1
|
Łaszczych D, Czernicka A, Łaszczych K. Targeting GABA signaling in type 1 diabetes and its complications- an update on the state of the art. Pharmacol Rep 2025; 77:409-424. [PMID: 39833509 DOI: 10.1007/s43440-025-00697-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 01/04/2025] [Accepted: 01/13/2025] [Indexed: 01/22/2025]
Abstract
Type 1 diabetes (T1D) is an autoimmune disease that leads to the progressive destruction of insulin-producing β cells, resulting in lifelong insulin dependence and a range of severe complications. Beyond conventional glycemic control, innovative therapeutic strategies are needed to address the underlying disease mechanisms. Recent research has highlighted gamma-aminobutyric acid (GABA) as a promising therapeutic target for T1D due to its dual role in modulating both β cell survival and immune response within pancreatic islets. GABA signaling supports β cell regeneration, inhibits α cell hyperactivity, and promotes α-to-β cell transdifferentiation, contributing to improved islet function. Moreover, GABA's influence extends to mitigating T1D complications, including nephropathy, neuropathy, and retinopathy, as well as regulating central nervous system pathways involved in glucose metabolism. This review consolidates the latest advances in GABA-related T1D therapies, covering animal preclinical and human clinical studies and examining the therapeutic potential of GABA receptor modulation, combination therapies, and dietary interventions. Emphasis is placed on the translational potential of GABA-based approaches to enhance β cell viability and counteract autoimmune processes in T1D. Our findings underscore the therapeutic promise of GABA signaling modulation as a novel approach for T1D treatment and encourage further investigation into this pathway's role in comprehensive diabetes management.
Collapse
Affiliation(s)
- Dariusz Łaszczych
- Faculty of Medicine, Collegium Medicum, Nicolaus Copernicus University in Torun, Jagiellońska 13, 85-067, Bydgoszcz, Poland.
| | | | - Katarzyna Łaszczych
- Faculty of Pharmaceutical Sciences, Medical University of Silesia in Katowice, Jedności 8, Sosnowiec, 41-200, Poland
- Ziko Pharmacy, Plebiscytowa 39, Katowice, Poland
| |
Collapse
|
2
|
Jagomäe T, Velling S, Tikva TB, Maksimtšuk V, Gaur N, Reimets R, Kaasik A, Vasar E, Plaas M. GABA and GLP-1 receptor agonist combination therapy modifies diabetes and Langerhans islet cytoarchitecture in a rat model of Wolfram syndrome. Diabetol Metab Syndr 2025; 17:82. [PMID: 40050934 PMCID: PMC11887366 DOI: 10.1186/s13098-025-01651-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Accepted: 02/25/2025] [Indexed: 03/09/2025] Open
Abstract
BACKGROUND AND AIM Wolfram syndrome (WS) is a rare autosomal disorder caused by WFS1 gene mutations, currently lacking approved treatments. Preclinical and clinical reports suggest that diabetes medications, such as glucagon-like peptide-1 receptor agonist (GLP1-RA), slow WS-related diabetes and neurodegeneration, improving patient outcomes. Gamma-aminobutyric acid (GABA) has crucial role in pancreatic islet function and blood glucose regulation. However, its specific role in WS diabetic pathophysiology has never been explored. The aim of this study was to enhance the therapeutic efficacy of liraglutide in mitigating the progression of diabetes associated with WS through supplementation with GABA. METHODS In this study, 5-month-old glucose intolerant WS rats and their wild-type littermates where daily treated with GABA (1 g/kg/day), liraglutide (0.4 mg/kg/day), or a combination of both. During the four-month experimental period, the diabetic phenotype was closely monitored using intraperitoneal glucose tolerance tests (IPGTT) and corresponding hormone measurements via enzyme-linked immunoassay. Following the treatments, immunohistochemical staining was performed to examine the morphology, cellular distribution, and health of Langerhans islets. RESULTS Unlike in conventional diabetes models, GABA monotherapy alone had no significant effect on the diabetic phenotype in WS rats. In contrast, liraglutide monotherapy effectively delayed diabetes progression. Remarkably, the combined therapy of GABA and liraglutide reversed the diabetic phenotype, significantly enhancing glucose homeostasis, as well as insulin and C-peptide secretion. The combined treatment also increased β-cell mass and corrected the pancreatic Langerhans intra-islet ratio of α-, β-, and δ-cells. As a result, the overall morphology and cytoarchitecture of the pancreatic islets were fully restored, suggesting a potential role for these agents in preserving islet integrity. Additionally, both liraglutide and combination therapy increased the number of GAD (glutamic acid decarboxylase) 65/67-positive β-cells in WS rats, indicating an improvement in general β-cell health. CONCLUSION GABA monotherapy had no significant effect on the diabetic phenotype in WS rats, while liraglutide monotherapy effectively delayed diabetes progression. However, the combination therapy of GABA and liraglutide demonstrated a markedly superior effect, not only reversing the diabetic phenotype but also significantly enhancing glucose homeostasis, insulin and C-peptide secretion, and β-cell mass. This combined treatment led to a restoration of Langerhans islet architecture, correction of the endocrine cell proportions, and a notable increase in GAD65/67-positive β-cells, indicating improved β-cell health and function. These findings provide strong evidence supporting the evaluation of GABA and GLP-1 RAs as a combination therapy in clinical trials. Their synergistic effects may offer enhanced β-cell protection, promote functional recovery, and uncover novel therapeutic pathways for treating patients with WS.
