | - Cian-Huei Sin
- Department of Life Science, National Chung Hsing University, No. 145, Xingda Rd., South Dist., Taichung City 402202, Taiwan
| | - Shang-Hsuan Yang
- Shiny Brands Group, 7F, No. 311, Fuxing N. Rd., Songshan Dist., Taipei, 10544, Taiwan
| | - Hsiang-Ming Hsueh
- Shiny Brands Group, 7F, No. 311, Fuxing N. Rd., Songshan Dist., Taipei, 10544, Taiwan
| | - Wan-Yu Lo
- Cardiovascular & Translational Medicine Laboratory, Department of Food Science and Technology, Hungkuang University, No. 1018, Sec. 6, Taiwan Blvd., Shalu Dist., Taichung City 43302, Taiwan.
| |
Collapse
|
3
|
Li B, Hussain W, Jiang ZL, Wang JY, Hussain S, Yasoob TB, Zhai YK, Ji XY, Dang YL. Nuclear proteins and diabetic retinopathy: a review. Biomed Eng Online 2024; 23:62. [PMID: 38918766 PMCID: PMC11197269 DOI: 10.1186/s12938-024-01258-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 02/23/2024] [Indexed: 06/27/2024] Open
Abstract
Diabetic retinopathy (DR) is an eye disease that causes blindness and vision loss in diabetic. Risk factors for DR include high blood glucose levels and some environmental factors. The pathogenesis is based on inflammation caused by interferon and other nuclear proteins. This review article provides an overview of DR and discusses the role of nuclear proteins in the pathogenesis of the disease. Some core proteins such as MAPK, transcription co-factors, transcription co-activators, and others are part of this review. In addition, some current advanced treatment resulting from the role of nuclear proteins will be analyzes, including epigenetic modifications, the use of methylation, acetylation, and histone modifications. Stem cell technology and the use of nanobiotechnology are proposed as promising approaches for a more effective treatment of DR.
Collapse
Affiliation(s)
- Bin Li
- Department of Ophthalmology, The First Affiliated Hospital, Henan University, Kaifeng, 475004, Henan, China
| | - Wahab Hussain
- School of Stomatology, Henan University, Kaifeng, 475000, China
- Kaifeng Municipal Key Laboratory for Infection and Biosafety, Henan International Joint Laboratory of Nuclear Protein Regulation, School of Basic Medicine Science, Henan University, Kaifeng, 475000, China
| | - Zhi-Liang Jiang
- School of Clinical Medicine, Henan University, Kaifeng, 475004, Henan, China
| | - Jia-Yi Wang
- San-Quan College, XinXiang Medical University, No. 688 Xiangyang Road, Hongmen Town, Hongqi District, Xinxiang City, Henan, 453003, China
| | - Sarfraz Hussain
- College of Environment, Hohai University, Nanjing, 210098, China
| | - Talat Bilal Yasoob
- Department of Animal Sciences, Ghazi University, Dera Ghazi Khan, 32200, Pakistan
| | - Yuan-Kun Zhai
- School of Stomatology, Henan University, Kaifeng, 475000, China.
- Kaifeng Key Laboratory of Periodontal Tissue Engineering, Kaifeng, 475000, China.
| | - Xin-Ying Ji
- Kaifeng Municipal Key Laboratory for Infection and Biosafety, Henan International Joint Laboratory of Nuclear Protein Regulation, School of Basic Medicine Science, Henan University, Kaifeng, 475000, China.
- Faculty of Basic Medical Subjects, Shu-Qing Medical College of Zhengzhou, Mazhai, Erqi District, Zhengzhou, 450064, Henan, China.
| | - Ya-Long Dang
- Department of Ophthalmology, Sanmenxia Central Hospital, Henan University of Science and Technology, Sanmenxia, Henan, China.
- Department of Ophthalmology, Sanmenxia Eye Hospital, Sanmenxia, Henan, China.
- Department of Ophthalmology, Henan University of Science and Technology School of Medicine, Luoyang, Henan, China.
| |
Collapse
|
4
|
Cheon I, Lee S, Oh S, Ahn YH. miR-200-mediated inactivation of cancer-associated fibroblasts via targeting of NRP2-VEGFR signaling attenuates lung cancer invasion and metastasis. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102194. [PMID: 38766528 PMCID: PMC11101731 DOI: 10.1016/j.omtn.2024.102194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 04/18/2024] [Indexed: 05/22/2024]
Abstract
Cancer-associated fibroblasts (CAFs) play a substantial role in promoting cancer cell motility, drug resistance, angiogenesis, and metastasis; therefore, extensive research has been conducted to determine their mode of activation. We aimed to identify whether miRNA-200 (miR-200), a widely recognized suppressor of epithelial-mesenchymal transition, prevents CAFs from promoting cancer progression. Overexpression of miR-200 prevented CAFs from promoting lung cancer cell migration, invasion, tumorigenicity, and metastasis. Additionally, miR-200 suppressed the ability of CAFs to recruit and polarize macrophages toward the M2 phenotype, as well as the migration and tube formation of vascular endothelial cells. NRP2, a co-receptor of vascular endothelial growth factor receptor (VEGFR), was confirmed to be a target of miR-200, which mediates the functional activity of miR-200 in CAFs. NRP2-VEGFR signaling facilitates the secretion of VEGF-D and pleiotrophin from CAFs, leading to the activation of cancer cell migration and invasion. These findings suggest that miR-200 remodels CAFs to impede cancer progression and metastasis and that miR-200 and NRP2 are potential therapeutic targets in the treatment of lung cancer.
Collapse
Affiliation(s)
- Inyoung Cheon
- Department of Molecular Medicine and Inflammation-Cancer Microenvironment Research Center, College of Medicine, Ewha Womans University, Seoul 07804, Korea
| | - Sieun Lee
- Department of Molecular Medicine and Inflammation-Cancer Microenvironment Research Center, College of Medicine, Ewha Womans University, Seoul 07804, Korea
| | - Seonyeong Oh
- Department of Molecular Medicine and Inflammation-Cancer Microenvironment Research Center, College of Medicine, Ewha Womans University, Seoul 07804, Korea
| | - Young-Ho Ahn
- Department of Molecular Medicine and Inflammation-Cancer Microenvironment Research Center, College of Medicine, Ewha Womans University, Seoul 07804, Korea
| |
Collapse
|
5
|
Yu W, Yang B, Xu S, Gao Y, Huang Y, Wang Z. Diabetic Retinopathy and Cardiovascular Disease: A Literature Review. Diabetes Metab Syndr Obes 2023; 16:4247-4261. [PMID: 38164419 PMCID: PMC10758178 DOI: 10.2147/dmso.s438111] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024] Open
Abstract
Diabetic complications can be divided into macrovascular complications such as cardiovascular disease and cerebrovascular disease and microvascular complications such as diabetic retinopathy, diabetic nephropathy and diabetic neuropathy. Among them, cardiovascular disease (CVD) is an important cause of death in diabetic patients. Diabetes retinopathy (DR) is one of the main reasons for the increasing disability rate of diabetes. In recent years, some studies have found that because DR and CVD have a common pathophysiological basis, the occurrence of DR and CVD are inseparable, and to a certain extent, DR can predict the occurrence of CVD. With the development of technology, the fundus parameters of DR can be quantitatively analyzed as an independent risk factor of CVD. In addition, the cytokines related to DR can also be used for early screening of DR. Although many advances have been made in the treatment of CVD, its situation of prevention and treatment is still not optimistic. This review hopes to discuss the feasibility of DR in predicting CVD from the common pathophysiological mechanism of DR and CVD, the new progress of diagnostic techniques for DR, and the biomarkers for early screening of DR.
Collapse
Affiliation(s)
- Wenhua Yu
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, People’s Republic of China
| | - Bo Yang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, People’s Republic of China
| | - Siting Xu
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, People’s Republic of China
| | - Yun Gao
- Department of Pathology, Affiliated Hospital of Jiangsu University, Zhenjiang, People’s Republic of China
| | - Yan Huang
- Department of Ophthalmology, Affiliated Hospital of Jiangsu University, Zhenjiang, People’s Republic of China
| | - Zhongqun Wang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, People’s Republic of China
| |
Collapse
|
6
|
Castaño IM, Raftery RM, Chen G, Cavanagh B, Quinn B, Duffy GP, Curtin CM, O'Brien FJ. Dual scaffold delivery of miR-210 mimic and miR-16 inhibitor enhances angiogenesis and osteogenesis to accelerate bone healing. Acta Biomater 2023; 172:480-493. [PMID: 37797708 DOI: 10.1016/j.actbio.2023.09.049] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/30/2023] [Accepted: 09/28/2023] [Indexed: 10/07/2023]
Abstract
Angiogenesis is critical for successful bone repair, and interestingly, miR-210 and miR-16 possess counter-active targets involved in both angiogenesis and osteogenesis: miR-210 acts as an activator by silencing EFNA3 & AcvR1b, while miR-16 inhibits both pathways by silencing VEGF & Smad5. It was thus hypothesized that dual delivery of both a miR-210 mimic and a miR-16 inhibitor from a collagen-nanohydroxyapatite scaffold system may hold significant potential for bone repair. Therefore, this systems potential to rapidly accelerate bone repair by directing enhanced angiogenic-osteogenic coupling in host cells in a rat calvarial defect model at a very early 4 week timepoint was assessed. In vitro, the treatment significantly enhanced angiogenic-osteogenic coupling of human mesenchymal stem cells, with enhanced calcium deposition after just 10 days in 2D and 14 days on scaffolds. In vivo, these dual-miRNA loaded scaffolds showed more than double bone volume and vessel recruitment increased 2.3 fold over the miRNA-free scaffolds. Overall, this study demonstrates the successful development of a dual-miRNA mimic/inhibitor scaffold for enhanced in vivo bone repair for the first time, and the possibility of extending this 'off-the-shelf' platform system to applications beyond bone offers immense potential to impact a myriad of other tissue engineering areas. STATEMENT OF SIGNIFICANCE: miRNAs have potential as a new class of bone healing therapeutics as they can enhance the regenerative capacity of bone-forming cells. However, angiogenic-osteogenic coupling is critical for successful bone repair. Therefore, this study harnesses the delivery of miR-210, known to be an activator of both angiogenesis and osteogenesis, and miR-16 inhibitor, as miR-16 is known to inhibit both pathways, from a collagen-nanohydroxyapatite scaffold system to rapidly enhance osteogenesis in vitro and bone repair in vivo in a rat calvarial defect model. Overall, it describes the successful development of the first dual-miRNA mimic/inhibitor scaffold for enhanced in vivo bone repair. This 'off-the-shelf' platform system offers immense potential to extend beyond bone applications and impact a myriad of other tissue engineering areas.
Collapse
Affiliation(s)
- Irene Mencía Castaño
- Tissue Engineering Research Group, Department of Anatomy, Royal College of Surgeons in Ireland (RCSI), 123 St. Stephens Green, Dublin 2, Ireland
| | - Rosanne M Raftery
- Tissue Engineering Research Group, Department of Anatomy, Royal College of Surgeons in Ireland (RCSI), 123 St. Stephens Green, Dublin 2, Ireland; School of Pharmacy, RCSI, Dublin, Ireland
| | - Gang Chen
- Department of Physiology and Medical Physics, Centre for the Study of Neurological Disorders, Microsurgical Research and Training Facility, RCSI, Dublin 2, Ireland
| | | | - Brian Quinn
- Tissue Engineering Research Group, Department of Anatomy, Royal College of Surgeons in Ireland (RCSI), 123 St. Stephens Green, Dublin 2, Ireland
| | - Garry P Duffy
- Tissue Engineering Research Group, Department of Anatomy, Royal College of Surgeons in Ireland (RCSI), 123 St. Stephens Green, Dublin 2, Ireland; Trinity Centre for Biomedical Engineering, Trinity College Dublin (TCD), College Green, Dublin 2, Ireland; Advanced Materials and Bioengineering Research Centre (AMBER), RCSI and TCD, Dublin 2, Ireland; Anatomy, School of Medicine, College of Medicine Nursing and Health Sciences, University of Galway, University Road, Galway, Ireland
| | - Caroline M Curtin
- Tissue Engineering Research Group, Department of Anatomy, Royal College of Surgeons in Ireland (RCSI), 123 St. Stephens Green, Dublin 2, Ireland; Trinity Centre for Biomedical Engineering, Trinity College Dublin (TCD), College Green, Dublin 2, Ireland; Advanced Materials and Bioengineering Research Centre (AMBER), RCSI and TCD, Dublin 2, Ireland.
| | - Fergal J O'Brien
- Tissue Engineering Research Group, Department of Anatomy, Royal College of Surgeons in Ireland (RCSI), 123 St. Stephens Green, Dublin 2, Ireland; Trinity Centre for Biomedical Engineering, Trinity College Dublin (TCD), College Green, Dublin 2, Ireland; Advanced Materials and Bioengineering Research Centre (AMBER), RCSI and TCD, Dublin 2, Ireland.
| |
Collapse
|
7
|
Wang E, Chen S, Wang H, Chen T, Chakrabarti S. Non-coding RNA-mediated endothelial-to-mesenchymal transition in human diabetic cardiomyopathy, potential regulation by DNA methylation. Cardiovasc Diabetol 2023; 22:303. [PMID: 37924123 PMCID: PMC10625293 DOI: 10.1186/s12933-023-02039-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 10/19/2023] [Indexed: 11/06/2023] Open
Abstract
AIMS Diabetic cardiomyopathy (DCM) is a major complication of diabetes and a risk factor for cardiovascular disease. Endothelial dysfunction is central to DCM, and endothelial-to-mesenchymal transition (EndMT) is a key form of endothelial dysfunction in diabetes. EndMT in DCM has been well-studied in model systems and has been found to be epigenetically regulated by non-coding RNAs (ncRNAs). However, EndMT in DCM and its associated epigenetic changes need further characterization in human patients. It is also not known if ncRNAs are affected by changes in DNA methylation in DCM. This study aims to confirm in human hearts, the findings from animal and cell studies, and potentially provide novel insight into interactions between DNA methylation and ncRNAs in EndMT in DCM. METHODS AND RESULTS Heart tissues were collected from autopsy patients, fixed in formalin, and embedded in paraffin. Thin sections from paraffin-embedded tissues were used for histology and immunofluorescence analyses, where we confirmed that diabetic patients showed increased cardiac fibrosis that EndMT had occurred. Tissue curls from the paraffin-embedded tissues were used for RT-qPCR and methylation analyses. RT-qPCR quantitatively showed that EndMT occurs in the hearts of diabetics, and that EndMT in human hearts corresponded to changes in key ncRNAs. Methylation analysis showed that some of the EndMT-related ncRNAs were regulated by DNA promoter methylation, while others may be regulated through different epigenetic mechanisms. CONCLUSIONS We show that EndMT is a relevant pathological process in human hearts during DCM, and that its occurrence coincides with changes in relevant ncRNAs. We further find that interplay between DNA methylation and certain ncRNAs involved in the regulation of EndMT may contribute to the observed changes in ncRNA expression. These findings reinforce the role of EndMT in patients afflicted with DCM and underscore the complexities and importance of the interactions between different facets of epigenetic regulation.
