1
|
Chen L, Jiang H, Licinio J, Wu H. Brain O-GlcNAcylation: Bridging physiological functions, disease mechanisms, and therapeutic applications. Mol Psychiatry 2025; 30:2754-2772. [PMID: 40033044 DOI: 10.1038/s41380-025-02943-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/13/2025] [Accepted: 02/25/2025] [Indexed: 03/05/2025]
Abstract
O-GlcNAcylation, a dynamic post-translational modification occurring on serine or threonine residues of numerous proteins, plays a pivotal role in various cellular processes, including gene regulation, metabolism, and stress response. Abundant in the brain, O-GlcNAcylation intricately governs neurodevelopment, synaptic assembly, and neuronal functions. Recent investigations have established a correlation between the dysregulation of brain O-GlcNAcylation and a broad spectrum of neurological disorders and injuries, spanning neurodevelopmental, neurodegenerative, and psychiatric conditions, as well as injuries to the central nervous system (CNS). Manipulating O-GlcNAcylation has demonstrated neuroprotective properties against these afflictions. This review delineates the roles and mechanisms of O-GlcNAcylation in the CNS under both physiological and pathological circumstances, with a focus on its neuroprotective effects in neurological disorders and injuries. We discuss the involvement of O-GlcNAcylation in key processes such as neurogenesis, synaptic plasticity, and energy metabolism, as well as its implications in conditions like Alzheimer's disease, Parkinson's disease, and ischemic stroke. Additionally, we explore prospective therapeutic approaches for CNS disorders and injuries by targeting O-GlcNAcylation, highlighting recent clinical developments and future research directions. This comprehensive overview aims to provide insights into the potential of O-GlcNAcylation as a therapeutic target and guide future investigations in this promising field.
Collapse
Affiliation(s)
- Liping Chen
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Huihui Jiang
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Julio Licinio
- Department of Psychiatry, Norton College of Medicine, State University of New York, Upstate Medical University, Syracuse, NY, 13210, USA
| | - Haitao Wu
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing, 100850, China.
- Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226019, China.
- Chinese Institute for Brain Research, Beijing, 102206, China.
| |
Collapse
|
2
|
Swaminathan K, Nanda PM, Yadav J, Malhi P, Kumar R, Sharma A, Sharma R, Dayal D. Cognitive Function in Early Onset Type 1 Diabetes in Children. Indian J Pediatr 2025; 92:22-28. [PMID: 37930624 DOI: 10.1007/s12098-023-04901-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 10/05/2023] [Indexed: 11/07/2023]
Abstract
OBJECTIVES To assess cognitive function and factors affecting it in Indian children with early-onset type 1 diabetes (T1D) (less than 6 y). METHODS This cross-sectional, single-centre study recruited children diagnosed with T1D before 6 y of age and having a disease duration of at least 2 y, as cases. Controls were age- and sex-matched apparently healthy children or siblings. Children with birth asphyxia, intellectual disability, syndromic children, or pre-existing psychiatric illness were excluded. Enrolled children underwent cognitive assessment using Malin's Intelligence Scale for Indian Children (MISIC), and scores in various subtests were compared between cases and controls. RESULTS A total of 60 children were enrolled in each group. When compared to controls, cases had significantly lower scores on most subtests, verbal, performance and overall Intelligence Quotient (IQ- 100.62 ± 3.26 vs. 103.23 ± 1.22). HbA1c >9%, severe hypoglycemia and lesser duration since the last diabetic ketoacidosis (DKA) episode significantly correlated with lower neurocognitive scores. CONCLUSIONS Children with early onset T1D showed significant deficits in various cognitive domains and IQ. Poor glycemic control, higher glycemic variability and exposure to severe hypoglycemia are risk factors for poor cognitive outcomes in these children. Further longitudinal studies could potentially aid in a finer understanding of factors affecting cognitive functioning in T1D children in developing countries.