Collapse
Affiliation(s)
- Toomas Jagomäe
- Laboratory Animal Centre, Institute of Biomedicine and Translational Medicine, University of Tartu, 14b Ravila Street, 50411, Tartu, Estonia.
| | - Sandra Velling
- Laboratory Animal Centre, Institute of Biomedicine and Translational Medicine, University of Tartu, 14b Ravila Street, 50411, Tartu, Estonia
| | - Tessa Britt Tikva
- Laboratory Animal Centre, Institute of Biomedicine and Translational Medicine, University of Tartu, 14b Ravila Street, 50411, Tartu, Estonia
| | - Varvara Maksimtšuk
- Laboratory Animal Centre, Institute of Biomedicine and Translational Medicine, University of Tartu, 14b Ravila Street, 50411, Tartu, Estonia
| | - Nayana Gaur
- Laboratory Animal Centre, Institute of Biomedicine and Translational Medicine, University of Tartu, 14b Ravila Street, 50411, Tartu, Estonia
| | - Riin Reimets
- Laboratory Animal Centre, Institute of Biomedicine and Translational Medicine, University of Tartu, 14b Ravila Street, 50411, Tartu, Estonia
| | - Allen Kaasik
- Department of Pharmacology, Institute of Biomedicine and Translational Medicine, University of Tartu, 19 Ravila Street, 50411, Tartu, Estonia
| | - Eero Vasar
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, 19 Ravila Street, 50411, Tartu, Estonia
| | - Mario Plaas
- Laboratory Animal Centre, Institute of Biomedicine and Translational Medicine, University of Tartu, 14b Ravila Street, 50411, Tartu, Estonia.
| |
Collapse
|
3
|
Mick GJ, McCormick KL. The role of GABA in type 1 diabetes. Front Endocrinol (Lausanne) 2024; 15:1453396. [PMID: 39619323 PMCID: PMC11604429 DOI: 10.3389/fendo.2024.1453396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 10/22/2024] [Indexed: 12/13/2024] Open
Abstract
Gamma aminobutyric acid (GABA) is synthesized from glutamate by glutamic decarboxylase (GAD). The entero-pancreatic biology of GABA, which is produced by pancreatic islets, GAD-expressing microbiota, enteric immune cells, or ingested through diet, supports an essential physiologic role of GABA in the health and disease. Outside the central nervous system (CNS), GABA is uniquely concentrated in pancreatic β-cells. They express GAD65, which is a type 1 diabetes (T1D) autoantigen. Glutamate constitutes 10% of the amino acids in dietary protein and is preeminently concentrated in human milk. GABA is enriched in many foods, such as tomato and fermented cheese, and is an over-the-counter supplement. Selected microbiota in the midgut have the enzymatic capacity to produce GABA. Intestinal microbiota interact with gut-associated lymphoid tissue to maintain host defenses and immune tolerance, which are implicated in autoimmune disease. Although GABA is a widely known inhibitory neurotransmitter, oral GABA does not cross the blood brain barrier. Three diabetes-related therapeutic actions are ascribed to GABA, namely, increasing pancreatic β-cell content, attenuating excess glucagon and tamping down T-cell immune destruction. These salutary actions have been observed in numerous rodent diabetes models that usually employed high or near-continuous GABA doses. Clinical studies, to date, have identified positive effects of oral GABA on peripheral blood mononuclear cell cytokine release and plasma glucagon. Going forward, it is reassuring that oral GABA therapy has been well-tolerated and devoid of serious adverse effects.
Collapse
Affiliation(s)
- Gail J. Mick
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, United States
| | | |
Collapse
|
4
|
Tegegne BA, Adugna A, Yenet A, Yihunie Belay W, Yibeltal Y, Dagne A, Hibstu Teffera Z, Amare GA, Abebaw D, Tewabe H, Abebe RB, Zeleke TK. A critical review on diabetes mellitus type 1 and type 2 management approaches: from lifestyle modification to current and novel targets and therapeutic agents. Front Endocrinol (Lausanne) 2024; 15:1440456. [PMID: 39493778 PMCID: PMC11527681 DOI: 10.3389/fendo.2024.1440456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 10/02/2024] [Indexed: 11/05/2024] Open
Abstract
Diabetes mellitus (DM) has emerged as an international health epidemic due to its rapid rise in prevalence. Consequently, scientists and or researchers will continue to find novel, safe, effective, and affordable anti-diabetic medications. The goal of this review is to provide a thorough overview of the role that lifestyle changes play in managing diabetes, as well as the standard medications that are currently being used to treat the condition and the most recent advancements in the development of novel medical treatments that may be used as future interventions for the disease. A literature search was conducted using research databases such as PubMed, Web of Science, Scopus, ScienceDirect, Wiley Online Library, Google Scholar, etc. Data were then abstracted from these publications using words or Phrases like "pathophysiology of diabetes", "Signe and symptoms of diabetes", "types of diabetes", "major risk factors and complication of diabetes", "diagnosis of diabetes", "lifestyle modification for diabetes", "current antidiabetic agents", and "novel drugs and targets for diabetes management" that were published in English and had a strong scientific foundation. Special emphasis was given to the importance of lifestyle modification, as well as current, novel, and emerging/promising drugs and targets helpful for the management of both T1DM and T2DM.