Collapse
Affiliation(s)
- Eric Wang
- Department of Pathology and Laboratory Medicine, Western University, Dental Science Building Room 4033, 1151 Richmond St, London, ON, N6A 3K7, Canada
| | - Shali Chen
- Department of Pathology and Laboratory Medicine, Western University, Dental Science Building Room 4033, 1151 Richmond St, London, ON, N6A 3K7, Canada
| | - Honglin Wang
- Department of Pathology and Laboratory Medicine, Western University, Dental Science Building Room 4033, 1151 Richmond St, London, ON, N6A 3K7, Canada
| | - Tori Chen
- Department of Pathology and Laboratory Medicine, Western University, Dental Science Building Room 4033, 1151 Richmond St, London, ON, N6A 3K7, Canada
| | - Subrata Chakrabarti
- Department of Pathology and Laboratory Medicine, Western University, Dental Science Building Room 4033, 1151 Richmond St, London, ON, N6A 3K7, Canada.
| |
Collapse
|
8
|
Luo M, Mo C, Tang D, Liu SZ, Yang T. Exosomal miRNA-200b-3p regulated autogenous arteriovenous fistula thrombosis in maintenance hemodialysis patients. J Vasc Access 2023; 24:1445-1455. [PMID: 35446157 DOI: 10.1177/11297298221092951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Autogenous arteriovenous fistula (AVF) is the best vascular hemodialysis access for terminal chronic renal failure patients but is prone to thrombosis. Pathogenic mechanisms of AVF thrombus are thus largely explored. As exosomes carry genetic content from cell of origin. We hypothesized that miRNAs in serum exosomes are promising regulators of AVF thrombosis. METHODS Serum exosomes were isolated from maintenance hemodialysis (MHD) patient, miRNAs profile of the exosomes was obtained by high throughput sequencing, six miRNAs (miR-144-5p, miR-18a-5p, miR-200a-3p, miR-200b-3p, miR-141-3p, and miR-429) were determined as candidates examined by RT-PCR, cells transfected with miR-200b-3p mimics demonstrated significantly increased mRNA levels of VEGF and Ang-II, the relationship between miR-200b-3p and VEGF or Ang-II was performed by adual luciferase reporter assay. RESULTS There are 43 miRNA down-regulation and 15 miRNA up-regulation between MHD group and MHD+Thrombus group, the expression levels of miR-200b-3p and miR-429 in MHD with thrombus were significantly increased (p < 0.001, p < 0.05). Inhibited miR-200b-3p expression level can increase VEGF mRNA and protein expression levels and decrease Ang-II mRNA and protein expression levels. Furthermore, we also identified that miR-200b-3p targets VEGF and Ang-II. CONCLUSION Our study indicates that serum exosome-derived miR-200b-3p regulate VEGF and Ang-II to increase intimal hyperplasia to induce AVF thrombosis. Besides miR-200b-3p, miR-200 family may also play a regulatory role in AVF thrombosis.
Collapse
Affiliation(s)
- Minhong Luo
- Department of Nephrology, Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Caiju Mo
- Department of Nephrology, Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Dang Tang
- Department of Nephrology, Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Sheng Zi Liu
- Department of Nephrology, Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Tiecheng Yang
- Department of Nephrology, Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
9
|
Błaszkiewicz M, Walulik A, Florek K, Górecki I, Sławatyniec O, Gomułka K. Advances and Perspectives in Relation to the Molecular Basis of Diabetic Retinopathy-A Review. Biomedicines 2023; 11:2951. [PMID: 38001952 PMCID: PMC10669459 DOI: 10.3390/biomedicines11112951] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 11/26/2023] Open
Abstract
Diabetes mellitus (DM) is a growing problem nowadays, and diabetic retinopathy (DR) is its predominant complication. Currently, DR diagnosis primarily relies on fundoscopic examination; however, novel biomarkers may facilitate that process and make it widely available. In this current review, we delve into the intricate roles of various factors and mechanisms in DR development, progression, prediction, and their association with therapeutic approaches linked to the underlying pathogenic pathways. Specifically, we focus on advanced glycation end products, vascular endothelial growth factor (VEGF), asymmetric dimethylarginine, endothelin-1, and the epigenetic regulation mediated by microRNAs (miRNAs) in the context of DR.
Collapse
Affiliation(s)
- Michał Błaszkiewicz
- Student Scientific Group of Adult Allergology, Wroclaw Medical University, 50-369 Wroclaw, Poland
| | - Agata Walulik
- Student Scientific Group of Adult Allergology, Wroclaw Medical University, 50-369 Wroclaw, Poland
| | - Kamila Florek
- Student Scientific Group of Adult Allergology, Wroclaw Medical University, 50-369 Wroclaw, Poland
| | - Ignacy Górecki
- Student Scientific Group of Adult Allergology, Wroclaw Medical University, 50-369 Wroclaw, Poland
| | - Olga Sławatyniec
- Student Scientific Group of Adult Allergology, Wroclaw Medical University, 50-369 Wroclaw, Poland
| | - Krzysztof Gomułka
- Clinical Department of Internal Medicine, Pneumology and Allergology, Wroclaw Medical University, 50-369 Wroclaw, Poland
| |
Collapse
|
10
|
Xu M, Wang Y, Zhou J, Zhang X, Yu Y, Li K. MicroRNA-93 promotes the pathogenesis of glaucoma by inhibiting matrix metalloproteinases as well as up-regulating extracellular matrix and Rho/ROCK signaling pathways. Heliyon 2023; 9:e22012. [PMID: 38045197 PMCID: PMC10689882 DOI: 10.1016/j.heliyon.2023.e22012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 11/01/2023] [Accepted: 11/01/2023] [Indexed: 12/05/2023] Open
Abstract
Objective To investigate the effect and potential molecular mechanism of microRNA-93 (miR-93) on retinal ganglion cells (RGCs) apoptosis as well as retinal damage in acute glaucoma mice. Methods RGCs apoptosis were induced by oxygen-glucose deprivation and reperfusion (OGD/R). The pro-apoptotic effect of miR-93 was evaluated by transfecting miR-93 mimics or miR-93 inhibitor into OGD/R-induced RGCs. The viability and apoptosis of RGCs were determined by MTT assay and flow cytometry. Mouse model of acute glaucoma were successfully induced via high intraocular pressure (IOP), and then these model animals were randomly divided into vehicle group, miR-93 mimics group or miR-93 inhibitor group (n = 10), using healthy mice as normal control. Histopathologic changes of retinal tissue were evaluated by Hematoxylin and Eosin (H&E) staining method. Moreover, cell counts of retinal ganglion cell layer and mean thickness of different layers were also determined. Quantitative real-time PCR (qPCR) and western blotting analysis were used to detect the mRNA and protein expression levels of extracellular matrix (ECM), matrix metalloproteinases (MMPs) and Rho/ROCK signaling pathway. Results miR-93 mimics significantly decreased or promoted the viability and apoptosis of OGD/R-induced RGCs, respectively. In addition, miR-93 mimics significantly exacerbated the degree of retinal tissue damage in mice with acute glaucoma, which was accompanied by a decrease in the number of ganglion cell layer (GCL) cells and the thickness of different tissue layers. Moreover, miR-93 mimics significantly increased IOP in mice with acute glaucoma. Significantly, miR-93 inhibitors significantly reversed the above changes. In addition, results of Western blot analysis showed that miR-93 mimics increased and decreased the expression of ECM-associated and MMP-associated proteins, respectively, by activating the Rho/ROCK signaling pathway. In contrast, miR-93 significantly decreased and increased the expression of ECM-associated and MMP-associated proteins, and suppressed the expression of Rho/ROCK signaling pathway-related proteins. Conclusion miR-93 can promote the development of glaucoma by activating Rho/ROCK signaling pathway to mediate the accumulation of ECM-related proteins as well as the down-regulation of MMP-related proteins.
Collapse
Affiliation(s)
- Manhua Xu
- Department of Ophthalmology, Nanfang Hospital, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan Province, China
| | - Yanxi Wang
- Department of Ophthalmology, Nanfang Hospital, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan Province, China
| | - Juan Zhou
- Department of Ophthalmology, Nanfang Hospital, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan Province, China
| | - Xun Zhang
- Department of Ophthalmology, Nanfang Hospital, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan Province, China
| | - Yinggui Yu
- Department of Ophthalmology, Nanfang Hospital, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan Province, China
| | - Kaiming Li
- Department of Ophthalmology, Nanfang Hospital, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan Province, China
| |
Collapse
|
11
|
Li L, Dai Y, Ke D, Liu J, Chen P, Wei D, Wang T, Teng Y, Yuan X, Zhang Z. Ferroptosis: new insight into the mechanisms of diabetic nephropathy and retinopathy. Front Endocrinol (Lausanne) 2023; 14:1215292. [PMID: 37600716 PMCID: PMC10435881 DOI: 10.3389/fendo.2023.1215292] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 07/19/2023] [Indexed: 08/22/2023] Open
Abstract
Diabetic nephropathy (DN) and diabetic retinopathy (DR) are the most serious and common diabetes-associated complications. DN and DR are all highly prevalent and dangerous global diseases, but the underlying mechanism remains to be elucidated. Ferroptosis, a relatively recently described type of cell death, has been confirmed to be involved in the occurrence and development of various diabetic complications. The disturbance of cellular iron metabolism directly triggers ferroptosis, and abnormal iron metabolism is closely related to diabetes. However, the molecular mechanism underlying the role of ferroptosis in DN and DR is still unclear, and needs further study. In this review article, we summarize and evaluate the mechanism of ferroptosis and its role and progress in DN and DR, it provides new ideas for the diagnosis and treatment of DN and DR.
Collapse
Affiliation(s)
- Luxin Li
- College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, China
| | - Yucen Dai
- College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China
| | - Dan Ke
- College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China
| | - Jieting Liu
- College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, China
| | - Peijian Chen
- College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, China
| | - Dong Wei
- Department of Ophthalmology, Affiliated Hongqi Hospital, Mudanjiang Medical University, Mudanjiang, China
| | - Tongtong Wang
- Department of Endocrinology, Affiliated Hongqi Hospital, Mudanjiang Medical University, Mudanjiang, China
| | - Yanjie Teng
- College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, China
| | - Xiaohuan Yuan
- College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, China
| | - Zhen Zhang
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, China
- School of First Clinical Medical College, Mudanjiang Medical University, Mudanjiang, China
| |
Collapse
|
12
|
Petkovic A, Erceg S, Munjas J, Ninic A, Vladimirov S, Davidovic A, Vukmirovic L, Milanov M, Cvijanovic D, Mitic T, Sopic M. LncRNAs as Regulators of Atherosclerotic Plaque Stability. Cells 2023; 12:1832. [PMID: 37508497 PMCID: PMC10378138 DOI: 10.3390/cells12141832] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/11/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
Current clinical data show that, despite constant efforts to develop novel therapies and clinical approaches, atherosclerotic cardiovascular diseases (ASCVD) are still one of the leading causes of death worldwide. Advanced and unstable atherosclerotic plaques most often trigger acute coronary events that can lead to fatal outcomes. However, despite the fact that different plaque phenotypes may require different treatments, current approaches to prognosis, diagnosis, and classification of acute coronary syndrome do not consider the diversity of plaque phenotypes. Long non-coding RNAs (lncRNAs) represent an important class of molecules that are implicated in epigenetic control of numerous cellular processes. Here we review the latest knowledge about lncRNAs' influence on plaque development and stability through regulation of immune response, lipid metabolism, extracellular matrix remodelling, endothelial cell function, and vascular smooth muscle function, with special emphasis on pro-atherogenic and anti-atherogenic lncRNA functions. In addition, we present current challenges in the research of lncRNAs' role in atherosclerosis and translation of the findings from animal models to humans. Finally, we present the directions for future lncRNA-oriented research, which may ultimately result in patient-oriented therapeutic strategies for ASCVD.
