1
|
Tai GJ, Ma YJ, Feng JL, Li JP, Qiu S, Yu QQ, Liu RH, Wankumbu SC, Wang X, Li XX, Xu M. NLRP3 inflammasome-mediated premature immunosenescence drives diabetic vascular aging dependent on the induction of perivascular adipose tissue dysfunction. Cardiovasc Res 2025; 121:77-96. [PMID: 38643484 DOI: 10.1093/cvr/cvae079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 11/29/2023] [Accepted: 02/06/2024] [Indexed: 04/23/2024] Open
Abstract
AIMS The vascular aging process accelerated by type 2 diabetes mellitus (T2DM) is responsible for the elevated risk of associated cardiovascular diseases. Metabolic disorder-induced immune senescence has been implicated in multi-organ/tissue damage. Herein, we sought to determine the role of immunosenescence in diabetic vascular aging and to investigate the underlying mechanisms. METHODS AND RESULTS Aging hallmarks of the immune system appear prior to the vasculature in streptozotocin (STZ)/high-fat diet (HFD)-induced T2DM mice or db/db mice. Transplantation of aged splenocytes or diabetic splenocytes into young mice triggered vascular senescence and injury compared with normal control splenocyte transfer. RNA sequencing profile and validation in immune tissues revealed that the toll-like receptor 4-nuclear factor-kappa B-NLRP3 axis might be the mediator of diabetic premature immunosenescence. The absence of Nlrp3 attenuated immune senescence and vascular aging during T2DM. Importantly, senescent immune cells, particularly T cells, provoked perivascular adipose tissue (PVAT) dysfunction and alternations in its secretome, which in turn impair vascular biology. In addition, senescent immune cells may uniquely affect vasoconstriction via influencing PVAT. Lastly, rapamycin alleviated diabetic immune senescence and vascular aging, which may be partly due to NLRP3 signalling inhibition. CONCLUSION These results indicated that NLRP3 inflammasome-mediated immunosenescence precedes and drives diabetic vascular aging. The contribution of senescent immune cells to vascular aging is a combined effect of their direct effects and induction of PVAT dysfunction, the latter of which can uniquely affect vasoconstriction. We further demonstrated that infiltration of senescent T cells in PVAT was increased and associated with PVAT secretome alterations. Our findings suggest that blocking the NLRP3 pathway may prevent early immunosenescence and thus mitigate diabetic vascular aging and damage, and targeting senescent T cells or PVAT might also be the potential therapeutic approach.
Collapse
MESH Headings
- Animals
- NLR Family, Pyrin Domain-Containing 3 Protein/metabolism
- NLR Family, Pyrin Domain-Containing 3 Protein/genetics
- NLR Family, Pyrin Domain-Containing 3 Protein/deficiency
- Inflammasomes/metabolism
- Inflammasomes/genetics
- Inflammasomes/immunology
- Signal Transduction
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/immunology
- Diabetes Mellitus, Experimental/genetics
- Diabetes Mellitus, Experimental/physiopathology
- Diabetes Mellitus, Experimental/pathology
- Male
- Adipose Tissue/metabolism
- Adipose Tissue/immunology
- Adipose Tissue/physiopathology
- Adipose Tissue/pathology
- Mice, Inbred C57BL
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/immunology
- Diabetes Mellitus, Type 2/genetics
- Diabetes Mellitus, Type 2/physiopathology
- Diabetes Mellitus, Type 2/pathology
- Immunosenescence
- Diabetic Angiopathies/metabolism
- Diabetic Angiopathies/immunology
- Diabetic Angiopathies/physiopathology
- Diabetic Angiopathies/genetics
- Diabetic Angiopathies/pathology
- Diabetic Angiopathies/prevention & control
- Cellular Senescence
- Mice, Knockout
- Vasoconstriction
- T-Lymphocytes/metabolism
- T-Lymphocytes/immunology
- T-Lymphocytes/transplantation
- T-Lymphocytes/pathology
- NF-kappa B/metabolism
- Mice
- Spleen/metabolism
- Spleen/transplantation
- Toll-Like Receptor 4
Collapse
Affiliation(s)
- Guang-Jie Tai
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, 24 Tong jia Lane, Nanjing 210009, China
| | - Yan-Jie Ma
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, 24 Tong jia Lane, Nanjing 210009, China
| | - Jun-Lin Feng
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, 24 Tong jia Lane, Nanjing 210009, China
| | - Jia-Peng Li
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, 24 Tong jia Lane, Nanjing 210009, China
| | - Shu Qiu
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, 24 Tong jia Lane, Nanjing 210009, China
| | - Qing-Qing Yu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Ren-Hua Liu
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, 24 Tong jia Lane, Nanjing 210009, China
| | - Silumbwe Ceaser Wankumbu
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, 24 Tong jia Lane, Nanjing 210009, China
| | - Xin Wang
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Xiao-Xue Li
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, No. 87 Dingjiaqiao, Nanjing 210009, China
| | - Ming Xu
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, 24 Tong jia Lane, Nanjing 210009, China
| |
Collapse
|
2
|
de Rezende VL, de Aguiar da Costa M, Martins CD, Mathias K, Gonçalves CL, Barichello T, Petronilho F. Systemic Rejuvenating Interventions: Perspectives on Neuroinflammation and Blood-Brain Barrier Integrity. Neurochem Res 2025; 50:112. [PMID: 40035979 DOI: 10.1007/s11064-025-04361-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/13/2025] [Accepted: 02/19/2025] [Indexed: 03/06/2025]
Abstract
The aging process results in structural, functional, and immunological changes in the brain, which contribute to cognitive decline and increase vulnerability to neurodegenerative diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), and stroke-related complications. Aging leads to cognitive changes and also affect executive functions. Additionally, it causes neurogenic and neurochemical alterations, such as a decline in dopamine and acetylcholine levels, which also impact cognitive performance. The chronic inflammation caused by aging contributes to the impairment of the blood-brain barrier (BBB), contributing to the infiltration of immune cells and exacerbating neuronal damage. Therefore, rejuvenating therapies such as heterochronic parabiosis, cerebrospinal fluid (CSF) administration, plasma, platelet-rich plasma (PRP), and stem cell therapy have shown potential to reverse these changes, offering new perspectives in the treatment of age-related neurological diseases. This review focuses on highlighting the effects of rejuvenating interventions on neuroinflammation and the BBB.
Collapse
Affiliation(s)
- Victória Linden de Rezende
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarao, SC, Brazil
| | - Maiara de Aguiar da Costa
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarao, SC, Brazil
| | - Carla Damasio Martins
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarao, SC, Brazil
| | - Khiany Mathias
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarao, SC, Brazil
- Laboratory of Immunoparasitology, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Cinara Ludvig Gonçalves
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarao, SC, Brazil
| | - Tatiana Barichello
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarao, SC, Brazil
- Faillace Department of Psychiatry and Behavioral Sciences, Translational Psychiatry Program, Mcgovern Medical School, The University of Texas Health Science Center at Houston (Uthealth), Houston, TX, USA
| | - Fabricia Petronilho
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil.
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarao, SC, Brazil.
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, Universidade do Extremo Sul Catarinense, 1105, Criciúma, SC, 88806-000, Brazil.
| |
Collapse
|
3
|
Asmaz ED, Ceylani T, Genc Aİ, Sertkaya ZT, Teker HT. Plasma therapy: a novel intervention to improve age-induced decline in deudenal cell proliferation in female rat model. Biogerontology 2025; 26:57. [PMID: 39920489 PMCID: PMC11805874 DOI: 10.1007/s10522-025-10197-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Accepted: 01/27/2025] [Indexed: 02/09/2025]
Abstract
Aging is associated with a disruptive decline in gastrointestinal health leading to decreased duodenal cell proliferation ultimately affecting the digestive and absorptive capacity of intestines in all species. This study investigates the novel application of blood plasma therapy to enhance duodenal cell proliferation associated with aging. In the presented study, the effects of middle aged plasma therapy on the aged rat duodenum were investigated. For this purpose, using a randomized controlled design, Female Wistar rats (aged 12-15 months) (n:7) were treated with heterologus pooled plasma (0.5 mL per day for 30 days, infused intravenously into the tail vein) collected from middle aged (6 months old, n:28) rats during all stages of the estrous cycle. The groups were divided into three as the Experimental group (aged 12-15 months) receiving middle aged plasma, the control group (aged 12-15 months) not receiving treatment, and the middle aged rat (6 months) as the positive control group. At the end of the experiment, each group's duodenum were collected, fixed, and analyzed using histological techniques for morphometric parameters. Additionally cell proliferation density and proliferation index were determined by proliferating cell nuclear antigen (PCNA). The finding of the study suggests that plasma therapy significantly improves cell proliferation, villus height (µm), crypt depth (µm), total mucosal thickness (µm), the ratio of villus height to crypt depth (µm), and surface absorption area (mm2) in the experimental group compared to control. Likewise, we determined that middle aged plasma application supports cell proliferation. However, further research is warranted to explore the underlying mechanisms and potential clinical applications of this innovative approach.
Collapse
Affiliation(s)
- Ender Deniz Asmaz
- Department of Histology and Embryology, Faculty of Medicine, Ankara Medipol University, Ankara, Turkey.
- Department of Biomedical Engineering Graduate Medical Sciences, Boston University, Boston, MA, 02215, USA.
| | - Taha Ceylani
- Department of Molecular Biology and Genetics, Muş Alparslan University, Muş, Turkey
| | - Aysun İnan Genc
- Department of Biology, Kastamonu University, Kastamonu, Turkey
| | - Zeynep Tuğçe Sertkaya
- Department of Physiology, Faculty of Medicine, Ankara Medipol University, Ankara, Turkey
| | - Hikmet Taner Teker
- Department of Medical Biology and Genetics, Faculty of Medicine, Ankara Medipol University, Ankara, Turkey.
| |
Collapse
|
4
|
Lagunas-Rangel FA. Aging insights from heterochronic parabiosis models. NPJ AGING 2024; 10:38. [PMID: 39154047 PMCID: PMC11330497 DOI: 10.1038/s41514-024-00166-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 08/07/2024] [Indexed: 08/19/2024]
Abstract
Heterochronic parabiosis consists of surgically connecting the circulatory systems of a young and an old animal. This technique serves as a model to study circulating factors that accelerate aging in young organisms exposed to old blood or induce rejuvenation in old organisms exposed to young blood. Despite the promising results, the exact cellular and molecular mechanisms remain unclear, so this study aims to explore and elucidate them in more detail.
Collapse
|
5
|
Weng R, Liu J, Yu Q, Yuan H, Qiu Y, Liu H, Wang L, Mei Z, Zhu F. The disparity of platelet factor 4 and platelets in individuals of different ages. Heliyon 2024; 10:e34923. [PMID: 39145023 PMCID: PMC11320319 DOI: 10.1016/j.heliyon.2024.e34923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 07/10/2024] [Accepted: 07/18/2024] [Indexed: 08/16/2024] Open
Abstract
The aging process profoundly impacts the systemic milieu, with specific blood-borne factors playing critical roles in its regulation. Platelet Factor 4 (PF4), released by platelets, has emerged as a novel blood-borne factor that contributes to the rejuvenation of aging brains in rodents. However, the age-related disparity in PF4 levels in humans remains poorly understood. To explore the relationship between PF4 and the natural aging process in humans, we collected peripheral blood (PB) samples from young (23.40 ± 2.13 years, n = 15) and elderly (75.23 ± 4.19 years, n = 13) individuals, along with cord blood (CB) samples (n = 15). ELISA analysis revealed higher PF4 levels in platelet-rich plasma lysate from young PB compared with that from elderly PB. Consistent with this, qPCR results demonstrated the highest PF4 expression in young PB among the three groups. In addition, FACS analysis showed increased expression of CXCR3 in mononuclear cells of young PB, indicating a greater responsiveness to PF4. Finally, our RNA-sequencing analysis corroborated platelets as a sensitive element during the natural aging process, and indicated platelets play a pivotal role in antioxidant response during aging, as evidenced by significant enrichment of several age-related pathways. These findings reveal that, alongside PF4 levels, platelets undergo substantial alterations during aging. Taken together, our data identified age-related disparities in platelets and PF4-related elements during natural aging and underscored the potential of targeting platelet modulation as an intervention in the aging process.
Collapse
Affiliation(s)
- Ruopeng Weng
- Department of Obstetrics, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiaqing Liu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Qingtan Yu
- Department of Laboratory, Qingdao Special Servicemen Recuperation Center of PLA Navy, China
| | - Haitao Yuan
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yun Qiu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Huicong Liu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Lingna Wang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Zijie Mei
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Fangfang Zhu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
6
|
Liu MN, Lan Q, Wu H, Qiu CW. Rejuvenation of young blood on aging organs: Effects, circulating factors, and mechanisms. Heliyon 2024; 10:e32652. [PMID: 38994040 PMCID: PMC11237939 DOI: 10.1016/j.heliyon.2024.e32652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 06/06/2024] [Indexed: 07/13/2024] Open
Abstract
Aging causes degenerative changes in organs, leading to a decline in physical function. Over the past two decades, researchers have made significant progress in understanding the rejuvenating effects of young blood on aging organs, benefiting from heterochronic parabiosis models that connect the blood circulation of aged and young rodents. It has been discovered that young blood can partially rejuvenate organs in old animals by regulating important aging-related signaling pathways. Clinical trials have also shown the effectiveness of young blood in treating aging-related diseases. However, the limited availability of young blood poses a challenge to implementing anti-aging therapies on a large scale for older individuals. As a promising alternative, scientists have identified some specific anti-aging circulating factors in young blood that have been shown to promote organ regeneration, reduce inflammation, and alleviate fibrosis associated with aging in animal experiments. While previous reviews have focused primarily on the effects and mechanisms of circulating factors on aging, it is important to acknowledge that studying the rejuvenating effects and mechanisms of young blood has been a significant source of inspiration in this field, and it will continue to be in the future. In recent years, new findings have emerged, further expanding our knowledge in this area. This review aims to summarize the rejuvenating effects and mechanisms of young blood and circulating factors, discussing their similarities and connections, addressing discrepancies in previous studies, outlining future research directions, and highlighting the potential for clinical translation in anti-aging interventions.