Collapse
Affiliation(s)
- Bantayehu Addis Tegegne
- Department of Pharmacy, College of Medicine and Health Science, Debre Markos University, Debre Markos, Ethiopia
| | - Adane Adugna
- Department of Medical Laboratory Science, College of Medicine and Health Science, Debre Markos University, Debre Markos, Ethiopia
| | - Aderaw Yenet
- Department of Pharmacy, College of Medicine and Health Science, Debre Markos University, Debre Markos, Ethiopia
| | - Wubetu Yihunie Belay
- Department of Pharmacy, College of Medicine and Health Science, Debre Markos University, Debre Markos, Ethiopia
| | - Yared Yibeltal
- Department of Pharmacy, College of Medicine and Health Science, Debre Markos University, Debre Markos, Ethiopia
| | - Abebe Dagne
- Department of Pharmacy, College of Medicine and Health Science, Debre Markos University, Debre Markos, Ethiopia
| | - Zigale Hibstu Teffera
- Department of Medical Laboratory Science, College of Medicine and Health Science, Debre Markos University, Debre Markos, Ethiopia
| | - Gashaw Azanaw Amare
- Department of Medical Laboratory Science, College of Medicine and Health Science, Debre Markos University, Debre Markos, Ethiopia
| | - Desalegn Abebaw
- Department of Medical Laboratory Science, College of Medicine and Health Science, Debre Markos University, Debre Markos, Ethiopia
| | - Haymanot Tewabe
- Department of Medical Laboratory Science, College of Medicine and Health Science, Debre Markos University, Debre Markos, Ethiopia
| | - Rahel Belete Abebe
- Department of Clinical Pharmacy, School of Pharmacy, College of Medicine and Health Science, University of Gondar, Gondar, Ethiopia
| | - Tirsit Ketsela Zeleke
- Department of Pharmacy, College of Medicine and Health Science, Debre Markos University, Debre Markos, Ethiopia
| |
Collapse
|
5
|
Ishay A, Oleinikov K, Chertok Shacham E. SARS-CoV-2-Vaccine-Related Endocrine Disorders: An Updated Narrative Review. Vaccines (Basel) 2024; 12:750. [PMID: 39066388 PMCID: PMC11281608 DOI: 10.3390/vaccines12070750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/27/2024] [Accepted: 07/01/2024] [Indexed: 07/28/2024] Open
Abstract
The emergence of the COVID-19 pandemic has led to the rapid and worldwide development and investigation of multiple vaccines. While most side effects of these vaccines are mild and transient, potentially severe adverse events may occur and involve the endocrine system. This narrative review aimed to explore the current knowledge on potential adverse endocrine effects following COVID-19 vaccination, with thyroid disorders being the most common. Data about pituitary, adrenal, diabetes, and gonadal events are also reviewed. This review also provides a comprehensive understanding of the pathogenesis of endocrine disorders associated with SARS-CoV-2 vaccines. PubMed/MEDLINE, Embase database (Elsevier), and Google Scholar searches were performed. Case reports, case series, original studies, and reviews written in English and published online up to 31 August 2023 were selected and reviewed. Data on endocrine adverse events of SARS-CoV-2 vaccines are accumulating. However, their causal relationship with COVID-19 vaccines is not strong enough to make a definite conclusion, and further studies are needed to clarify the pathogenesis mechanisms of the endocrine disorders linked to COVID-19 vaccines.
Collapse
Affiliation(s)
- Avraham Ishay
- Endocrinology Unit, HaEmek Medical Center, Yitzhak Rabin Av. 21, Afula 18101, Israel
- Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | - Kira Oleinikov
- Endocrinology Unit, HaEmek Medical Center, Yitzhak Rabin Av. 21, Afula 18101, Israel
| | - Elena Chertok Shacham
- Endocrinology Unit, HaEmek Medical Center, Yitzhak Rabin Av. 21, Afula 18101, Israel
- Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel
| |
Collapse
|
6
|
Weng BBC, Yuan HD, Chen LG, Chu C, Hsieh CW. Soy yoghurts produced with efficient GABA (γ-aminobutyric acid)-producing Lactiplantibacillus plantarum ameliorate hyperglycaemia and re-establish gut microbiota in streptozotocin (STZ)-induced diabetic mice. Food Funct 2023; 14:1699-1709. [PMID: 36722409 DOI: 10.1039/d2fo02708a] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Soy yogurt has been gaining popularity as a vegan food produced simply by soymilk fermentation with proper microbial manipulation. It is well known that soy containing rich isoflavones is beneficial for ameliorating hyperglycaemic disorders. Soy fermentation can improve the bioavailability of these precious nutrients. Lactiplantibacillus plantarum is one of the most abundant and frequently isolated species in soymilk manufacturing. Soy yogurts produced with efficient GABA (γ-aminobutyric acid)-producing L. plantarum and the deglycosylating activity of L. plantarum were functionally assessed in a STZ-induced hyperglycaemic mouse model. Hyperglycaemic mice were assigned into groups and treated with daily gavage of either dH2O, soymilk, soy yoghurts produced with high GABA-producing L. plantarum GA30 (LPGA30), low GABA-producing L. plantarum PV30 (LPPV30) or the soy yoghurts fortified with additional 30 mg g-1 GABA counterparts (GA + GABA and PV + GABA groups). Except the dH2O group, all soy yoghurt groups retained body weight with improved glucose homeostasis, glucose tolerance test results and renal tissue integrity, while the soymilk group shows partial benefits. Plasma GABA concentrations in the daily soy yoghurt-supplemented groups (LPGA30 and LPPV30) plateaued at 5 times higher than the average 0.5 μM in dH2O and soymilk groups, and their GABA-fortified soy yoghurt counterparts (GA + GABA and PV + GABA) groups were accountable for the restored plasma insulin levels. Gut microbiome analysis revealed dysbiosis in STZ-induced hyperglycemic mice of the dH2O group with breached out facultative anaerobic Proteobacteria over the normal phyla Firmicutes and Bacteroidetes. Restored gut microbiota with transitionally populated Actinobacteria was demonstrated in the LPGA30 group but not in the LPPV30 group. Soy yoghurts produced with efficient GABA-producing L. plantarum GA30 showed exceptional benefits in modulating gut microbiota with dominant genera of Enterococcus, Lactobacillus and Bifidobacterium, and the presence of some minor beneficial microbial communities including Akkermansia muciniphila, Butyricicoccus pullicaecorum, Corynebacterium spp. and Adlercreutzia spp. Efficient GABA-producing L. plantarum GA30 fermented soymilk to produce soy yoghurts that exhibit profound synergistic protections over rich soy isoflavones to restore pancreatic β-cell functions for insulin production in STZ-induced hyperglycaemic mice. Additionally, the probiotic role of GABA-producing L. plantarum in re-establishing healthy gut microbiota in hyperglycaemic mice implies a possible symbiotic relationship, awaiting further exploration.