Collapse
Affiliation(s)
- Aleksa Petkovic
- Clinical-Hospital Centre "Dr Dragiša Mišović-Dedinje", 11000 Belgrade, Serbia
| | - Sanja Erceg
- Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, 11000 Belgrade, Serbia
| | - Jelena Munjas
- Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, 11000 Belgrade, Serbia
| | - Ana Ninic
- Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, 11000 Belgrade, Serbia
| | - Sandra Vladimirov
- Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, 11000 Belgrade, Serbia
| | - Aleksandar Davidovic
- Intern Clinic, Clinical Ward for Cardiovascular Diseases, Clinical-Hospital Centre Zvezdara, 11000 Belgrade, Serbia
- Department for Internal Medicine, Faculty of Dentistry, University of Belgrade, 11000 Belgrade, Serbia
| | - Luka Vukmirovic
- Intern Clinic, Clinical Ward for Cardiovascular Diseases, Clinical-Hospital Centre Zvezdara, 11000 Belgrade, Serbia
| | - Marko Milanov
- Intern Clinic, Clinical Ward for Cardiovascular Diseases, Clinical-Hospital Centre Zvezdara, 11000 Belgrade, Serbia
| | - Dane Cvijanovic
- Intern Clinic, Clinical Ward for Cardiovascular Diseases, Clinical-Hospital Centre Zvezdara, 11000 Belgrade, Serbia
| | - Tijana Mitic
- Centre for Cardiovascular Science, The Queen's Medical Research Institute, Edinburgh EH16 4TJ, UK
| | - Miron Sopic
- Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, 11000 Belgrade, Serbia
| |
Collapse
|
13
|
Wang E, Feng B, Chakrabarti S. MicroRNA 9 Is a Regulator of Endothelial to Mesenchymal Transition in Diabetic Retinopathy. Invest Ophthalmol Vis Sci 2023; 64:13. [PMID: 37279396 PMCID: PMC10249683 DOI: 10.1167/iovs.64.7.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 05/23/2023] [Indexed: 06/08/2023] Open
Abstract
Purpose Diabetic retinopathy (DR) is a significant cause of blindness. Most research around DR focus on late-stage developments rather than early changes such as early endothelial dysfunction. Endothelial-to-mesenchymal transition (EndMT), an epigenetically regulated process whereby endothelial cells lose endothelial characteristics and adopt mesenchymal-like phenotypes, contributes to early endothelial changes in DR. The epigenetic regulator microRNA 9 (miR-9) is suppressed in the eyes during DR. MiR-9 plays a role in various diseases and regulates EndMT-related processes in other organs. We investigated the role miR-9 plays in glucose-induced EndMT in DR. Methods We examined the effects of glucose on miR-9 and EndMT using human retinal endothelial cells (HRECs). We then used HRECs and an endothelial-specific miR-9 transgenic mouse line to investigate the effect of miR-9 on glucose-induced EndMT. Finally, we used HRECs to probe the mechanisms through which miR-9 may regulate EndMT. Results We found that miR-9 inhibition was both necessary and sufficient for glucose-induced EndMT. Overexpression of miR-9 prevented glucose-induced EndMT, whereas suppressing miR-9 caused glucose-like EndMT changes. We also found that preventing EndMT with miR-9 overexpression improved retinal vascular leakage in DR. Finally, we showed that miR-9 regulates EndMT at an early stage by regulating EndMT-inducing signals such as proinflammatory and TGF-β pathways. Conclusions We have shown that miR-9 is an important regulator of EndMT in DR, potentially making it a good target for RNA-based therapy in early DR.
Collapse
Affiliation(s)
- Eric Wang
- Department of Pathology and Laboratory Medicine, Western University, London, Ontario, Canada
| | - Biao Feng
- Department of Pathology and Laboratory Medicine, Western University, London, Ontario, Canada
| | - Subrata Chakrabarti
- Department of Pathology and Laboratory Medicine, Western University, London, Ontario, Canada
| |
Collapse
|
14
|
Zolfaghari N, Soheili ZS, Samiei S, Latifi-Navid H, Hafezi-Moghadam A, Ahmadieh H, Rezaei-Kanavi M. microRNA-96 targets the INS/AKT/GLUT4 signaling axis: Association with and effect on diabetic retinopathy. Heliyon 2023; 9:e15539. [PMID: 37180885 PMCID: PMC10172874 DOI: 10.1016/j.heliyon.2023.e15539] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 04/07/2023] [Accepted: 04/13/2023] [Indexed: 05/16/2023] Open
Abstract
Background miR-96-5p is a highly expressed microRNA in the retina of subjects with diabetes. The INS/AKT/GLUT4 signaling axis is the main cell signaling pathway of glucose uptake in cells. Here, we investigated the role of miR-96-5p in this signaling pathway. Methods Expression levels of miR-96-5p and its target genes were measured under high glucose conditions, in the retina of streptozotocin-induced diabetic mice, in the retina of AAV-2-eGFP-miR-96 or GFP intravitreal injected mice and in the retina of human donors with diabetic retinopathy (DR). MTT, wound healing, tube formation, Western blot, TUNEL, angiogenesis assays and hematoxylin-eosin staining of the retinal sections were performed. Results miR-96-5p expression was increased under high glucose conditions in mouse retinal pigment epithelial (mRPE) cells, in the retina of mice receiving AAV-2 carrying miR-96 and STZ-treated mice. Expression of the miR-96-5p target genes related to the INS/AKT/GLUT4 signaling pathway was reduced following miR-96-5p overexpression. mmu-miR-96-5p expression decreased cell proliferation and thicknesses of retinal layers. Cell migration, tube formation, vascular length, angiogenesis, and TUNEL-positive cells were increased. Conclusions In in vitro and in vivo studies and in human retinal tissues, miR-96-5p regulated the expression of the PIK3R1, PRKCE, AKT1, AKT2, and AKT3 genes in the INS/AKT axis and some genes involved in GLUT4 trafficking, such as Pak1, Snap23, RAB2a, and Ehd1. Because disruption of the INS/AKT/GLUT4 signaling axis causes advanced glycation end product accumulation and inflammatory responses, the inhibition of miR-96-5p expression could ameliorate DR.
Collapse
Affiliation(s)
- Narges Zolfaghari
- Department of Molecular Medicine, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Zahra-Soheila Soheili
- Department of Molecular Medicine, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Shahram Samiei
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Hamid Latifi-Navid
- Department of Molecular Medicine, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Ali Hafezi-Moghadam
- Molecular Biomarkers Nano-Imaging Laboratory, Brigham and Women's Hospital, Boston, MA, USA
| | - Hamid Ahmadieh
- Ophthalmic Research Center, Research Institute for Ophthalmology and Vision Science, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mozhgan Rezaei-Kanavi
- Ocular Tissue Engineering Research Center, Research Institute for Ophthalmology and Vision Science, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
15
|
Xiao H, Tang J, Zhang F, Liu L, Zhou J, Chen M, Li M, Wu X, Nie Y, Duan J. Global trends and performances in diabetic retinopathy studies: A bibliometric analysis. Front Public Health 2023; 11:1128008. [PMID: 37124794 PMCID: PMC10136779 DOI: 10.3389/fpubh.2023.1128008] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 03/09/2023] [Indexed: 05/02/2023] Open
Abstract
Objective The objective of this study is to conduct a comprehensive bibliometric analysis to identify and evaluate global trends in diabetic retinopathy (DR) research and visualize the focus and frontiers of this field. Methods Diabetic retinopathy-related publications from the establishment of the Web of Science (WOS) through 1 November 2022 were retrieved for qualitative and quantitative analyses. This study analyzed annual publication counts, prolific countries, institutions, journals, and the top 10 most cited literature. The findings were presented through descriptive statistics. VOSviewer 1.6.17 was used to exhibit keywords with high frequency and national cooperation networks, while CiteSpace 5.5.R2 displayed the timeline and burst keywords for each term. Results A total of 10,709 references were analyzed, and the number of publications continuously increased over the investigated period. America had the highest h-index and citation frequency, contributing to the most influence. China was the most prolific country, producing 3,168 articles. The University of London had the highest productivity. The top three productive journals were from America, and Investigative Ophthalmology Visual Science had the highest number of publications. The article from Gulshan et al. (2016; co-citation counts, 2,897) served as the representative and symbolic reference. The main research topics in this area were incidence, pathogenesis, treatment, and artificial intelligence (AI). Deep learning, models, biomarkers, and optical coherence tomography angiography (OCTA) of DR were frontier hotspots. Conclusion Bibliometric analysis in this study provided valuable insights into global trends in DR research frontiers. Four key study directions and three research frontiers were extracted from the extensive DR-related literature. As the incidence of DR continues to increase, DR prevention and treatment have become a pressing public health concern and a significant area of research interest. In addition, the development of AI technologies and telemedicine has emerged as promising research frontiers for balancing the number of doctors and patients.
Collapse
Affiliation(s)
- Huan Xiao
- School of Ophthalmology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jinfan Tang
- School of Acupuncture-Moxibustion and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Feng Zhang
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Luping Liu
- School of Ophthalmology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jing Zhou
- School of Ophthalmology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Meiqi Chen
- School of Ophthalmology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Mengyue Li
- School of Ophthalmology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaoxiao Wu
- School of Ophthalmology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yingying Nie
- School of Ophthalmology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Junguo Duan
- School of Ophthalmology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
16
|
Da'as SI, Ahmed I, Hasan WH, Abdelrahman DA, Aliyev E, Nisar S, Bhat AA, Joglekar MV, Hardikar AA, Fakhro KA, Akil ASAS. The link between glycemic control measures and eye microvascular complications in a clinical cohort of type 2 diabetes with microRNA-223-3p signature. J Transl Med 2023; 21:171. [PMID: 36869348 PMCID: PMC9985290 DOI: 10.1186/s12967-023-03893-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 01/16/2023] [Indexed: 03/05/2023] Open
Abstract
BACKGROUND Type 2 diabetes (T2D) is a critical healthcare challenge and priority in Qatar which is listed amongst the top 10 countries in the world, with its prevalence presently at 17% double the global average. MicroRNAs (miRNAs) are implicated in the pathogenesis of (T2D) and long-term microvascular complications including diabetic retinopathy (DR). METHODS In this study, a T2D cohort that accurately matches the characteristics of the general population was employed to find microRNA (miRNA) signatures that are correlated with glycemic and β cell function measurements. Targeted miRNA profiling was performed in (471) T2D individuals with or without DR and (491) (non-diabetic) healthy controls from the Qatar Biobank. Discovery analysis identified 20 differentially expressed miRNAs in T2D compared to controls, of which miR-223-3p was significantly upregulated (fold change:5.16, p = 3.6e-02) and positively correlated with glucose and hemoglobin A1c (HbA1c) levels (p-value = 9.88e-04 and 1.64e-05, respectively), but did not show any significant associations with insulin or C-peptide. Accordingly, we performed functional validation using a miR-223-3p mimic (overexpression) under control and hyperglycemia-induced conditions in a zebrafish model. RESULTS Over-expression of miR-223-3p alone was associated with significantly higher glucose (42.7 mg/dL, n = 75 vs 38.7 mg/dL, n = 75, p = 0.02) and degenerated retinal vasculature, and altered retinal morphology involving changes in the ganglion cell layer and inner and outer nuclear layers. Assessment of retinal angiogenesis revealed significant upregulation in the expression of vascular endothelial growth factor and its receptors, including kinase insert domain receptor. Further, the pancreatic markers, pancreatic and duodenal homeobox 1, and the insulin gene expressions were upregulated in the miR-223-3p group. CONCLUSION Our zebrafish model validates a novel correlation between miR-223-3p and DR development. Targeting miR-223-3p in T2D patients may serve as a promising therapeutic strategy to control DR in at-risk individuals.
Collapse
Affiliation(s)
- Sahar I Da'as
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Program, Sidra Medicine, P.O. Box 26999, Doha, Qatar.,Zebrafish Functional Genomics, Integrated Genomic Services Core Facility, Research Branch, Sidra Medicine, P.O. Box 26999, Doha, Qatar.,College of Health and Life Sciences, Hamad Bin Khalifa University, P.O. Box 34110, Doha, Qatar
| | - Ikhlak Ahmed
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Program, Sidra Medicine, P.O. Box 26999, Doha, Qatar
| | - Waseem H Hasan
- Zebrafish Functional Genomics, Integrated Genomic Services Core Facility, Research Branch, Sidra Medicine, P.O. Box 26999, Doha, Qatar
| | - Doua A Abdelrahman
- Zebrafish Functional Genomics, Integrated Genomic Services Core Facility, Research Branch, Sidra Medicine, P.O. Box 26999, Doha, Qatar
| | - Elbay Aliyev
- Laboratory of Genomic Medicine-Precision Medicine Program, Sidra Medicine, P.O. Box 26999, Doha, Qatar
| | - Sabah Nisar
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Program, Sidra Medicine, P.O. Box 26999, Doha, Qatar
| | - Ajaz Ahmad Bhat
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Program, Sidra Medicine, P.O. Box 26999, Doha, Qatar
| | - Mugdha V Joglekar
- Diabetes and Islet Biology Group, School of Medicine, Western Sydney University, Narellan Road & Gilchrist Drive, Campbelltown, NSW, 2560, Australia
| | - Anandwardhan A Hardikar
- Diabetes and Islet Biology Group, School of Medicine, Western Sydney University, Narellan Road & Gilchrist Drive, Campbelltown, NSW, 2560, Australia.,Department of Science and Environment, Roskilde University, Universitetsvej 1, 4000, Roskilde, Denmark
| | - Khalid A Fakhro
- Laboratory of Genomic Medicine-Precision Medicine Program, Sidra Medicine, P.O. Box 26999, Doha, Qatar.,College of Health and Life Sciences, Hamad Bin Khalifa University, P.O. Box 34110, Doha, Qatar.,Department of Genetic Medicine, Weill Cornell Medical College, P.O. Box 24144, Doha, Qatar
| | - Ammira S Al-Shabeeb Akil
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Program, Sidra Medicine, P.O. Box 26999, Doha, Qatar. .,Laboratory of Genomic Medicine-Precision Medicine Program, Sidra Medicine, P.O. Box 26999, Doha, Qatar.
| |
Collapse
|
17
|
Cao W, Zhang N, He X, Xing Y, Yang N. Long non-coding RNAs in retinal neovascularization: current research and future directions. Graefes Arch Clin Exp Ophthalmol 2023; 261:615-626. [PMID: 36171459 DOI: 10.1007/s00417-022-05843-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 09/05/2022] [Accepted: 09/20/2022] [Indexed: 12/17/2022] Open
Abstract
PURPOSE Retinal neovascularization (RNV) is an intractable pathological hallmark of numerous ocular blinding diseases, including diabetic retinopathy, retinal vein occlusion, and retinopathy of prematurity. However, current therapeutic methods have potential side effects and limited efficacy. Thus, further studies on the pathogenesis of RNV-related disorders and novel therapeutic targets are critically required. Long non-coding RNAs (lncRNAs) have various functions and participate in almost all biological processes in living cells, such as translation, transcription, signal transduction, and cell cycle control. In addition, recent research has demonstrated critical modulatory roles of various lncRNAs in RNV. In this review, we summarize current knowledge about the expression and regulatory functions of lncRNAs related to the progression of pathological RNV. METHODS We searched databases such as PubMed and Web of Science to gather and review information from the published literature. CONCLUSIONS In general, lncRNA MEG3 attenuates RNV, thus protecting the retina from excessive and dysregulated angiogenesis under high glucose stress. In contrast, lncRNAs MALAT1, MIAT, ANRIL, HOTAIR, HOTTIP, and SNHG16, have been identified as causative molecules in the pathological progression of RNV. Comprehensive and in-depth studies of the roles of lncRNAs in RNV indicate that targeting lncRNAs may be an alternative therapeutic approach in the near future, enabling new options for attenuating RNV progression and treating RNV-related retinal diseases.