Collapse
Affiliation(s)
- K Swaminathan
- Department of Pediatrics, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Pamali Mahasweta Nanda
- Department of Pediatrics, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Jaivinder Yadav
- Department of Pediatrics, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India.
| | - Prahbhjot Malhi
- Department of Pediatrics, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Rakesh Kumar
- Department of Pediatrics, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Akhilesh Sharma
- Department of Psychiatry, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Rajni Sharma
- Department of Pediatrics, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Devi Dayal
- Department of Pediatrics, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| |
Collapse
|
3
|
Foland-Ross LC, Jordan TL, Marzelli MJ, Ross JL, Reiss AL. Neuroanatomical alterations in young boys and adolescents with Klinefelter syndrome. Psychiatry Res Neuroimaging 2025; 346:111929. [PMID: 39637706 PMCID: PMC11706219 DOI: 10.1016/j.pscychresns.2024.111929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 10/30/2024] [Accepted: 11/25/2024] [Indexed: 12/07/2024]
Abstract
Klinefelter syndrome (KS, 47,XXY) is a common sex chromosome aneuploidy in males that is characterized by pubertal developmental delays and a wide range of alterations in cognitive, social and emotional functioning. The neural bases of these behavioral symptoms, however, are unclear. A total of 130 boys and adolescents, including 67 males with KS (11.5 ± 2.8 years) and 63 typically developing (TD; control) males (10.6 ± 2.8 years) underwent MRI scanning and pubertal assessment. Group differences in regional gray matter volume was examined using voxel-based morphometry while controlling for age at scan and total gray matter volume. Thresholded statistical significance maps indicated widespread reductions in frontal and temporal and cerebellar gray matter in males with KS relative to TD males, as well as increases in parietal and occipital gray matter. Secondary analyses explored potential associations between GMV in these regions and pubertal development. Lower testicular volume was a significant predictor of reduced GMV in frontal, temporal and cerebellar subregions, even after accounting for group status (KS, TD). Taken together, these findings add support for a neuroanatomical phenotype of KS and provide initial evidence for a role of pubertal development in KS-associated differences in gray matter structure. Future studies that examine the influence of testosterone supplementation on GMV in males with KS are warranted.
Collapse
Affiliation(s)
- Lara C Foland-Ross
- Stanford University School of Medicine, Department of Psychiatry and Biobehavioral Sciences, 1520 Page Mill Road, Stanford, California, 94305, United States.
| | - Tracy L Jordan
- Stanford University School of Medicine, Department of Psychiatry and Biobehavioral Sciences, 1520 Page Mill Road, Stanford, California, 94305, United States
| | - Matthew J Marzelli
- Stanford University School of Medicine, Department of Psychiatry and Biobehavioral Sciences, 1520 Page Mill Road, Stanford, California, 94305, United States
| | - Judith L Ross
- Department of Pediatrics, Division of Endocrinology, Nemours/Alfred I. duPont Hospital for Children, 1600 Rockland Road, Wilmington, DE, 19803, United States
| | - Allan L Reiss
- Stanford University School of Medicine, Department of Psychiatry and Biobehavioral Sciences, 1520 Page Mill Road, Stanford, California, 94305, United States; Stanford University School of Medicine, Department of Radiology, United States; Stanford University School of Medicine, Department of Pediatrics, United States
| |
Collapse
|
4
|
Brossaud J, Barat P, Moisan MP. Cognitive Disorders in Type 1 Diabetes: Role of Brain Glucose Variation, Insulin Activity, and Glucocorticoid Exposure. Neuroendocrinology 2024; 115:211-225. [PMID: 39401497 DOI: 10.1159/000541989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 10/09/2024] [Indexed: 11/19/2024]
Abstract
BACKGROUND The number of patients with type 2 diabetes (T2D) and type 1 diabetes (T1D) is on the rise, partly due to a global increase in new T1D cases among children. Beyond the well-documented microvascular and macrovascular complications, there is now substantial evidence indicating that diabetes also impacts the brain, leading to neuropsychological impairments. The risk of developing neuropsychiatric symptoms is notably higher in childhood due to the ongoing maturation of the brain, which makes it more susceptible to damage. Despite this awareness, the specific effects of diabetes on cognitive function remain poorly understood. SUMMARY This review synthesizes literature on the impact of diabetes on cognition and its relationship with brain structural changes. It presents data and hypotheses to explain how T1D contributes to cognitive dysfunction, with a particular focus on children and adolescents. The emphasis on the pediatric population is intentional, as young diabetic patients typically have fewer comorbidities, reducing confounding factors and simplifying the investigation of cognitive alterations. KEY MESSAGE We examine the roles of hypo- and hyperglycemia, as well as the emerging role of glucocorticoids in the development of neuropsychological disorders. When specific mechanisms related to T1D are available, they are highlighted; otherwise, data and hypotheses applicable to both T1D and T2D are discussed.
