1
|
Schleh MW, Ryan BJ, Ahn C, Ludzki AC, Van Pelt DW, Pitchford LM, Chugh OK, Luker AT, Luker KE, Samovski D, Abumrad NA, Burant CF, Horowitz JF. Impaired suppression of fatty acid release by insulin is a strong predictor of reduced whole-body insulin-mediated glucose uptake and skeletal muscle insulin receptor activation. Acta Physiol (Oxf) 2025; 241:e14249. [PMID: 39487600 DOI: 10.1111/apha.14249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/06/2024] [Accepted: 09/24/2024] [Indexed: 11/04/2024]
Abstract
AIM To examine factors underlying why most, but not all, adults with obesity exhibit impaired insulin-mediated glucose uptake, we compared: (1) adipose tissue fatty acid (FA) release, (2) skeletal muscle lipid droplet (LD) characteristics, and (3) insulin signalling events, in skeletal muscle of adults with obesity with relatively high versus low insulin-mediated glucose uptake. METHODS Seventeen adults with obesity (BMI: 36 ± 3 kg/m2) completed a 2 h hyperinsulinemic-euglycemic clamp with stable isotope tracer infusions to measure glucose rate of disappearance (glucose Rd) and FA rate of appearance (FA Ra). Skeletal muscle biopsies were collected at baseline and 30 min into the insulin infusion. Participants were stratified into HIGH (n = 7) and LOW (n = 10) insulin sensitivity cohorts by their glucose Rd during the hyperinsulinemic clamp (LOW< 400; HIGH >550 nmol/kgFFM/min/[μU/mL]). RESULTS Insulin-mediated suppression of FA Ra was lower in LOW compared with HIGH (p < 0.01). In skeletal muscle, total intramyocellular lipid content did not differ between cohorts. However, the size of LDs in the subsarcolemmal region (SS) of type II muscle fibres was larger in LOW compared with HIGH (p = 0.01). Additionally, insulin receptor-β (IRβ) interactions with regulatory proteins CD36 and Fyn were lower in LOW versus HIGH (p < 0.01), which aligned with attenuated insulin-mediated Tyr phosphorylation of IRβ and downstream insulin-signalling proteins in LOW. CONCLUSION Collectively, reduced ability for insulin to suppress FA mobilization, with accompanying modifications in intramyocellular LD size and distribution, and diminished IRβ interaction with key regulatory proteins may be key contributors to impaired insulin-mediated glucose uptake commonly found in adults with obesity.
Collapse
Affiliation(s)
- Michael W Schleh
- Substrate Metabolism Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Benjamin J Ryan
- Substrate Metabolism Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Cheehoon Ahn
- Substrate Metabolism Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Alison C Ludzki
- Substrate Metabolism Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Douglas W Van Pelt
- Substrate Metabolism Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Lisa M Pitchford
- Substrate Metabolism Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Olivia K Chugh
- Substrate Metabolism Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Austin T Luker
- Substrate Metabolism Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Kathryn E Luker
- Center for Molecular Imaging, Department of Radiology, University of Michigan, Ann Arbor, Michigan, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan, USA
| | - Dmitri Samovski
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Nada A Abumrad
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Charles F Burant
- Division of Metabolism, Endocrinology, and Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Jeffrey F Horowitz
- Substrate Metabolism Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
2
|
Schleh MW, Ryan BJ, Ahn C, Ludzki AC, Varshney P, Gillen JB, Van Pelt DW, Pitchford LM, Howton SM, Rode T, Chenevert TL, Hummel SL, Burant CF, Horowitz JF. Metabolic dysfunction in obesity is related to impaired suppression of fatty acid release from adipose tissue by insulin. Obesity (Silver Spring) 2023; 31:1347-1361. [PMID: 36988872 PMCID: PMC10192005 DOI: 10.1002/oby.23734] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 12/02/2022] [Accepted: 01/01/2023] [Indexed: 03/30/2023]
Abstract
OBJECTIVE The aims of this study were: 1) to assess relationships among insulin-mediated glucose uptake with standard clinical outcomes and deep-phenotyping measures (including fatty acid [FA] rate of appearance [FA Ra] into the systemic circulation); and 2) to examine the contribution of adipocyte size, fibrosis, and proteomic profile to FA Ra regulation. METHODS A total of 66 adults with obesity (BMI = 34 [SD 3] kg/m2 ) were assessed for insulin sensitivity (hyperinsulinemic-euglycemic clamp), and stable isotope dilution methods quantified glucose, FA, and glycerol kinetics in vivo. Abdominal subcutaneous adipose tissue (aSAT) and skeletal muscle biopsies were collected, and magnetic resonance imaging quantified liver and visceral fat content. RESULTS Insulin-mediated FA Ra suppression associated with insulin-mediated glucose uptake (r = 0.51; p < 0.01) and negatively correlated with liver (r = -0.36; p < 0.01) and visceral fat (r = -0.42; p < 0.01). aSAT proteomics from subcohorts of participants with low FA Ra suppression (n = 8) versus high FA Ra suppression (n = 8) demonstrated greater extracellular matrix collagen protein in low versus high FA Ra suppression. Skeletal muscle lipidomics (n = 18) revealed inverse correlations of FA Ra suppression with acyl-chain length of acylcarnitine (r = -0.42; p = 0.02) and triacylglycerol (r = -0.51; p < 0.01), in addition to insulin-mediated glucose uptake (acylcarnitine: r = -0.49; p < 0.01, triacylglycerol: r = -0.40; p < 0.01). CONCLUSIONS Insulin's ability to suppress FA release from aSAT in obesity is related to enhanced insulin-mediated glucose uptake and metabolic health in peripheral tissues.