Collapse
Affiliation(s)
- Wenye Cao
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Jiefang Road #238, Wuhan, 430060, Hubei, China
| | - Ningzhi Zhang
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Jiefang Road #238, Wuhan, 430060, Hubei, China
| | - Xuejun He
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Jiefang Road #238, Wuhan, 430060, Hubei, China
| | - Yiqiao Xing
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Jiefang Road #238, Wuhan, 430060, Hubei, China.
| | - Ning Yang
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Jiefang Road #238, Wuhan, 430060, Hubei, China.
| |
Collapse
|
18
|
Zhao B, Zhu L, Ye M, Lou X, Mou Q, Hu Y, Zhang H, Zhao Y. Oxidative stress and epigenetics in ocular vascular aging: an updated review. Mol Med 2023; 29:28. [PMID: 36849907 PMCID: PMC9972630 DOI: 10.1186/s10020-023-00624-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 02/16/2023] [Indexed: 03/01/2023] Open
Abstract
Vascular aging is an inevitable process with advancing age, which plays a crucial role in the pathogenesis of cardiovascular and microvascular diseases. Diabetic retinopathy (DR) and age-related macular degeneration (AMD), characterized by microvascular dysfunction, are the common causes of irreversible blindness worldwide, however there is still a lack of effective therapeutic strategies for rescuing the visual function. In order to develop novel treatments, it is essential to illuminate the pathological mechanisms underlying the vascular aging during DR and AMD progression. In this review, we have summarized the recent discoveries of the effects of oxidative stress and epigenetics on microvascular degeneration, which could provide potential therapeutic targets for DR and AMD.
Collapse
Affiliation(s)
- Bowen Zhao
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Lijia Zhu
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Meng Ye
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiaotong Lou
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qianxue Mou
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yuanyuan Hu
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Hong Zhang
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Yin Zhao
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
19
|
Ginsenoside Rg1 Inhibits High Glucose-Induced Proliferation, Migration, and Angiogenesis in Retinal Endothelial Cells by Regulating the lncRNA SNHG7/miR-2116-5p/SIRT3 Axis. JOURNAL OF ONCOLOGY 2022; 2022:6184631. [PMID: 36510610 PMCID: PMC9741534 DOI: 10.1155/2022/6184631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/22/2022] [Accepted: 08/26/2022] [Indexed: 12/04/2022]
Abstract
Background Diabetic retinopathy (DR), including retinal angiogenesis and endothelial cell proliferation and migration, is a serious complication in diabetic patients. It has been reported that ginsenoside Rg1 can prevent retinal damage. However, the mechanism by which Rg1 prevents retinal damage is unknown. Therefore, the aim of the present study was to investigate the mechanism by which Rg1 inhibits high glucose-induced complications through the regulation of the lncRNA SNHG7/miR-2116-5p/SIRT3 axis. Methods Under high glucose (HG) conditions, human retinal endothelial cells (HRECs) were cultured to simulate a DR environment, and Rg1 was added after 48 h. Negative control (NC), miR-2116-5p mimic, si-SNHG7, pc-DNA SIRT3, and miR-2116-5p inhibitor were transfected into HRECs, and CCK-8 assay was used to detect the cell viability. Angiogenesis and transwell assays were used to evaluate angiogenesis and cell migration, respectively. qRT-PCR and Western blot were used to detect the expression of related genes and proteins. Luciferase reporter assays and bioinformatics were used to analyze the target binding sites of miR-2116-5p to lncRNA SNHG7 and SIRT3. Results The proliferation, migration and angiogenesis of HRECs were induced by HG. As expected, HG upregulated miR-2116-5p and VEGF expression but downregulated lncRNA SNHG7 and SIRT3 expression. Importantly, Rg1 inhibited HG-induced HREC proliferation, migration, and angiogenesis by upregulating the lncRNA SNHG7, and miR-2116-5p had a target regulatory relationship with both lncRNA SNHG7 and SIRT3. Conclusion Rg1 inhibits HG-induced proliferation, migration, angiogenesis, and VEGF expression in retinal endothelial cells through the lncRNA SNG7/miR-2116-5p/SIRT3 axis. This finding provides theoretical evidence for the clinical application of Rg1 in DR.
Collapse
|
20
|
Funato N, Yanagisawa H. TBX1 targets the miR-200-ZEB2 axis to induce epithelial differentiation and inhibit stem cell properties. Sci Rep 2022; 12:20188. [PMID: 36418889 PMCID: PMC9684448 DOI: 10.1038/s41598-022-24604-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 11/17/2022] [Indexed: 11/25/2022] Open
Abstract
TBX1, which encodes a T-box transcription factor, is considered a candidate gene for DiGeorge syndrome, velocardiofacial syndrome, and conotruncal anomaly face syndrome. Transduction of TBX1 decreases cell proliferation in epithelial cancer cells and Tbx1 ablation induces epithelial proliferation during palatal development. Here, we report that TBX1 regulates stem cell properties and epithelial differentiation through the transcriptional activation of microRNAs. Stable expression of TBX1 induces microRNA-200 (miR-200), whose members repress the epithelial-to-mesenchymal transition and induce epithelial differentiation. TBX1 rescues ZEB2-dependent transcriptional inhibition of the miR-200b/200a/429 cluster, whose promoter region contains conserved overlapping cis-regulatory motifs of the ZEB-binding E-box and TBX-binding element. Consequently, TBX1 activates the expression of both miR-200 and stemness-inhibitor miR-203 to inhibit their common targets, BMI1 and ZEB2. Moreover, Tbx1 ablation affects the differentiation of the palatal epithelium and perturbs the expression of miR-200, miR-203, and their target genes. We propose that TBX1 links stem cell properties and epithelial differentiation by inducing miR-200 and miR-203. Thus, targeting of the ZEB2-miR-200 axis by TBX1 may have potential therapeutic implications in miR-200-associated tumors and cleft palate.
Collapse
Affiliation(s)
- Noriko Funato
- grid.265073.50000 0001 1014 9130Department of Signal Gene Regulation, Tokyo Medical and Dental University (TMDU), Tokyo, 113-8510 Japan ,grid.265073.50000 0001 1014 9130Research Core, Tokyo Medical and Dental University (TMDU), Tokyo, 113-8510 Japan
| | - Hiromi Yanagisawa
- grid.20515.330000 0001 2369 4728Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance, University of Tsukuba, Ibaraki, 305-8577 Japan
| |
Collapse
|
21
|
Endothelial derived miRNA-9 mediated cardiac fibrosis in diabetes and its regulation by ZFAS1. PLoS One 2022; 17:e0276076. [PMID: 36240130 PMCID: PMC9565427 DOI: 10.1371/journal.pone.0276076] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 09/28/2022] [Indexed: 11/07/2022] Open
Abstract
Diabetic cardiomyopathy (DCM) is one of the most prevalent causes of morbidity and mortality in diabetic patients. Hyperglycemia induces increased expression/deposition of extracellular matrix (ECM) proteins including fibronectin (FN) and collagen (Col) and plays an important role in fibrosis in diabetic cardiomyopathy (DCM). The roles of RNAs including microRNA (miRNA) and long non-coding RNAs (lncRNA) have begun to be understood in many conditions. In this study, we investigated the role of a specific miRNA, miR-9, and its interactions with lncRNA ZFAS1 in mediating fibrosis in DCM. Treatment with 25 mM glucose (HG) decreased miR-9 expression and increased expressions of ZFAS1, ECM proteins and inflammatory markers, compared to 5 mM glucose (NG) in the HCMECs by using qRT-PCR. Glucose-induced upregulation of ECM proteins can be prevented by ZFAS1 siRNA or miR-9 mimic transfection. Luciferase assay was confirmed miR-9 binding to FN 3’-UTR. miR-9 expression can be regulated by ZFAS1 through polycomb repressive complex 2 (PRC2) components using RNA immunoprecipitation (RIP) and chromatin immunoprecipitation (ChIP) assays. In the in vivo experiment, hyperglycemia-induced the ECM production can be prevented by the miR-9 overexpression in the fibrosis in DCM. These studies showed a novel glucose-induced molecular mechanism in which ZFAS1 participates in the transcriptional regulation of ECM protein production in diabetes through miR-9.
Collapse
|
22
|
The Features of Immune Checkpoint Gene Regulation by microRNA in Cancer. Int J Mol Sci 2022; 23:ijms23169324. [PMID: 36012588 PMCID: PMC9409052 DOI: 10.3390/ijms23169324] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/15/2022] [Accepted: 08/16/2022] [Indexed: 02/06/2023] Open
Abstract
Currently, the search for new promising tools of immunotherapy continues. In this regard, microRNAs (miRNAs) that influence immune checkpoint (IC) gene expression in tumor and T-cells and may be important regulators of immune cells are considered. MiRNAs regulate gene expression by blocking mRNA translation. An important feature of miRNA is its ability to affect the expression of several genes simultaneously, which corresponds to the trend toward the use of combination therapy. The article provides a list of miRNAs acting simultaneously on several ICs and miRNAs that, in addition to IC, can regulate the expression of targeted therapy genes. There is dependence of miRNA interactions with IC genes on the type of cancer. The analysis of the accumulated data demonstrates that only about 14% (95% CI: 9.8–20.1%) of the studied miRNAs regulate the expression of specific IC in more than one type of cancer. That is, there is tumor specificity in the miRNA action on ICs. A number of miRNAs demonstrated high efficiency in vitro and in vivo. This indicates the potential of miRNAs as promising agents for cancer immunotherapy. Additional studies of the miRNA–gene interaction features and the search for an optimal miRNA mimic structure are necessary.
Collapse
|
23
|
Song Z, He C, Wen J, Yang J, Chen P. Long Non-coding RNAs: Pivotal Epigenetic Regulators in Diabetic Retinopathy. Curr Genomics 2022; 23:246-261. [PMID: 36777876 PMCID: PMC9875540 DOI: 10.2174/1389202923666220531105035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/07/2022] [Accepted: 05/16/2022] [Indexed: 11/22/2022] Open
Abstract
Diabetic retinopathy (DR) is a severe complication of diabetes; however, its mechanism is not fully understood. Evidence has recently revealed that long non-coding RNAs (lncRNAs) are abnormally expressed in DR, and lncRNAs may function as pivotal regulators. LncRNAs are able to modulate gene expression at the epigenetic level by acting as scaffolds of histone modification complexes and sponges of binding with microRNAs (miRNAs). LncRNAs are believed to be important epigenetic regulators, which may become beneficial in the diagnosis and therapy of DR. However, the mechanisms of lncRNAs in DR are still unclear. In this review, we summarize the possible functions and mechanisms of lncRNAs in epigenetic regulation to target genes in the progression of DR.
Collapse
Affiliation(s)
- Zhaoxia Song
- Department of Genetics, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Chang He
- Department of Molecular Biology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Jianping Wen
- Department of Genetics, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Jianli Yang
- Department of Genetics, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Peng Chen
- Department of Genetics, College of Basic Medical Sciences, Jilin University, Changchun, China;,Address correspondence to this author at the Department of Medical Genetics, College of Basic Medical Sciences, Jilin University. Address: Room 413, 126 Xinmin Street, Changchun, Jilin 130021, China; Tel/Fax: 0086-18584362191; E-mail:
| |
Collapse
|
24
|
Xia HQ, Yang JR, Zhang KX, Dong RL, Yuan H, Wang YC, Zhou H, Li XM. Molecules related to diabetic retinopathy in the vitreous and involved pathways. Int J Ophthalmol 2022; 15:1180-1189. [PMID: 35919310 DOI: 10.18240/ijo.2022.07.20] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 03/28/2022] [Indexed: 11/23/2022] Open
Abstract
Diabetic retinopathy (DR) is one of the most common complications of diabetes and major cause of blindness among people over 50 years old. Current studies showed that the vascular endothelial growth factor (VEGF) played a central role in the pathogenesis of DR, and application of anti-VEGF has been widely acknowledged in treatment of DR targeting retinal neovascularization. However, anti-VEGF therapy has several limitations such as drug resistance. It is essential to develop new drugs for future clinical practice. The vitreous takes up 80% of the whole globe volume and is in direct contact with the retina, making it possible to explore the pathogenesis of DR by studying related factors in the vitreous. This article reviewed recent studies on DR-related factors in the vitreous, elaborating the VEGF upstream hypoxia-inducible factor (HIF) pathway and downstream pathways phosphatidylinositol diphosphate (PIP2), phosphoinositide-3-kinase (PI3K), and mitogen-activated protein kinase (MAPK) pathways. Moreover, factors other than VEGF contributing to the pathogenesis of DR in the vitreous were also summarized, which included factors in four major systems, kallikrein-kinin system such as bradykinin, plasma kallikrein, and coagulation factor XII, oxidative stress system such as lipid peroxide, and superoxide dismutase, inflammation-related factors such as interleukin-1β/6/13/37, and interferon-γ, matrix metalloproteinase (MMP) system such as MMP-9/14. Additionally, we also introduced other DR-related factors such as adiponectin, certain specific amino acids, non-coding RNA and renin (pro) receptor in separate studies.