Collapse
Affiliation(s)
- Julie Brossaud
- Univ. Bordeaux, INRAE, Bordeaux INP, NutriNeurO, UMR 1286, Team NutriPsy, Bordeaux, France
- CHU Bordeaux, Nuclear Medicine, Pessac, France
| | - Pascal Barat
- Univ. Bordeaux, INRAE, Bordeaux INP, NutriNeurO, UMR 1286, Team NutriPsy, Bordeaux, France
- CHU Bordeaux, Pediatric Endocrinology and DiaBEA Unit, Hôpital des Enfants, Bordeaux, France
| | - Marie-Pierre Moisan
- Univ. Bordeaux, INRAE, Bordeaux INP, NutriNeurO, UMR 1286, Team NutriPsy, Bordeaux, France
| |
Collapse
|
5
|
Zucchini S, Tumini S, Scaramuzza AE, Bonfanti R, Delvecchio M, Franceschi R, Iafusco D, Lenzi L, Mozzillo E, Passanisi S, Piona C, Rabbone I, Rapini N, Rigamonti A, Ripoli C, Salzano G, Savastio S, Schiaffini R, Zanfardino A, Cherubini V. Recommendations for recognizing, risk stratifying, treating, and managing children and adolescents with hypoglycemia. Front Endocrinol (Lausanne) 2024; 15:1387537. [PMID: 38894740 PMCID: PMC11183505 DOI: 10.3389/fendo.2024.1387537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 05/17/2024] [Indexed: 06/21/2024] Open
Abstract
There has been continuous progress in diabetes management over the last few decades, not least due to the widespread dissemination of continuous glucose monitoring (CGM) and automated insulin delivery systems. These technological advances have radically changed the daily lives of people living with diabetes, improving the quality of life of both children and their families. Despite this, hypoglycemia remains the primary side-effect of insulin therapy. Based on a systematic review of the available scientific evidence, this paper aims to provide evidence-based recommendations for recognizing, risk stratifying, treating, and managing patients with hypoglycemia. The objective of these recommendations is to unify the behavior of pediatric diabetologists with respect to the timely recognition and prevention of hypoglycemic episodes and the correct treatment of hypoglycemia, especially in patients using CGM or advanced hybrid closed-loop systems. All authors have long experience in the specialty and are members of the Italian Society of Pediatric Endocrinology and Diabetology. The goal of treating hypoglycemia is to raise blood glucose above 70 mg/dL (3.9 mmol/L) and to prevent further decreases. Oral glucose at a dose of 0.3 g/kg (0.1 g/kg for children using "smart pumps" or hybrid closed loop systems in automated mode) is the preferred treatment for the conscious individual with blood glucose <70 mg/dL (3.9 mmol/L), although any form of carbohydrate (e.g., sucrose, which consists of glucose and fructose, or honey, sugary soft drinks, or fruit juice) containing glucose may be used. Using automatic insulin delivery systems, the oral glucose dose can be decreased to 0.1 g/kg. Practical flow charts are included to aid clinical decision-making. Although representing the official position of the Italian Society of Pediatric Endocrinology and Diabetology (ISPED), these guidelines are applicable to the global audience and are especially pertinent in the era of CGM and other advanced technologies.