Collapse
Affiliation(s)
- Brian Bor-Chun Weng
- Dept. Microb. Immunol. Biopharm., No. 300, University Rd., Chiayi City, Taiwan, 600355, Republic of China.
| | - Hung-De Yuan
- Dept. Microb. Immunol. Biopharm., No. 300, University Rd., Chiayi City, Taiwan, 600355, Republic of China.
| | - Lih-Geeng Chen
- Dept. Microb. Immunol. Biopharm., No. 300, University Rd., Chiayi City, Taiwan, 600355, Republic of China.
| | - Chishih Chu
- Dept. Microb. Immunol. Biopharm., No. 300, University Rd., Chiayi City, Taiwan, 600355, Republic of China.
| | - Chia-Wen Hsieh
- Dept. Microb. Immunol. Biopharm., No. 300, University Rd., Chiayi City, Taiwan, 600355, Republic of China.
| |
Collapse
|
7
|
Zhang Y, Zhang M, Li T, Zhang X, Wang L. Enhance Production of γ-Aminobutyric Acid (GABA) and Improve the Function of Fermented Quinoa by Cold Stress. Foods 2022; 11:foods11233908. [PMID: 36496716 PMCID: PMC9737818 DOI: 10.3390/foods11233908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 11/29/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Quinoa is an excellent source of γ-aminobutyric acid (GABA), which is a natural four-carbon non-protein amino acid with great health benefits. In this study, the quinoa was treated by cold stress before fermentation with Lactobacillus plantarum to enhance the amount of GABA. The best Lactobacillus plantarum for GABA production was selected from sixteen different strains based on the levels of GABA production and the activity of glutamic acid decarboxylase (GAD). Cold stress treatments at 4 °C and at -20 °C enhanced the amount of GABA in the fermented quinoa by a maximum of 1191% and 774%, respectively. The surface of the fermented quinoa flour treated by cold stress showed more pinholes, mucus, faults and cracks. A Fourier transform infrared spectrophotometer (FTIR) analysis revealed that cold stress had a violent breakage effect on the -OH bonds in quinoa and delayed the destruction of protein during fermentation. In addition, the results from the rapid visco analyzer (RVA) showed that the cold stress reduced the peak viscosity of quinoa flour. Overall, the cold stress treatment is a promising method for making fermented quinoa a functional food by enhancing the production of bioactive ingredients.
Collapse
Affiliation(s)
- Yucui Zhang
- School of Food science and Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, China
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Lihu Road 1800, Wuxi 214122, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Lihu Road 1800, Wuxi 214122, China
| | - Ming Zhang
- School of Food science and Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, China
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Lihu Road 1800, Wuxi 214122, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Lihu Road 1800, Wuxi 214122, China
| | - Ting Li
- School of Food science and Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, China
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Lihu Road 1800, Wuxi 214122, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Lihu Road 1800, Wuxi 214122, China
| | - Xinxia Zhang
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Lihu Road 1800, Wuxi 214122, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Lihu Road 1800, Wuxi 214122, China
- Key Laboratory of Carbohydrate Chemistry and Biotechnology Ministry of Education, Jiangnan University, Lihu Road 1800, Wuxi 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Lihu Road 1800, Wuxi 214122, China
| | - Li Wang
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Lihu Road 1800, Wuxi 214122, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Lihu Road 1800, Wuxi 214122, China
- Key Laboratory of Carbohydrate Chemistry and Biotechnology Ministry of Education, Jiangnan University, Lihu Road 1800, Wuxi 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Lihu Road 1800, Wuxi 214122, China
- Correspondence: ; Tel./Fax: +86-510-85329820
| |
Collapse
|
8
|
Hoyeck MP, Matteo G, MacFarlane EM, Perera I, Bruin JE. Persistent organic pollutants and β-cell toxicity: a comprehensive review. Am J Physiol Endocrinol Metab 2022; 322:E383-E413. [PMID: 35156417 PMCID: PMC9394781 DOI: 10.1152/ajpendo.00358.2021] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 12/20/2021] [Accepted: 02/07/2022] [Indexed: 01/09/2023]
Abstract
Persistent organic pollutants (POPs) are a diverse family of contaminants that show widespread global dispersion and bioaccumulation. Humans are continuously exposed to POPs through diet, air particles, and household and commercial products; POPs are consistently detected in human tissues, including the pancreas. Epidemiological studies show a modest but consistent correlation between exposure to POPs and increased diabetes risk. The goal of this review is to provide an overview of epidemiological evidence and an in-depth evaluation of the in vivo and in vitro evidence that POPs cause β-cell toxicity. We review evidence for six classes of POPs: dioxins, polychlorinated biphenyls (PCBs), organochlorine pesticides (OCPs), organophosphate pesticides (OPPs), flame retardants, and per- and polyfluoroalkyl substances (PFAS). The available data provide convincing evidence implicating POPs as a contributing factor driving impaired glucose homeostasis, β-cell dysfunction, and altered metabolic and oxidative stress pathways in islets. These findings support epidemiological data showing that POPs increase diabetes risk and emphasize the need to consider the endocrine pancreas in toxicity assessments. Our review also highlights significant gaps in the literature assessing islet-specific endpoints after both in vivo and in vitro POP exposure. In addition, most rodent studies do not consider the impact of biological sex or secondary metabolic stressors in mediating the effects of POPs on glucose homeostasis and β-cell function. We discuss key gaps and limitations that should be assessed in future studies.