Collapse
Affiliation(s)
- Hua-Qin Xia
- Department of Ophthalmology, Peking University Third Hospital, Beijing 100191, China
| | - Jia-Rui Yang
- Department of Ophthalmology, Peking University Third Hospital, Beijing 100191, China
| | - Ke-Xin Zhang
- Department of Ophthalmology, Peking University Third Hospital, Beijing 100191, China
| | - Rui-Lan Dong
- Department of Ophthalmology, Peking University Third Hospital, Beijing 100191, China
| | - Hao Yuan
- Department of Ophthalmology, Peking University Third Hospital, Beijing 100191, China
| | - Yu-Chen Wang
- Department of Ophthalmology, Peking University Third Hospital, Beijing 100191, China
| | - Hong Zhou
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Xue-Min Li
- Department of Ophthalmology, Peking University Third Hospital, Beijing 100191, China
| |
Collapse
|
25
|
Sadashiv, Sharma P, Dwivedi S, Tiwari S, Singh PK, Pal A, Kumar S. Micro (mi) RNA and Diabetic Retinopathy. Indian J Clin Biochem 2022; 37:267-274. [PMID: 35873619 PMCID: PMC9300788 DOI: 10.1007/s12291-021-01018-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 11/30/2021] [Indexed: 11/24/2022]
Abstract
Diabetic Retinopathy (DR), a debilitating microvascular complication of diabetes, is one of the leading cause of blindness. However, the pathogenesis of this disease is not fully understood. Few Studies have reported the role of MicroRNA (miRNA), which is deregulated or altered in many diseases. Further, few pathways linked genes which have been suggested to be regulated by miRNAs, may play an important role in the regulation of glucose homeostasis and eventually may contribute to the establishment of DR. However, the roles of microRNAs (miRNAs) in DR are still not very clear. In current review, we explored various findings of scientific database demonstrating the role of miRNA in the progression and development of Diabetic Retinopathy.
Collapse
Affiliation(s)
- Sadashiv
- Department of Biochemistry, All India Institute of Medical Sciences, Raebareli, Uttar Pradesh 229405 India
| | - Praveen Sharma
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan 342005 India
| | - Shailendra Dwivedi
- Department of Biochemistry, All India Institute of Medical Sciences, Gorakhpur, Uttar Pradesh 273008 India
| | - Sunita Tiwari
- Department of Physiology, King Gearge’s Medical University, Lucknow, Uttar Pradesh 226003 India
| | - Pankaj Kumar Singh
- Department of Biochemistry, All India Institute of Medical Sciences, Vijaypur, Jammu 184120 India
| | - Amit Pal
- Department of Biochemistry, All India Institute of Medical Sciences, Kalyani, West Bengal 5741245 India
| | - Sandeep Kumar
- Department of Cellular Biology and Anatomy, Augusta University, Augusta, GA 30912 USA
| |
Collapse
|
26
|
Sharma I, Yadav KS, Mugale MN. Redoxisome and diabetic retinopathy: Pathophysiology and therapeutic interventions. Pharmacol Res 2022; 182:106292. [PMID: 35691540 DOI: 10.1016/j.phrs.2022.106292] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/21/2022] [Accepted: 06/05/2022] [Indexed: 10/18/2022]
Abstract
Diabetic retinopathy (DR) is a chronic microvascular complication of diabetes mellitus (DM). It is a worldwide growing epidemic disease considered to be the leading cause of vision-loss and blindness in people with DM. Redox reactions occurring at the extra- and intracellular levels are essential for the maintenance of cellular homeostasis. Dysregulation of redox homeostasis are implicated in the onset and development of DR. Thioredoxin1 (TRX1) and Thioredoxin2 (TRX2) are cytoplasmic and mitochondrially localized antioxidant proteins ubiquitously expressed in various cells and control cellular reactive oxygen species (ROS) by reducing the disulfides into thiol groups. Thioredoxin-interacting protein (TXNIP) binds to TRX system and inhibits the active reduced form of TRX through disulfide exchange reaction. Recent studies indicate the association of TRX/TXNIP with redox signal transduction pathways including activation of Nod-like receptor pyrin domain containing protein-3 (NLRP3) inflammasome, apoptosis, autophagy/mitophagy, epigenetic modifications in a redox-dependent manner. Thus, it is important to gain a more in-depth understanding about the cellular and molecular mechanisms that links redoxisome and ER/Mitochondrial dysfunction to drive the progression of DR. The purpose of this review is to provide a mechanistic understanding of the complex molecular mechanisms and pathophysiological roles associated with redoxisome, the TRX/TXNIP redox signaling complex under oxidative stress in the development of DR. Also, the molecular targets of FDA approved drugs and clinical trials in addition to effective antioxidant strategies for the treatment of diabetic retinopathy are reviewed.
Collapse
Affiliation(s)
- Isha Sharma
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow 226031, India
| | - Karan Singh Yadav
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad- 201002, India
| | - Madhav Nilakanth Mugale
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad- 201002, India.
| |
Collapse
|
27
|
The Role of Epigenetic Modifications in Late Complications in Type 1 Diabetes. Genes (Basel) 2022; 13:genes13040705. [PMID: 35456511 PMCID: PMC9029845 DOI: 10.3390/genes13040705] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/11/2022] [Accepted: 04/14/2022] [Indexed: 11/29/2022] Open
Abstract
Type 1 diabetes is a chronic autoimmune disease in which the destruction of pancreatic β cells leads to hyperglycemia. The prevention of hyperglycemia is very important to avoid or at least postpone the development of micro- and macrovascular complications, also known as late complications. These include diabetic retinopathy, chronic renal failure, diabetic neuropathy, and cardiovascular diseases. The impact of long-term hyperglycemia has been shown to persist long after the normalization of blood glucose levels, a phenomenon known as metabolic memory. It is believed that epigenetic mechanisms such as DNA methylation, histone modifications, and microRNAs, play an important role in metabolic memory. The aim of this review is to address the impact of long-term hyperglycemia on epigenetic marks in late complications of type 1 diabetes.
Collapse
|
28
|
Wu N, Carpino G, Ceci L, Baiocchi L, Francis H, Kennedy L, Zhou T, Chen L, Sato K, Kyritsi K, Meadows V, Ekser B, Franchitto A, Mancinelli R, Onori P, Gaudio E, Glaser S, Alpini G. Melatonin receptor 1A, but not 1B, knockout decreases biliary damage and liver fibrosis during cholestatic liver injury. Hepatology 2022; 75:797-813. [PMID: 34743371 PMCID: PMC8930565 DOI: 10.1002/hep.32233] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 10/29/2021] [Accepted: 11/05/2021] [Indexed: 01/19/2023]
Abstract
BACKGROUND AND AIMS Melatonin reduces biliary damage and liver fibrosis in cholestatic models by interaction with melatonin receptors 1A (MT1) and 1B (MT2). MT1 and MT2 can form heterodimers and homodimers, but MT1 and MT2 can heterodimerize with the orphan receptor G protein-coupled receptor 50 (GPR50). MT1/GPR50 dimerization blocks melatonin binding, but MT2/GPR50 dimerization does not affect melatonin binding. GPR50 can dimerize with TGFβ receptor type I (TGFβRI) to activate this receptor. We aimed to determine the differential roles of MT1 and MT2 during cholestasis. APPROACH AND RESULTS Wild-type (WT), MT1 knockout (KO), MT2KO, and MT1/MT2 double KO (DKO) mice underwent sham or bile duct ligation (BDL); these mice were also treated with melatonin. BDL WT and multidrug resistance 2 KO (Mdr2-/- ) mice received mismatch, MT1, or MT2 Vivo-Morpholino. Biliary expression of MT1 and GPR50 increases in cholestatic rodents and human primary sclerosing cholangitis (PSC) samples. Loss of MT1 in BDL and Mdr2-/- mice ameliorated biliary and liver damage, whereas these parameters were enhanced following loss of MT2 and in DKO mice. Interestingly, melatonin treatment alleviated BDL-induced biliary and liver injury in BDL WT and BDL MT2KO mice but not in BDL MT1KO or BDL DKO mice, demonstrating melatonin's interaction with MT1. Loss of MT2 or DKO mice exhibited enhanced GPR50/TGFβR1 signaling, which was reduced by loss of MT1. CONCLUSIONS Melatonin ameliorates liver phenotypes through MT1, whereas down-regulation of MT2 promotes liver damage through GPR50/TGFβR1 activation. Blocking GPR50/TGFβR1 binding through modulation of melatonin signaling may be a therapeutic approach for PSC.
Collapse
Affiliation(s)
- Nan Wu
- Hepatology and Gastroenterology, Medicine, Indiana University, Indianapolis, IN
| | - Guido Carpino
- Department of Movement, Human and Health Sciences, Division of Health Sciences, University of Rome “Foro Italico”, Rome, Italy
| | - Ludovica Ceci
- Hepatology and Gastroenterology, Medicine, Indiana University, Indianapolis, IN
| | | | - Heather Francis
- Hepatology and Gastroenterology, Medicine, Indiana University, Indianapolis, IN
- Richard L. Roudebush VA Medical Center, Indianapolis, IN
| | - Lindsey Kennedy
- Hepatology and Gastroenterology, Medicine, Indiana University, Indianapolis, IN
- Richard L. Roudebush VA Medical Center, Indianapolis, IN
| | - Tianhao Zhou
- Hepatology and Gastroenterology, Medicine, Indiana University, Indianapolis, IN
| | - Lixian Chen
- Hepatology and Gastroenterology, Medicine, Indiana University, Indianapolis, IN
| | - Keisaku Sato
- Hepatology and Gastroenterology, Medicine, Indiana University, Indianapolis, IN
| | - Konstantina Kyritsi
- Hepatology and Gastroenterology, Medicine, Indiana University, Indianapolis, IN
| | - Vik Meadows
- Hepatology and Gastroenterology, Medicine, Indiana University, Indianapolis, IN
| | - Burcin Ekser
- Division of Transplant Surgery, Department of Surgery, Indiana University, Indianapolis, IN
| | - Antonio Franchitto
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Rome, Italy
| | - Romina Mancinelli
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Rome, Italy
| | - Paolo Onori
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Rome, Italy
| | - Eugenio Gaudio
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Rome, Italy
| | - Shannon Glaser
- Department of Medical Physiology, Texas A&M University College of Medicine, Bryan, TX
| | - Gianfranco Alpini
- Hepatology and Gastroenterology, Medicine, Indiana University, Indianapolis, IN
- Richard L. Roudebush VA Medical Center, Indianapolis, IN
| |
Collapse
|
29
|
Dhawan P, Vasishta S, Balakrishnan A, Joshi MB. Mechanistic insights into glucose induced vascular epigenetic reprogramming in type 2 diabetes. Life Sci 2022; 298:120490. [DOI: 10.1016/j.lfs.2022.120490] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/22/2022] [Accepted: 03/16/2022] [Indexed: 12/13/2022]
|
30
|
Cao J, Zhao C, Gong L, Cheng X, Yang J, Zhu M, Lv X. MiR-181 enhances proliferative and migratory potentials of retinal endothelial cells in diabetic retinopathy by targeting KLF6. Curr Eye Res 2022; 47:882-888. [PMID: 35179443 DOI: 10.1080/02713683.2022.2039206] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
PURPOSE We aimed to uncover the role of microRNA-181 (miR-181) in the disease onset of diabetic retinopathy (DR) and its underlying mechanism. METHODS MiR-181 levels in plasma and aqueous humor samples of non-proliferative diabetic retinopathy (NPDR), proliferative diabetic retinopathy (PDR) and healthy subjects were analyzed by microarray and quantitative real-time polymerase chain reaction (qRT-PCR). Proliferative and migrative capacities of human retinal endothelial cells (hRECs) regulated by miR-181 were assessed. The binding between miR-181 and kruppel-like factor 6 (KLF6) was verified by dual-luciferase reporter assay. RESULTS MiR-181 was upregulated in plasma and aqueous humor samples of NPDR and PDR patients. Overexpression of miR-181 stimulated hRECs to proliferate and migrate. KLF6 was the downstream gene binding miR-181, which was involved in the regulation of hRECs by miR-181. CONCLUSIONS MiR-181 is upregulated in plasma and aqueous humor of DR patients. It enhances proliferative and migratory potentials of retinal endothelial cells by targeting KLF6.
Collapse
Affiliation(s)
- Jin Cao
- Department of Ophthalmology, Xianning Central Hospital, The First Affiliated Hospital Of Hubei University of Science And Technology, Xianning 437100, China
| | - Chujin Zhao
- Department of ENT, Xianning Central Hospital, The First Affiliated Hospital Of Hubei University Of Science And Technology, 228 Jingui Road, Xianning 437100, China
| | - Lanlan Gong
- Department of Ophthalmology, Xianning Central Hospital, The First Affiliated Hospital Of Hubei University of Science And Technology, Xianning 437100, China
| | - Xinchao Cheng
- Department of Ophthalmology, Xianning Central Hospital, The First Affiliated Hospital Of Hubei University of Science And Technology, Xianning 437100, China
| | - Jie Yang
- Department of Ophthalmology, Xianning Central Hospital, The First Affiliated Hospital Of Hubei University of Science And Technology, Xianning 437100, China
| | - Mengnan Zhu
- Department of Ophthalmology, Xianning Central Hospital, The First Affiliated Hospital Of Hubei University of Science And Technology, Xianning 437100, China
| | - Xudong Lv
- Department of Ophthalmology, Xianning Central Hospital, The First Affiliated Hospital Of Hubei University of Science And Technology, Xianning 437100, China
| |
Collapse
|
31
|
miRNA signatures in diabetic retinopathy and nephropathy: delineating underlying mechanisms. J Physiol Biochem 2022; 78:19-37. [DOI: 10.1007/s13105-021-00867-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 12/15/2021] [Indexed: 12/11/2022]
|
32
|
Pramanik S, Saha C, Chowdhury S, Bose C, Bhattacharyya NP, Mondal LK. Decreased Levels of miR-126 and miR-132 in Plasma and Vitreous Humor of Non-Proliferative Diabetic Retinopathy Among Subjects with Type-2 Diabetes Mellitus. Diabetes Metab Syndr Obes 2022; 15:345-358. [PMID: 35153496 PMCID: PMC8823438 DOI: 10.2147/dmso.s346097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 01/24/2022] [Indexed: 12/12/2022] Open
Abstract
PURPOSE Diabetic retinopathy (DR), the leading cause of blindness among working adults, is an urgent public health problem as diabetes mellitus (DM) is increasing at an alarming rate. Hyperglycemia-induced endothelial dysfunction is the principal contributing factor leading to the development of microangiopathy. Altered levels of microRNA (miR), the negative regulator of protein-coding genes, have been observed and considered to be markers for DR. Present study aimed to find out whether miR levels in plasma could be effective biomarkers to differentiate between type 2 diabetes mellitus (T2DM) with non-proliferative retinopathy (NPDR) from T2DM with no-DR (DNR). METHODS We recruited 50 T2DM subjects comprising 31 NPDR and 19 DNR individuals. Surrogate markers of systemic oxidative stress and vascular endothelial growth factor (VEGF) were measured in plasma. Levels of miR-126 and miR-132 were determined in plasma and vitreous fluid using real-time PCR. RESULTS We observed that levels of miR-126 and miR-132 were decreased in NPDR subjects in comparison to DNR. Plasma levels of miRs were inversely correlated with secreted levels of VEGF and oxidative stress marker. The levels of these miRs showed discriminating ability between NPDR and DNR. CONCLUSION Circulating miRs 126 and 132 in plasma or vitreous may serve as biomarkers for early diabetic retinopathy risk prediction, provided validated in a larger cohort and other forms of retinal vasculopathy or retinopathy in the future.