Collapse
Affiliation(s)
- Meng-Nan Liu
- National Traditional Chinese Medicine Clinical Research Base, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, PR China
| | - Qi Lan
- National Traditional Chinese Medicine Clinical Research Base, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, PR China
| | - Hao Wu
- National Traditional Chinese Medicine Clinical Research Base, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, PR China
| | - Cai-Wei Qiu
- Research Center of Combine Traditional Chinese and Western Medicine, Prophylaxis and Treatment of Organ Fibrosis by Integrated Medicine of Luzhou Key Laboratory, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, PR China
| |
Collapse
|
7
|
Wang X, Tazearslan C, Kim S, Guo Q, Contreras D, Yang J, Hudgins AD, Suh Y. In vitro heterochronic parabiosis identifies pigment epithelium-derived factor as a systemic mediator of rejuvenation by young blood. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.02.592258. [PMID: 38746475 PMCID: PMC11092633 DOI: 10.1101/2024.05.02.592258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Several decades of heterochronic parabiosis (HCPB) studies have demonstrated the restorative impact of young blood, and deleterious influence of aged blood, on physiological function and homeostasis across tissues, although few of the factors responsible for these observations have been identified. Here we develop an in vitro HCPB system to identify these circulating factors, using replicative lifespan (RLS) of primary human fibroblasts as an endpoint of cellular health. We find that RLS is inversely correlated with serum donor age and sensitive to the presence or absence of specific serum components. Through in vitro HCPB, we identify the secreted protein pigment epithelium-derived factor (PEDF) as a circulating factor that extends RLS of primary human fibroblasts and declines with age in mammals. Systemic administration of PEDF to aged mice reverses age-related functional decline and pathology across several tissues, improving cognitive function and reducing hepatic fibrosis and renal lipid accumulation. Together, our data supports PEDF as a systemic mediator of the effect of young blood on organismal health and homeostasis and establishes our in vitro HCPB system as a valuable screening platform for the identification of candidate circulating factors involved in aging and rejuvenation.
Collapse
Affiliation(s)
- Xizhe Wang
- Department of Obstetrics and Gynecology, Columbia University Medical Center, New York, NY
- These authors contributed equally
| | - Cagdas Tazearslan
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY
- These authors contributed equally
| | - Seungsoo Kim
- Department of Obstetrics and Gynecology, Columbia University Medical Center, New York, NY
| | - Qinghua Guo
- Department of Obstetrics and Gynecology, Columbia University Medical Center, New York, NY
| | - Daniela Contreras
- Department of Obstetrics and Gynecology, Columbia University Medical Center, New York, NY
| | - Jiping Yang
- Department of Obstetrics and Gynecology, Columbia University Medical Center, New York, NY
| | - Adam D. Hudgins
- Department of Obstetrics and Gynecology, Columbia University Medical Center, New York, NY
| | - Yousin Suh
- Department of Obstetrics and Gynecology, Columbia University Medical Center, New York, NY
- Department of Genetics and Development, Columbia University Medical Center, New York, NY
| |
Collapse
|
8
|
Yu C, Zhang J, Pei J, Luo J, Hong Y, Tian X, Liu Z, Zhu C, Long C, Shen L, He X, Wen S, Liu X, Wu S, Hua Y, Wei G. IL-13 alleviates acute kidney injury and promotes regeneration via activating the JAK-STAT signaling pathway in a rat kidney transplantation model. Life Sci 2024; 341:122476. [PMID: 38296190 DOI: 10.1016/j.lfs.2024.122476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/18/2024] [Accepted: 01/26/2024] [Indexed: 02/09/2024]
Abstract
AIMS To identify whether and how a younger systemic internal milieu alleviates acute kidney injury (AKI) in grafts after kidney transplantation. MATERIALS AND METHODS We conducted an allogenic heterotopic rat kidney transplantation model with young and adult recipients receiving similar donor kidneys. We evaluated the renal function, histological damage, apoptosis, dedifferentiation, proliferation, hub regulating cytokines, and signaling pathways involved in young and adult recipients based on transcriptomics, proteomics, and experimental validation. We also validated the protective effect and mechanism of interleukin-13 (IL-13) on tubular epithelial cell injury induced by transplantation in vivo and by cisplatin in vitro. KEY FINDINGS Compared with adult recipients, the young recipients had lower levels of renal histological damage and apoptosis, while had higher levels of dedifferentiation and proliferation. Serum IL-13 levels were higher in young recipients both before and after surgery. Pretreating with IL-13 decreased apoptosis and promoted regeneration in injured rat tubular epithelial cells induced by cisplatin, while this effect can be counteracted by a JAK2 and STAT3 specific inhibitor, AG490. Recipients pretreated with IL-13 also had lower levels of histological damage and improved renal function. SIGNIFICANCE Higher levels of IL-13 in young recipients ameliorates tubular epithelial cell apoptosis and promotes regeneration via activating the JAK-STAT signaling pathway both in vivo and in vitro. Our results suggest that IL-13 is a promising therapeutic strategy for alleviating AKI. The therapeutic potential of IL-13 in injury repair and immune regulation deserves further evaluation and clinical consideration.
Collapse
Affiliation(s)
- Chengjun Yu
- Department of Urology, Children's Hospital of Chongqing Medical University, Zhongshan 2nd Road, Yuzhong District, Chongqing 400014, China; National Clinical Research Center for Child Health and Disorders, Chongqing, China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, China; Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China; Chongqing Key Laboratory of Pediatrics Chongqing, Chongqing, China
| | - Jie Zhang
- National Clinical Research Center for Child Health and Disorders, Chongqing, China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, China; Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China; Chongqing Key Laboratory of Pediatrics Chongqing, Chongqing, China
| | - Jun Pei
- National Clinical Research Center for Child Health and Disorders, Chongqing, China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, China; Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China; Chongqing Key Laboratory of Pediatrics Chongqing, Chongqing, China
| | - Jin Luo
- National Clinical Research Center for Child Health and Disorders, Chongqing, China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China; Chongqing Key Laboratory of Pediatrics Chongqing, Chongqing, China
| | - Yifan Hong
- National Clinical Research Center for Child Health and Disorders, Chongqing, China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China; Chongqing Key Laboratory of Pediatrics Chongqing, Chongqing, China.
| | - Xiaomao Tian
- Department of Urology, Children's Hospital of Chongqing Medical University, Zhongshan 2nd Road, Yuzhong District, Chongqing 400014, China; National Clinical Research Center for Child Health and Disorders, Chongqing, China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, China; Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China; Chongqing Key Laboratory of Pediatrics Chongqing, Chongqing, China
| | - Zhiyuan Liu
- Department of Urology, Children's Hospital of Chongqing Medical University, Zhongshan 2nd Road, Yuzhong District, Chongqing 400014, China; National Clinical Research Center for Child Health and Disorders, Chongqing, China
| | - Chumeng Zhu
- National Clinical Research Center for Child Health and Disorders, Chongqing, China; Chongqing Key Laboratory of Pediatrics Chongqing, Chongqing, China
| | - Chunlan Long
- National Clinical Research Center for Child Health and Disorders, Chongqing, China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China; Chongqing Key Laboratory of Pediatrics Chongqing, Chongqing, China.
| | - Lianju Shen
- National Clinical Research Center for Child Health and Disorders, Chongqing, China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China; Chongqing Key Laboratory of Pediatrics Chongqing, Chongqing, China.
| | - Xingyue He
- Department of Urology, Children's Hospital of Chongqing Medical University, Zhongshan 2nd Road, Yuzhong District, Chongqing 400014, China; National Clinical Research Center for Child Health and Disorders, Chongqing, China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, China; Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China; Chongqing Key Laboratory of Pediatrics Chongqing, Chongqing, China
| | - Sheng Wen
- Department of Urology, Children's Hospital of Chongqing Medical University, Zhongshan 2nd Road, Yuzhong District, Chongqing 400014, China; National Clinical Research Center for Child Health and Disorders, Chongqing, China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, China; Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China; Chongqing Key Laboratory of Pediatrics Chongqing, Chongqing, China
| | - Xing Liu
- Department of Urology, Children's Hospital of Chongqing Medical University, Zhongshan 2nd Road, Yuzhong District, Chongqing 400014, China; National Clinical Research Center for Child Health and Disorders, Chongqing, China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, China; Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China; Chongqing Key Laboratory of Pediatrics Chongqing, Chongqing, China
| | - Shengde Wu
- Department of Urology, Children's Hospital of Chongqing Medical University, Zhongshan 2nd Road, Yuzhong District, Chongqing 400014, China; National Clinical Research Center for Child Health and Disorders, Chongqing, China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, China; Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China; Chongqing Key Laboratory of Pediatrics Chongqing, Chongqing, China.
| | - Yi Hua
- Department of Urology, Children's Hospital of Chongqing Medical University, Zhongshan 2nd Road, Yuzhong District, Chongqing 400014, China; National Clinical Research Center for Child Health and Disorders, Chongqing, China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, China; Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China; Chongqing Key Laboratory of Pediatrics Chongqing, Chongqing, China.
| | - Guanghui Wei
- Department of Urology, Children's Hospital of Chongqing Medical University, Zhongshan 2nd Road, Yuzhong District, Chongqing 400014, China; National Clinical Research Center for Child Health and Disorders, Chongqing, China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, China; Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China; Chongqing Key Laboratory of Pediatrics Chongqing, Chongqing, China.
| |
Collapse
|
9
|
Gonzalez-Armenta JL, Bergstrom J, Lee J, Furdui CM, Nicklas BJ, Molina AJA. Serum factors mediate changes in mitochondrial bioenergetics associated with diet and exercise interventions. GeroScience 2024; 46:349-365. [PMID: 37368157 PMCID: PMC10828137 DOI: 10.1007/s11357-023-00855-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 06/15/2023] [Indexed: 06/28/2023] Open
Abstract
Mitochondrial improvements resulting from behavioral interventions, such as diet and exercise, are systemic and apparent across multiple tissues. Here, we test the hypothesis that factors present in serum, and therefore circulating throughout the body, can mediate changes in mitochondrial function in response to intervention. To investigate this, we used stored serum from a clinical trial comparing resistance training (RT) and RT plus caloric restriction (RT + CR) to examine effects of blood borne circulating factors on myoblasts in vitro. We report that exposure to dilute serum is sufficient to mediate bioenergetic benefits of these interventions. Additionally, serum-mediated bioenergetic changes can differentiate between interventions, recapitulate sex differences in bioenergetic responses, and is linked to improvements in physical function and inflammation. Using metabolomics, we identified circulating factors associated with changes in mitochondrial bioenergetics and the effects of interventions. This study provides new evidence that circulating factors play a role in the beneficial effects of interventions that improve healthspan among older adults. Understanding the factors that drive improvements in mitochondrial function is a key step towards predicting intervention outcomes and developing strategies to countermand systemic age-related bioenergetic decline.
Collapse
Affiliation(s)
- Jenny L Gonzalez-Armenta
- Section On Gerontology and Geriatrics, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Jaclyn Bergstrom
- Division of Geriatrics, Gerontology, and Palliative Care, Department of Medicine, University of California San Diego School of Medicine, 9500 Gilman Drive, MC 0665, La Jolla, CA, 92093-0665, USA
| | - Jingyun Lee
- Proteomics and Metabolomics Shared Resource, Comprehensive Cancer Center, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Cristina M Furdui
- Section On Molecular Medicine, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Barbara J Nicklas
- Section On Gerontology and Geriatrics, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Anthony J A Molina
- Division of Geriatrics, Gerontology, and Palliative Care, Department of Medicine, University of California San Diego School of Medicine, 9500 Gilman Drive, MC 0665, La Jolla, CA, 92093-0665, USA.
| |
Collapse
|
10
|
Moses E, Franek R, Harel I. A scalable and tunable platform for functional interrogation of peptide hormones in fish. eLife 2023; 12:e85960. [PMID: 37872843 PMCID: PMC10597582 DOI: 10.7554/elife.85960] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 09/16/2023] [Indexed: 10/25/2023] Open
Abstract
Pituitary hormones play a central role in shaping vertebrate life history events, including growth, reproduction, metabolism, and aging. The regulation of these traits often requires precise control of hormone levels across diverse timescales. However, fine tuning circulating hormones in-vivo has traditionally been experimentally challenging. Here, using the naturally short-lived turquoise killifish (N. furzeri), we describe a high-throughput platform that combines loss- and gain-of-function of peptide hormones. Mutation of three primary pituitary hormones, growth hormone (gh1), follicle stimulating hormone (fshb), and thyroid stimulating hormone (tshb), alters somatic growth and reproduction. Thus, suggesting that while the killifish undergoes extremely rapid growth and maturity, it still relies on vertebrate-conserved genetic networks. As the next stage, we developed a gain-of-function vector system in which a hormone is tagged using a self-cleavable fluorescent reporter, and ectopically expressed in-vivo through intramuscular electroporation. Following a single electroporation, phenotypes, such as reproduction, are stably rescued for several months. Notably, we demonstrate the versatility of this approach by using multiplexing, dose-dependent, and doxycycline-inducible systems to achieve tunable and reversible expression. In summary, this method is relatively high-throughput, and facilitates large-scale interrogation of life-history strategies in fish. Ultimately, this approach could be adapted for modifying aquaculture species and exploring pro-longevity interventions.
Collapse
Affiliation(s)
- Eitan Moses
- Department of Genetics, the Silberman Institute, The Hebrew University of JerusalemJerusalemIsrael
| | - Roman Franek
- Department of Genetics, the Silberman Institute, The Hebrew University of JerusalemJerusalemIsrael
- University of South Bohemia in Ceske Budejovice, South Bohemian Research Center of Aquaculture and Biodiversity of HydrocenosesVodnanyCzech Republic
| | - Itamar Harel
- Department of Genetics, the Silberman Institute, The Hebrew University of JerusalemJerusalemIsrael
| |
Collapse
|
11
|
Driss LB, Lian J, Walker RG, Howard JA, Thompson TB, Rubin LL, Wagers AJ, Lee RT. GDF11 and aging biology - controversies resolved and pending. THE JOURNAL OF CARDIOVASCULAR AGING 2023; 3:42. [PMID: 38235060 PMCID: PMC10793994 DOI: 10.20517/jca.2023.23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Since the exogenous administration of GDF11, a TGF-ß superfamily member, was reported to have beneficial effects in some models of human disease, there have been many research studies in GDF11 biology. However, many studies have now confirmed that exogenous administration of GDF11 can improve physiology in disease models, including cardiac fibrosis, experimental stroke, and disordered metabolism. GDF11 is similar to GDF8 (also called Myostatin), differing only by 11 amino acids in their mature signaling domains. These two proteins are now known to be biochemically different both in vitro and in vivo. GDF11 is much more potent than GDF8 and induces more strongly SMAD2 phosphorylation in the myocardium compared to GDF8. GDF8 and GDF11 prodomain are only 52% identical and are cleaved by different Tolloid proteases to liberate the mature signaling domain from inhibition of the prodomain. Here, we review the state of GDF11 biology, highlighting both resolved and remaining controversies.