Collapse
Affiliation(s)
- Myriam P Hoyeck
- Department of Biology and Institute of Biochemistry, Carleton University, Ottawa, Ontario, Canada
| | - Geronimo Matteo
- Department of Biology and Institute of Biochemistry, Carleton University, Ottawa, Ontario, Canada
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Erin M MacFarlane
- Department of Biology and Institute of Biochemistry, Carleton University, Ottawa, Ontario, Canada
| | - Ineli Perera
- Department of Biology and Institute of Biochemistry, Carleton University, Ottawa, Ontario, Canada
| | - Jennifer E Bruin
- Department of Biology and Institute of Biochemistry, Carleton University, Ottawa, Ontario, Canada
| |
Collapse
|
9
|
Okada Y, Sabirov RZ, Sato-Numata K, Numata T. Cell Death Induction and Protection by Activation of Ubiquitously Expressed Anion/Cation Channels. Part 1: Roles of VSOR/VRAC in Cell Volume Regulation, Release of Double-Edged Signals and Apoptotic/Necrotic Cell Death. Front Cell Dev Biol 2021; 8:614040. [PMID: 33511120 PMCID: PMC7835517 DOI: 10.3389/fcell.2020.614040] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 12/15/2020] [Indexed: 12/18/2022] Open
Abstract
Cell volume regulation (CVR) is essential for survival and functions of animal cells. Actually, normotonic cell shrinkage and swelling are coupled to apoptotic and necrotic cell death and thus called the apoptotic volume decrease (AVD) and the necrotic volume increase (NVI), respectively. A number of ubiquitously expressed anion and cation channels are involved not only in CVD but also in cell death induction. This series of review articles address the question how cell death is induced or protected with using ubiquitously expressed ion channels such as swelling-activated anion channels, acid-activated anion channels and several types of TRP cation channels including TRPM2 and TRPM7. The Part 1 focuses on the roles of the volume-sensitive outwardly rectifying anion channels (VSOR), also called the volume-regulated anion channel (VRAC), which is activated by cell swelling or reactive oxygen species (ROS) in a manner dependent on intracellular ATP. First we describe phenotypical properties, the molecular identity, and physical pore dimensions of VSOR/VRAC. Second, we highlight the roles of VSOR/VRAC in the release of organic signaling molecules, such as glutamate, glutathione, ATP and cGAMP, that play roles as double-edged swords in cell survival. Third, we discuss how VSOR/VRAC is involved in CVR and cell volume dysregulation as well as in the induction of or protection from apoptosis, necrosis and regulated necrosis under pathophysiological conditions.
Collapse
Affiliation(s)
- Yasunobu Okada
- National Institute for Physiological Sciences, Okazaki, Japan
- Department of Physiology, School of Medicine, Aichi Medical University, Nagakute, Japan
- Department of Physiology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Ravshan Z. Sabirov
- Laboratory of Molecular Physiology, Institute of Biophysics and Biochemistry, National University of Uzbekistan, Tashkent, Uzbekistan
| | - Kaori Sato-Numata
- Japan Society for the Promotion of Science, Tokyo, Japan
- Department of Physiology, School of Medicine, Fukuoka University, Fukuoka, Japan
| | - Tomohiro Numata
- Department of Physiology, School of Medicine, Fukuoka University, Fukuoka, Japan
| |
Collapse
|
10
|
Koh JY, Lee SJ. Metallothionein-3 as a multifunctional player in the control of cellular processes and diseases. Mol Brain 2020; 13:116. [PMID: 32843100 PMCID: PMC7448430 DOI: 10.1186/s13041-020-00654-w] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 08/12/2020] [Indexed: 01/06/2023] Open
Abstract
Transition metals, such as iron, copper, and zinc, play a very important role in life as the regulators of various physiochemical reactions in cells. Abnormal distribution and concentration of these metals in the body are closely associated with various diseases including ischemic seizure, Alzheimer's disease, diabetes, and cancer. Iron and copper are known to be mainly involved in in vivo redox reaction. Zinc controls a variety of intracellular metabolism via binding to lots of proteins in cells and altering their structure and function. Metallothionein-3 (MT3) is a representative zinc binding protein predominant in the brain. Although the role of MT3 in other organs still needs to be elucidated, many reports have suggested critical roles for the protein in the control of a variety of cellular homeostasis. Here, we review various biological functions of MT3, focusing on different cellular molecules and diseases involving MT3 in the body.
Collapse
Affiliation(s)
- Jae-Young Koh
- Neural Injury Research Center, Asan Institute for Life Sciences, University of Ulsan, College of Medicine, Seoul, 05505, Republic of Korea
- Department of Neurology, Asan Medical Center, University of Ulsan, College of Medicine, Seoul, 05505, Republic of Korea
| | - Sook-Jeong Lee
- Department of Bioactive Material Science, Jeonbuk National University, Jeonju, Jeollabuk-do, 54896, Republic of Korea.