Collapse
Affiliation(s)
- Michael W Schleh
- Substrate Metabolism Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Benjamin J Ryan
- Substrate Metabolism Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Cheehoon Ahn
- Substrate Metabolism Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Alison C Ludzki
- Substrate Metabolism Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Pallavi Varshney
- Substrate Metabolism Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Jenna B Gillen
- Substrate Metabolism Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan, USA
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, Ontario, Canada
| | - Douglas W Van Pelt
- Substrate Metabolism Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Lisa M Pitchford
- Substrate Metabolism Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Suzette M Howton
- Substrate Metabolism Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Thomas Rode
- Substrate Metabolism Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Thomas L Chenevert
- Department of Radiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Scott L Hummel
- Division of Cardiology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
- Veterans Affairs Health System, Ann Arbor, Michigan, USA
| | - Charles F Burant
- Division of Metabolism, Endocrinology, and Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Jeffrey F Horowitz
- Substrate Metabolism Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
3
|
Abdollahi A, Dowden BN, Buhman KK, Zembroski AS, Henderson GC. Albumin knockout mice exhibit reduced plasma free fatty acid concentration and enhanced insulin sensitivity. Physiol Rep 2022; 10:e15161. [PMID: 35238481 PMCID: PMC8892599 DOI: 10.14814/phy2.15161] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/11/2021] [Accepted: 12/14/2021] [Indexed: 04/15/2023] Open
Abstract
Circulating albumin is expected to play a significant role in the trafficking of plasma free fatty acids (FFA) between tissues, such as FFA transfer from adipose tissue to the liver. However, it was not yet known how disrupting FFA binding to albumin in circulation would alter lipid metabolism and any resulting impacts upon control of glycemia. To improve understanding of metabolic control, we aimed to determine whether lack of serum albumin would decrease plasma FFA, hepatic lipid storage, whole body substrate oxidation, and glucose metabolism. Male and female homozygous albumin knockout mice and C57BL/6J wild type controls, each on a standard diet containing a moderate fat content, were studied at 6-8 weeks of age. Indirect calorimetry, glucose tolerance testing, insulin tolerance testing, exercise performance, plasma proteome, and tissue analyses were performed. In both sexes of albumin knockout mice compared to the wild type mice, significant reductions (p < 0.05) were observed for plasma FFA concentration, hepatic triacylglycerol and diacylglycerol content, blood glucose during the glucose tolerance test, and blood glucose during the insulin tolerance test. Albumin deficiency did not reduce whole body fat oxidation over a 24-h period and did not alter exercise performance in an incremental treadmill test. The system-level phenotypic changes in lipid and glucose metabolism were accompanied by reduced hepatic perilipin-2 expression (p < 0.05), as well as increased expression of adiponectin (p < 0.05) and glucose transporter-4 (p < 0.05) in adipose tissue. The results indicate an important role of albumin and plasma FFA concentration in lipid metabolism and glucoregulation.
Collapse
Affiliation(s)
- Afsoun Abdollahi
- Department of Nutrition SciencePurdue UniversityWest LafayetteIndianaUSA
| | - Brianna N. Dowden
- Department of Nutrition SciencePurdue UniversityWest LafayetteIndianaUSA
| | - Kimberly K. Buhman
- Department of Nutrition SciencePurdue UniversityWest LafayetteIndianaUSA
| | | | | |
Collapse
|
4
|
Henderson GC. Plasma Free Fatty Acid Concentration as a Modifiable Risk Factor for Metabolic Disease. Nutrients 2021; 13:nu13082590. [PMID: 34444750 PMCID: PMC8402049 DOI: 10.3390/nu13082590] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/18/2021] [Accepted: 07/27/2021] [Indexed: 02/07/2023] Open
Abstract
Plasma free fatty acid (FFA) concentration is elevated in obesity, insulin resistance (IR), non-alcoholic fatty liver disease (NAFLD), type 2 diabetes (T2D), and related comorbidities such as cardiovascular disease (CVD). Furthermore, experimentally manipulating plasma FFA in the laboratory setting modulates metabolic markers of these disease processes. In this article, evidence is presented indicating that plasma FFA is a disease risk factor. Elevations of plasma FFA can promote ectopic lipid deposition, IR, as well as vascular and cardiac dysfunction. Typically, elevated plasma FFA results from accelerated adipose tissue lipolysis, caused by a high adipose tissue mass, adrenal hormones, or other physiological stressors. Reducing an individual’s postabsorptive and postprandial plasma FFA concentration is expected to improve health. Lifestyle change could provide a significant opportunity for plasma FFA reduction. Various factors can impact plasma FFA concentration, such as chronic restriction of dietary energy intake and weight loss, as well as exercise, sleep quality and quantity, and cigarette smoking. In this review, consideration is given to multiple factors which lead to plasma FFA elevation and subsequent disruption of metabolic health. From considering a variety of medical conditions and lifestyle factors, it becomes clear that plasma FFA concentration is a modifiable risk factor for metabolic disease.