Collapse
Affiliation(s)
- Laura Ben Driss
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - John Lian
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - Ryan G. Walker
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
- Department of Molecular and Cellular Biosciences, University of Cincinnati, Cincinnati, OH 45267, USA
| | - James A. Howard
- Department of Pharmacology and Systems Physiology, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Thomas B. Thompson
- Department of Molecular and Cellular Biosciences, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Lee L. Rubin
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Amy J. Wagers
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
- Paul F. Glenn Center for the Biology of Aging, Harvard Medical School, Joslin Diabetes Center, Boston, MA 02115, USA
| | - Richard T. Lee
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
- Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
| |
Collapse
|
12
|
Ceylani T, Teker HT, Keskin S, Samgane G, Acikgoz E, Gurbanov R. The rejuvenating influence of young plasma on aged intestine. J Cell Mol Med 2023; 27:2804-2816. [PMID: 37610839 PMCID: PMC10494294 DOI: 10.1111/jcmm.17926] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/07/2023] [Accepted: 08/12/2023] [Indexed: 08/25/2023] Open
Abstract
This study aims to investigate the effects of plasma exchange on the biomolecular profiles and histology of ileum and colon tissues in young and aged Sprague-Dawley male rats. Fourier transform infrared (FTIR) spectroscopy, linear discriminant analysis and support vector machine (SVM) techniques were employed to analyse the lipid, protein, and nucleic acid indices in young and aged rats. Following the application of young plasma, aged rats demonstrated biomolecular profiles similar to those of their younger counterparts. Histopathological and immunohistochemical assessments showed that young plasma had a protective effect on the intestinal tissues of aged rats, increasing cell density and reducing inflammation. Additionally, the expression levels of key inflammatory mediators tumour necrosis factor-alpha and cyclooxygenase-2 significantly decreased after young plasma administration. These findings underscore the therapeutic potential of young plasma for mitigating age-related changes and inflammation in the intestinal tract. They highlight the critical role of plasma composition in the ageing process and suggest the need for further research to explore how different regions of the intestines respond to plasma exchange. Such understanding could facilitate the development of innovative therapies targeting the gastrointestinal system, enhancing overall health during ageing.
Collapse
Affiliation(s)
- Taha Ceylani
- Department of Molecular Biology and GeneticsMuş Alparslan University MuşMuşTurkey
- Department of Food Quality Control and AnalysisMuş Alparslan University MuşMuşTurkey
| | - Hikmet Taner Teker
- Department of Molecular BiologyAnkara Medipol University AnkaraAnkaraTurkey
| | - Seda Keskin
- Department of Histology and EmbryologyVan Yuzuncu Yil UniversityVanTurkey
| | - Gizem Samgane
- Department BiotechnologyInstitute of Graduate Education, Bilecik Şeyh Edebali University BilecikBilecikTurkey
| | - Eda Acikgoz
- Department of Histology and EmbryologyVan Yuzuncu Yil UniversityVanTurkey
| | - Rafig Gurbanov
- Department of BioengineeringBilecik Şeyh Edebali University BilecikBilecikTurkey
- Central Research Laboratory (BARUM)Bilecik Seyh Edebali University BilecikBilecikTurkey
| |
Collapse
|
13
|
Zhang B, Lee DE, Trapp A, Tyshkovskiy A, Lu AT, Bareja A, Kerepesi C, McKay LK, Shindyapina AV, Dmitriev SE, Baht GS, Horvath S, Gladyshev VN, White JP. Multi-omic rejuvenation and life span extension on exposure to youthful circulation. NATURE AGING 2023; 3:948-964. [PMID: 37500973 PMCID: PMC11095548 DOI: 10.1038/s43587-023-00451-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 06/06/2023] [Indexed: 07/29/2023]
Abstract
Heterochronic parabiosis (HPB) is known for its functional rejuvenation effects across several mouse tissues. However, its impact on biological age and long-term health is unknown. Here we performed extended (3-month) HPB, followed by a 2-month detachment period of anastomosed pairs. Old detached mice exhibited improved physiological parameters and lived longer than control isochronic mice. HPB drastically reduced the epigenetic age of blood and liver based on several clock models using two independent platforms. Remarkably, this rejuvenation effect persisted even after 2 months of detachment. Transcriptomic and epigenomic profiles of anastomosed mice showed an intermediate phenotype between old and young, suggesting a global multi-omic rejuvenation effect. In addition, old HPB mice showed gene expression changes opposite to aging but akin to several life span-extending interventions. Altogether, we reveal that long-term HPB results in lasting epigenetic and transcriptome remodeling, culminating in the extension of life span and health span.
Collapse
Affiliation(s)
- Bohan Zhang
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - David E Lee
- Department of Medicine, Duke University School of Medicine, Durham, NC, USA
- Duke Molecular Physiology Institute, Duke University, Durham, NC, USA
| | - Alexandre Trapp
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Retro Biosciences, Redwood City, CA, USA
| | - Alexander Tyshkovskiy
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, Russia
| | - Ake T Lu
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Altos Labs, San Diego, CA, USA
| | - Akshay Bareja
- Department of Medicine, Duke University School of Medicine, Durham, NC, USA
- Duke Molecular Physiology Institute, Duke University, Durham, NC, USA
| | - Csaba Kerepesi
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Institute for Computer Science and Control (SZTAKI), Eötvös Loránd Research Network, Budapest, Hungary
| | - Lauren K McKay
- Duke Molecular Physiology Institute, Duke University, Durham, NC, USA
- Division of Oral and Craniofacial Health Sciences, Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Anastasia V Shindyapina
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Retro Biosciences, Redwood City, CA, USA
| | - Sergey E Dmitriev
- Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, Russia
| | - Gurpreet S Baht
- Duke Molecular Physiology Institute, Duke University, Durham, NC, USA
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC, USA
- Duke Center for the Study of Aging and Human Development, Duke University School of Medicine, Durham, NC, USA
| | - Steve Horvath
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Department of Biostatistics, School of Public Health, University of California, Los Angeles, CA, USA
- Altos Labs, San Diego, CA, USA
| | - Vadim N Gladyshev
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - James P White
- Department of Medicine, Duke University School of Medicine, Durham, NC, USA.
- Duke Molecular Physiology Institute, Duke University, Durham, NC, USA.
- Duke Center for the Study of Aging and Human Development, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
14
|
Blood-to-brain communication in aging and rejuvenation. Nat Neurosci 2023; 26:379-393. [PMID: 36646876 DOI: 10.1038/s41593-022-01238-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 11/21/2022] [Indexed: 01/18/2023]
Abstract
Aging induces molecular, cellular and functional changes in the adult brain that drive cognitive decline and increase vulnerability to dementia-related neurodegenerative diseases. Leveraging systemic and lifestyle interventions, such as heterochronic parabiosis, administration of 'young blood', exercise and caloric restriction, has challenged prevalent views of brain aging as a rigid process and has demonstrated that aging-associated cognitive and cellular impairments can be restored to more youthful levels. Technological advances in proteomic and transcriptomic analyses have further facilitated investigations into the functional impact of intertissue communication on brain aging and have led to the identification of a growing number of pro-aging and pro-youthful factors in blood. In this review, we discuss blood-to-brain communication from a systems physiology perspective with an emphasis on blood-derived signals as potent drivers of both age-related brain dysfunction and brain rejuvenation.
Collapse
|
15
|
Ximerakis M, Holton KM, Giadone RM, Ozek C, Saxena M, Santiago S, Adiconis X, Dionne D, Nguyen L, Shah KM, Goldstein JM, Gasperini C, Gampierakis IA, Lipnick SL, Simmons SK, Buchanan SM, Wagers AJ, Regev A, Levin JZ, Rubin LL. Heterochronic parabiosis reprograms the mouse brain transcriptome by shifting aging signatures in multiple cell types. NATURE AGING 2023; 3:327-345. [PMID: 37118429 PMCID: PMC10154248 DOI: 10.1038/s43587-023-00373-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 01/30/2023] [Indexed: 04/30/2023]
Abstract
Aging is a complex process involving transcriptomic changes associated with deterioration across multiple tissues and organs, including the brain. Recent studies using heterochronic parabiosis have shown that various aspects of aging-associated decline are modifiable or even reversible. To better understand how this occurs, we performed single-cell transcriptomic profiling of young and old mouse brains after parabiosis. For each cell type, we cataloged alterations in gene expression, molecular pathways, transcriptional networks, ligand-receptor interactions and senescence status. Our analyses identified gene signatures, demonstrating that heterochronic parabiosis regulates several hallmarks of aging in a cell-type-specific manner. Brain endothelial cells were found to be especially malleable to this intervention, exhibiting dynamic transcriptional changes that affect vascular structure and function. These findings suggest new strategies for slowing deterioration and driving regeneration in the aging brain through approaches that do not rely on disease-specific mechanisms or actions of individual circulating factors.
Collapse
Affiliation(s)
- Methodios Ximerakis
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA.
- Harvard Stem Cell Institute, Cambridge, MA, USA.
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | - Kristina M Holton
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Richard M Giadone
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Ceren Ozek
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Monika Saxena
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Samara Santiago
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Xian Adiconis
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Danielle Dionne
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Lan Nguyen
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Kavya M Shah
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Jill M Goldstein
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Caterina Gasperini
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Ioannis A Gampierakis
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Scott L Lipnick
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Sean K Simmons
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Sean M Buchanan
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Amy J Wagers
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
- Joslin Diabetes Center, Boston, MA, USA
- Paul F. Glenn Center for the Biology of Aging, Harvard Medical School, Boston, MA, USA
| | - Aviv Regev
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Howard Hughes Medical Institute, Koch Institute of Integrative Cancer Research, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Joshua Z Levin
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Lee L Rubin
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA.
- Harvard Stem Cell Institute, Cambridge, MA, USA.
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
16
|
Brunet A, Goodell MA, Rando TA. Ageing and rejuvenation of tissue stem cells and their niches. Nat Rev Mol Cell Biol 2023; 24:45-62. [PMID: 35859206 PMCID: PMC9879573 DOI: 10.1038/s41580-022-00510-w] [Citation(s) in RCA: 161] [Impact Index Per Article: 80.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/16/2022] [Indexed: 01/28/2023]
Abstract
Most adult organs contain regenerative stem cells, often organized in specific niches. Stem cell function is critical for tissue homeostasis and repair upon injury, and it is dependent on interactions with the niche. During ageing, stem cells decline in their regenerative potential and ability to give rise to differentiated cells in the tissue, which is associated with a deterioration of tissue integrity and health. Ageing-associated changes in regenerative tissue regions include defects in maintenance of stem cell quiescence, differentiation ability and bias, clonal expansion and infiltration of immune cells in the niche. In this Review, we discuss cellular and molecular mechanisms underlying ageing in the regenerative regions of different tissues as well as potential rejuvenation strategies. We focus primarily on brain, muscle and blood tissues, but also provide examples from other tissues, such as skin and intestine. We describe the complex interactions between different cell types, non-cell-autonomous mechanisms between ageing niches and stem cells, and the influence of systemic factors. We also compare different interventions for the rejuvenation of old regenerative regions. Future outlooks in the field of stem cell ageing are discussed, including strategies to counter ageing and age-dependent disease.
Collapse
Affiliation(s)
- Anne Brunet
- Department of Genetics, Stanford University, Stanford, CA, USA.
- Glenn Laboratories for the Biology of Ageing, Stanford University, Stanford, CA, USA.
| | - Margaret A Goodell
- Molecular and Cellular Biology Department, Baylor College of Medicine, Houston, TX, USA.
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA.
| | - Thomas A Rando
- Glenn Laboratories for the Biology of Ageing, Stanford University, Stanford, CA, USA.
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA.
- Neurology Service, VA Palo Alto Health Care System, Palo Alto, CA, USA.
- Broad Stem Cell Research Center, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
17
|
Buckley MT, Sun ED, George BM, Liu L, Schaum N, Xu L, Reyes JM, Goodell MA, Weissman IL, Wyss-Coray T, Rando TA, Brunet A. Cell-type-specific aging clocks to quantify aging and rejuvenation in neurogenic regions of the brain. NATURE AGING 2023; 3:121-137. [PMID: 37118510 PMCID: PMC10154228 DOI: 10.1038/s43587-022-00335-4] [Citation(s) in RCA: 79] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 11/14/2022] [Indexed: 12/24/2022]
Abstract
The diversity of cell types is a challenge for quantifying aging and its reversal. Here we develop 'aging clocks' based on single-cell transcriptomics to characterize cell-type-specific aging and rejuvenation. We generated single-cell transcriptomes from the subventricular zone neurogenic region of 28 mice, tiling ages from young to old. We trained single-cell-based regression models to predict chronological age and biological age (neural stem cell proliferation capacity). These aging clocks are generalizable to independent cohorts of mice, other regions of the brains, and other species. To determine if these aging clocks could quantify transcriptomic rejuvenation, we generated single-cell transcriptomic datasets of neurogenic regions for two interventions-heterochronic parabiosis and exercise. Aging clocks revealed that heterochronic parabiosis and exercise reverse transcriptomic aging in neurogenic regions, but in different ways. This study represents the first development of high-resolution aging clocks from single-cell transcriptomic data and demonstrates their application to quantify transcriptomic rejuvenation.
Collapse
Affiliation(s)
- Matthew T Buckley
- Department of Genetics, Stanford University, Stanford, CA, USA
- Genetics Graduate Program, Stanford University, Stanford, CA, USA
| | - Eric D Sun
- Department of Genetics, Stanford University, Stanford, CA, USA
- Biomedical Informatics Graduate Program, Stanford University, Stanford, CA, USA
| | - Benson M George
- Stanford Medical Scientist Training Program, Stanford University, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, USA
| | - Ling Liu
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
- Department of Neurology, UCLA, Los Angeles, CA, USA
| | - Nicholas Schaum
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Lucy Xu
- Department of Genetics, Stanford University, Stanford, CA, USA
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Jaime M Reyes
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Margaret A Goodell
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Irving L Weissman
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, USA
- Ludwig Center for Cancer Stem Cell Research and Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Tony Wyss-Coray
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
- Glenn Center for the Biology of Aging, Stanford University, Stanford, CA, USA
| | - Thomas A Rando
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
- Glenn Center for the Biology of Aging, Stanford University, Stanford, CA, USA
- Neurology Service, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
- Department of Neurology, UCLA, Los Angeles, CA, USA
- Broad Stem Cell Research Center, UCLA, Los Angeles, CA, USA
| | - Anne Brunet
- Department of Genetics, Stanford University, Stanford, CA, USA.
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA.