| |
Collapse
|
11
|
Menegaz D, Hagan DW, Almaça J, Cianciaruso C, Rodriguez-Diaz R, Molina J, Dolan RM, Becker MW, Schwalie PC, Nano R, Lebreton F, Kang C, Sah R, Gaisano HY, Berggren PO, Baekkeskov S, Caicedo A, Phelps EA. Mechanism and effects of pulsatile GABA secretion from cytosolic pools in the human beta cell. Nat Metab 2019; 1:1110-1126. [PMID: 32432213 PMCID: PMC7236889 DOI: 10.1038/s42255-019-0135-7] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 10/04/2019] [Indexed: 12/13/2022]
Abstract
Pancreatic beta cells synthesize and secrete the neurotransmitter γ-aminobutyric acid (GABA) as a paracrine and autocrine signal to help regulate hormone secretion and islet homeostasis. Islet GABA release has classically been described as a secretory vesicle-mediated event. Yet, a limitation of the hypothesized vesicular GABA release from islets is the lack of expression of a vesicular GABA transporter in beta cells. Consequentially, GABA accumulates in the cytosol. Here we provide evidence that the human beta cell effluxes GABA from a cytosolic pool in a pulsatile manner, imposing a synchronizing rhythm on pulsatile insulin secretion. The volume regulatory anion channel (VRAC), functionally encoded by LRRC8A or Swell1, is critical for pulsatile GABA secretion. GABA content in beta cells is depleted and secretion is disrupted in islets from type 1 and type 2 diabetic patients, suggesting that loss of GABA as a synchronizing signal for hormone output may correlate with diabetes pathogenesis.
Collapse
Affiliation(s)
- Danusa Menegaz
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
| | - D Walker Hagan
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Joana Almaça
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Chiara Cianciaruso
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Rayner Rodriguez-Diaz
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Judith Molina
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Robert M Dolan
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Matthew W Becker
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Petra C Schwalie
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Rita Nano
- Pancreatic Islet Processing Facility, Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Fanny Lebreton
- Cell Isolation and Transplantation Center, Faculty of Medicine, Department of Surgery, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Chen Kang
- Center for Cardiovascular Research and Division of Cardiology, Department of Internal Medicine, Washington University School of Medicine, St Louis, MO, USA
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Iowa, Carver College of Medicine, Iowa City, IA, USA
| | - Rajan Sah
- Center for Cardiovascular Research and Division of Cardiology, Department of Internal Medicine, Washington University School of Medicine, St Louis, MO, USA
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Iowa, Carver College of Medicine, Iowa City, IA, USA
| | - Herbert Y Gaisano
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Per-Olof Berggren
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA
- The Rolf Luft Research Center for Diabetes & Endocrinology, Karolinska Institutet, Stockholm, Sweden
- Division of Integrative Biosciences and Biotechnology, WCU Program, University of Science and Technology, Pohang, Korea
| | - Steinunn Baekkeskov
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
- Departments of Medicine and Microbiology/Immunology, Diabetes Center, University of California San Francisco, San Francisco, CA, USA.
| | - Alejandro Caicedo
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA.
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA.
- Department of Physiology and Biophysics, Miller School of Medicine, University of Miami, Miami, FL, USA.
- Program in Neuroscience, Miller School of Medicine, University of Miami, Miami, FL, USA.
| | - Edward A Phelps
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA.
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
| |
Collapse
|
12
|
Decreased Serum Level of Gamma-amino Butyric Acid in Egyptian Infertile Females with Polycystic Ovary Syndrome is Correlated with Dyslipidemia, Total Testosterone and 25(OH) Vitamin D Levels. J Med Biochem 2019; 38:512-518. [PMID: 31496917 PMCID: PMC6708297 DOI: 10.2478/jomb-2018-0051] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 12/26/2018] [Indexed: 02/06/2023] Open
Abstract
Background Polycystic ovary syndrome (PCOS) is one of the most common female endocrine disorders around the world. Increasing evidence suggests that neurotransmitter Gamma-aminobutyric acid (GABA) is involved in the pathogenesis of PCOS through its central role in the hypothalamus. However, the peripheral role of GABA in PCOS has not been sufficiently investigated in spite of its existence in peripheral organs. First, the aim of this study is to, investigate serum GABA level in Egyptian PCOS patients. Second, to explore the correlation between serum GABA level with Body Mass Index (BMI), dyslipidemia, totaltestosterone and 25 (OH) vitamin D. Methods Eighty PCOS patients and eighty age-matched healthy females were included in this study. All parameters were assessed colourimetrically or with ELISA. Results PCOS patients exhibited significantly decreased serum GABA level compared to controls (p < 0.001). There was a significant positive correlation between serum GABA and 25(OH) vitamin D levels (r = 0.26, p = 0.018), and a significant negative correlation with total testosterone (r = - 0.3, p = 0.02), total cholesterol (TC) (r = - 0.31, p = 0.01) and LDL-Cholesterol (LDL-C) (r = - 0.23, p = 0.045), respectively. Conclusions The findings of this study suggest that disrupted GABA level in the peripheral circulation is an additional contributing factor to PCOS manifestations. GABA deficiency was correlated with 25 (OH) vitamin D deficiency, dyslipidemia, and total testosterone. Further investigations for GABA adjustment might provide a promising means for better management of PCOS symptoms.
Collapse
|
13
|
Regeneration of Pancreatic β-Islet Cells in a Type-II Diabetic. Case Rep Endocrinol 2018; 2018:6147349. [PMID: 30254769 PMCID: PMC6145154 DOI: 10.1155/2018/6147349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 08/19/2018] [Indexed: 11/25/2022] Open
Abstract
A case report is presented in which a type-II diabetic patient significantly improved his dysfunctional β-islet cells using a combination of a strenuous exercise program, cyclical ketogenic diet, and oral GABA/probiotic supplementation. The patient was diagnosed with type-II diabetes at the age of 41 which then progressed through a typical series of treatment changes over 14 years. Treatment periods consisted of metformin therapy alone for 4 years followed by a metformin/glyburide combination therapy for 6 years, and eventually an insulin/metformin combination therapy for 4 years. One year after the initiation of insulin, the patient increased the level of strenuous physical activity (hiking and weight lifting) and adopted a ketogenic diet. Oral GABA and probiotic supplementation were also initiated at the age of 52.7. By the age of 55, the patient no longer required any insulin and is currently being managed with metformin alone. C-peptide values indicate a functional improvement of the β-islet cells during the time of insulin/GABA/probiotic treatment.