Collapse
Affiliation(s)
- Stefano Zucchini
- Study Group of Diabetology of the Italian Society for Pediatric Endocrinology and Diabetes (I.S.P.E.D.,) University Hospital of Ferrara, Ferrara, Italy
| | - Stefano Tumini
- Department of Maternal and Child Health, UOSD Regional Center of Pediatric Diabetology, Annunziata Hospital, Chieti, Italy
| | - Andrea Enzo Scaramuzza
- Division of Pediatrics, Pediatric Diabetes, Endocrinology and Nutrition, Azienda Socio Sanitaria Territoriale (ASST) Cremona, Cremona, Italy
| | - Riccardo Bonfanti
- UO Pediatric Diabetes Research Institute, Ospedale San Raffaele, Milan, Italy
| | - Maurizio Delvecchio
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L’Aquila, Italy
| | - Roberto Franceschi
- Department of Pediatrics, S. Chiara Hospital of Trento, APSS, Trento, Italy
| | - Dario Iafusco
- Department of Woman, Child and General and Specialistic Surgery, Regional Center of Pediatric Diabetes, University of Campania ‘L. Vanvitelli’, Naples, Italy
| | - Lorenzo Lenzi
- Diabetology Unit, Pediatric Department, Anna Meyer Children’s Hospital, Florence, Italy
| | - Enza Mozzillo
- Section of Pediatrics, Regional Center of Pediatric Diabetes, University Federico II, Naples, Italy
| | - Stefano Passanisi
- Department of Human Pathology of Adulthood and Childhood G. Barresi, University of Messina, Messina, Italy
| | - Claudia Piona
- Pediatric Diabetes and Metabolic Disorders Unit, Regional Center for Pediatric Diabetes, Department of Surgery, Dentistry, Pediatrics, and Gynecology, University of Verona, Verona, Italy
| | - Ivana Rabbone
- Division of Pediatrics, Department of Health Sciences, University of Piemonte Orientale, Novara, Italy
| | - Novella Rapini
- Diabetes Unit, Bambino Gesú Childrens’ Hospital, Rome, Italy
| | - Andrea Rigamonti
- UO Pediatric Diabetes Research Institute, Ospedale San Raffaele, Milan, Italy
| | - Carlo Ripoli
- Pediatric Diabetology Unit, Department of Pediatrics, ASL 8 Cagliari, Cagliari, Italy
| | - Giuseppina Salzano
- Department of Human Pathology of Adulthood and Childhood G. Barresi, University of Messina, Messina, Italy
| | - Silvia Savastio
- Division of Pediatrics, Department of Health Sciences, University of Piemonte Orientale, Novara, Italy
| | | | - Angela Zanfardino
- Department of Woman, Child and General and Specialistic Surgery, Regional Center of Pediatric Diabetes, University of Campania ‘L. Vanvitelli’, Naples, Italy
| | - Valentino Cherubini
- Department of Women’s and Children’s Health, Azienda Ospedaliero-Universitaria, Ospedali Riuniti di Ancona, ‘Salesi Hospital’, Ancona, Italy
| |
Collapse
|
6
|
Stanisławska-Kubiak M, Majewska KA, Krasińska A, Wais P, Majewski D, Mojs E, Kȩdzia A. Brain functional and structural changes in diabetic children. How can intellectual development be optimized in type 1 diabetes? Ther Adv Chronic Dis 2024; 15:20406223241229855. [PMID: 38560719 PMCID: PMC10981223 DOI: 10.1177/20406223241229855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 01/11/2024] [Indexed: 04/04/2024] Open
Abstract
The neuropsychological functioning of people with type 1 diabetes (T1D) is of key importance to the effectiveness of the therapy, which, in its complexity, requires a great deal of knowledge, attention, and commitment. Intellectual limitations make it difficult to achieve the optimal metabolic balance, and a lack of this alignment can contribute to the further deterioration of cognitive functions. The aim of this study was to provide a narrative review of the current state of knowledge regarding the influence of diabetes on brain structure and functions during childhood and also to present possible actions to optimize intellectual development in children with T1D. Scopus, PubMed, and Web of Science databases were searched for relevant literature using selected keywords. The results were summarized using a narrative synthesis. Disturbances in glucose metabolism during childhood may have a lasting negative effect on the development of the brain and related cognitive functions. To optimize intellectual development in children with diabetes, it is essential to prevent disorders of the central nervous system by maintaining peri-normal glycemic levels. Based on the performed literature review, it seems necessary to take additional actions, including repeated neuropsychological evaluation with early detection of any cognitive dysfunctions, followed by the development of individual management strategies and the training of appropriate skills, together with complex, multidirectional environmental support.