Collapse
Affiliation(s)
- Gregory C Henderson
- Department of Nutrition Science, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
5
|
Carpentier AC. 100 th anniversary of the discovery of insulin perspective: insulin and adipose tissue fatty acid metabolism. Am J Physiol Endocrinol Metab 2021; 320:E653-E670. [PMID: 33522398 DOI: 10.1152/ajpendo.00620.2020] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Insulin inhibits systemic nonesterified fatty acid (NEFA) flux to a greater degree than glucose or any other metabolite. This remarkable effect is mainly due to insulin-mediated inhibition of intracellular triglyceride (TG) lipolysis in adipose tissues and is essential to prevent diabetic ketoacidosis, but also to limit the potential lipotoxic effects of NEFA in lean tissues that contribute to the development of diabetes complications. Insulin also regulates adipose tissue fatty acid esterification, glycerol and TG synthesis, lipogenesis, and possibly oxidation, contributing to the trapping of dietary fatty acids in the postprandial state. Excess NEFA flux at a given insulin level has been used to define in vivo adipose tissue insulin resistance. Adipose tissue insulin resistance defined in this fashion has been associated with several dysmetabolic features and complications of diabetes, but the mechanistic significance of this concept is not fully understood. This review focusses on the in vivo regulation of adipose tissue fatty acid metabolism by insulin and the mechanistic significance of the current definition of adipose tissue insulin resistance. One hundred years after the discovery of insulin and despite decades of investigations, much is still to be understood about the multifaceted in vivo actions of this hormone on adipose tissue fatty acid metabolism.
Collapse
Affiliation(s)
- André C Carpentier
- Division of Endocrinology, Department of Medicine, Centre de recherche du CHUS, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| |
Collapse
|
6
|
Abstract
Women with polycystic ovary syndrome (PCOS) have a substantially increased risk for diabetes and cardiovascular disease. Obstructive sleep apnea (OSA) is the most common sleep disorder in PCOS. Recent population-based studies indicate a high incidence of OSA among adult women with PCOS. Obesity and increasing age are the main factors for this association. There is strong evidence indicating that OSA is an important modulator of metabolic risk in the general population. There is also some evidence to suggest that OSA may contribute to insulin resistance and glucose intolerance among women PCOS, and thus increase their metabolic risk. The potential mechanisms for adverse metabolic consequences of OSA are likely to be multiple. Whether treatment of OSA in PCOS improves metabolic outcomes requires further rigorous research.
Collapse
Affiliation(s)
- Susan Sam
- Section of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Chicago, 5841 S. Maryland Avenue, 60637, Chicago, IL, USA
| | - Esra Tasali
- Section of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Chicago, 5841 S. Maryland Avenue, 60637, Chicago, IL, USA.,Section of Pulmonary and Critical Care Medicine, Department of Medicine, University of Chicago, 5841 S. Maryland Avenue, 60637, Chicago, IL, USA
| |
Collapse
|
7
|
Zhang L, Hames KC, Jensen MD. Regulation of direct adipose tissue free fatty acid storage during mixed meal ingestion and high free fatty acid concentration conditions. Am J Physiol Endocrinol Metab 2021; 320:E208-E218. [PMID: 33196297 PMCID: PMC8260364 DOI: 10.1152/ajpendo.00408.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 11/11/2020] [Accepted: 11/11/2020] [Indexed: 12/19/2022]
Abstract
We found that direct free fatty acid (FFA) storage (fatty acid cycling back into adipose tissue) in leg vs. abdominal subcutaneous fat is related to regional differences in adipose tissue diacylglycerol acyltransferase (DGAT) activity under high-FFA conditions and to differences in adipose tissue acyl-CoA synthetase (ACS)activity under meal ingestion conditions. We also found that direct FFA storage rates in leg fat were significantly less in physically active than sedentary adults. Direct FFA storage into adipocytes relates to body fat distribution. Adipose tissue CD36, ACS, and DGAT may account for some of the between-depot and interindividual variability in FFA storage. These studies were to test whether CD36, ACS, or DGAT might be important for direct palmitate storage under meal ingestion or high-FFA conditions. We measured upper (UBSQ) and lower body subcutaneous (LBSQ) adipose tissue FFA storage rates by infusing palmitate tracers intravenously and performing adipose biopsies under hypoinsulinemic (high-FFA) and mixed-meal conditions. We recruited five postmenopausal women, physically active males (5) and females (5), and sedentary males (5) and females (5). We found that 1) the ratio of UBSQ to LBSQ DGAT activity predicted the ratio of palmitate storage [adjusted R = 0.25, F = 8.0, P = 0.01, 95% CI (0.07, 0.48)] under high-FFA conditions; 2) the ratio of UBSQ to LBSQ ACS activity predicted the ratio of palmitate storage under meal conditions [adjusted R = 0.18, F = 6.3, P = 0.02, 95% CI (0.12, 1.28)]; 3) LBSQ direct palmitate storage rates were significantly less in physically active than sedentary and 4) adipose tissue CD36 protein content, ACS, or DGAT activities did not independently predict palmitate storage rates. We conclude that physically active adults have lesser fatty acid cycling back into adipose tissue and that adipose ACS and DGAT may affect competition between UBSQ and LBSQ adipose for direct palmitate storage.