Collapse
Affiliation(s)
- Subhasish Pramanik
- Department of Endocrinology & Metabolism, Institute of Post Graduate Medical Education & Research and SSKM Hospital, Kolkata, 700020, West Bengal, India
| | - Chinmay Saha
- Department of Endocrinology & Metabolism, Institute of Post Graduate Medical Education & Research and SSKM Hospital, Kolkata, 700020, West Bengal, India
- Genome Science, School of Interdisciplinary Studies, University of Kalyani, Nadia, 741235, West Bengal, India
| | - Subhankar Chowdhury
- Department of Endocrinology & Metabolism, Institute of Post Graduate Medical Education & Research and SSKM Hospital, Kolkata, 700020, West Bengal, India
- Correspondence: Subhankar Chowdhury, Department of Endocrinology & Metabolism, Institute of Post Graduate Medical Education & Research and SSKM Hospital, Kolkata, 700020, West Bengal, India, Email
| | - Chiranjit Bose
- Department of Endocrinology & Metabolism, Institute of Post Graduate Medical Education & Research and SSKM Hospital, Kolkata, 700020, West Bengal, India
| | - Nitai P Bhattacharyya
- Department of Endocrinology & Metabolism, Institute of Post Graduate Medical Education & Research and SSKM Hospital, Kolkata, 700020, West Bengal, India
| | - Lakshmi Kanta Mondal
- Department of Ophthalmology, Regional Institute of Ophthalmology, Medical College Campus, Kolkata, 700 073, West Bengal, India
- Lakshmi Kanta Mondal, Department of Ophthalmology, Regional Institute of Ophthalmology, Medical College Campus, 88, College Street, Kolkata, 700 073, West Bengal, India, Email
| |
Collapse
|
33
|
Plastino F, Pesce NA, André H. MicroRNAs and the HIF/VEGF axis in ocular neovascular diseases. Acta Ophthalmol 2021; 99:e1255-e1262. [PMID: 33729690 DOI: 10.1111/aos.14845] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 02/18/2021] [Accepted: 02/23/2021] [Indexed: 12/28/2022]
Abstract
Ocular neovascular diseases, such as proliferative diabetic retinopathy, retinopathy of prematurity and neovascular age-related macular degeneration, are the leading causes of visual impairment worldwide. The hypoxia-inducible factors and vascular endothelial growth factors are key molecular promoters of ocular neovascularization. Moreover, the role of microRNAs as regulators of angiogenesis has been expanding, particularly hypoxia-associated microRNA; hypoxamiRs. This review provides a summary of hypoxamiRs that directly and specifically target HIF1A and VEGF mRNAs, thus critically involved in the regulation of ocular neovascular pathologies. The discussed microRNAs highlight putative diagnostic markers and therapeutic agents in choroidal and retinal angiogenic diseases, including proliferative diabetic retinopathy, retinopathy of prematurity and neovascular age-related macular degeneration.
Collapse
Affiliation(s)
- Flavia Plastino
- Department of Clinical Neurosciences Division of Eye and Vision St. Erik Eye Hospital Karolinska Institutet Stockholm Sweden
| | - Noemi Anna Pesce
- Department of Clinical Neurosciences Division of Eye and Vision St. Erik Eye Hospital Karolinska Institutet Stockholm Sweden
| | - Helder André
- Department of Clinical Neurosciences Division of Eye and Vision St. Erik Eye Hospital Karolinska Institutet Stockholm Sweden
| |
Collapse
|
34
|
ElShelmani H, Brennan I, Kelly DJ, Keegan D. Differential Circulating MicroRNA Expression in Age-Related Macular Degeneration. Int J Mol Sci 2021; 22:ijms222212321. [PMID: 34830203 PMCID: PMC8625913 DOI: 10.3390/ijms222212321] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/10/2021] [Accepted: 11/12/2021] [Indexed: 02/06/2023] Open
Abstract
This study explored the expression of several miRNAs reported to be deregulated in age-related macular degeneration (AMD). Total RNA was isolated from sera from patients with dry AMD (n = 12), wet AMD (n = 14), and controls (n = 10). Forty-two previously investigated miRNAs were selected based on published data and their role in AMD pathogenesis, such as angiogenic and inflammatory effects, and were co-analysed using a miRCURY LNA miRNA SYBR® Green PCR kit via quantitative real-time polymerase chain reaction (qRT-PCR) to validate their presence. Unsupervised hierarchical clustering indicated that AMD serum specimens have a different miRNA profile to healthy controls. We successfully validated the differentially regulated miRNAs in serum from AMD patients versus controls. Eight miRNAs (hsa-let-7a-5p, hsa-let-7d-5p, hsa-miR-23a-3p, hsa-miR-301a-3p, hsa-miR-361-5p, hsa-miR-27b-3p, hsa-miR-874-3p, hsa-miR-19b-1-5p) showed higher expression in the serum of dry AMD patients than wet AMD patients and compared with healthy controls. Increased quantities of certain miRNAs in the serum of AMD patients indicate that these miRNAs could potentially serve as diagnostic AMD biomarkers and might be used as future AMD treatment targets. The discovery of significant serum miRNA biomarkers in AMD patients would provide an easy screening tool for at-risk populations.
Collapse
Affiliation(s)
- Hanan ElShelmani
- Mater Misericordiae University Hospital, Eccles St., Dublin 7, Ireland; (H.E.); (I.B.)
| | - Ian Brennan
- Mater Misericordiae University Hospital, Eccles St., Dublin 7, Ireland; (H.E.); (I.B.)
- University College Cork, College Road, Cork, Ireland
| | - David J. Kelly
- Zoology Department, School of Natural Sciences, Trinity College Dublin, University of Dublin, Dublin 2, Ireland;
| | - David Keegan
- Mater Misericordiae University Hospital, Eccles St., Dublin 7, Ireland; (H.E.); (I.B.)
- Correspondence:
| |
Collapse
|
35
|
MicroRNA-139-5p Alleviates High Glucose-Triggered Human Retinal Pigment Epithelial Cell Injury by Targeting LIM-Only Factor 4. Mediators Inflamm 2021; 2021:1629783. [PMID: 34725544 PMCID: PMC8557081 DOI: 10.1155/2021/1629783] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 09/12/2021] [Accepted: 09/16/2021] [Indexed: 11/18/2022] Open
Abstract
Diabetic retinopathy (DR) is a type of diabetes complication, which can result in loss of vision in adults worldwide. Increasing evidence has revealed that microRNAs (miRs) can regulate DR progression. Thus, the present study was aimed at assessing the possible mechanism of miR-139-5p in high glucose- (HG-) incubated retinal pigment epithelial (ARPE-19) cells. The present results demonstrated that miR-139-5p expression was notably reduced in the serum samples of patients with DR, as well as in ARPE-19 cells treated with HG in a time-dependent manner. Moreover, miR-139-5p was markedly overexpressed by transfection of miR-139-5p mimics into ARPE-19 cells. Overexpression of miR-139-5p markedly induced cell viability and repressed HG-triggered apoptosis. Furthermore, overexpression of miR-139-5p relived HG-enhanced oxidative stress injury. It was found that HG induced malondialdehyde levels but decreased superoxide dismutase and glutathione peroxidase activities in ARPE-19 cells. In addition, overexpression of miR-139-5p could markedly decrease intracellular stress. The results demonstrated that overexpression of miR-139-5p effectively repressed HG-activated inflammation, as indicated by the upregulation of inflammation cytokines, including TNF-α, IL-6, and Cox-2, in ARPE-19 cells. Subsequently, it was identified that LIM-only factor 4 (LMO4) could act as a downstream target for miR-139-5p. LMO4 expression was significantly increased in patients with DR and HG-treated ARPE-19 cells. Mechanistically, knockdown of LMO4 reversed the biological role of miR-139-5p in proliferation, apoptosis, oxidative stress, and release of inflammation factors in vitro. Collectively, these results suggested that miR-139-5p significantly decreased ARPE-19 cell injury caused by HG by inducing proliferation and suppressing cell apoptosis, oxidant stress, and inflammation by modulating LMO4.
Collapse
|
36
|
Jin ZQ. MicroRNA targets and biomarker validation for diabetes-associated cardiac fibrosis. Pharmacol Res 2021; 174:105941. [PMID: 34656765 DOI: 10.1016/j.phrs.2021.105941] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 09/06/2021] [Accepted: 10/12/2021] [Indexed: 12/11/2022]
Abstract
Cardiac fibrosis is one of the main characteristics of diabetic cardiomyopathy and manifests excessive accumulation of extracellular matrix proteins in the heart. Several signaling pathways have been proposed for pathogenesis of cardiac fibrosis in the diabetic heart. TGF-β/Smad2/3-dependent or independent pathway is the major signaling molecule core in the pathogenesis of cardiac fibrosis. MicroRNAs (miRNAs, miR) are ~22-nuceotide regulatory RNAs that are involved in gene silencing through the degradation of post-transcriptional mRNA or suppression of the expressed proteins. Hyperglycemia in the diabetic heart regulates expression of some miRNAs. Target molecules of miRNAs can be identified through biocomputational database initial screening and dual luciferase assay validation. miR-21, miR-150-5p, miR-155, miR-216a-3p, miR-221-3p, miR-223, and miR-451 were up-regulated in the diabetic heart and promoted cardiac fibrosis through targeting signaling pathways in cardiac fibroblasts, endothelial cells, and cardiac myocytes. miR-15a/-15b, miR-18a-5p, miR-20a-5p, miR-26b-5p, miR-29, miR-133a, miR-141, miR-146, miR-200b, miR-203, miR-222, and miR-551b-5p were down-regulated in the diabetic heart and exhibited anti-fibrosis when they were overexpressed. miRNAs are stable molecules and may reflect the pathological changes of organs. Some miRNAs have been detected in the plasma or serum in patients with diabetes mellitus or heart failure. Exploration of targets and biomarkers of miRNA may provide additional information on pathogenesis and diagnosis of cardiac fibrosis and novel targets to tackle diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Zhu-Qiu Jin
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, California Northstate University, 9700 West Taron Drive, Elk Grove, CA 95757, USA.
| |
Collapse
|
37
|
Rajool Dezfuly A, Safaee A, Salehi H. Therapeutic effects of mesenchymal stem cells-derived extracellular vesicles' miRNAs on retinal regeneration: a review. Stem Cell Res Ther 2021; 12:530. [PMID: 34620234 PMCID: PMC8499475 DOI: 10.1186/s13287-021-02588-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 09/09/2021] [Indexed: 02/07/2023] Open
Abstract
Extracellular vesicles (EVs), which consist of microvesicles and exosomes, are secreted from all cells to transform vital information in the form of lipids, proteins, mRNAs and small RNAs such as microRNAs (miRNAs). Many studies demonstrated that EVs' miRNAs have effects on target cells. Numerous people suffer from the blindness caused by retinal degenerations. The death of retinal neurons is irreversible and creates permanent damage to the retina. In the absence of acceptable cures for retinal degenerative diseases, stem cells and their paracrine agents including EVs have become a promising therapeutic approach. Several studies showed that the therapeutic effects of stem cells are due to the miRNAs of their EVs. Considering the effects of microRNAs in retinal cells development and function and studies which provide the possible roles of mesenchymal stem cells-derived EVs miRNA content on retinal diseases, we focused on the similarities between these two groups of miRNAs that could be helpful for promoting new therapeutic techniques for retinal degenerative diseases.