- Glenn Center for the Biology of Aging, Stanford University, Stanford, CA, USA.
| |
Collapse
|
18
|
Höving AL, Schmidt KE, Kaltschmidt B, Kaltschmidt C, Knabbe C. The Role of Blood-Derived Factors in Protection and Regeneration of Aged Tissues. Int J Mol Sci 2022; 23:ijms23179626. [PMID: 36077021 PMCID: PMC9455681 DOI: 10.3390/ijms23179626] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/17/2022] [Accepted: 08/19/2022] [Indexed: 12/02/2022] Open
Abstract
Tissue regeneration substantially relies on the functionality of tissue-resident endogenous adult stem cell populations. However, during aging, a progressive decline in organ function and regenerative capacities impedes endogenous repair processes. Especially the adult human heart is considered as an organ with generally low regenerative capacities. Interestingly, beneficial effects of systemic factors carried by young blood have been described in diverse organs including the heart, brain and skeletal muscle of the murine system. Thus, the interest in young blood or blood components as potential therapeutic agents to target age-associated malignancies led to a wide range of preclinical and clinical research. However, the translation of promising results from the murine to the human system remains difficult. Likewise, the establishment of adequate cellular models could help to study the effects of human blood plasma on the regeneration of human tissues and particularly the heart. Facing this challenge, this review describes the current knowledge of blood plasma-mediated protection and regeneration of aging tissues. The current status of preclinical and clinical research examining blood borne factors that act in stem cell-based tissue maintenance and regeneration is summarized. Further, examples of cellular model systems for a more detailed examination of selected regulatory pathways are presented.
Collapse
Affiliation(s)
- Anna L. Höving
- Heart and Diabetes Centre NRW, Institute for Laboratory and Transfusion Medicine, Ruhr-University Bochum, 32545 Bad Oeynhausen, Germany
- Department of Cell Biology, Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany
- Correspondence:
| | - Kazuko E. Schmidt
- Heart and Diabetes Centre NRW, Institute for Laboratory and Transfusion Medicine, Ruhr-University Bochum, 32545 Bad Oeynhausen, Germany
- Department of Cell Biology, Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany
| | - Barbara Kaltschmidt
- AG Molecular Neurobiology, Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany
| | - Christian Kaltschmidt
- Department of Cell Biology, Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany
| | - Cornelius Knabbe
- Heart and Diabetes Centre NRW, Institute for Laboratory and Transfusion Medicine, Ruhr-University Bochum, 32545 Bad Oeynhausen, Germany
| |
Collapse
|
19
|
New Trends in Aging Drug Discovery. Biomedicines 2022; 10:biomedicines10082006. [PMID: 36009552 PMCID: PMC9405986 DOI: 10.3390/biomedicines10082006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/13/2022] [Accepted: 08/15/2022] [Indexed: 11/17/2022] Open
Abstract
Aging is considered the main risk factor for many chronic diseases that frequently appear at advanced ages. However, the inevitability of this process is being questioned by recent research that suggests that senescent cells have specific features that differentiate them from younger cells and that removal of these cells ameliorates senescent phenotype and associated diseases. This opens the door to the design of tailored therapeutic interventions aimed at reducing and delaying the impact of senescence in life, that is, extending healthspan and treating aging as another chronic disease. Although these ideas are still far from reaching the bedside, it is conceivable that they will revolutionize the way we understand aging in the next decades. In this review, we analyze the main and well-validated cellular pathways and targets related to senescence as well as their implication in aging-associated diseases. In addition, the most relevant small molecules with senotherapeutic potential, with a special emphasis on their mechanism of action, ongoing clinical trials, and potential limitations, are discussed. Finally, a brief overview of alternative strategies that go beyond the small molecule field, together with our perspectives for the future of the field, is provided.
Collapse
|
20
|
Tudurí E, Soriano S, Almagro L, Montanya E, Alonso-Magdalena P, Nadal Á, Quesada I. The pancreatic β-cell in ageing: Implications in age-related diabetes. Ageing Res Rev 2022; 80:101674. [PMID: 35724861 DOI: 10.1016/j.arr.2022.101674] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/07/2022] [Accepted: 06/14/2022] [Indexed: 11/15/2022]
Abstract
The prevalence of type 2 diabetes (T2D) and impaired glucose tolerance (IGT) increases with ageing. T2D generally results from progressive impairment of the pancreatic islets to adapt β-cell mass and function in the setting of insulin resistance and increased insulin demand. Several studies have shown an age-related decline in peripheral insulin sensitivity. However, a precise understanding of the pancreatic β-cell response in ageing is still lacking. In this review, we summarize the age-related alterations, adaptations and/or failures of β-cells at the molecular, morphological and functional levels in mouse and human. Age-associated alterations include processes such as β-cell proliferation, apoptosis and cell identity that can influence β-cell mass. Age-related changes also affect β-cell function at distinct steps including electrical activity, Ca2+ signaling and insulin secretion, among others. We will consider the potential impact of these alterations and those mediated by senescence pathways on β-cells and their implications in age-related T2D. Finally, given the great diversity of results in the field of β-cell ageing, we will discuss the sources of this heterogeneity. A better understanding of β-cell biology during ageing, particularly at older ages, will improve our insight into the contribution of β-cells to age-associated T2D and may boost new therapeutic strategies.
Collapse
Affiliation(s)
- Eva Tudurí
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández, Elche, Spain; Biomedical Research Center in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain; Department of Physiology, Genetics and Microbiology, University of Alicante, Alicante, Spain.
| | - Sergi Soriano
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández, Elche, Spain; Department of Physiology, Genetics and Microbiology, University of Alicante, Alicante, Spain
| | - Lucía Almagro
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández, Elche, Spain
| | - Eduard Montanya
- Biomedical Research Center in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain; Department of Clinical Sciences, University of Barcelona, Barcelona, Spain; Bellvitge Hospital-IDIBELL, Barcelona, Spain, University of Barcelona, Barcelona, Spain
| | - Paloma Alonso-Magdalena
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández, Elche, Spain; Biomedical Research Center in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
| | - Ángel Nadal
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández, Elche, Spain; Biomedical Research Center in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
| | - Ivan Quesada
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández, Elche, Spain; Biomedical Research Center in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain.
| |
Collapse
|
21
|
de Lucia C, Murphy T, Maruszak A, Wright P, Powell TR, Hartopp N, de Jong S, O'Sullivan MJ, Breen G, Price J, Lovestone S, Thuret S. Serum from Older Adults Increases Apoptosis and Molecular Aging Markers in Human Hippocampal Progenitor Cells. Aging Dis 2021; 12:2151-2172. [PMID: 34881092 PMCID: PMC8612606 DOI: 10.14336/ad.2021.0409] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 04/09/2021] [Indexed: 12/12/2022] Open
Abstract
Age-related alteration in neural stem cell function is linked to neurodegenerative conditions and cognitive decline. In rodents, this can be reversed by exposure to a young systemic milieu and conversely, the old milieu can inhibit stem cell function in young rodents. In this study, we investigated the in vitro effect of the human systemic milieu on human hippocampal progenitor cells (HPCs) using human serum from early adulthood, mid-life and older age. We showed that neuroblast number following serum treatment is predictive of larger dentate gyrus, CA3, CA4 and whole hippocampus volumes and that allogeneic human serum from asymptomatic older individuals induced a two-fold increase in apoptotic cell death of HPCs compared with serum from young adults. General linear models revealed that variability in markers of proliferation and differentiation was partly attributable to use of antihypertensive medication and very mild cognitive decline among older subjects. Finally, using an endophenotype approach and whole-genome expression arrays, we showed upregulation of established and novel ageing molecular hallmarks in response to old serum. Serum from older subjects induced a wide range of cellular and molecular phenotypes, likely reflecting a lifetime of environmental exposures. Our findings support a role for the systemic enviroment in neural stem cell maintenance and are in line with others highlighting a distinction between neurobiological and chronological ageing. Finally, the herein described serum assay can be used by future studies to further analyse the effect of environmental exposures as well as to determine the role of the systemic environment in health and disease.
Collapse
Affiliation(s)
- Chiara de Lucia
- 1Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Tytus Murphy
- 1Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Aleksandra Maruszak
- 1Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Paul Wright
- 1Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Timothy R Powell
- 2Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Naomi Hartopp
- 1Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Simone de Jong
- 2Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Michael J O'Sullivan
- 1Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- 3UQ Centre for Clinical Research, University of Queensland, Brisbane, Queensland, Australia
| | - Gerome Breen
- 2Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Jack Price
- 1Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | | | - Sandrine Thuret
- 1Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| |
Collapse
|
22
|
Aitken TJ, Crabtree JE, Jensen DM, Hess KH, Leininger BR, Tessem JS. Decreased proliferation of aged rat beta cells corresponds with enhanced expression of the cell cycle inhibitor p27 KIP1. Biol Cell 2021; 113:507-521. [PMID: 34523154 DOI: 10.1111/boc.202100035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 08/24/2021] [Accepted: 08/26/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND Over 400 million people are diabetic. Type 1 and type 2 diabetes are characterized by decreased functional β-cell mass and, consequently, decreased glucose-stimulated insulin secretion. A potential intervention is transplantation of β-cell containing islets from cadaveric donors. A major impediment to greater application of this treatment is the scarcity of transplant-ready β-cells. Therefore, inducing β-cell proliferation ex vivo could be used to expand functional β-cell mass prior to transplantation. Various molecular pathways are sufficient to induce proliferation of young β-cells; however, aged β-cells are refractory to these proliferative signals. Given that the majority of cadaveric donors fit an aged demographic, defining the mechanisms that impede aged β-cell proliferation is imperative. RESULTS We demonstrate that aged rat (5-month-old) β-cells are refractory to mitogenic stimuli that otherwise induce young rat (5-week-old) β-cell proliferation. We hypothesized that this change in proliferative capacity could be due to differences in cyclin-dependent kinase inhibitor expression. We measured levels of p16INK4a , p15INK4b , p18INK4c , p19INK4d , p21CIP1 , p27KIP1 and p57KIP2 by immunofluorescence analysis. Our data demonstrates an age-dependent increase of p27KIP1 in rat β-cells by immunofluorescence and was validated by increased p27KIP1 protein levels by western blot analysis. Interestingly, HDAC1, which modulates the p27KIP1 promoter acetylation state, is downregulated in aged rat islets. These data demonstrate increased p27KIP1 protein levels at 5 months of age, which may be due to decreased HDAC1 mediated repression of p27KIP1 expression. SIGNIFICANCE As the majority of transplant-ready β-cells come from aged donors, it is imperative that we understand why aged β-cells are refractory to mitogenic stimuli. Our findings demonstrate that increased p27KIP1 expression occurs early in β-cell aging, which corresponds with impaired β-cell proliferation. Furthermore, the correlation between HDAC1 and p27 levels suggests that pathways that activate HDAC1 in aged β-cells could be leveraged to decrease p27KIP1 levels and enhance β-cell proliferation.
Collapse
Affiliation(s)
- Talon J Aitken
- Department of Nutrition, Dietetics, and Food Science, Brigham Young University, Provo, Utah, USA.,Medical Education Program, Des Moines University, Des Moines, IA, 50312, USA
| | - Jacqueline E Crabtree
- Department of Nutrition, Dietetics, and Food Science, Brigham Young University, Provo, Utah, USA
| | - Daelin M Jensen
- Department of Nutrition, Dietetics, and Food Science, Brigham Young University, Provo, Utah, USA.,Biomedical Sciences, Ohio State University, Columbus, OH, 43210, USA
| | - Kavan H Hess
- Department of Nutrition, Dietetics, and Food Science, Brigham Young University, Provo, Utah, USA.,Medical Education Program, Idaho College of Osteopathic Medicine, Meridian, ID, 83642, USA
| | - Brennan R Leininger
- Department of Nutrition, Dietetics, and Food Science, Brigham Young University, Provo, Utah, USA.,Dental Education Program, UCLA School of Dentistry, Los Angeles, CA, 90024, USA
| | - Jeffery S Tessem
- Department of Nutrition, Dietetics, and Food Science, Brigham Young University, Provo, Utah, USA
| |
Collapse
|
23
|
Snyder JT, Darko C, Sharma RB, Alonso LC. Endoplasmic Reticulum Stress Induced Proliferation Remains Intact in Aging Mouse β-Cells. Front Endocrinol (Lausanne) 2021; 12:734079. [PMID: 34531828 PMCID: PMC8438540 DOI: 10.3389/fendo.2021.734079] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/05/2021] [Indexed: 02/06/2023] Open
Abstract
Aging is associated with loss of proliferation of the insulin-secreting β-cell, a possible contributing factor to the increased prevalence of type 2 diabetes in the elderly. Our group previously discovered that moderate endoplasmic reticulum (ER) stress occurring during glucose exposure increases the adaptive β-cell proliferation response. Specifically, the ATF6α arm of the tripartite Unfolded Protein Response (UPR) promotes β-cell replication in glucose excess conditions. We hypothesized that β-cells from older mice have reduced proliferation due to aberrant UPR signaling or an impaired proliferative response to ER stress or ATF6α activation. To investigate, young and old mouse islet cells were exposed to high glucose with low-dose thapsigargin or activation of overexpressed ATF6α, and β-cell proliferation was quantified by BrdU incorporation. UPR pathway activation was compared by qPCR of target genes and semi-quantitative Xbp1 splicing assay. Intriguingly, although old β-cells had reduced proliferation in high glucose compared to young β-cells, UPR activation and induction of proliferation in response to low-dose thapsigargin or ATF6α activation in high glucose were largely similar between young and old. These results suggest that loss of UPR-led adaptive proliferation does not explain the reduced cell cycle entry in old β-cells, and raise the exciting possibility that future therapies that engage adaptive UPR could increase β-cell number through proliferation even in older individuals.
Collapse
Affiliation(s)
- Jarin T. Snyder
- Graduate School of Biomedical Sciences, UMass Medical School, Worcester, MA, United States
| | - Christine Darko
- Division of Endocrinology, Diabetes and Metabolism and the Weill Center for Metabolic Health, Weill Cornell Medicine, New York, NY, United States
| | - Rohit B. Sharma
- Division of Endocrinology, Diabetes and Metabolism and the Weill Center for Metabolic Health, Weill Cornell Medicine, New York, NY, United States
| | - Laura C. Alonso
- Division of Endocrinology, Diabetes and Metabolism and the Weill Center for Metabolic Health, Weill Cornell Medicine, New York, NY, United States
| |
Collapse
|
24
|
Liu Q, Chen F, Yang T, Su J, Song S, Fu ZR, Li Y, Hu YP, Wang MJ. Aged-related Function Disorder of Liver is Reversed after Exposing to Young Milieu via Conversion of Hepatocyte Ploidy. Aging Dis 2021; 12:1238-1251. [PMID: 34341705 PMCID: PMC8279529 DOI: 10.14336/ad.2020.1227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 12/27/2020] [Indexed: 12/13/2022] Open
Abstract
Previous study showed that senescent hepatocytes from aged liver could be rejuvenated after repopulated in the young recipient liver. The proliferative capacity of hepatocytes was restored with the senescence reversal. However, it is unknown whether metabolic and homeostatic function of aged liver, as well as age-dependent liver steatosis could be rejuvenated or alleviated. Here, we found that senescent hepatocytes from aged liver were rejuvenated after exposing to young blood. An autonomous proliferation of senescent hepatocytes which resulting in ploidy reversal might be the underlying mechanism of senescent reversal. After performing 2/3 partial hepatectomy (2/3PHx) in young blood exposed old liver, delayed DNA synthesis of senescent hepatocytes was rescued and the number of BrdU positive hepatocytes was restored from 4.39±2.30% to 17.85±3.21%, similarly to that in the young mice at 36 hours post 2/3PHx. Moreover, Cyclin A2 and Cyclin E1 overexpression of hepatocytes in aged liver facilitating the G1/S phase transition was contributed to enhance liver regeneration. Furthermore, lipid droplet spread widely in the elderly human liver and old mouse liver, but this aged-associated liver steatosis was alleviated as senescence reversal. Collectively, our study provides new thoughts for effectively preventing age-related liver diseases.