Collapse
Affiliation(s)
- Lili Zhang
- Department of Endocrinology, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
- Endocrine Research Unit, Mayo Clinic, Rochester, Minnesota
| | - Kazanna C Hames
- Endocrine Research Unit, Mayo Clinic, Rochester, Minnesota
- Dexcom, San Diego, California
| | | |
Collapse
|
8
|
Abstract
Obesity and type 2 diabetes are the most frequent metabolic disorders, but their causes remain largely unclear. Insulin resistance, the common underlying abnormality, results from imbalance between energy intake and expenditure favouring nutrient-storage pathways, which evolved to maximize energy utilization and preserve adequate substrate supply to the brain. Initially, dysfunction of white adipose tissue and circulating metabolites modulate tissue communication and insulin signalling. However, when the energy imbalance is chronic, mechanisms such as inflammatory pathways accelerate these abnormalities. Here we summarize recent studies providing insights into insulin resistance and increased hepatic gluconeogenesis associated with obesity and type 2 diabetes, focusing on data from humans and relevant animal models.
Collapse
|
9
|
Girona J, Rodríguez-Borjabad C, Ibarretxe D, Vallvé JC, Ferré R, Heras M, Rodríguez-Calvo R, Guaita-Esteruelas S, Martínez-Micaelo N, Plana N, Masana L. The Circulating GRP78/BiP Is a Marker of Metabolic Diseases and Atherosclerosis: Bringing Endoplasmic Reticulum Stress into the Clinical Scenario. J Clin Med 2019; 8:jcm8111793. [PMID: 31717752 PMCID: PMC6912434 DOI: 10.3390/jcm8111793] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 10/23/2019] [Accepted: 10/24/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Glucose-regulated protein 78/Binding immunoglobulin protein (GRP78/BiP) is a protein associated with endoplasmic reticulum stress and is upregulated by metabolic alterations at the tissue-level, such as hypoxia or glucose deprivation, and it is hyper-expressed in fat tissue of obese individuals. OBJECTIVE To investigate the role of the GRP78/BiP level as a metabolic and vascular disease biomarker in patients with type 2 diabetes (DM), obesity and metabolic syndrome (MS). METHODS Four hundred and five patients were recruited, of whom 52.5% were obese, 72.8% had DM, and 78.6% had MS. The intimae media thickness (cIMT) was assessed by ultrasonography. The plasma GRP78/BiP concentration was determined, and its association with metabolic and vascular parameters was assessed. Circulating GRP78/BiP was also prospectively measured in 30 DM patients before and after fenofibrate/niacin treatment and 30 healthy controls. RESULTS In the cross-sectional study, the GRP78/BiP level was significantly higher in the patients with obesity, DM, and MS. Age-, gender- and BMI-adjusted GRP78/BiP was directly associated with LDL-cholesterol, non-HDL-cholesterol, triglycerides, apoB, and cIMT. GRP78/BiP was positively associated to carotid plaque presence in the adjusted model, irrespective of obesity, DM and MS. In the prospective study, nicotinic acid treatment produced a significant reduction in the GRP78/BiP levels that was not observed with fenofibrate. CONCLUSIONS GRP78/BiP plasma concentrations are increased in patients with both metabolic derangements and subclinical atherosclerosis. GRP78/BiP could be a useful marker of metabolic and cardiovascular risk.
Collapse
Affiliation(s)
- Josefa Girona
- Vascular Medicine and Metabolism Unit, Research Unit on Lipids and Atherosclerosis, Sant Joan University Hospital, Universitat Rovira i Virgili, IISPV, 43201 Reus, Spain; (J.G.); (C.R.-B.); (D.I.); (J.-C.V.); (R.F.); (M.H.); (R.R.-C.); (S.G.-E.); (N.M.-M.); (N.P.)
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), 28029 Madrid, Spain
| | - Cèlia Rodríguez-Borjabad
- Vascular Medicine and Metabolism Unit, Research Unit on Lipids and Atherosclerosis, Sant Joan University Hospital, Universitat Rovira i Virgili, IISPV, 43201 Reus, Spain; (J.G.); (C.R.-B.); (D.I.); (J.-C.V.); (R.F.); (M.H.); (R.R.-C.); (S.G.-E.); (N.M.-M.); (N.P.)
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), 28029 Madrid, Spain
| | - Daiana Ibarretxe
- Vascular Medicine and Metabolism Unit, Research Unit on Lipids and Atherosclerosis, Sant Joan University Hospital, Universitat Rovira i Virgili, IISPV, 43201 Reus, Spain; (J.G.); (C.R.-B.); (D.I.); (J.-C.V.); (R.F.); (M.H.); (R.R.-C.); (S.G.-E.); (N.M.-M.); (N.P.)
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), 28029 Madrid, Spain
| | - Joan-Carles Vallvé
- Vascular Medicine and Metabolism Unit, Research Unit on Lipids and Atherosclerosis, Sant Joan University Hospital, Universitat Rovira i Virgili, IISPV, 43201 Reus, Spain; (J.G.); (C.R.-B.); (D.I.); (J.-C.V.); (R.F.); (M.H.); (R.R.-C.); (S.G.-E.); (N.M.-M.); (N.P.)
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), 28029 Madrid, Spain
| | - Raimon Ferré
- Vascular Medicine and Metabolism Unit, Research Unit on Lipids and Atherosclerosis, Sant Joan University Hospital, Universitat Rovira i Virgili, IISPV, 43201 Reus, Spain; (J.G.); (C.R.-B.); (D.I.); (J.-C.V.); (R.F.); (M.H.); (R.R.-C.); (S.G.-E.); (N.M.-M.); (N.P.)