Collapse
|
14
|
Bhandage AK, Jin Z, Korol SV, Shen Q, Pei Y, Deng Q, Espes D, Carlsson PO, Kamali-Moghaddam M, Birnir B. GABA Regulates Release of Inflammatory Cytokines From Peripheral Blood Mononuclear Cells and CD4 + T Cells and Is Immunosuppressive in Type 1 Diabetes. EBioMedicine 2018; 30:283-294. [PMID: 29627388 PMCID: PMC5952354 DOI: 10.1016/j.ebiom.2018.03.019] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Revised: 03/16/2018] [Accepted: 03/16/2018] [Indexed: 12/31/2022] Open
Abstract
The neurotransmitter γ-aminobutyric acid (GABA) is an extracellular signaling molecule in the brain and in pancreatic islets. Here, we demonstrate that GABA regulates cytokine secretion from human peripheral blood mononuclear cells (PBMCs) and CD4+ T cells. In anti-CD3 stimulated PBMCs, GABA (100 nM) inhibited release of 47 cytokines in cells from patients with type 1 diabetes (T1D), but only 16 cytokines in cells from nondiabetic (ND) individuals. CD4+ T cells from ND individuals were grouped into responder or non-responder T cells according to effects of GABA (100 nM, 500 nM) on the cell proliferation. In the responder T cells, GABA decreased proliferation, and inhibited secretion of 37 cytokines in a concentration-dependent manner. In the non-responder T cells, GABA modulated release of 8 cytokines. GABA concentrations in plasma from T1D patients and ND individuals were correlated with 10 cytokines where 7 were increased in plasma of T1D patients. GABA inhibited secretion of 5 of these cytokines from both T1D PBMCs and ND responder T cells. The results identify GABA as a potent regulator of both Th1- and Th2-type cytokine secretion from human PBMCs and CD4+ T cells where GABA generally decreases the secretion. GABA regulates cytokine secretion in anti-CD3-stimulated peripheral blood mononuclear cells (PBMCs) and CD4+ T cells. GABA inhibits secretion of 47 cytokines in PBMCs from type 1 diabetes patients. GABA regulates secretion of pro- and anti-inflammatory cytokines in a concentration-dependent manner.
GABA is a signal molecule in the brain, blood and pancreatic islets where it is secreted by the insulin-producing β cells. GABA has many roles in human islets including optimizing function and survival of β cells. Bhandage et al. now show that GABA is a potent regulator of secretion of both pro- and anti-inflammatory cytokines in stimulated immune cells. In type 1 diabetes the β-cell mass is diminished and thus the protective effect of GABA in the islets although not in blood. Targeting GABA signaling in diabetes mellitus is likely to be a part of the solution when curing diabetes.
Collapse
Affiliation(s)
- Amol K Bhandage
- Department of Neuroscience, Uppsala University, 75124 Uppsala, Sweden
| | - Zhe Jin
- Department of Neuroscience, Uppsala University, 75124 Uppsala, Sweden
| | - Sergiy V Korol
- Department of Neuroscience, Uppsala University, 75124 Uppsala, Sweden
| | - Qiujin Shen
- Department of Immunology, Genetics and Pathology, Science for Life laboratory, Uppsala University, 75124 Uppsala, Sweden
| | - Yu Pei
- Department of Cell and Molecular Biology, Karolinska Institute, 17165 Stockholm, Sweden
| | - Qiaolin Deng
- Department of Cell and Molecular Biology, Karolinska Institute, 17165 Stockholm, Sweden
| | - Daniel Espes
- Department of Medical Cell Biology, Uppsala University, 75124 Uppsala, Sweden; Department of Medical Sciences, Uppsala University, 75124 Uppsala, Sweden
| | - Per-Ola Carlsson
- Department of Medical Cell Biology, Uppsala University, 75124 Uppsala, Sweden; Department of Medical Sciences, Uppsala University, 75124 Uppsala, Sweden
| | - Masood Kamali-Moghaddam
- Department of Immunology, Genetics and Pathology, Science for Life laboratory, Uppsala University, 75124 Uppsala, Sweden
| | - Bryndis Birnir
- Department of Neuroscience, Uppsala University, 75124 Uppsala, Sweden.
| |
Collapse
|
15
|
Functional Characterization of Native, High-Affinity GABA A Receptors in Human Pancreatic β Cells. EBioMedicine 2018; 30:273-282. [PMID: 29606630 PMCID: PMC5952339 DOI: 10.1016/j.ebiom.2018.03.014] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Revised: 02/02/2018] [Accepted: 03/12/2018] [Indexed: 01/19/2023] Open
Abstract
In human pancreatic islets, the neurotransmitter γ-aminobutyric acid (GABA) is an extracellular signaling molecule synthesized by and released from the insulin-secreting β cells. The effective, physiological GABA concentration range within human islets is unknown. Here we use native GABAA receptors in human islet β cells as biological sensors and reveal that 100–1000 nM GABA elicit the maximal opening frequency of the single-channels. In saturating GABA, the channels desensitized and stopped working. GABA modulated insulin exocytosis and glucose-stimulated insulin secretion. GABAA receptor currents were enhanced by the benzodiazepine diazepam, the anesthetic propofol and the incretin glucagon-like peptide-1 (GLP-1) but not affected by the hypnotic zolpidem. In type 2 diabetes (T2D) islets, single-channel analysis revealed higher GABA affinity of the receptors. The findings reveal unique GABAA receptors signaling in human islets β cells that is GABA concentration-dependent, differentially regulated by drugs, modulates insulin secretion and is altered in T2D. In human islets GABA (≤μM) activates β cell-specific GABAA receptors that become supersensitive to GABA in type 2 diabetes. GABAA receptors activity in β cells is enhanced by diazepam, anesthetics, the incretin GLP-1 but not the hypnotic zolpidem. GABA modulates rate of insulin granule exocytosis and glucose-stimulated insulin secretion.