Collapse
Affiliation(s)
- Qinggui Liu
- 1Department of Cell Biology, Center for stem cell and Medicine, Second Military Medical University (Naval Medical University), Shanghai, China
| | - Fei Chen
- 1Department of Cell Biology, Center for stem cell and Medicine, Second Military Medical University (Naval Medical University), Shanghai, China
| | - Tao Yang
- 1Department of Cell Biology, Center for stem cell and Medicine, Second Military Medical University (Naval Medical University), Shanghai, China
| | - Jing Su
- 1Department of Cell Biology, Center for stem cell and Medicine, Second Military Medical University (Naval Medical University), Shanghai, China
| | - Shaohua Song
- 2Changzheng Hospital, Second Military Medical University (Naval Medical University), Shanghai, China
| | - Zhi-Ren Fu
- 2Changzheng Hospital, Second Military Medical University (Naval Medical University), Shanghai, China
| | - Yao Li
- 3State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, China
| | - Yi-Ping Hu
- 1Department of Cell Biology, Center for stem cell and Medicine, Second Military Medical University (Naval Medical University), Shanghai, China
| | - Min-Jun Wang
- 1Department of Cell Biology, Center for stem cell and Medicine, Second Military Medical University (Naval Medical University), Shanghai, China
| |
Collapse
|
25
|
Wang P, Karakose E, Choleva L, Kumar K, DeVita RJ, Garcia-Ocaña A, Stewart AF. Human Beta Cell Regenerative Drug Therapy for Diabetes: Past Achievements and Future Challenges. Front Endocrinol (Lausanne) 2021; 12:671946. [PMID: 34335466 PMCID: PMC8322843 DOI: 10.3389/fendo.2021.671946] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 06/10/2021] [Indexed: 01/02/2023] Open
Abstract
A quantitative deficiency of normally functioning insulin-producing pancreatic beta cells is a major contributor to all common forms of diabetes. This is the underlying premise for attempts to replace beta cells in people with diabetes by pancreas transplantation, pancreatic islet transplantation, and transplantation of beta cells or pancreatic islets derived from human stem cells. While progress is rapid and impressive in the beta cell replacement field, these approaches are expensive, and for transplant approaches, limited by donor organ availability. For these reasons, beta cell replacement will not likely become available to the hundreds of millions of people around the world with diabetes. Since the large majority of people with diabetes have some residual beta cells in their pancreata, an alternate approach to reversing diabetes would be developing pharmacologic approaches to induce these residual beta cells to regenerate and expand in a way that also permits normal function. Unfortunately, despite the broad availability of multiple classes of diabetes drugs in the current diabetes armamentarium, none has the ability to induce regeneration or expansion of human beta cells. Development of such drugs would be transformative for diabetes care around the world. This picture has begun to change. Over the past half-decade, a novel class of beta cell regenerative small molecules has emerged: the DYRK1A inhibitors. Their emergence has tremendous potential, but many areas of uncertainty and challenge remain. In this review, we summarize the accomplishments in the world of beta cell regenerative drug development and summarize areas in which most experts would agree. We also outline and summarize areas of disagreement or lack of unanimity, of controversy in the field, of obstacles to beta cell regeneration, and of challenges that will need to be overcome in order to establish human beta cell regenerative drug therapeutics as a clinically viable class of diabetes drugs.
Collapse
Affiliation(s)
- Peng Wang
- The Diabetes Obesity Metabolism Institute, The Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Esra Karakose
- The Diabetes Obesity Metabolism Institute, The Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Lauryn Choleva
- The Division of Pediatric Endocrinology, The Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Kunal Kumar
- The Drug Discovery Institute, The Department of Pharmacological Sciences, The Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Robert J. DeVita
- The Drug Discovery Institute, The Department of Pharmacological Sciences, The Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Adolfo Garcia-Ocaña
- The Diabetes Obesity Metabolism Institute, The Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Andrew F. Stewart
- The Diabetes Obesity Metabolism Institute, The Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
26
|
UNC5B Promotes Vascular Endothelial Cell Senescence via the ROS-Mediated P53 Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5546711. [PMID: 34239689 PMCID: PMC8238614 DOI: 10.1155/2021/5546711] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 05/23/2021] [Accepted: 06/01/2021] [Indexed: 11/17/2022]
Abstract
Vascular endothelial cell senescence is involved in human aging and age-related vascular disorders. Guidance receptor UNC5B is implicated in oxidative stress and angiogenesis. Nonetheless, little is known about the role of UNC5B in endothelial cell senescence. Here, we cultured primary human umbilical vein endothelial cells to young and senescent phases. Subsequently, the expression of UNC5B was identified in replicative senescent cells, and then, its effect on endothelial cell senescence was confirmed by UNC5B-overexpressing lentiviral vectors and RNA interference. Overexpression of UNC5B in young endothelial cells significantly increased senescence-associated β-galactosidase-positive cells, upregulated the mRNAs expression of the senescence-associated secretory phenotype genes, reduced total cell number, and inhibited the potential for cell proliferation. Furthermore, overexpression of UNC5B promoted the generation of intracellular reactive oxygen species (ROS) and activated the P53 pathway. Besides, overexpression of UNC5B disturbed endothelial function by inhibiting cell migration and tube formation. Nevertheless, silencing UNC5B generated conflicting outcomes. Blocking ROS production or inhibiting the function of P53 rescued endothelial cell senescence induced by UNC5B. These findings suggest that UNC5B promotes endothelial cell senescence, potentially by activating the ROS-P53 pathway. Therefore, inhibiting UNC5B might reduce endothelial cell senescence and hinder age-related vascular disorders.
Collapse
|
27
|
Yin J, Ibrahim S, Petersen F, Yu X. Autoimmunomic Signatures of Aging and Age-Related Neurodegenerative Diseases Are Associated With Brain Function and Ribosomal Proteins. Front Aging Neurosci 2021; 13:679688. [PMID: 34122052 PMCID: PMC8192960 DOI: 10.3389/fnagi.2021.679688] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 04/23/2021] [Indexed: 12/27/2022] Open
Abstract
Biological aging is a complex process featured by declined function of cells and tissues, including those of the immune system. As a consequence, aging affects the expression and development of autoantibodies and autoreactive T cells, which can be seen in their sum as the autoimmunome of an individual. In this study we analyzed whether sets of autoimmune features are associated with specific phenotypes which form autoimmunomic signatures related to age and neurodegenerative diseases. The autoantibody profile data of healthy subjects and patients from the GEO database was used to explore autoimmunomic signatures of aging and three neurodegenerative diseases including Parkinson's disease (PD), Alzheimer disease (AD) and Multiple Sclerosis (MS). Our results demonstrate that the autoimmunomic signature of aging is featured by an undulated increase of IgG autoantibodies associated with learning and behavior and a consistent increase of IgG autoantibodies related to ribosome and translation, and the autoimmunomic signature of aging are also associated with age-related neurodegenerative diseases. Intriguingly, Differential Expression-Sliding Window Analysis (DE-SWAN) identified three waves of changes of autoantibodies during aging at an age of 30, 50, and 62 years, respectively. Furthermore, IgG autoantibodies, in particular those against ribosomal proteins, could be used as prediction markers for aging and age-related neurodegenerative diseases. Therefore, this study for the first time uncovers comprehensive autoimmunomic signatures for aging and age-related neurodegenerative diseases.
Collapse
Affiliation(s)
- Junping Yin
- Priority Area Asthma and Allergy, Research Center Borstel, Airway Research Center North (ARCN), Members of the German Center for Lung Research (DZL), Borstel, Germany
| | - Saleh Ibrahim
- Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany.,College of Medicine and Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Frank Petersen
- Priority Area Asthma and Allergy, Research Center Borstel, Airway Research Center North (ARCN), Members of the German Center for Lung Research (DZL), Borstel, Germany
| | - Xinhua Yu
- Priority Area Asthma and Allergy, Research Center Borstel, Airway Research Center North (ARCN), Members of the German Center for Lung Research (DZL), Borstel, Germany
| |
Collapse
|
28
|
Liu Q, Jiang Y, Zhu L, Qian J, Wang C, Yang T, Prasadan K, Gittes GK, Xiao X. Insulin-positive ductal cells do not migrate into preexisting islets during pregnancy. Exp Mol Med 2021; 53:605-614. [PMID: 33820959 PMCID: PMC8102600 DOI: 10.1038/s12276-021-00593-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 12/13/2020] [Accepted: 02/16/2021] [Indexed: 12/16/2022] Open
Abstract
The adult pancreatic ductal system was suggested to harbor facultative beta-cell progenitors similar to the embryonic pancreas, and the appearance of insulin-positive duct cells has been used as evidence for natural duct-to-beta-cell reprogramming. Nevertheless, the phenotype and fate of these insulin-positive cells in ducts have not been determined. Here, we used a cell-tagging dye, CFDA-SE, to permanently label pancreatic duct cells through an intraductal infusion technique. Representing a time when significant increases in beta-cell mass occur, pregnancy was later induced in these CFDA-SE-treated mice to assess the phenotype and fate of the insulin-positive cells in ducts. We found that a small portion of CFDA-SE-labeled duct cells became insulin-positive, but they were not fully functional beta-cells based on the in vitro glucose response and the expression levels of key beta-cell genes. Moreover, these insulin-positive cells in ducts expressed significantly lower levels of genes associated with extracellular matrix degradation and cell migration, which may thus prevent their budding and migration into preexisting islets. A similar conclusion was reached through analysis of the Gene Expression Omnibus database for both mice and humans. Together, our data suggest that the contribution of duct cells to normal beta-cells in adult islets is minimal at best.
Collapse
Affiliation(s)
- Qun Liu
- Department of Endocrinology, The First Affiliated Hospital of NanChang University, Nanchang, 330006, China
- Department of Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15224, USA
| | - Yinan Jiang
- Department of Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15224, USA
| | - Lingyan Zhu
- Department of Endocrinology, The First Affiliated Hospital of NanChang University, Nanchang, 330006, China.
| | - Jieqi Qian
- Department of Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15224, USA
- Department of Pediatric Endocrinology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Chaoban Wang
- Department of Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15224, USA
- Department of Pediatric Endocrinology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Tianlun Yang
- Department of Cardiology, Xiangya Hospital, Central South University, Changsha, 410078, China
| | - Krishna Prasadan
- Department of Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15224, USA
| | - George K Gittes
- Department of Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15224, USA
| | - Xiangwei Xiao
- Department of Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15224, USA.
| |
Collapse
|
29
|
Docherty FM, Sussel L. Islet Regeneration: Endogenous and Exogenous Approaches. Int J Mol Sci 2021; 22:ijms22073306. [PMID: 33804882 PMCID: PMC8037662 DOI: 10.3390/ijms22073306] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/17/2021] [Accepted: 03/17/2021] [Indexed: 02/07/2023] Open
Abstract
Both type 1 and type 2 diabetes are characterized by a progressive loss of beta cell mass that contributes to impaired glucose homeostasis. Although an optimal treatment option would be to simply replace the lost cells, it is now well established that unlike many other organs, the adult pancreas has limited regenerative potential. For this reason, significant research efforts are focusing on methods to induce beta cell proliferation (replication of existing beta cells), promote beta cell formation from alternative endogenous cell sources (neogenesis), and/or generate beta cells from pluripotent stem cells. In this article, we will review (i) endogenous mechanisms of beta cell regeneration during steady state, stress and disease; (ii) efforts to stimulate endogenous regeneration and transdifferentiation; and (iii) exogenous methods of beta cell generation and transplantation.
Collapse
|
30
|
Gonzalez-Armenta JL, Li N, Lee RL, Lu B, Molina AJA. Heterochronic Parabiosis: Old Blood Induces Changes in Mitochondrial Structure and Function of Young Mice. J Gerontol A Biol Sci Med Sci 2021; 76:434-439. [PMID: 33377482 PMCID: PMC8177798 DOI: 10.1093/gerona/glaa299] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Indexed: 12/15/2022] Open
Abstract
Heterochronic parabiosis models have been utilized to demonstrate the role of blood-borne circulating factors in systemic effects of aging. In previous studies, heterochronic parabiosis has shown positive effects across multiple tissues in old mice. More recently, a study demonstrated old blood had a more profound negative effect on muscle performance and neurogenesis of young mice. In this study, we used heterochronic parabiosis to test the hypothesis that circulating factors mediate mitochondrial bioenergetic decline, a well-established biological hallmark of aging. We examined mitochondrial morphology, expression of mitochondrial complexes, and mitochondrial respiration from skeletal muscle of mice connected as heterochronic pairs, as well as young and old isochronic controls. Our results indicate that young heterochronic mice had significantly lower total mitochondrial content and on average had significantly smaller mitochondria compared to young isochronic controls. Expression of complex IV followed a similar pattern: young heterochronic mice had a trend for lower expression compared to young isochronic controls. Additionally, respirometric analyses indicate that young heterochronic mice had significantly lower complex I, complex I + II, and maximal mitochondrial respiration and a trend for lower complex II-driven respiration compared to young isochronic controls. Interestingly, we did not observe significant improvements in old heterochronic mice compared to old isochronic controls, demonstrating the profound deleterious effects of circulating factors from old mice on mitochondrial structure and function. We also found no significant differences between the young and old heterochronic mice, demonstrating that circulating factors can be a driver of age-related differences in mitochondrial structure and function.
Collapse
Affiliation(s)
- Jenny L Gonzalez-Armenta
- Section on Molecular Medicine, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina
- Section on Gerontology and Geriatrics, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina
- J Paul Sticht Center for Healthy Aging and Alzheimer’s Prevention, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Ning Li
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rae-Ling Lee
- Section on Gerontology and Geriatrics, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina
- J Paul Sticht Center for Healthy Aging and Alzheimer’s Prevention, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Baisong Lu
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-Salem, North Carolina
| | - Anthony J A Molina
- Division of Geriatrics and Gerontology, Department of Medicine, University of California San Diego School of Medicine, La Jolla
| |
Collapse
|
31
|
Abstract
Aging has largely been defined by analog measures of organ and organismal dysfunction. This has led to the characterization of aging processes at the molecular and cellular levels that underlie these gradual changes. However, current knowledge does not fully explain the growing body of data emerging from large epidemiological, systems biology, and single cell studies of entire organisms pointing to varied rates of aging between individuals (different functionality and lifespan), across lifespan (asynchronous aging), and within an organism at the tissue and organ levels (aging mosaicism). Here we consider these inhomogeneities in the broader context of the rate of aging and from the perspective of underlying cellular changes. These changes reflect genetic, environmental, and stochastic factors that cells integrate to adopt new homeostatic, albeit less functional, states, such as cellular senescence. In this sense, cellular aging can be viewed, at least in part, as a quantal process we refer to as "digital aging". Nevertheless, analog declines of tissue dysfunction and organ failure with age could be the sum of underlying digital events. Importantly, cellular aging, digital or otherwise, is not uniform across time or space within the organism or between organisms of the same species. Certain tissues may exhibit earliest signs of cellular aging, acting as drivers for organismal aging as signals from those driver cells within those tissues may accelerate the aging of other cells locally or even systemically. Advanced methodologies at the systems level and at the single cell level are likely to continue to refine our understanding to the processes of how cells and tissues age and how the integration of those processes leads to the complexities of individual, organismal aging.