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), 28029 Madrid, Spain
| | - Mercedes Heras
- Vascular Medicine and Metabolism Unit, Research Unit on Lipids and Atherosclerosis, Sant Joan University Hospital, Universitat Rovira i Virgili, IISPV, 43201 Reus, Spain; (J.G.); (C.R.-B.); (D.I.); (J.-C.V.); (R.F.); (M.H.); (R.R.-C.); (S.G.-E.); (N.M.-M.); (N.P.)
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), 28029 Madrid, Spain
| | - Ricardo Rodríguez-Calvo
- Vascular Medicine and Metabolism Unit, Research Unit on Lipids and Atherosclerosis, Sant Joan University Hospital, Universitat Rovira i Virgili, IISPV, 43201 Reus, Spain; (J.G.); (C.R.-B.); (D.I.); (J.-C.V.); (R.F.); (M.H.); (R.R.-C.); (S.G.-E.); (N.M.-M.); (N.P.)
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), 28029 Madrid, Spain
| | - Sandra Guaita-Esteruelas
- Vascular Medicine and Metabolism Unit, Research Unit on Lipids and Atherosclerosis, Sant Joan University Hospital, Universitat Rovira i Virgili, IISPV, 43201 Reus, Spain; (J.G.); (C.R.-B.); (D.I.); (J.-C.V.); (R.F.); (M.H.); (R.R.-C.); (S.G.-E.); (N.M.-M.); (N.P.)
| | - Neus Martínez-Micaelo
- Vascular Medicine and Metabolism Unit, Research Unit on Lipids and Atherosclerosis, Sant Joan University Hospital, Universitat Rovira i Virgili, IISPV, 43201 Reus, Spain; (J.G.); (C.R.-B.); (D.I.); (J.-C.V.); (R.F.); (M.H.); (R.R.-C.); (S.G.-E.); (N.M.-M.); (N.P.)
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), 28029 Madrid, Spain
| | - Núria Plana
- Vascular Medicine and Metabolism Unit, Research Unit on Lipids and Atherosclerosis, Sant Joan University Hospital, Universitat Rovira i Virgili, IISPV, 43201 Reus, Spain; (J.G.); (C.R.-B.); (D.I.); (J.-C.V.); (R.F.); (M.H.); (R.R.-C.); (S.G.-E.); (N.M.-M.); (N.P.)
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), 28029 Madrid, Spain
| | - Lluís Masana
- Vascular Medicine and Metabolism Unit, Research Unit on Lipids and Atherosclerosis, Sant Joan University Hospital, Universitat Rovira i Virgili, IISPV, 43201 Reus, Spain; (J.G.); (C.R.-B.); (D.I.); (J.-C.V.); (R.F.); (M.H.); (R.R.-C.); (S.G.-E.); (N.M.-M.); (N.P.)
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), 28029 Madrid, Spain
- Correspondence: ; Tel.: +34-977759366; Fax: +34-977759322
| |
Collapse
|
10
|
Petersen MC, Shulman GI. Mechanisms of Insulin Action and Insulin Resistance. Physiol Rev 2018; 98:2133-2223. [PMID: 30067154 PMCID: PMC6170977 DOI: 10.1152/physrev.00063.2017] [Citation(s) in RCA: 1682] [Impact Index Per Article: 240.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 03/22/2018] [Accepted: 03/24/2018] [Indexed: 12/15/2022] Open
Abstract
The 1921 discovery of insulin was a Big Bang from which a vast and expanding universe of research into insulin action and resistance has issued. In the intervening century, some discoveries have matured, coalescing into solid and fertile ground for clinical application; others remain incompletely investigated and scientifically controversial. Here, we attempt to synthesize this work to guide further mechanistic investigation and to inform the development of novel therapies for type 2 diabetes (T2D). The rational development of such therapies necessitates detailed knowledge of one of the key pathophysiological processes involved in T2D: insulin resistance. Understanding insulin resistance, in turn, requires knowledge of normal insulin action. In this review, both the physiology of insulin action and the pathophysiology of insulin resistance are described, focusing on three key insulin target tissues: skeletal muscle, liver, and white adipose tissue. We aim to develop an integrated physiological perspective, placing the intricate signaling effectors that carry out the cell-autonomous response to insulin in the context of the tissue-specific functions that generate the coordinated organismal response. First, in section II, the effectors and effects of direct, cell-autonomous insulin action in muscle, liver, and white adipose tissue are reviewed, beginning at the insulin receptor and working downstream. Section III considers the critical and underappreciated role of tissue crosstalk in whole body insulin action, especially the essential interaction between adipose lipolysis and hepatic gluconeogenesis. The pathophysiology of insulin resistance is then described in section IV. Special attention is given to which signaling pathways and functions become insulin resistant in the setting of chronic overnutrition, and an alternative explanation for the phenomenon of ‟selective hepatic insulin resistanceˮ is presented. Sections V, VI, and VII critically examine the evidence for and against several putative mediators of insulin resistance. Section V reviews work linking the bioactive lipids diacylglycerol, ceramide, and acylcarnitine to insulin resistance; section VI considers the impact of nutrient stresses in the endoplasmic reticulum and mitochondria on insulin resistance; and section VII discusses non-cell autonomous factors proposed to induce insulin resistance, including inflammatory mediators, branched-chain amino acids, adipokines, and hepatokines. Finally, in section VIII, we propose an integrated model of insulin resistance that links these mediators to final common pathways of metabolite-driven gluconeogenesis and ectopic lipid accumulation.