GABA is a signal molecule in the brain but is also secreted by the insulin-producing β cells in pancreatic islets. GABA has many roles in human islets that most aim at optimizing function and survival of β cells. In the report by Korol, Jin et al. the authors identify and characterize the molecular unit that GABA binds to in human β cells, the GABAA receptors. These receptors normally sensitive become super-sensitive to GABA in type 2 diabetes. The GABAA receptors regulate insulin secretion and can themselves be regulated by the anxiolytic diazepam, anesthetics, the incretin GLP-1 but not the hypnotic zolpidem. Targeting GABA signaling in human islets in diabetes mellitus is likely to be a part of the solution when curing diabetes.
Collapse
|
16
|
Kantachote D, Ratanaburee A, Hayisama-ae W, Sukhoom A, Nunkaew T. The use of potential probiotic Lactobacillus plantarum DW12 for producing a novel functional beverage from mature coconut water. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.03.018] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
|
17
|
Tsuneki H, Sasaoka T, Sakurai T. Sleep Control, GPCRs, and Glucose Metabolism. Trends Endocrinol Metab 2016; 27:633-642. [PMID: 27461005 DOI: 10.1016/j.tem.2016.06.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 06/29/2016] [Accepted: 06/29/2016] [Indexed: 12/29/2022]
Abstract
Modern lifestyles prolong daily activities into the nighttime, disrupting circadian rhythms, which may cause sleep disturbances. Sleep disturbances have been implicated in the dysregulation of blood glucose levels and reported to increase the risk of type 2 diabetes (T2D) and diabetic complications. Sleep disorders are treated using anti-insomnia drugs that target ionotropic and G protein-coupled receptors (GPCRs), including γ-aminobutyric acid (GABA) agonists, melatonin agonists, and orexin receptor antagonists. A deeper understanding of the effects of these medications on glucose metabolism and their underlying mechanisms of action is crucial for the treatment of diabetic patients with sleep disorders. In this review we focus on the beneficial impact of sleep on glucose metabolism and suggest a possible strategy for therapeutic intervention against sleep-related metabolic disorders.
Collapse
Affiliation(s)
- Hiroshi Tsuneki
- Department of Clinical Pharmacology, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Toshiyasu Sasaoka
- Department of Clinical Pharmacology, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan.
| | - Takeshi Sakurai
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan.
| |
Collapse
|
18
|
Byun HR, Choi JA, Koh JY. The role of metallothionein-3 in streptozotocin-induced beta-islet cell death and diabetes in mice. Metallomics 2015; 6:1748-57. [PMID: 25054451 DOI: 10.1039/c4mt00143e] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Metallothionein-3 (Mt3), a zinc (Zn)-regulatory protein mainly expressed in the central nervous system, may contribute to oxidative cell death. In the present study, we examined the possible role of Mt3 in streptozotocin (STZ)-induced islet cell death and consequent hyperglycemia. Quantitative real-time polymerase chain reaction (RT-PCR) confirmed that islet cells expressed Mt3 mRNA. In all cases, wild-type (WT) mice injected with STZ exhibited hyperglycemia 7-21 days later. In stark contrast, all Mt3-null mice remained normoglycemic following STZ injection. STZ treatment increased free Zn levels in islet cells and induced their death in WT mice, but failed to do so in Mt3-null mice. Consistent with this, cultured Mt3-null islet cells exhibited striking resistance to STZ toxicity. Notably, PDE3a (phosphodiesterase 3A) was downregulated in islets of Mt3-null mice compared to those of WT mice, and was not induced by STZ treatment. Moreover, the PDE3 inhibitor cilostazol reduced islet cell death, likely by increasing cAMP levels, further supporting a role for PDE3 in STZ-induced islet cell death. Collectively, these results demonstrate that Mt3 may act through PDE3a to play a key role in Zn dyshomeostasis and cell death in STZ-treated islets.
Collapse
Affiliation(s)
- Hyae-Ran Byun
- Neural Injury Research Center, Asan Institute for Life Science, University of Ulsan College of Medicine, Seoul, Korea
| | | | | |
Collapse
|
19
|
Wang Y, Liu M, Zhao L, Qiu Y, Zhuang Y. Interactions of γ-aminobutyric acid and whey proteins/caseins during fortified milk production. RSC Adv 2015. [DOI: 10.1039/c5ra16271h] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
γ-aminobutyric acid mainly cross-links the β-lg fraction and adducts with α-la or αs1-casein fractions, and tends to form its linear or membered ring structure oligomers.
Collapse
Affiliation(s)
- Yaosong Wang
- State Key Laboratory of Bioreactor Engineering
- R&D Center of Separation and Extraction Technology in Fermentation Industry
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Mingying Liu
- State Key Laboratory of Bioreactor Engineering
- R&D Center of Separation and Extraction Technology in Fermentation Industry
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Liming Zhao
- State Key Laboratory of Bioreactor Engineering
- R&D Center of Separation and Extraction Technology in Fermentation Industry
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Yongjun Qiu
- State Key Laboratory of Bioreactor Engineering
- R&D Center of Separation and Extraction Technology in Fermentation Industry
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Yingping Zhuang
- State Key Laboratory of Bioreactor Engineering
- R&D Center of Separation and Extraction Technology in Fermentation Industry
- East China University of Science and Technology
- Shanghai 200237
- China
| |
Collapse
|