Collapse
|
32
|
Spears E, Serafimidis I, Powers AC, Gavalas A. Debates in Pancreatic Beta Cell Biology: Proliferation Versus Progenitor Differentiation and Transdifferentiation in Restoring β Cell Mass. Front Endocrinol (Lausanne) 2021; 12:722250. [PMID: 34421829 PMCID: PMC8378310 DOI: 10.3389/fendo.2021.722250] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 07/14/2021] [Indexed: 12/12/2022] Open
Abstract
In all forms of diabetes, β cell mass or function is reduced and therefore the capacity of the pancreatic cells for regeneration or replenishment is a critical need. Diverse lines of research have shown the capacity of endocrine as well as acinar, ductal and centroacinar cells to generate new β cells. Several experimental approaches using injury models, pharmacological or genetic interventions, isolation and in vitro expansion of putative progenitors followed by transplantations or a combination thereof have suggested several pathways for β cell neogenesis or regeneration. The experimental results have also generated controversy related to the limitations and interpretation of the experimental approaches and ultimately their physiological relevance, particularly when considering differences between mouse, the primary animal model, and human. As a result, consensus is lacking regarding the relative importance of islet cell proliferation or progenitor differentiation and transdifferentiation of other pancreatic cell types in generating new β cells. In this review we summarize and evaluate recent experimental approaches and findings related to islet regeneration and address their relevance and potential clinical application in the fight against diabetes.
Collapse
Affiliation(s)
- Erick Spears
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Ioannis Serafimidis
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Alvin C. Powers
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, United States
- VA Tennessee Valley Healthcare System, Nashville, TN, United States
- *Correspondence: Anthony Gavalas, ; Alvin C. Powers,
| | - Anthony Gavalas
- Paul Langerhans Institute Dresden (PLID) of Helmholtz Center Munich at the University Clinic Carl Gustav Carus of TU Dresden, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- German Centre for Diabetes Research (DZD), Neuherberg, Germany
- *Correspondence: Anthony Gavalas, ; Alvin C. Powers,
| |
Collapse
|
33
|
Wisp1 is a circulating factor that stimulates proliferation of adult mouse and human beta cells. Nat Commun 2020; 11:5982. [PMID: 33239617 PMCID: PMC7689468 DOI: 10.1038/s41467-020-19657-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 10/16/2020] [Indexed: 12/12/2022] Open
Abstract
Expanding the mass of pancreatic insulin-producing beta cells through re-activation of beta cell replication has been proposed as a therapy to prevent or delay the appearance of diabetes. Pancreatic beta cells exhibit an age-dependent decrease in their proliferative activity, partly related to changes in the systemic environment. Here we report the identification of CCN4/Wisp1 as a circulating factor more abundant in pre-weaning than in adult mice. We show that Wisp1 promotes endogenous and transplanted adult beta cell proliferation in vivo. We validate these findings using isolated mouse and human islets and find that the beta cell trophic effect of Wisp1 is dependent on Akt signaling. In summary, our study reveals the role of Wisp1 as an inducer of beta cell replication, supporting the idea that the use of young blood factors may be a useful strategy to expand adult beta cell mass. The proliferation of pancreatic beta cells decreases with age, partly due to systemic changes. Here the authors identify Wisp1 as a circulating factor enriched in young serum that induces adult beta cell proliferation, supporting the idea that young blood factors may be useful to expand beta cell mass.
Collapse
|
34
|
Senescent cell accumulation mechanisms inferred from parabiosis. GeroScience 2020; 43:329-341. [PMID: 33236264 PMCID: PMC8050176 DOI: 10.1007/s11357-020-00286-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 10/12/2020] [Indexed: 12/13/2022] Open
Abstract
Senescent cells are growth-arrested cells that cause inflammation and play a causal role in aging. They accumulate with age, and preventing this accumulation delays age-related diseases. However, the mechanism for senescent cell accumulation is not fully understood. Accumulation can result from increasing production or decreasing removal of senescent cells with age, or both. To distinguish between these possibilities, we analyze data from parabiosis, the surgical conjoining of two mice so that they share circulation. Parabiosis between a young and old mouse, called heterochronic parabiosis, reduces senescent cell levels in the old mouse, while raising senescent cell levels in the young mouse. We show that parabiosis data can reject mechanisms for senescent cell accumulation in which only production rises with age or only removal decreases with age; both must vary with age. Since removal drops with age, senescent cell half-life rises with age. This matches a recent model for senescent cell accumulation developed from independent data on senescent cell dynamics, called the SR model, in which production rises linearly with age and senescent cells inhibit their own removal. The SR model further explains the timescales and mechanism of rejuvenation in parabiosis, based on transfer of spare removal capacity from the young mouse to the old. The present quantitative understanding can help design optimal treatments that remove senescent cells, by matching the time between treatments to the time it takes senescent cells to re-accumulate.
Collapse
|
35
|
Aguayo-Mazzucato C. Functional changes in beta cells during ageing and senescence. Diabetologia 2020; 63:2022-2029. [PMID: 32894312 PMCID: PMC7990033 DOI: 10.1007/s00125-020-05185-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 04/21/2020] [Indexed: 12/16/2022]
Abstract
Insulin secretion from beta cells is crucial for maintaining euglycaemia and preventing type 2 diabetes, a disease correlated with ageing. Therefore, understanding the functional changes that beta cell function undergoes with age can reveal new therapeutic targets and strategies to delay or revert the disease. Herein, a systematic review of the literature agrees that, as humans age, their beta cell function declines, independently of peripheral insulin resistance, BMI and waist circumference. Rodent studies reveal that, with age, basal insulin secretion increases with either no change or an increase in stimulated insulin secretion, but the biological significance of this is unclear. The accumulation of senescent beta cells could explain some of these functional changes: transcriptional analysis of senescent and aged beta cells revealed parallel downregulation of several steps along the pathway linking glucose stimulation and insulin secretion. Moreover, specific deletion of senescent cells (senolysis) improved residual beta cell function, gene expression profile and blood glucose levels. In conclusion, cellular senescence could underlie the functional decline of beta cells during ageing and could represent a novel and promising approach for recovering insulin secretion. Graphical abstract.
Collapse
|
36
|
Liu J, Li L, Li S, Wang Y, Qin X, Deng K, Liu Y, Zou K, Sun X. Sodium-glucose co-transporter-2 inhibitors and the risk of diabetic ketoacidosis in patients with type 2 diabetes: A systematic review and meta-analysis of randomized controlled trials. Diabetes Obes Metab 2020; 22:1619-1627. [PMID: 32364674 DOI: 10.1111/dom.14075] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/29/2020] [Accepted: 04/29/2020] [Indexed: 12/12/2022]
Abstract
AIM To assess the effects of sodium-glucoseco-transporter-2 (SGLT2) inhibitors on diabetic ketoacidosis (DKA) in patients with type 2 diabetes. MATERIALS AND METHODS We searched PubMed, EMBASE, Cochrane Central Register of Controlled Trials (CENTRAL) and ClinicalTrials.gov from inception to 13 June 2019 for randomized controlled trials (RCTs) that compared SGLT2 inhibitors with control in patients with type 2 diabetes. Paired reviewers independently screened citations, assessed the risk of bias and extracted data. Peto's method was used as the primary approach to pool the effect of SGLT2 inhibitors on DKA. Sensitivity analyses with the alternative effect measure (risk ratio) or pooling method (Mantel-Haenszel), the use of continuity correction of 0.5 for zero-event trials or a generalized linear mixed model were conducted. Six preplanned subgroup analyses were performed to explore heterogeneity. The grading of recommendations assessment, development and evaluation (GRADE) approach was used to rate the quality of evidence. RESULTS A total of 39 RCTs were included, involving 60 580 patients and 85 DKA events. SGLT2 inhibitors were statistically associated with an increased risk of DKA versus control (SGLT2 inhibitors: 62/34 961 [0.18%] vs. control: 23/25 211 [0.09%], Peto odds ratio [OR] 2.13, 95% confidence interval [CI] 1.38 to 3.27, I2 = 8%; RD 1.7 more events, 95% CI 0.6 more to 3.4 more events per 1000 over 5 years; high-quality evidence). Sensitivity analyses showed similar results. The subgroup analyses by mean age (interaction P = 0 .02) and length of follow-up (interaction P = 0 .03) showed a larger relative effect among older patients (aged ≥60 years) and those with longer use of SGLT2 inhibitors (>52 weeks). CONCLUSIONS High-quality evidence suggests that SGLT2 inhibitors may increase the risk of DKA in patients with type 2 diabetes. The apparent differences in treatment effects among patients of a different age or follow-up were probable, suggesting the advisability of caution in patients with long-term use of SGLT2 inhibitors or in older patients.
Collapse
Affiliation(s)
- Jiali Liu
- Chinese Evidence-based Medicine Center, Cochrane China Center and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Ling Li
- Chinese Evidence-based Medicine Center, Cochrane China Center and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Sheyu Li
- Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu, China
| | - Yuning Wang
- Chinese Evidence-based Medicine Center, Cochrane China Center and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Xuan Qin
- Chinese Evidence-based Medicine Center, Cochrane China Center and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Ke Deng
- Chinese Evidence-based Medicine Center, Cochrane China Center and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Yanmei Liu
- Chinese Evidence-based Medicine Center, Cochrane China Center and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Kang Zou
- Chinese Evidence-based Medicine Center, Cochrane China Center and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Xin Sun
- Chinese Evidence-based Medicine Center, Cochrane China Center and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- Evidence-Based Medicine Research Center, School of Basic Science, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| |
Collapse
|
37
|
Zeng X, Liao Y, Wu X, Xu J, Da C, Tan Z, Feng F, Yin W, Wang D, Hu X. Association between recipient survival and blood donor age after blood transfusion in a surgery intensive care unit: a multicenter randomized controlled trial study protocol. Trials 2020; 21:621. [PMID: 32641079 PMCID: PMC7341644 DOI: 10.1186/s13063-020-04452-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 05/24/2020] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Blood from younger individuals has been shown to improve physiological function in recipients in laboratory research, and many proteins from human peripheral blood show antisenescence capabilities. Thus, researchers have questioned whether blood from young donors is superior to blood from older donors. Blood transfusion is a key supportive therapy for trauma patients, and recent studies have reported the influence of blood donor age on recipient patient prognosis. Although some retrospective results found that blood from young donors improves survival, no influence of blood donor age was observed on outcomes in other study groups. The reasons for this discrepancy are complicated, but the fact that data were not obtained from randomized controlled trial (RCT) data should be considered. The current protocol and analysis method provide a feasible RCT design to evaluate the prognosis of severely ill surgery patients who were transfused with blood products from blood donors of different ages. METHODS The current study is a pragmatic multicenter RCT (open, parallel-group, non-masked, superiority trial). Recruited surgery intensive care unit patients will be randomized into three groups and transfused with blood products from male donors of different ages (< 25, 25-45, and > 45 years). Survival time will be measured within 28 days. The survival characteristics, possible interaction between variables, and potential factors associated with death will be analyzed by Kaplan-Meier analysis, two-way ANOVA, and Cox proportional hazards model, respectively. TRIAL REGISTRATION ChiCTR: ChiCTR190002. Registered on 22 March 2019. http://www.chictr.org.cn/showproj.aspx?proj=36867 .
Collapse
Affiliation(s)
- Xianfei Zeng
- School of Medicine, Northwest University, Xi'an, 710069, China.,The National Engineering Research Center for Miniaturized Detection Systems, College of Life Science, Northwest University, Xi'an, 710069, China.,Department of Transfusion Medicine, Shaanxi Corps Hospital, Chinese People's Armed Police Forces, Xi'an, 710054, China
| | - Yan Liao
- Department of Transfusion Medicine, Third Affiliated Hospital of Guangxi Medical University, Nanning, 530031, China
| | - Xiaoshuang Wu
- Department of Transfusion Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, China
| | - Jinmei Xu
- Department of Transfusion Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, China
| | - Chenxing Da
- Department of Endocrinology, Shaanxi Corps Hospital, Chinese People's Armed Police Forces, Xi'an, 710054, China
| | - Zhijun Tan
- Department of Statistics, Fourth Military Medical University, Xi'an, 710032, China
| | - Fan Feng
- Department of Digestive Surgery, Xijing Hospital, Xi'an, 710032, China
| | - Wen Yin
- Department of Transfusion Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, China
| | - Dongjian Wang
- Department of Transfusion Medicine, 908th Hospital of PLA, Yingtan, 335000, China.
| | - Xingbin Hu
- Department of Transfusion Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
38
|
Höving AL, Schmidt KE, Merten M, Hamidi J, Rott AK, Faust I, Greiner JFW, Gummert J, Kaltschmidt B, Kaltschmidt C, Knabbe C. Blood Serum Stimulates p38-Mediated Proliferation and Changes in Global Gene Expression of Adult Human Cardiac Stem Cells. Cells 2020; 9:cells9061472. [PMID: 32560212 PMCID: PMC7349155 DOI: 10.3390/cells9061472] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/05/2020] [Accepted: 06/13/2020] [Indexed: 12/18/2022] Open
Abstract
During aging, senescent cells accumulate in various tissues accompanied by decreased regenerative capacities of quiescent stem cells, resulting in deteriorated organ function and overall degeneration. In this regard, the adult human heart with a generally low regenerative potential is of extreme interest as a target for rejuvenating strategies with blood borne factors that might be able to activate endogenous stem cell populations. Here, we investigated for the first time the effects of human blood plasma and serum on adult human cardiac stem cells (hCSCs) and showed significantly increased proliferation capacities and metabolism accompanied by a significant decrease of senescent cells, demonstrating a beneficial serum-mediated effect that seemed to be independent of age and sex. However, RNA-seq analysis of serum-treated hCSCs revealed profound effects on gene expression depending on the age and sex of the plasma donor. We further successfully identified key pathways that are affected by serum treatment with p38-MAPK playing a regulatory role in protection from senescence and in the promotion of proliferation in a serum-dependent manner. Inhibition of p38-MAPK resulted in a decline of these serum-mediated beneficial effects on hCSCs in terms of decreased proliferation and accelerated senescence. In summary, we provide new insights in the regulatory networks behind serum-mediated protective effects on adult human cardiac stem cells.