Collapse
Affiliation(s)
- Maia Stanisławska-Kubiak
- Department of Clinical Psychology, Poznan University of Medical Sciences, ul. Bukowska 70, Poznan 60-812, Poland
| | - Katarzyna Anna Majewska
- Department of Pediatric Diabetes, Auxology and Obesity, Poznan University of Medical Sciences, Poznan, Poland
| | - Agata Krasińska
- Department of Pediatric Diabetes, Auxology and Obesity, Poznan University of Medical Sciences, Poznan, Poland
| | - Paulina Wais
- Department of Pediatric Diabetes, Auxology and Obesity, Poznan University of Medical Sciences, Poznan, Poland
| | - Dominik Majewski
- Department of Internal Medicine, Poznan University of Medical Sciences, Poznan, Poland
| | - Ewa Mojs
- Department of Clinical Psychology, Poznan University of Medical Sciences, Poznan, Poland
| | - Andrzej Kȩdzia
- Department of Pediatric Diabetes, Auxology and Obesity, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
7
|
Deshpande S, Weinzimer SA, Gibbons K, Nally LM, Weyman K, Carria L, Zgorski M, Laffel LM, Doyle FJ, Dassau E. Feasibility and Preliminary Safety of Smartphone-Based Automated Insulin Delivery in Adolescents and Children With Type 1 Diabetes. J Diabetes Sci Technol 2024; 18:363-371. [PMID: 35971681 PMCID: PMC10973844 DOI: 10.1177/19322968221116384] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND A smartphone-based automated insulin delivery (AID) controller device can facilitate use of interoperable components and acceptance in adolescents and children. METHODS Pediatric participants (N = 20, 8F) with type 1 diabetes were enrolled in three sequential age-based cohorts: adolescents (12-<18 years, n = 8, 5F), school-age (8-<12 years, n = 7, 2F), and young children (2-<8 years, n = 5, 1F). Participants used the interoperable artificial pancreas system (iAPS) and zone model predictive control (MPC) on an unlocked smartphone for 48 hours, consumed unrestricted meals of their choice, and engaged in various unannounced exercises. Primary outcomes and stopping criteria were defined using fingerstick blood glucose (BG) data; secondary outcomes compared continuous glucose monitoring (CGM) data with preceding sensor augmented pump (SAP) therapy. RESULTS During AID, there was no more than one BG <50 mg/dL except in one young child participant; no instance of more than two episodes of BG ≥300 mg/dL lasting longer than 2 hours; and no adverse events. Despite large meals (total of 404.9 grams of carbs) and unannounced exercise (total of 182 minutes), overall CGM percent time in range (TIR) of 70 to 180 mg/dL during AID was statistically similar to SAP (63.5% vs 57.3%, respectively, P = .145). Overnight glucose standard deviation was 43 mg/dL (vs SAP 57.9 mg/dL, P = .009) and coefficient of variation was 25.7% (vs SAP 34.9%, P < .001). The percent time in closed-loop mode and connected to the CGM was 92.7% and 99.6%, respectively. Surveys indicated that participants and parents/guardians were satisfied with the system. CONCLUSIONS The smartphone-based AID was feasible and safe in sequentially younger cohorts of adolescents and children. CLINICALTRIALS.GOV NCT04255381 (https://clinicaltrials.gov/ct2/show/NCT04255381).
Collapse
Affiliation(s)
- Sunil Deshpande
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA, USA
| | | | | | | | - Kate Weyman
- Yale University School of Medicine, New Haven, CT, USA
| | - Lori Carria
- Yale University School of Medicine, New Haven, CT, USA
| | | | - Lori M. Laffel
- Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Francis J. Doyle
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA, USA
| | - Eyal Dassau
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA, USA
- Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
8
|
ElSayed NA, Aleppo G, Bannuru RR, Bruemmer D, Collins BS, Ekhlaspour L, Hilliard ME, Johnson EL, Khunti K, Lingvay I, Matfin G, McCoy RG, Perry ML, Pilla SJ, Polsky S, Prahalad P, Pratley RE, Segal AR, Seley JJ, Stanton RC, Gabbay RA. 14. Children and Adolescents: Standards of Care in Diabetes-2024. Diabetes Care 2024; 47:S258-S281. [PMID: 38078582 PMCID: PMC10725814 DOI: 10.2337/dc24-s014] [Citation(s) in RCA: 42] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
The American Diabetes Association (ADA) "Standards of Care in Diabetes" includes the ADA's current clinical practice recommendations and is intended to provide the components of diabetes care, general treatment goals and guidelines, and tools to evaluate quality of care. Members of the ADA Professional Practice Committee, an interprofessional expert committee, are responsible for updating the Standards of Care annually, or more frequently as warranted. For a detailed description of ADA standards, statements, and reports, as well as the evidence-grading system for ADA's clinical practice recommendations and a full list of Professional Practice Committee members, please refer to Introduction and Methodology. Readers who wish to comment on the Standards of Care are invited to do so at professional.diabetes.org/SOC.