Collapse
Affiliation(s)
- Max C Petersen
- Departments of Internal Medicine and Cellular & Molecular Physiology, Howard Hughes Medical Institute, Yale University School of Medicine , New Haven, Connecticut
| | - Gerald I Shulman
- Departments of Internal Medicine and Cellular & Molecular Physiology, Howard Hughes Medical Institute, Yale University School of Medicine , New Haven, Connecticut
| |
Collapse
|
11
|
Hall CL, Wells AR, Leung KP. Pirfenidone reduces profibrotic responses in human dermal myofibroblasts, in vitro. J Transl Med 2018; 98:640-655. [PMID: 29497173 DOI: 10.1038/s41374-017-0014-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 11/15/2017] [Accepted: 12/10/2017] [Indexed: 12/11/2022] Open
Abstract
Pirfenidone (PFD) is a synthetic small molecule inhibitor with demonstrated anti-inflammatory and antifibrotic properties in vitro and in vivo. The exact mechanism(s) of PFD action remain unclear, due in part to the broad effects of this drug on the complex processes involved in inflammation and fibrosis. While PFD is FDA-approved for the treatment of idiopathic pulmonary fibrosis, the efficacy of this compound for the treatment of dermal fibrosis has not yet been fully characterized. Dermal fibrosis is the pathological formation of excess fibrous connective tissue of the skin, usually the result of traumatic cutaneous injury. Fibroproliferative scarring, caused by delayed wound healing and prolonged inflammation, remains a major clinical concern with considerable morbidity. Despite efforts to identify a therapeutic that targets the fibrotic pathways involved in wound healing to mitigate scar formation, no satisfactory dermal antifibrotic has yet been identified. We aim to better elucidate the antifibrotic mechanism(s) of PFD activity using an in vitro model of dermal fibrosis. Briefly, cultured human dermal fibroblasts were stimulated with TGF-β1 to induce differentiation into profibrotic myofibroblast cells. A dose-dependent reduction in cellular proliferation and migration was observed in TGF-β1-stimulated cells when treated with PFD. We observed a clear inhibition in the development of essential myofibroblast mechanoregulatory machinery, including contractile F-actin stress fibers containing α-SMA and large super-mature focal adhesions. PFD treatment significantly reduced protein levels of major ECM components type I and type III collagen. PFD targeted the p38 MAPK signaling pathway and mitigated profibrotic gene expression profiles. This in vitro data promotes PFD as a potential therapeutic agent for the treatment of dermal fibrosis.
Collapse
Affiliation(s)
- Caroline L Hall
- Dental and Craniofacial Trauma and Tissue Regeneration Directorate, United States Army Institute of Surgical Research, 3698 Chambers Pass, Building 3610, Joint Base San Antonio/Fort Sam Houston, TX, 78234, USA
| | - Adrienne R Wells
- Dental and Craniofacial Trauma and Tissue Regeneration Directorate, United States Army Institute of Surgical Research, 3698 Chambers Pass, Building 3610, Joint Base San Antonio/Fort Sam Houston, TX, 78234, USA
| | - Kai P Leung
- Dental and Craniofacial Trauma and Tissue Regeneration Directorate, United States Army Institute of Surgical Research, 3698 Chambers Pass, Building 3610, Joint Base San Antonio/Fort Sam Houston, TX, 78234, USA.
| |
Collapse
|
12
|
Lu J, Allred CC, Jensen MD. Human adipose tissue protein analyses using capillary western blot technology. Nutr Diabetes 2018; 8:26. [PMID: 29695704 PMCID: PMC5916899 DOI: 10.1038/s41387-018-0030-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 06/19/2017] [Accepted: 08/07/2017] [Indexed: 11/21/2022] Open
Abstract
A capillary western blot (Wes®) technology has recently been validated for analyses of cell culture lysate proteins, but whether it is reliable for human tissue proteins is unknown. We compared traditional western blotting to the Wes® capillary western method to quantitate the relative amount of human adipose tissue CD36, the ratio of phosphorylated Erk1/2 (pErk1/2) to total Erk1/2 during insulin clamp or after niacin treatment and the fold increase in pAktS473 (Akt phosphorylation on Ser473) in response to feeding. The results from these two methods were highly correlated (r = 0.932 for CD36, r = 0.905 for pErk1/2:Erk1/2, r = 0.923 for the change in pAkt/Akt, P < 0.001). On Wes® we observed the distinct peaks around the expected molecular weights for these proteins with decreasing peak areas with serial dilutions of loading protein amount. Wes® and traditional western blot both had linear dynamic ranges for CD36, Erk1/2 and Akt. Due to differences in signal responsiveness for pAkt/Akt, we employed a calibrator sample and log transformation of data to allow proper comparisons. The Wes® approach required less sample than the traditional western blot and less technician/assay time, while achieving high sensitivity and good reproducibility. Capillary western technology (Wes®) provides a satisfactory alternative for analyses of human adipose tissue proteins.