Collapse
Affiliation(s)
- Anna L. Höving
- Department of Cell Biology, University of Bielefeld, 33615 Bielefeld, Germany; (K.E.S.); (J.H.); (A.-K.R.); (J.F.W.G.)
- Institute for Laboratory- and Transfusion Medicine, Heart and Diabetes Centre NRW, Ruhr University Bochum, 32545 Bad Oeynhausen, Germany; (I.F.); (C.K.)
- Correspondence: (A.L.H.); (C.K.)
| | - Kazuko E. Schmidt
- Department of Cell Biology, University of Bielefeld, 33615 Bielefeld, Germany; (K.E.S.); (J.H.); (A.-K.R.); (J.F.W.G.)
- Institute for Laboratory- and Transfusion Medicine, Heart and Diabetes Centre NRW, Ruhr University Bochum, 32545 Bad Oeynhausen, Germany; (I.F.); (C.K.)
| | - Madlen Merten
- AG Molecular Neurobiology, University of Bielefeld, 33615 Bielefeld, Germany; (M.M.); (B.K.)
| | - Jassin Hamidi
- Department of Cell Biology, University of Bielefeld, 33615 Bielefeld, Germany; (K.E.S.); (J.H.); (A.-K.R.); (J.F.W.G.)
| | - Ann-Katrin Rott
- Department of Cell Biology, University of Bielefeld, 33615 Bielefeld, Germany; (K.E.S.); (J.H.); (A.-K.R.); (J.F.W.G.)
| | - Isabel Faust
- Institute for Laboratory- and Transfusion Medicine, Heart and Diabetes Centre NRW, Ruhr University Bochum, 32545 Bad Oeynhausen, Germany; (I.F.); (C.K.)
| | - Johannes F. W. Greiner
- Department of Cell Biology, University of Bielefeld, 33615 Bielefeld, Germany; (K.E.S.); (J.H.); (A.-K.R.); (J.F.W.G.)
| | - Jan Gummert
- Department of Thoracic and Cardiovascular surgery, Heart and Diabetes Centre NRW, Ruhr-University Bochum, 32545 Bad Oeynhausen, Germany;
| | - Barbara Kaltschmidt
- AG Molecular Neurobiology, University of Bielefeld, 33615 Bielefeld, Germany; (M.M.); (B.K.)
| | - Christian Kaltschmidt
- Department of Cell Biology, University of Bielefeld, 33615 Bielefeld, Germany; (K.E.S.); (J.H.); (A.-K.R.); (J.F.W.G.)
- Correspondence: (A.L.H.); (C.K.)
| | - Cornelius Knabbe
- Institute for Laboratory- and Transfusion Medicine, Heart and Diabetes Centre NRW, Ruhr University Bochum, 32545 Bad Oeynhausen, Germany; (I.F.); (C.K.)
| |
Collapse
|
39
|
Partridge L, Fuentealba M, Kennedy BK. The quest to slow ageing through drug discovery. Nat Rev Drug Discov 2020; 19:513-532. [DOI: 10.1038/s41573-020-0067-7] [Citation(s) in RCA: 279] [Impact Index Per Article: 55.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/16/2020] [Indexed: 02/07/2023]
|
40
|
Xu S, Qin D, Yang H, He C, Liu W, Tian N, Wei Y, He X, Hua J, Peng S. SerpinB1 promotes the proliferation of porcine pancreatic stem cells through the STAT3 signaling pathway. J Steroid Biochem Mol Biol 2020; 198:105537. [PMID: 31785377 DOI: 10.1016/j.jsbmb.2019.105537] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 10/25/2019] [Accepted: 11/11/2019] [Indexed: 01/25/2023]
Abstract
Porcine pancreatic stem cells (pPSCs) can be induced to insulin-secreting cells and therefore considered the most promising seeding cells for curing human diabetes in future. However, insufficient pPSCs number is one of the bottleneck problems before its clinical application. SerpinB1 is a serine protease inhibitor in neutrophils and can directly promote the proliferation of β cells. Whether SerpinB1 is involved in pPSC proliferation and differentiation remains unknown. The effects of SerpinB1 on pPSCs proliferation were measured by Cell Counting Kit-8, 5-ethynyl-2'-deoxyuridine, qRT-PCR, western blot, and flow cytometry assays. We found that pPSCs did not efficiently reach the S phase when SerpinB1 expression was knocked down with short hairpin RNA (sh-SerpinB1), the expression of Cyclin D1, CDK-2, and PCNA also decreased. Meanwhile, cell viability and proliferation ability were both declined. Further analyses showed that the expression level of phosphorylated STAT3/STAT3was downregulated, along with an upregulation of p53 and p21. We used a two-step induction method to induce pPSCs to insulin-secreting cells and found that SerpinB1 expression in insulin-secreting cells was higher than in pPSCs. Meanwhile, the protein expression level of phosphorylated STAT3/STAT3 was increased while p53 and p21 was decreased in induced insulin-secreting cells in comparison with control cells. The insulin-secreting cells derived from the sh-SerpinB1 cells secreted less insulin and showed poor sensitivity to high glucose than control group. However, the insulin-secreting cells derived from the ov-SerpinB1 cells has a quite contrary tendency. In conclusion, this study demonstrates that SerpinB1 promotes the proliferation of pPSCs through the STAT3 signaling pathway, and SerpinB1 is a key factor for maintaining the viability of pPSCs during the transition to insulin-secreting cells.
Collapse
Affiliation(s)
- Shuanshuan Xu
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Dezhe Qin
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Hong Yang
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Chen He
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Wenqing Liu
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Na Tian
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Yudong Wei
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Xin He
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Jinlian Hua
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Sha Peng
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi, 712100, PR China.
| |
Collapse
|
41
|
The Effects of Parabiosis on Aging and Age-Related Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1260:107-122. [PMID: 32304032 DOI: 10.1007/978-3-030-42667-5_5] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Parabiosis refers to the union of two living organisms by surgical operation, leading to the development of a shared circulatory system. It enables researchers to ask whether or not transmissible factors in the blood of one parabiont have physiological effects on its partner. In other words, parabiosis allows researchers to explore whether circulating factors in the bloodstream can alter tissue function. Heterochronic parabiosis, the pairing together of a young and aged organism, provides a unique experimental design to assess the effects of systemic milieu on the age-related processes. In the last 15 years, this experimental approach to study the aging processes at the whole organism level underwent a renaissance, with several studies demonstrating the rejuvenating effects of youthful systemic milieu on aging processes in the nervous system, skeletal muscle, heart, liver and other organs. The crucial question still mainly unanswered is the nature of circulating molecules that mediate "pro-youthful" effects of young and "pro-aging" effects of old system milieu.
Collapse
|
42
|
Lehallier B, Gate D, Schaum N, Nanasi T, Lee SE, Yousef H, Moran Losada P, Berdnik D, Keller A, Verghese J, Sathyan S, Franceschi C, Milman S, Barzilai N, Wyss-Coray T. Undulating changes in human plasma proteome profiles across the lifespan. Nat Med 2019; 25:1843-1850. [PMID: 31806903 PMCID: PMC7062043 DOI: 10.1038/s41591-019-0673-2] [Citation(s) in RCA: 516] [Impact Index Per Article: 86.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 10/30/2019] [Indexed: 12/19/2022]
Abstract
Aging is a predominant risk factor for several chronic diseases that limit healthspan1. Mechanisms of aging are thus increasingly recognized as potential therapeutic targets. Blood from young mice reverses aspects of aging and disease across multiple tissues2-10, which supports a hypothesis that age-related molecular changes in blood could provide new insights into age-related disease biology. We measured 2,925 plasma proteins from 4,263 young adults to nonagenarians (18-95 years old) and developed a new bioinformatics approach that uncovered marked non-linear alterations in the human plasma proteome with age. Waves of changes in the proteome in the fourth, seventh and eighth decades of life reflected distinct biological pathways and revealed differential associations with the genome and proteome of age-related diseases and phenotypic traits. This new approach to the study of aging led to the identification of unexpected signatures and pathways that might offer potential targets for age-related diseases.
Collapse
Affiliation(s)
- Benoit Lehallier
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA.
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA.
- Paul F. Glenn Center for the Biology of Aging, Stanford University, Stanford, CA, USA.
| | - David Gate
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
- Paul F. Glenn Center for the Biology of Aging, Stanford University, Stanford, CA, USA
- Department of Veterans Affairs, VA Palo Alto Health Care System, Palo Alto, CA, USA
| | - Nicholas Schaum
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, USA
| | - Tibor Nanasi
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
- Paul F. Glenn Center for the Biology of Aging, Stanford University, Stanford, CA, USA
- Institute of Cognitive Neuroscience and Psychology, Hungarian Academy of Sciences Research Centre for Natural Sciences, Budapest, Hungary
| | - Song Eun Lee
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
- Paul F. Glenn Center for the Biology of Aging, Stanford University, Stanford, CA, USA
- Department of Veterans Affairs, VA Palo Alto Health Care System, Palo Alto, CA, USA
| | - Hanadie Yousef
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
- Paul F. Glenn Center for the Biology of Aging, Stanford University, Stanford, CA, USA
- Department of Veterans Affairs, VA Palo Alto Health Care System, Palo Alto, CA, USA
| | - Patricia Moran Losada
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
- Paul F. Glenn Center for the Biology of Aging, Stanford University, Stanford, CA, USA
| | - Daniela Berdnik
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
- Paul F. Glenn Center for the Biology of Aging, Stanford University, Stanford, CA, USA
- Department of Veterans Affairs, VA Palo Alto Health Care System, Palo Alto, CA, USA
| | - Andreas Keller
- Clinical Bioinformatics, Saarland University, Saarbrücken, Germany
| | - Joe Verghese
- Institute for Aging Research, Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Neurology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Sanish Sathyan
- Institute for Aging Research, Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Neurology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Claudio Franceschi
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
- Department of Applied Mathematics, National Research Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Sofiya Milman
- Institute for Aging Research, Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Nir Barzilai
- Institute for Aging Research, Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Tony Wyss-Coray
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA.
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA.
- Paul F. Glenn Center for the Biology of Aging, Stanford University, Stanford, CA, USA.
- Department of Veterans Affairs, VA Palo Alto Health Care System, Palo Alto, CA, USA.
| |
Collapse
|
43
|
Ahn SH, Granger A, Rankin MM, Lam CJ, Cox AR, Kushner JA. Tamoxifen suppresses pancreatic β-cell proliferation in mice. PLoS One 2019; 14:e0214829. [PMID: 31490929 PMCID: PMC6731016 DOI: 10.1371/journal.pone.0214829] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 08/11/2019] [Indexed: 12/13/2022] Open
Abstract
Tamoxifen is a mixed agonist/antagonist estrogen analogue that is frequently used to induce conditional gene deletion in mice using Cre-loxP mediated gene recombination. Tamoxifen is routinely employed in extremely high-doses relative to typical human doses to induce efficient gene deletion in mice. Although tamoxifen has been widely assumed to have no influence upon β-cells, the acute developmental and functional consequences of high-dose tamoxifen upon glucose homeostasis and adult β-cells are largely unknown. We tested if tamoxifen influences glucose homeostasis in male mice of various genetic backgrounds. We then carried out detailed histomorphometry studies of mouse pancreata. We also performed gene expression studies with islets of tamoxifen-treated mice and controls. Tamoxifen had modest effects upon glucose homeostasis of mixed genetic background (F1 B6129SF1/J) mice, with fasting hyperglycemia and improved glucose tolerance but without overt effects on fed glucose levels or insulin sensitivity. Tamoxifen inhibited proliferation of β-cells in a dose-dependent manner, with dramatic reductions in β-cell turnover at the highest dose (decreased by 66%). In sharp contrast, tamoxifen did not reduce proliferation of pancreatic acinar cells. β-cell proliferation was unchanged by tamoxifen in 129S2 mice but was reduced in C57Bl6 genetic background mice (decreased by 59%). Gene expression studies revealed suppression of RNA for cyclins D1 and D2 within islets of tamoxifen-treated mice. Tamoxifen has a cytostatic effect on β-cells, independent of changes in glucose homeostasis, in mixed genetic background and also in C57Bl6 mice. Tamoxifen should be used judiciously to inducibly inactivate genes in studies of glucose homeostasis.
Collapse
Affiliation(s)
- Surl-Hee Ahn
- Pediatric Endocrinology and Diabetes, University of Pennsylvania School of Medicine, Philadelphia, PA, United States of America
| | - Anne Granger
- Pediatric Endocrinology and Diabetes, University of Pennsylvania School of Medicine, Philadelphia, PA, United States of America
| | - Matthew M. Rankin
- Pediatric Endocrinology and Diabetes, University of Pennsylvania School of Medicine, Philadelphia, PA, United States of America
| | - Carol J. Lam
- Pediatric Endocrinology and Diabetes, University of Pennsylvania School of Medicine, Philadelphia, PA, United States of America
- McNair Medical Institute, Baylor College of Medicine, Houston, TX, United States of America
| | - Aaron R. Cox
- McNair Medical Institute, Baylor College of Medicine, Houston, TX, United States of America
| | - Jake A. Kushner
- Pediatric Endocrinology and Diabetes, University of Pennsylvania School of Medicine, Philadelphia, PA, United States of America
- McNair Medical Institute, Baylor College of Medicine, Houston, TX, United States of America
- * E-mail:
| |
Collapse
|
44
|
Davies JS, Thompson HL, Pulko V, Padilla Torres J, Nikolich-Žugich J. Role of Cell-Intrinsic and Environmental Age-Related Changes in Altered Maintenance of Murine T Cells in Lymphoid Organs. J Gerontol A Biol Sci Med Sci 2019; 73:1018-1026. [PMID: 28582491 DOI: 10.1093/gerona/glx102] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 06/01/2017] [Indexed: 12/29/2022] Open
Abstract
Age-related changes in primary lymphoid organs are well described. Less is known about age-related changes affecting peripheral lymphoid organs, although defects in old peripheral lymph nodes (pLNs) were recently described in both steady state and during viral infection. To address whether such pLN defects were intrinsic to old T cells or extrinsic (due to aging microenvironment), we employed heterochronic parabiosis. We found no age-related intrinsic or extrinsic barriers to T cell circulation and seeding of pLN, spleen, and bone marrow. However, heterochronic parabiosis failed to improve cellularity of old pLN, suggesting an environment-based limit on pLN cellularity. Furthermore, upon parabiosis, pLN of the adult partner exhibited reduced, old-like stromal and T cell cellularity, which was restored following separation of parabionts. Decay measurement of adult and old T cell subsets following separation of heterochronic parabionts delineated both T cell-intrinsic and environmental changes in T cell maintenance. Moreover, parabiotic separation revealed differences between CD4 and CD8 T cell subset maintenance with aging, the basis of which will require further investigation. Reasons for this asymmetric and subset-specific pattern of differential maintenance are discussed in light of possible age-related changes in lymph nodes as the key sites for peripheral T cell maintenance.