Collapse
|
9
|
Celik NB, Canoruc Emet D, Canturk M, Ozon ZA, Gonc EN. Dual-basal-insulin regimen for the management of dawn phenomenon in children with type 1 diabetes: a retrospective cohort study. Ther Adv Endocrinol Metab 2023; 14:20420188231220130. [PMID: 38152658 PMCID: PMC10752105 DOI: 10.1177/20420188231220130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 11/11/2023] [Indexed: 12/29/2023] Open
Abstract
Background Handling of the dawn phenomenon (DP) with multiple daily insulin injection (MDII) regimen is a real challenge. Objective We aimed to demonstrate the effectiveness of a dual-basal-insulin (a long-acting glargine and an intermediate-acting neutral protamine Hagedorn (NPH)) regimen for the management of DP in children with type 1 diabetes mellitus (T1DM). The primary efficacy outcome was to overcome morning hyperglycemia without causing hypoglycemia during the non-DP period of the night. Design Retrospective cohort study. Method Charts of 28 children with T1DM (12 female; 42.8%, mean age 13.7 ± 2.1 years) treated with MDII were retrospectively reviewed. The median duration of diabetes was 4.5 years (range 2-13.5 years). DP was diagnosed using a threshold difference of 20 mg/dL (0.1 mmol/L) between fasting capillary blood glucose at 3 a.m. and prebreakfast. NPH was administered at midnight in addition to daily bedtime (08.00-09.00 p.m.) glargine (dual-basal-insulin regimen). Midnight, 03:00 a.m., prebreakfast and postprandial capillary blood glucose readings, insulin-carbohydrate ratios, and basal-bolus insulin doses were recorded the day before the dual-basal-insulin regimen was started and the day after the titration of the insulin doses was complete. Body mass index standard deviation scores (BMI SDS) at the onset-3rd-12th month of treatment were noted. Results Before using dual basal insulin, prebreakfast capillary blood glucose levels were greater than those at midnight and at 03:00 a.m. (F = 64.985, p < 0.01). After titration of the dual-basal-insulin doses, there were significant improvements such that there were no statistically significant differences in the capillary blood glucose measurements at the three crucial time points (midnight, 03.00 a.m., and prebreakfast; F = 1.827, p = 0.172). No instances of hypoglycemia were reported, and the total daily insulin per kilogram of body weight did not change. The BMI SDS remained steady over the course of the 1-year follow-up. Conclusion In this retrospective cohort study, the dual-basal-insulin regimen, using a long-acting glargine and an intermediate-acting NPH, was effective in overcoming early morning hyperglycemia due to insulin resistance in the DP. However, the effectiveness of the dual-basal-insulin regimen needs to be verified by prospective controlled studies using continuous glucose monitoring metrics or frequent blood glucose monitoring.