Collapse
Affiliation(s)
- Ali Rajool Dezfuly
- Department of Anatomical and Molecular Biology Sciences, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Azadeh Safaee
- Department of Anatomical and Molecular Biology Sciences, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hossein Salehi
- Department of Anatomical and Molecular Biology Sciences, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
38
|
Smit-McBride Z, Morse LS. MicroRNA and diabetic retinopathy-biomarkers and novel therapeutics. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1280. [PMID: 34532417 PMCID: PMC8421969 DOI: 10.21037/atm-20-5189] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 01/14/2021] [Indexed: 01/10/2023]
Abstract
Diabetic retinopathy (DR) accounts for ~80% of legal blindness in persons aged 20-74 years and is associated with enormous social and health burdens. Current therapies are invasive, non-curative, and in-effective in 15-25% of DR patients. This review outlines the potential utility of microRNAs (miRNAs) as biomarkers and potential therapy for diabetic retinopathy. miRNAs are small noncoding forms of RNA that may play a role in the pathogenesis of DR by altering the level of expression of genes via single nucleotide polymorphism and regulatory loops. A majority of miRNAs are intracellular and specific intracellular microRNAs have been associated with cellular changes associated with DR. Some microRNAs are extracellular and called circulatory microRNAs. Circulatory miRNAs have been found to be differentially expressed in serum and bodily fluid in patients with diabetes mellitus (DM) with and without retinopathy. Some miRNAs have been associated with the severity of DR, and future studies may reveal whether circulatory miRNAs could serve as novel reliable biomarkers to detect or predict retinopathy progression. Therapeutic strategies can be developed utilizing the natural miRNA/long noncoding RNA (lncRNA) regulatory loops. miRNAs and lncRNAs are two major families of the non-protein-coding transcripts. They are regulatory molecules for fundamental cellular processes via a variety of mechanisms, and their expression and function are tightly regulated. The recent evidence indicates a cross-talk between miRNAs and lncRNAs. Therefore, dysregulation of miRNAs and lncRNAs is critical to human disease pathogenesis, such as diabetic retinopathy. miRNAs are long-distance communicators and reprogramming agents, and they embody an entirely novel paradigm in cellular and tissue signaling and interaction. By targeting specific miRNAs, whole pathways implicated in the pathogenesis of DR may potentially be altered. Understanding the endogenous roles of miRNAs in the pathogenesis of diabetic retinopathy could lead to novel diagnostic and therapeutic approaches to managing this frequently blinding retinal condition.
Collapse
Affiliation(s)
- Zeljka Smit-McBride
- Department of Ophthalmology & Vision Science, Vitreoretinal Research Laboratory, School of Medicine, University of California Davis, Davis, California, USA
| | - Lawrence S Morse
- Department of Ophthalmology & Vision Science, Vitreoretinal Research Laboratory, School of Medicine, University of California Davis, Davis, California, USA
| |
Collapse
|
39
|
Rodríguez ML, Millán I, Ortega ÁL. Cellular targets in diabetic retinopathy therapy. World J Diabetes 2021; 12:1442-1462. [PMID: 34630899 PMCID: PMC8472497 DOI: 10.4239/wjd.v12.i9.1442] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/08/2021] [Accepted: 08/03/2021] [Indexed: 02/06/2023] Open
Abstract
Despite the existence of treatment for diabetes, inadequate metabolic control triggers the appearance of chronic complications such as diabetic retinopathy. Diabetic retinopathy is considered a multifactorial disease of complex etiology in which oxidative stress and low chronic inflammation play essential roles. Chronic exposure to hyperglycemia triggers a loss of redox balance that is critical for the appearance of neuronal and vascular damage during the development and progression of the disease. Current therapies for the treatment of diabetic retinopathy are used in advanced stages of the disease and are unable to reverse the retinal damage induced by hyperglycemia. The lack of effective therapies without side effects means there is an urgent need to identify an early action capable of preventing the development of the disease and its pathophysiological consequences in order to avoid loss of vision associated with diabetic retinopathy. Therefore, in this review we propose different therapeutic targets related to the modulation of the redox and inflammatory status that, potentially, can prevent the development and progression of the disease.
Collapse
Affiliation(s)
- María Lucía Rodríguez
- Department of Physiology, Faculty of Pharmacy, University of Valencia, Burjassot 46100, Valencia, Spain
| | - Iván Millán
- Neonatal Research Group, Health Research Institute La Fe, Valencia 46026, Valencia, Spain
| | - Ángel Luis Ortega
- Department of Physiology, Faculty of Pharmacy, University of Valencia, Burjassot 46100, Valencia, Spain
| |
Collapse
|
40
|
Abstract
Diabetic retinopathy (DR), which is known as a severe complication of type 2 diabetes mellitus, can cause varying degrees of damage to visual acuity. The pathogenesis of DR is multifactorial and not fully understood. Many previous research studies have revealed that an aberrant level of some long non-coding RNAs (lncRNAs) may accelerate the development of DR. These lncRNAs are regulatory factors and research related to them is always underway. In this review, we will update several types of lncRNAs based on the previous studies which are related to the development of DR and discuss its potential mechanisms of action and connections. Generally, the review will help us know more about lncRNAs and provide directions for future research related to DR.
Collapse
Affiliation(s)
- Qinying Huang
- Shantou University Medical College, Shantou, Guangdong, China
- Department of Ophthalmology, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Jinying Li
- Department of Ophthalmology, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| |
Collapse
|
41
|
Tan A, Li T, Ruan L, Yang J, Luo Y, Li L, Wu X. Knockdown of Malat1 alleviates high-glucose-induced angiogenesis through regulating miR-205-5p/VEGF-A axis. Exp Eye Res 2021; 207:108585. [PMID: 33887222 DOI: 10.1016/j.exer.2021.108585] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 04/08/2021] [Accepted: 04/14/2021] [Indexed: 12/27/2022]
Abstract
Diabetic retinopathy (DR), characterized by intraretinal vessel formation, is a major complication in diabetes. Neovascularization is an important characteristic of DR, but its formation mechanism remains unclear. In this research, Malat1, miR-205-5p, and VEGF-A levels in high glucose (HG) treat-human retinal microvascular endothelial cells (hRMECs) was detected with qRT-PCR. CCK-8 assay, transwell assay, and tube formation assay was applied to access hRMEC viability, migration, and angiogenesis. Expression level of endothelial-mesenchymal transition (EndMT) markers (VE-cadherin, FSP1, and α-SMA) was detected by western blotting assay. Interaction among Malat1, miR-205-5p, and VEGF-A was confirmed by dual-luciferase reporter assay. Furthermore, in vivo DR mouse model was induced, and the effect of Malat1 on DR and EndMT markers was confirmed through hematoxylin-eosin (HE) staining and western blotting. As a result, Malat1 and VEGF-A was upregulated while miR-205-5p was suppressed under HG conditions. Malat1 could sponge miR-205-5p to regulate VEGF-A expression. Malat1 knockdown inhibited hRMEC proliferation, migration, and tube formation by targeting miR-205-5p under HG conditions. Furthermore, inhibition of Malat1 prevented the HG-induced EndMT process. In summary, Malat1 knockdown diminished hRMEC dysfunctions by regulating miR-205-5p/VEGF-A, providing a useful insight for exploring new therapeutic target for DR.
Collapse
Affiliation(s)
- Anjun Tan
- Department of Geriatric Medicine, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, 157 Jinbi Road, Kunming, 650032, Yunnan, China.
| | - Tianrong Li
- Department of Geriatric Medicine, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, 157 Jinbi Road, Kunming, 650032, Yunnan, China.
| | - Libo Ruan
- Department of Geriatric Medicine, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, 157 Jinbi Road, Kunming, 650032, Yunnan, China.
| | - Jingjing Yang
- Department of Geriatric Medicine, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, 157 Jinbi Road, Kunming, 650032, Yunnan, China.
| | - Yuanyuan Luo
- Department of Geriatric Medicine, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, 157 Jinbi Road, Kunming, 650032, Yunnan, China.
| | - Ling Li
- Biomedical Engineering Research Center, Kunming Medical University, No. 1168 Chunrong West Road, Kunming, 650500, Yunnan, China.
| | - Xinan Wu
- The School of Public Health, Kunming Medical University, No. 1168 Chunrong West Road, Kunming, 650500, Yunnan, China.
| |
Collapse
|
42
|
Li W, Jin L, Cui Y, Nie A, Xie N, Liang G. Bone marrow mesenchymal stem cells-induced exosomal microRNA-486-3p protects against diabetic retinopathy through TLR4/NF-κB axis repression. J Endocrinol Invest 2021; 44:1193-1207. [PMID: 32979189 DOI: 10.1007/s40618-020-01405-3] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 08/23/2020] [Indexed: 02/08/2023]
Abstract
AIM Diabetic retinopathy (DR) is a chronic disease causing health and economic burdens on individuals and society. Thus, this study is conducted to figure out the mechanisms of bone marrow mesenchymal stem cells (BMSCs)-induced exosomal microRNA-486-3p (miR-486-3p) in DR. METHODS The putative miR-486-3p binding sites to 3'untranslated region of Toll-like receptor 4 (TLR4) was verified by luciferase reporter assay. High glucose (HG)-treated Muller cells were transfected with miR-486-3p or TLR4-related oligonucleotides and plasmids to explore theirs functions in DR. Additionally, HG-treated Muller cells were co-cultured with BMSC-derived exosomes, exosomes collected from BMSCs that had been transfected with miR-486-3p or TLR4-related oligonucleotides and plasmids to explore their functions in DR. MiR-486-3p, TLR4 and nuclear factor-kappaB (NF-κB) expression, angiogenesis-related factors, oxidative stress factors, viability and apoptosis in HG-treated Muller cells were detected by RT-qPCR, western blot analysis, ELISA, MTT assay and flow cytometry, respectively. RESULTS MiR-486-3p was poorly expressed while TLR4 and NF-κB were highly expressed in HG-treated Muller cells. TLR4 was a target of miR-486-3p. Upregulating miR-486-3p or down-regulating TLR4 inhibited oxidative stress, inflammation and apoptosis, and promoted proliferation of HG-treated Muller cells. Meanwhile, BMSC-derived exosomes inhibited oxidative stress, inflammation and apoptosis, and promoted proliferation of HG-treated Muller cells. Restoring miR-486-3p further enhanced, while up-regulating TLR4 reversed, the improvement of exosomes treatment. CONCLUSION Our study highlights that up-regulation of miR-486-3p induced by BMSC-derived exosomes played a protective role in DR mice via TLR4/NF-κB axis repression.
Collapse
Affiliation(s)
- W Li
- Department of Ophthalmology, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, 1017 Dongmen North Road, Luohu District, Shenzhen, 518000, Guangdong, China
| | - L Jin
- Department of Ophthalmology, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, 1017 Dongmen North Road, Luohu District, Shenzhen, 518000, Guangdong, China
| | - Y Cui
- Department of Ophthalmology, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, 1017 Dongmen North Road, Luohu District, Shenzhen, 518000, Guangdong, China
| | - A Nie
- Department of Ophthalmology, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, 1017 Dongmen North Road, Luohu District, Shenzhen, 518000, Guangdong, China
| | - N Xie
- Department of Ophthalmology, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, 1017 Dongmen North Road, Luohu District, Shenzhen, 518000, Guangdong, China.
| | - G Liang
- Department of Ophthalmology, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 53300, Guangxi, China.
| |
Collapse
|
43
|
Wang SS, Liao X, Liu F, Zhang Q, Qiu JJ, Fu SH. miR-132 mediates cell permeability and migration by targeting occludin in high-glucose -induced ARPE-19 cells. Endocr J 2021; 68:531-541. [PMID: 33563844 DOI: 10.1507/endocrj.ej20-0277] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
This study investigated the effects and mechanisms of miR-132 related to the permeability and mobility of human retinal pigment epithelium ARPE-19 cells in high-glucose (HG) condition. ARPE-19 cells were cultured in normal and HG condition and identified by immunofluorescence staining. Cell viability was assessed by the MTT assay, cell permeability was assessed by the FITC-dextran assay and cell mobility was assessed by the wound healing assay. Different miRNA and mRNA expression levels were determined by quantitative real-time polymerase chain reaction (RT-qPCR). The expression of tight junction-related proteins was determined by Western blot assay and immunofluorescence. The interaction between occludin and miR-132 was confirmed by a dual-luciferase reporter assay. We revealed that HG-treated ARPE-19 cells exhibited significantly increased miR-132 expression, decreased expression of the tight-junction markers including occludin and E-cadherin, and increased cell mobility and permeability. Occludin is a direct target of miR-132, which could regulate cell viability, mobility and permeability under HG condition through the JAK/STAT3 signaling pathway. These are the first data to suggest that miR-132 may contribute to the progression of diabetic retinopathy (DR) and that targeting the effect of miR-132 on occudin and the JAK/STAT3 pathway could represent a novel effective DR-treatment strategy.
Collapse
Affiliation(s)
- Shan-Shan Wang
- Department of Ophthalmology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, P. R. China
| | - Xing Liao
- Department of Ophthalmology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, P. R. China
| | - Fei Liu
- Department of Ophthalmology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, P. R. China
| | - Qian Zhang
- Department of Ophthalmology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, P. R. China
| | - Jing-Jing Qiu
- Department of Ophthalmology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, P. R. China
| | - Shu-Hua Fu
- Department of Ophthalmology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, P. R. China
| |
Collapse
|
44
|
Giordo R, Ahmed YMA, Allam H, Abusnana S, Pappalardo L, Nasrallah GK, Mangoni AA, Pintus G. EndMT Regulation by Small RNAs in Diabetes-Associated Fibrotic Conditions: Potential Link With Oxidative Stress. Front Cell Dev Biol 2021; 9:683594. [PMID: 34095153 PMCID: PMC8170089 DOI: 10.3389/fcell.2021.683594] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 04/26/2021] [Indexed: 12/20/2022] Open
Abstract
Diabetes-associated complications, such as retinopathy, nephropathy, cardiomyopathy, and atherosclerosis, the main consequences of long-term hyperglycemia, often lead to organ dysfunction, disability, and increased mortality. A common denominator of these complications is the myofibroblast-driven excessive deposition of extracellular matrix proteins. Although fibroblast appears to be the primary source of myofibroblasts, other cells, including endothelial cells, can generate myofibroblasts through a process known as endothelial to mesenchymal transition (EndMT). During EndMT, endothelial cells lose their typical phenotype to acquire mesenchymal features, characterized by the development of invasive and migratory abilities as well as the expression of typical mesenchymal products such as α-smooth muscle actin and type I collagen. EndMT is involved in many chronic and fibrotic diseases and appears to be regulated by complex molecular mechanisms and different signaling pathways. Recent evidence suggests that small RNAs, in particular microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), are crucial mediators of EndMT. Furthermore, EndMT and miRNAs are both affected by oxidative stress, another key player in the pathophysiology of diabetic fibrotic complications. In this review, we provide an overview of the primary redox signals underpinning the diabetic-associated fibrotic process. Then, we discuss the current knowledge on the role of small RNAs in the regulation of EndMT in diabetic retinopathy, nephropathy, cardiomyopathy, and atherosclerosis and highlight potential links between oxidative stress and the dyad small RNAs-EndMT in driving these pathological states.