Collapse
Affiliation(s)
- Jin Lu
- Department of Endocrinology, Changhai Hospital, Second Military Medical University, Shanghai, P.R. China.,Division of Endocrinology, Diabetes & Metabolism, Endocrine Research Unit, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Carolyn C Allred
- Division of Endocrinology, Diabetes & Metabolism, Endocrine Research Unit, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Michael D Jensen
- Division of Endocrinology, Diabetes & Metabolism, Endocrine Research Unit, Mayo Clinic College of Medicine, Rochester, MN, USA.
| |
Collapse
|
13
|
Montserrat-de la Paz S, Lopez S, Bermudez B, Guerrero JM, Abia R, Muriana FJ. Effects of immediate-release niacin and dietary fatty acids on acute insulin and lipid status in individuals with metabolic syndrome. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2018; 98:2194-2200. [PMID: 28960312 DOI: 10.1002/jsfa.8704] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 09/14/2017] [Accepted: 09/20/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND The nature of dietary fats profoundly affects postprandial hypertriglyceridemia and glucose homeostasis. Niacin is a potent lipid-lowering agent. However, limited data exist on postprandial triglycerides and glycemic control following co-administration of high-fat meals with a single dose of niacin in subjects with metabolic syndrome (MetS). The aim of the study was to explore whether a fat challenge containing predominantly saturated fatty acids (SFAs), monounsaturated fatty acids (MUFAs) or MUFAs plus omega-3 long-chain polyunsaturated (LCPUFAs) fatty acids together with a single dose of immediate-release niacin have a relevant role in postprandial insulin and lipid status in subjects with MetS. RESULTS In a randomized crossover within-subject design, 16 men with MetS were given a single dose of immediate-release niacin (2 g) and ∼15 cal kg-1 body weight meals containing either SFAs, MUFAs, MUFAs plus omega-3 LCPUFAs or no fat. At baseline and hourly over 6 h, plasma glucose, insulin, C-peptide, triglycerides, free fatty acids (FFAs), total cholesterol, and both high- and low-density lipoprotein cholesterol were assessed. Co-administered with niacin, high-fat meals significantly increased the postprandial concentrations of glucose, insulin, C-peptide, triglycerides, FFAs and postprandial indices of β-cell function. However, postprandial indices of insulin sensitivity were significantly decreased. These effects were significantly attenuated with MUFAs or MUFAs plus omega-3 LCPUFAs when compared with SFAs. CONCLUSION In the setting of niacin co-administration and compared to dietary SFAs, MUFAs limit the postprandial insulin, triglyceride and FFA excursions, and improve postprandial glucose homeostasis in MetS. © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
| | - Sergio Lopez
- Laboratory of Cellular and Molecular Nutrition, Instituto de la Grasa (CSIC), Seville, Spain
| | - Beatriz Bermudez
- Department of Cell Biology, Faculty of Biology, University of Seville, Seville, Spain
| | - Juan M Guerrero
- Department of Clinical Biochemistry, University Hospital Virgen del Rocio, IBiS/CSIC/University of Seville, Seville, Spain
| | - Rocio Abia
- Laboratory of Cellular and Molecular Nutrition, Instituto de la Grasa (CSIC), Seville, Spain
| | - Francisco Jg Muriana
- Laboratory of Cellular and Molecular Nutrition, Instituto de la Grasa (CSIC), Seville, Spain
| |
Collapse
|
14
|
Gao W, He X, Li Y, Wen J. The effects of FK1706 on nerve regeneration and bladder function recovery following an end-to-side neurorrhaphy in rats. Oncotarget 2017; 8:94345-94357. [PMID: 29212232 PMCID: PMC5706878 DOI: 10.18632/oncotarget.21718] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 08/28/2017] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Immunophilin ligands are neuroregenerative agents binding to FK506 binding proteins, by which stimulate recovery of neurons in a variety of injury nerves. FK1706 is a novel immunophilin ligand which has neuroprotective and neuroregenerative effects but without immunosuppressive activity. At present, most reports about FK1706 in ameliorating nerve injury and functional recovery are limited to cavernous nerve injury and erectile function recovery. This study aimed to demonstrate the effects of FK1706 on nerve regeneration and bladder function recovery following an end-to-side neurorrhaphy in rat models. METHOD The numbers of regenerated myelinated axons of the pelvic parasympathetic nerve (PPN) in the three groups' rats (FK1706 + ETS, ETS and control groups) were evaluated. Their intravesical pressure (IVP), S100β and growth associated protein 43 (GAP43) expressions were also compared. RESULTS In FK1706 + ETS group, 90% the rats showed that the frequency of FG labeled neurons was larger than the 3.5 cutoff value, 100% the rats showed that the frequency of FG-FB double-labeled neurons was larger than the 5.5 cutoff value. The average maximum of IVP in FK1706 + ETS group reached 76.3% of the value in control group. Their average number of myelinated axons of regenerated PPN reached 80% of the amount in control group. The nerve regeneration-associated markers data indicated that the expression level of S100β and GAP43 in FK1706 + ETS group was approximately 2-fold higher than that of ETS group (P < 0.05). CONCLUSIONS After end-to-side neurorrhaphy, FK1706 effectively enhanced the nerve regeneration and bladder function recovery.