Collapse
Affiliation(s)
- Nur Berna Celik
- Division of Pediatric Endocrinology, Department of Pediatrics, Hacettepe University Faculty of Medicine, Sihhiye, Ankara, 06230, Turkey
| | - Dicle Canoruc Emet
- Division of Pediatric Endocrinology, Department of Pediatrics, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Merve Canturk
- Division of Pediatric Endocrinology, Department of Pediatrics, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Z. Alev Ozon
- Division of Pediatric Endocrinology, Department of Pediatrics, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - E. Nazli Gonc
- Division of Pediatric Endocrinology, Department of Pediatrics, Hacettepe University Faculty of Medicine, Ankara, Turkey
| |
Collapse
|
10
|
Brown AD, Liese AD, Shapiro ALB, Frongillo EA, Wilkening G, Fridriksson J, Merchant AT, Henkin L, Jensen ET, Reboussin BA, Shah AS, Marcovina S, Dolan LM, Dabelea D, Pihoker C, Mendoza JA. Household Food Insecurity and Cognition in Youth and Young Adults with Youth-Onset Diabetes. Pediatr Diabetes 2023; 2023:6382663. [PMID: 38765732 PMCID: PMC11100256 DOI: 10.1155/2023/6382663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 06/21/2023] [Accepted: 08/17/2023] [Indexed: 05/22/2024] Open
Abstract
Objective We evaluated the association of household food insecurity (FI) with cognition in youth and young adults with type 1 diabetes (T1D) or type 2 diabetes (T2D). Design In this cross-sectional study, age-adjusted scores for composite Fluid Cognition, and sub-domain scores for Receptive Language and Inhibitory Control and Attention, were modeled stratified by diabetes-type using linear regression, with FI in the past year as the predictor, controlling for covariates. Tests for processing speed, inhibitory control/attention, working memory, episodic memory, and cognitive flexibility were administered to measure composite Fluid Cognition score. The NIHT-CB Picture Vocabulary Test was used to assess Crystallized Cognition score and rapid identification of congruent versus noncongruent items were used to assess Inhibitory Control and Attention score. Setting The SEARCH for Diabetes in Youth study, representative of 5 U.S. states. Participants Included 1574 youth and young adults with T1D or T2D, mean age of 21 years, mean diabetes duration of 11 years, 51% non-Hispanic white, and 47% had higher HbA1c levels (>9% HbA1c). Results Approximately 18% of the 1,240 participants with T1D and 31% of the 334 with T2D experienced FI. The food-insecure group with T1D had a lower composite Fluid Cognition score (β= -2.5, 95% confidence interval (CI)= -4.8, -0.1) and a lower Crystallized Cognition score (β= -3.4, CI= -5.6, -1.3) than food-secure peers. Findings were attenuated to non-significance after adjustment for demographics. Among T2D participants, no associations were observed. In participants with T1D effect modification by glycemic levels were found in the association between FI and composite Fluid Cognition score but adjustment for socioeconomic characteristics attenuated the interaction (p=0.0531). Conclusions Food-insecure youth and young adults with T1D or T2D did not have different cognition compared to those who were food-secure after adjustment for confounders. Longitudinal research is needed to further understand relations amongst these factors.
Collapse
Affiliation(s)
- Andrea D. Brown
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, 915 Greene Street, Columbia, SC 29208, USA
| | - Angela D. Liese
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, 915 Greene Street, Columbia, SC 29208, USA
| | - Allison L. B. Shapiro
- Department of Pediatrics, School of Medicine, University of Colorado Anschutz Medical Campus, 13123 E 16th Avenue, Aurora, CO 80045, USA
| | - Edward A. Frongillo
- Department of Health Promotion, Education, and Behavior, University of South Carolina, 915 Greene Street Columbia, Columbia, SC 29208, USA
| | - Greta Wilkening
- Department of Pediatrics, School of Medicine, University of Colorado Anschutz Medical Campus, 13123 E 16th Avenue, Aurora, CO 80045, USA
| | - Julius Fridriksson
- Department of Communication Sciences & Disorders, University of South Carolina, 1705 College Street Columbia, Columbia, SC 29208, USA
| | - Anwar T. Merchant
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, 915 Greene Street, Columbia, SC 29208, USA