Collapse
Affiliation(s)
- John S Davies
- Department of Immunobiology, University of Arizona, Tucson, Arizona.,Arizona Center on Aging, University of Arizona, Tucson, Arizona
| | - Heather L Thompson
- Department of Immunobiology, University of Arizona, Tucson, Arizona.,Arizona Center on Aging, University of Arizona, Tucson, Arizona
| | - Vesna Pulko
- Department of Immunobiology, University of Arizona, Tucson, Arizona.,Arizona Center on Aging, University of Arizona, Tucson, Arizona
| | - Jose Padilla Torres
- Department of Immunobiology, University of Arizona, Tucson, Arizona.,Arizona Center on Aging, University of Arizona, Tucson, Arizona
| | - Janko Nikolich-Žugich
- Department of Immunobiology, University of Arizona, Tucson, Arizona.,Arizona Center on Aging, University of Arizona, Tucson, Arizona
| |
Collapse
|
45
|
Xia E, Xu F, Hu C, Kumal JPP, Tang X, Mao D, Li Y, Wu D, Zhang R, Wu S, Sun L. Young Blood Rescues the Cognition of Alzheimer's Model Mice by Restoring the Hippocampal Cholinergic Circuit. Neuroscience 2019; 417:57-69. [PMID: 31404586 DOI: 10.1016/j.neuroscience.2019.08.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 08/01/2019] [Accepted: 08/05/2019] [Indexed: 01/10/2023]
Abstract
An increasing number of studies have demonstrated the benefits of young individual-derived blood for aging-related diseases. However, the effects of young blood on the cognitive and cholinergic transmission defects in aging-associated Alzheimer's disease (AD) remain elusive. In the current study, we showed that young blood serum delivered intravenously attenuated deficits in hippocampal-dependent learning and memory, alleviated hippocampal Aβ plaque pathology, restored synapse formation and synaptic plasticity, repaired the hippocampal cholinergic circuit, and triggered several canonical neuroprotective mechanisms [including repressor element 1-silencing transcription factor (REST)/Forkhead box protein O1 (FOXO1) signaling] in aged AD model mice. However, pharmacological blockage of hippocampal cholinergic activity nearly abrogated the neuroprotective actions of young blood serum in AD mice. Thus, our findings suggest that exogenous young blood serum exerts therapeutic effects on AD-associated cognitive disorders and pathology by promoting hippocampal cholinergic input and simultaneously activating other neuroprotective mechanisms.
Collapse
Affiliation(s)
- Endi Xia
- Department of Thoracic Surgery, Fourth Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang, China
| | - Fengyan Xu
- Department of Human Anatomy, Harbin Medical University, Harbin 150081, Heilongjiang, China; Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China (Harbin Medical University), Ministry of Education, China
| | - Changbin Hu
- Department of Neurology, Second Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang, China
| | - Jay Prakash Prasad Kumal
- Department of Human Anatomy, Harbin Medical University, Harbin 150081, Heilongjiang, China; Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China (Harbin Medical University), Ministry of Education, China
| | - Xudong Tang
- Department of Human Anatomy, Harbin Medical University, Harbin 150081, Heilongjiang, China; Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China (Harbin Medical University), Ministry of Education, China
| | - Dongsheng Mao
- Department of Human Anatomy, Harbin Medical University, Harbin 150081, Heilongjiang, China; Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China (Harbin Medical University), Ministry of Education, China
| | - Yixuan Li
- Department of Human Anatomy, Harbin Medical University, Harbin 150081, Heilongjiang, China; Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China (Harbin Medical University), Ministry of Education, China
| | - Di Wu
- Department of Neurology, Fourth Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang, China
| | - Rui Zhang
- Department of Andrology, Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin 150001, Heilongjiang, China.
| | - Shuliang Wu
- Department of Human Anatomy, Harbin Medical University, Harbin 150081, Heilongjiang, China; Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China (Harbin Medical University), Ministry of Education, China.
| | - Liang Sun
- Department of Human Anatomy, Harbin Medical University, Harbin 150081, Heilongjiang, China; Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China (Harbin Medical University), Ministry of Education, China.
| |
Collapse
|
46
|
Circulating factors in young blood as potential therapeutic agents for age-related neurodegenerative and neurovascular diseases. Brain Res Bull 2019; 153:15-23. [PMID: 31400495 DOI: 10.1016/j.brainresbull.2019.08.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 07/30/2019] [Accepted: 08/05/2019] [Indexed: 02/07/2023]
Abstract
Recent animal studies on heterochronic parabiosis (a technique combining the blood circulation of two animals) have revealed that young blood has a powerful rejuvenating effect on brain aging. Circulating factors, especially growth differentiation factor 11 (GDF11) and C-C motif chemokine 11 (CCL11), may play a key role in this effect, which inspires hope for novel approaches to treating age-related cerebral diseases in humans, such as neurodegenerative and neurovascular diseases. Recently, attempts have begun to translate these astonishing and exciting findings from mice to humans and from bench to bedside. However, increasing reports have shown contradictory data, questioning the capacity of these circulating factors to reverse age-related brain dysfunction. In this review, we summarize the current research on the role of young blood, as well as the circulating factors GDF11 and CCL11, in the aging brain and age-related cerebral diseases. We highlight recent controversies, discuss related challenges and provide a future outlook.
Collapse
|
47
|
Abstract
Age is the primary risk factor for the vast majority of disorders, including neurodegenerative diseases impacting brain function. Whether the consequences of aging at the biological level can be reversed, or age-related changes prevented, to change the trajectory of such disorders is thus of extreme interest and value. Studies using young plasma, the acellular component of blood, have demonstrated that aging is malleable, with the ability to restore functions in old animals. Fascinatingly, this functional improvement is even observed in the brain, despite the blood-brain barrier, indicating that peripheral sources can effectively impact central sites leading to clinically relevant changes such as enhancement of cognitive function. A plasma-based approach is also attractive as aging is inherently complex, with an array of mechanisms dysregulated in diverse cells and organs throughout the body leading to disturbed function. Plasma, containing a natural mixture of components, has the ability to act multimodally, modulating diverse mechanisms that can converge to change the trajectory of age-related diseases. Here we review the evidence that plasma modulates aging processes in the brain and consider the therapeutic applications that derive from these observations. Plasma and plasma-derived therapeutics are an attractive translation of this concept, requiring critical consideration of benefits, risks, and ethics. Ultimately, knowledge derived from this science will drive a comprehensive molecular understanding to deliver optimized therapeutics. The potential of highly differentiated, multimodal therapeutics for treatment of age-related brain disorders provides an exciting new clinical approach to address the complex etiology of aging.
Collapse
Affiliation(s)
- Viktoria Kheifets
- Alkahest Inc., 125 Shoreway Road, Suite D, San Carlos, CA, 94070, USA
| | | |
Collapse
|
48
|
Guo T, Liu T, Sun Y, Liu X, Xiong R, Li H, Li Z, Zhang Z, Tian Z, Tian Y. Sonodynamic therapy inhibits palmitate-induced beta cell dysfunction via PINK1/Parkin-dependent mitophagy. Cell Death Dis 2019; 10:457. [PMID: 31186419 PMCID: PMC6560035 DOI: 10.1038/s41419-019-1695-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 05/27/2019] [Accepted: 05/28/2019] [Indexed: 12/20/2022]
Abstract
In type 2 diabetes mellitus (T2DM), the overload of glucose and lipids can promote oxidative stress and inflammatory responses and contribute to the failure of beta cells. However, therapies that can modulate the function of beta cells and thus prevent their failure have not been well explored. In this study, beta cell injury model was established with palmitic acid (PA) to simulate the lipotoxicity (high-fat diet) found in T2DM. Sonodynamic therapy (SDT), a novel physicochemical treatment, was applied to treat injured beta cells. We found that SDT had specific effects on mitochondria and induced transient large amount of mitochondrial reactive oxygen species (ROS) production in beta cells. SDT also improved the morphology and function of abnormal mitochondria, inhibited inflammatory response and reduced beta cell dysfunction. The improvement of mitochondria was mediated by PINK1/Parkin-dependent mitophagy. Additionally, SDT rescued the transcription of PINK1 mRNA which was blocked by PA treatment, thus providing abundant PINK1 for mitophagy. Moreover, SDT also increased insulin secretion from beta cells. The protective effects of SDT were abrogated when mitophagy was inhibited by cyclosporin A (CsA). In summary, SDT potently inhibits lipotoxicity-induced beta cell failure via PINK1/Parkin-dependent mitophagy, providing theoretical guidance for T2DM treatment in aspects of islet protection.
Collapse
Affiliation(s)
- Tian Guo
- Department of Pathophysiology, Harbin Medical University, Harbin, 150081, China
| | - Tianyang Liu
- Department of Pathophysiology, Harbin Medical University, Harbin, 150081, China
| | - Yun Sun
- Department of Pathophysiology, Harbin Medical University, Harbin, 150081, China
| | - Xianna Liu
- Department of Pathophysiology, Harbin Medical University, Harbin, 150081, China
| | - Rongguo Xiong
- Department of Pathophysiology, Harbin Medical University, Harbin, 150081, China
| | - He Li
- Department of Pathophysiology, Harbin Medical University, Harbin, 150081, China
| | - Zhitao Li
- Department of Pathophysiology, Harbin Medical University, Harbin, 150081, China
| | - Zhiguo Zhang
- Laboratory of Photo- and Sono-theranostic Technologies and Condensed Matter Science and Technology Institute, Harbin Institute of Technology, Harbin, 150001, China
| | - Zhen Tian
- Department of Pathophysiology, Harbin Medical University, Harbin, 150081, China. .,Key Laboratory of Acoustic Photoelectric Magnetic Diagnosis and Treatment of Cardiovascular Diseases in Heilongjiang Province, Harbin, 150081, China.
| | - Ye Tian
- Department of Pathophysiology, Harbin Medical University, Harbin, 150081, China. .,Key Laboratory of Acoustic Photoelectric Magnetic Diagnosis and Treatment of Cardiovascular Diseases in Heilongjiang Province, Harbin, 150081, China. .,Department of Cardiology, The First Affiliated Hospital, Cardiovascular Institute, Harbin Medical University, Harbin, 150001, China.
| |
Collapse
|
49
|
Huang Q, Ning Y, Liu D, Zhang Y, Li D, Zhang Y, Yin Z, Fu B, Cai G, Sun X, Chen X. A Young Blood Environment Decreases Aging of Senile Mice Kidneys. J Gerontol A Biol Sci Med Sci 2019; 73:421-428. [PMID: 29040401 DOI: 10.1093/gerona/glx183] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 10/12/2017] [Indexed: 01/07/2023] Open
Abstract
Whether changes in internal body environment affect kidney aging remains unclear. Specifically, it is unknown whether transplanted kidneys from older donors recover from tissue damage after placement in younger recipients. In this study, a parabiosis animal model was established to investigate the effects of a young internal body environment on aged kidneys. The animals were divided into six groups: young (Ycon) and old control (Ocon) groups, isochronic youth-youth group (Y-IP), elderly-elderly group (O-IP), and heterochronic youth (Y-HP) and elderly (O-HP) groups. After parabiosis, tubule and interstitial tissue scores in the O-HP group were significantly lower than in the Ocon and O-IP groups. The expression of aging-related protein p16 and SA-β-gal in the O-HP group was significantly reduced compared with the Ocon and O-IP groups. Autophagy factors Atg5 and LC3BII were significantly upregulated, whereas the expression of the autophagic degradation marker (P62) was significantly downregulated in the O-HP group compared with the Ocon and O-IP groups. With the same comparison, the positive cells of TUNEL staining and the expression of IL-6 and IL-1β were significantly reduced, whereas the total/cleaved caspase-3 and total/pNF-κB were significantly increased in the O-HP group. The results demonstrated that a young blood environment significantly reduces kidney aging. These findings provide new evidence supporting an increase in the upper age limit for human kidney transplantation donors.
Collapse
Affiliation(s)
- Qi Huang
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing, China
| | - Yichun Ning
- Department of Nephrology, Zhongshan Hospital, Fudan University, Kidney and Dialysis Institute of Shanghai, Kidney and Blood Purification Laboratory of Shanghai, China
| | - Dong Liu
- Department of Nephrology, Air Force General Hospital, Chinese PLA, Beijing, China
| | - Ying Zhang
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing, China
| | - Diangeng Li
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing, China
| | - Yinping Zhang
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing, China
| | - Zhong Yin
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing, China
| | - Bo Fu
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing, China
| | - Guangyan Cai
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing, China
| | - Xuefeng Sun
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing, China
| | - Xiangmei Chen
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing, China
| |
Collapse
|
50
|
Castaño C, Novials A, Párrizas M. Exosomes and diabetes. Diabetes Metab Res Rev 2019; 35:e3107. [PMID: 30513130 DOI: 10.1002/dmrr.3107] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 11/08/2018] [Accepted: 11/28/2018] [Indexed: 12/20/2022]
Abstract
Diabetes is a group of metabolic diseases characterized by elevated blood glucose levels that drive the development of life-threatening complications. Diabetes results from a situation of insufficient insulin action, either by deficient production of the hormone by the pancreas, or by the development of insulin resistance in peripheral tissues such as liver, muscle, or the adipose depots. Communication between organs is thus central to the maintenance of glucose homoeostasis. Recently, several studies are evidencing that small vesicles called exosomes released by, amongst other, the adipose tissue can regulate gene expression in other tissues, hence modulating interorgan crosstalk. Therefore, exosomes participate in the development of diabetes and its associated complications. Their study holds the potential of providing us with novel biomarkers for the early diagnosis and stratification of patients at risk of developing diabetes, hence allowing the timely implementation of more personalized therapies. On the other hand, the molecular dissection of the pathways initiated by exosomes under situations of metabolic stress could help to gain a deeper knowledge of the pathophysiology of diabetes and its associated metabolic diseases.
Collapse
Affiliation(s)
- Carlos Castaño
- Diabetes and Obesity Research Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Spanish Biomedical Research Center in Diabetes and Associated Metabolic Disorders (CIBERDEM), Barcelona, Spain
| | - Anna Novials
- Diabetes and Obesity Research Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Spanish Biomedical Research Center in Diabetes and Associated Metabolic Disorders (CIBERDEM), Barcelona, Spain
| | - Marcelina Párrizas
- Diabetes and Obesity Research Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Spanish Biomedical Research Center in Diabetes and Associated Metabolic Disorders (CIBERDEM), Barcelona, Spain
| |
Collapse
|