Collapse
Affiliation(s)
- Wansheng Gao
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, 450052, China
| | - Xiangfei He
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, 450052, China
| | - Yunlong Li
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, 450052, China
| | - Jianguo Wen
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, 450052, China
| |
Collapse
|
15
|
Abstract
PURPOSE OF REVIEW Abdominal obesity is associated with a number of important metabolic abnormalities including liver steatosis, insulin resistance and an atherogenic lipoprotein profile (termed dyslipidemia). The purpose of this review is to highlight recent progress in understanding the pathogenesis of this dyslipidemia. RECENT FINDINGS Recent results from kinetic studies using stable isotopes indicate that the hypertriglyceridemia associated with abdominal obesity stems from dual mechanisms: (1) enhanced secretion of triglyceride-rich lipoproteins and (2) impaired clearance of these lipoproteins. The over-secretion of large triglyceride-rich VLDLs from the liver is linked to hepatic steatosis and increased visceral adiposity. The impaired clearance of triglyceride-rich lipoproteins is linked to increased levels of apolipoprotein C-III, a key regulator of triglyceride metabolism. SUMMARY Elucidation of the pathogenesis of the atherogenic dyslipidemia in abdominal obesity combined with the development of novel treatments based on apolipoprotein C-III may in the future lead to better prevention, diagnosis and treatment of the atherogenic dyslipidemia in abdominal obesity.
Collapse
Affiliation(s)
- Elias Björnson
- aDepartment of Molecular and Clinical Medicine, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden bResearch Programs Unit, Diabetes and Obesity, University of Helsinki and Heart and Lung Center, Helsinki University Hospital, Helsinki, Finland
| | | | | | | |
Collapse
|
16
|
Bosy-Westphal A, Hägele F, Nas A. Impact of dietary glycemic challenge on fuel partitioning. Eur J Clin Nutr 2016; 71:327-330. [PMID: 27901033 DOI: 10.1038/ejcn.2016.230] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 10/11/2016] [Indexed: 01/04/2023]
Abstract
The 'carbohydrate-insulin theory of obesity' is used to justify popular health claims stating that carbohydrates make you fat or a high glycemic load and consumption of sugar-sweetened beverages (SSBs) and breakfast skipping increase fat gain. According to this theory, the elevated postprandial insulin secretion to a high glycemic challenge is blamed as a causal mechanism by directing nutrients away from oxidation in muscle towards storage in adipose tissue. Scientific evidence is however largely disagreeing with an adverse effect of postprandial hyperinsulinemia on fuel partitioning. Possible reasons for this disagreement are differences in insulin sensitivity and energy balance. Diet-induced hyperinsulinemia may lead to a higher fat storage only at a positive energy balance. A shift in fuel partitioning towards fat storage requires improved or maintained insulin sensitivity in adipose tissue when compared with skeletal muscle. This may be the case during refeeding (after weight loss), physical inactivity or in metabolically healthy obese subjects (relative to insulin-resistant subjects). The adverse effect of a high-glycemic diet, SSBs consumption or breakfast skipping on body weight is likely due to increased energy consumption rather than to increased fat storage.
Collapse
Affiliation(s)
- A Bosy-Westphal
- Institut für Ernährungsmedizin, Angewandte Ernährungswissenschaft, Universität Hohenheim, Stuttgart, Germany
| | - F Hägele
- Institut für Ernährungsmedizin, Angewandte Ernährungswissenschaft, Universität Hohenheim, Stuttgart, Germany
| | - A Nas
- Institut für Ernährungsmedizin, Angewandte Ernährungswissenschaft, Universität Hohenheim, Stuttgart, Germany
| |
Collapse
|
17
|
Cade WT, Tinius RA, Reeds DN, Patterson BW, Cahill AG. Maternal Glucose and Fatty Acid Kinetics and Infant Birth Weight in Obese Women With Type 2 Diabetes. Diabetes 2016; 65:893-901. [PMID: 26861786 PMCID: PMC4806655 DOI: 10.2337/db15-1061] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 01/25/2016] [Indexed: 11/13/2022]
Abstract
The objectives of this study were 1) to describe maternal glucose and lipid kinetics and 2) to examine the relationships with infant birth weight in obese women with pregestational type 2 diabetes during late pregnancy. Using stable isotope tracer methodology and mass spectrometry, maternal glucose and lipid kinetic rates during the basal condition were compared in three groups: lean women without diabetes (Lean, n = 25), obese women without diabetes (OB, n = 26), and obese women with pregestational type 2 diabetes (OB+DM, n = 28; total n = 79). Glucose and lipid kinetics during hyperinsulinemia were also measured in a subset of participants (n = 56). Relationships between maternal glucose and lipid kinetics during both conditions and infant birth weight were examined. Maternal endogenous glucose production (EGP) rate was higher in OB+DM than OB and Lean during hyperinsulinemia. Maternal insulin value at 50% palmitate Ra suppression (IC50) for palmitate suppression with insulinemia was higher in OB+DM than OB and Lean. Maternal EGP per unit insulin and plasma free fatty acid concentration during hyperinsulinemia most strongly predicted infant birth weight. Our findings suggest maternal fatty acid and glucose kinetics are altered during late pregnancy and might suggest a mechanism for higher birth weight in obese women with pregestational diabetes.
Collapse
Affiliation(s)
- W Todd Cade
- Program in Physical Therapy, Washington University School of Medicine in St. Louis, St. Louis, MO Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO
| | - Rachel A Tinius
- Program in Physical Therapy, Washington University School of Medicine in St. Louis, St. Louis, MO
| | - Dominic N Reeds
- Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO
| | - Bruce W Patterson
- Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO
| | - Alison G Cahill
- Department of Obstetrics and Gynecology, Washington University School of Medicine in St. Louis, St. Louis, MO
| |
Collapse
|