Collapse
Affiliation(s)
- Roberta Giordo
- Department of Medical Laboratory Sciences, College of Health Sciences and Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Yusra M. A. Ahmed
- Department of Medical Laboratory Sciences, College of Health Sciences and Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Hilda Allam
- Department of Medical Laboratory Sciences, College of Health Sciences and Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Salah Abusnana
- Department of Diabetes and Endocrinology, University Hospital Sharjah, Sharjah, United Arab Emirates
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Lucia Pappalardo
- Department of Biology, Chemistry and Environmental Studies, American University of Sharjah, Sharjah, United Arab Emirates
| | - Gheyath K. Nasrallah
- Department of Biomedical Sciences, College of Health Sciences Member of QU Health, Qatar University, Doha, Qatar
- Biomedical Research Center, Qatar University, Doha, Qatar
| | - Arduino Aleksander Mangoni
- Discipline of Clinical Pharmacology, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
- Flinders Medical Centre, Adelaide, SA, Australia
| | - Gianfranco Pintus
- Department of Medical Laboratory Sciences, College of Health Sciences and Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| |
Collapse
|
45
|
Ranjan P, Kumari R, Goswami SK, Li J, Pal H, Suleiman Z, Cheng Z, Krishnamurthy P, Kishore R, Verma SK. Myofibroblast-Derived Exosome Induce Cardiac Endothelial Cell Dysfunction. Front Cardiovasc Med 2021; 8:676267. [PMID: 33969024 PMCID: PMC8102743 DOI: 10.3389/fcvm.2021.676267] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 03/26/2021] [Indexed: 12/16/2022] Open
Abstract
Background: Endothelial cells (ECs) play a critical role in the maintenance of vascular homeostasis and in heart function. It was shown that activated fibroblast-derived exosomes impair cardiomyocyte function in hypertrophic heart, but their effect on ECs is not yet clear. Thus, we hypothesized that activated cardiac fibroblast-derived exosomes (FB-Exo) mediate EC dysfunction, and therefore modulation of FB-exosomal contents may improve endothelial function. Methods and Results: Exosomes were isolated from cardiac fibroblast (FB)-conditioned media and characterized by nanoparticle tracking analysis and electron microscopy. ECs were isolated from mouse heart. ECs were treated with exosomes isolated from FB-conditioned media, following FB culture with TGF-β1 (TGF-β1-FB-Exo) or PBS (control) treatment. TGF-β1 significantly activated fibroblasts as shown by increase in collagen type1 α1 (COL1α1), periostin (POSTN), and fibronectin (FN1) gene expression and increase in Smad2/3 and p38 phosphorylation. Impaired endothelial cell function (as characterized by a decrease in tube formation and cell migration along with reduced VEGF-A, Hif1α, CD31, and angiopoietin1 gene expression) was observed in TGF-β1-FB-Exo treated cells. Furthermore, TGF-β1-FB-Exo treated ECs showed reduced cell proliferation and increased apoptosis as compared to control cells. TGF-β1-FB-Exo cargo analysis revealed an alteration in fibrosis-associated miRNAs, including a significant increase in miR-200a-3p level. Interestingly, miR-200a-3p inhibition in activated FBs, alleviated TGF-β1-FB-Exo-mediated endothelial dysfunction. Conclusions: Taken together, this study demonstrates an important role of miR-200a-3p enriched within activated fibroblast-derived exosomes on endothelial cell biology and function.
Collapse
Affiliation(s)
- Prabhat Ranjan
- Division of Cardiovascular Disease, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Rajesh Kumari
- Division of Cardiovascular Disease, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Sumanta Kumar Goswami
- Division of Cardiovascular Disease, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Jing Li
- Division of Cardiovascular Disease, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Harish Pal
- Molecular and Cellular Pathology, Department of Pathology, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Zainab Suleiman
- Department of Biomedical Engineering, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Zhongjian Cheng
- Center for Translational Medicine, Temple University, Philadelphia, PA, United States
| | - Prasanna Krishnamurthy
- Department of Biomedical Engineering, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Raj Kishore
- Center for Translational Medicine, Temple University, Philadelphia, PA, United States
| | - Suresh Kumar Verma
- Division of Cardiovascular Disease, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, United States.,Department of Biomedical Engineering, The University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
46
|
Wang Y, Gao L, Li Z, Ma X. MicroRNA-301a-3p promotes diabetic retinopathy via regulation of six-transmembrane epithelial antigen of prostate 4. Inflamm Res 2021; 70:445-457. [PMID: 33609142 DOI: 10.1007/s00011-020-01431-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/10/2020] [Accepted: 12/13/2020] [Indexed: 10/22/2022] Open
Abstract
OBJECTIVE AND DESIGN Diabetic retinopathy (DR) is one of the most serious microvascular complications of diabetes mellitus (DM). MicroRNAs (miRNAs) have been discovered to play a crucial role in DR, but the mechanisms underlying the effects of miR-301a-3p on DR are poorly understood. This paper was designed to explore the possible role of miR-301a-3p in DR. METHODS The diabetic rat model was established by a single intraperitoneal injection of streptozotocin (STZ). The effects of miR-301a-3p on the biological functions of HRECs were determined through a series of experiments in vitro/vivo. RESULTS The results revealed that interference with miR-301a-3p could decrease the expressions of inflammatory factors and apoptosis in the retinal tissue of DR. Furthermore, it can alleviate the oxidative stress in DR serum, reduce VEGF expression, increase endothelial cell marker expression, and inhibit (High Glucose) HG-induced apoptosis of HRECs. Six-transmembrane epithelial antigen of prostate 4 (STEAP4) was the target of miR-301a-3p. All the effects of miR-301a-3p in DR model were reversed by STEAP4 inhibitor. CONCLUSION miR-301a-3p promotes diabetic retinopathy via regulation of STEAP4. The findings in this study may provide a vital reference for the drug research and development in DR treatment.
Collapse
Affiliation(s)
- Yingmin Wang
- Department of Nursing, Xingtai Medical College, Hebei, 054000, China
| | - Lijuan Gao
- Department of Clinical, Xingtai Medical College, Hebei, 054000, China
| | - Zhili Li
- Department of Physiology, Hebei University of Chinese Medicine, Xingyuan Road No. 3, Hebei, 050200, China.
| | - Xingyou Ma
- Department of Clinical Medicine, Second Affiliated Hospital of Xingtai Medical College, Hebei, 054000, China
| |
Collapse
|
47
|
Song J, Kim YK. Targeting non-coding RNAs for the treatment of retinal diseases. MOLECULAR THERAPY-NUCLEIC ACIDS 2021; 24:284-293. [PMID: 33815941 PMCID: PMC7985465 DOI: 10.1016/j.omtn.2021.02.031] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Maintaining visual function is key to establishing improved longevity. However, the numbers of patients with diseases of the retina, the most important tissue for vision and the key to age-related blindness, are not declining due to the increase in the number of aging subjects worldwide and the technological advances in the delivery of premature infants. The primary treatment option for retinal diseases is still surgical intervention and includes laser or photocoagulation, which are associated with various complications and side effects. Many aspects of the pathogenesis of these retinal diseases are still unknown, thereby impeding drug discovery. This has led to an increase in the number of studies focused on the underlying pathogenic mechanisms of retinal diseases. Growing evidence suggests that non-coding RNAs play critical roles in the pathogenesis of retinal diseases. Herein, we have summarized the known functional roles of non-coding RNAs, emphasizing their contribution to the underlying pathogenesis of retinal diseases. In addition, we discuss the modulation of non-coding RNAs as potential therapeutics and the methods to control the non-coding RNAs for the treatment. We expect that targeting non-coding RNAs could be crucial for developing novel therapeutics for progressive diseases including diseases of the retina.
Collapse
Affiliation(s)
- Juhyun Song
- Department of Anatomy, Chonnam National University Medical School, Hwasun 58128, Jeollanam-do, Republic of Korea
| | - Young-Kook Kim
- Department of Biochemistry, Chonnam National University Medical School, Hwasun 58128, Jeollanam-do, Republic of Korea
- Corresponding author: Young-Kook Kim, PhD, Department of Biochemistry, Chonnam National University Medical School, Hwasun 58128, Jeollanam-do, Republic of Korea.
| |
Collapse
|
48
|
Noncoding RNAs involved in DNA methylation and histone methylation, and acetylation in diabetic vascular complications. Pharmacol Res 2021; 170:105520. [PMID: 33639232 DOI: 10.1016/j.phrs.2021.105520] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 02/23/2021] [Indexed: 02/08/2023]
Abstract
Diabetes is a metabolic disorder and its incidence is still increasing. Diabetic vascular complications cause major diabetic mobility and include accelerated atherosclerosis, nephropathy, retinopathy, and neuropathy. Hyperglycemia contributes to the pathogenesis of diabetic vascular complications via numerous mechanisms including the induction of oxidative stress, inflammation, metabolic alterations, and abnormal proliferation of EC and angiogenesis. In the past decade, epigenetic modifications have attracted more attention as they participate in the progression of diabetic vascular complications despite controlled glucose levels and regulate gene expression without altering the genomic sequence. DNA methylation and histone methylation, and acetylation are vital epigenetic modifications and their underlying mechanisms in diabetic vascular complication are still urgently needed to be investigated. Non-coding RNAs (nc RNAs) such as micro RNAs (miRNAs), long non-coding RNA (lncRNAs), and circular RNAs (circ RNAs) were found to exert transcriptional regulation in diabetic vascular complication. Although nc RNAs are not considered as epigenetic components, they are involved in epigenetic modifications. In this review, we summarized the investigations of non-coding RNAs involved in DNA methylation and histone methylation and acetylation. Their cross-talks might offer novel insights into the pathology of diabetic vascular complications.
Collapse
|
49
|
Soltani A, Jafarian A, Allameh A. The Predominant microRNAs in β-cell Clusters for Insulin Regulation and Diabetic Control. Curr Drug Targets 2021; 21:722-734. [PMID: 31886749 DOI: 10.2174/1389450121666191230145848] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 12/04/2019] [Accepted: 12/04/2019] [Indexed: 12/20/2022]
Abstract
micro (mi)-RNAs are vital regulators of multiple processes including insulin signaling pathways and glucose metabolism. Pancreatic β-cells function is dependent on some miRNAs and their target mRNA, which together form a complex regulative network. Several miRNAs are known to be directly involved in β-cells functions such as insulin expression and secretion. These small RNAs may also play significant roles in the fate of β-cells such as proliferation, differentiation, survival and apoptosis. Among the miRNAs, miR-7, miR-9, miR-375, miR-130 and miR-124 are of particular interest due to being highly expressed in these cells. Under diabetic conditions, although no specific miRNA profile has been noticed, the expression of some miRNAs and their target mRNAs are altered by posttranscriptional mechanisms, exerting diverse signs in the pathobiology of various diabetic complications. The aim of this review article is to discuss miRNAs involved in the process of stem cells differentiation into β-cells, resulting in enhanced β-cell functions with respect to diabetic disorders. This paper will also look into the impact of miRNA expression patterns on in vitro proliferation and differentiation of β-cells. The efficacy of the computational genomics and biochemical analysis to link the changes in miRNA expression profiles of stem cell-derived β-cells to therapeutically relevant outputs will be discussed as well.
Collapse
Affiliation(s)
- Adele Soltani
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Arefeh Jafarian
- Immunology, Asthma, and Allergy Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Abdolamir Allameh
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
50
|
Pang B, Ni Q, Di S, Du LJ, Qin YL, Li QW, Li M, Tong XL. Luo Tong Formula Alleviates Diabetic Retinopathy in Rats Through Micro-200b Target. Front Pharmacol 2020; 11:551766. [PMID: 33324202 PMCID: PMC7723456 DOI: 10.3389/fphar.2020.551766] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 09/29/2020] [Indexed: 12/13/2022] Open
Abstract
Aim: Diabetic retinopathy (DR) is a serious complication of diabetes (DM). Luo Tong formula (LTF) exerts protective effects against DR in rats, but its underlying mechanism remains unknown. Methods: Sprague-Dawley rats injected with streptozotocin (STZ) were used as an experimental diabetes model. LTF or calcium dobesilate (CaD) was administered to diabetic rats via gastric gavage. After the 12 weeks of treatment, blood and tissue samples were collected to determine serum glucose and retinal structure. Blood samples were collected for blood glucose and hemorheology analysis. Gene or protein expression levels were evaluated by immunohistochemistry, western blotting and/or quantitative real-time polymerase chain reaction (PCR). Results: DM rats exhibits significantly increased blood retinal-barrier (BRB) breakdown and VEGF/VEGFR expression in the retina, and decreased miR-200b and tight junction ZO-1/Occludin/ Claudin-5 genes expression, as well as Ang-1/Tie-2 expressions in the retina compared to normal control group. LTF treatment significantly moderated histological abnormalities in diabetic rats, independent of blood glucose level; improved some hemorrheological parameters; decreased the expressions of VEGF/VEGFR and BRB breakdown, significantly increased PEDF and tight junction proteins ZO-1/Occludin, as well as increased retinal miR-200b expression compared to non-treatment diabetic rats. Moreover, LTF prevented the reduction in Ang-1/Tie-2 expression. Conclusions: LTF treatment ameliorated DR through its repair vascular and attenuate vascular leakage. A mechanism involving miR-200b may contribute to benefit effects.
Collapse
Affiliation(s)
- Bing Pang
- Department of Endocrinology, Guang' Anmen Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Qing Ni
- Department of Endocrinology, Guang' Anmen Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Sha Di
- Department of Endocrinology, Guang' Anmen Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Li-Juan Du
- Department of Endocrinology, Guang' Anmen Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Ya-Li Qin
- Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Qing-Wei Li
- Department of Endocrinology, Guang' Anmen Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Min Li
- Molecular Biology Laboratory, Guang' Anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiao-Lin Tong
- Department of Endocrinology, Guang' Anmen Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|