| | - Leora Henkin
- Department of Biostatistics and Data Science, Wake Forest School of Medicine, 475 Vine Street, Winston-Salem, NC 27101, USA
| | - Elizabeth T. Jensen
- Department of Epidemiology and Prevention, Wake Forest School of Medicine, 475 Vine Street, Winston-Salem, NC 27101, USA
| | - Beth A. Reboussin
- Department of Biostatistics and Data Science, Wake Forest School of Medicine, 475 Vine Street, Winston-Salem, NC 27101, USA
| | - Amy S. Shah
- Department of Pediatrics, Division of Endocrinology, Cincinnati Children's Hospital Medical Center, The University of Cincinnati, 3333 Burnet Avenue, MLC 4002, Cincinnati, OH 45229, USA
| | - Santica Marcovina
- Medpace Reference Laboratories, 5365 Medpace Way, Cincinnati, OH 45227, USA
| | - Lawrence M. Dolan
- Department of Pediatrics, Division of Endocrinology, Cincinnati Children's Hospital Medical Center, The University of Cincinnati, 3333 Burnet Avenue, MLC 4002, Cincinnati, OH 45229, USA
| | - Dana Dabelea
- Department of Pediatrics, School of Medicine, University of Colorado Anschutz Medical Campus, 13123 E 16th Avenue, Aurora, CO 80045, USA
- Department of Epidemiology, Colorado School of Public Health, Anschutz Medical Campus, 13001 E 17th Place, Mail Stop B119, Aurora, CO 80045, USA
| | - Catherine Pihoker
- Department of Pediatrics, University of Washington, P.O. Box 356320, Seattle, WA 98115-8160, USA
| | - Jason A. Mendoza
- Department of Pediatrics, University of Washington, P.O. Box 356320, Seattle, WA 98115-8160, USA
- Seattle Children's Research Institute, P.O. Box 5371, Seattle, WA 98145-5005, USA
| |
Collapse
|
11
|
Cai LY, Tanase C, Anderson AW, Patel NJ, Lee CA, Jones RS, LeStourgeon LM, Mahon A, Taki I, Juvera J, Pruthi S, Gwal K, Ozturk A, Kang H, Rewers A, Rewers MJ, Alonso GT, Glaser N, Ghetti S, Jaser SS, Landman BA, Jordan LC. Exploratory Multisite MR Spectroscopic Imaging Shows White Matter Neuroaxonal Loss Associated with Complications of Type 1 Diabetes in Children. AJNR Am J Neuroradiol 2023; 44:820-827. [PMID: 37263786 PMCID: PMC10337627 DOI: 10.3174/ajnr.a7895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 05/03/2023] [Indexed: 06/03/2023]
Abstract
BACKGROUND AND PURPOSE Type 1 diabetes affects over 200,000 children in the United States and is associated with an increased risk of cognitive dysfunction. Prior single-site, single-voxel MRS case reports and studies have identified associations between reduced NAA/Cr, a marker of neuroaxonal loss, and type 1 diabetes. However, NAA/Cr differences among children with various disease complications or across different brain tissues remain unclear. To better understand this phenomenon and the role of MRS in characterizing it, we conducted a multisite pilot study. MATERIALS AND METHODS In 25 children, 6-14 years of age, with type 1 diabetes across 3 sites, we acquired T1WI and axial 2D MRSI along with phantom studies to calibrate scanner effects. We quantified tissue-weighted NAA/Cr in WM and deep GM and modeled them against study covariates. RESULTS We found that MRSI differentiated WM and deep GM by NAA/Cr on the individual level. On the population level, we found significant negative associations of WM NAA/Cr with chronic hyperglycemia quantified by hemoglobin A1c (P < .005) and a history of diabetic ketoacidosis at disease onset (P < .05). We found a statistical interaction (P < .05) between A1c and ketoacidosis, suggesting that neuroaxonal loss from ketoacidosis may outweigh that from poor glucose control. These associations were not present in deep GM. CONCLUSIONS Our pilot study suggests that MRSI differentiates GM and WM by NAA/Cr in this population, disease complications may lead to neuroaxonal loss in WM in children, and deeper investigation is warranted to further untangle how diabetic ketoacidosis and chronic hyperglycemia affect brain health and cognition in type 1 diabetes.
Collapse
Affiliation(s)
- L Y Cai
- From the Department of Biomedical Engineering (L.Y.C., A.W.A., B.A.L.)
| | - C Tanase
- Departments of Psychiatry and Behavioral Sciences (C.T.)
| | - A W Anderson
- From the Department of Biomedical Engineering (L.Y.C., A.W.A., B.A.L.)
- Vanderbilt University Institute of Imaging Science (A.W.A., B.A.L.)
- Departments of Radiology and Radiological Sciences (A.W.A., S.P., B.A.L.)
| | - N J Patel
- Pediatrics (N.J.P., R.S.J., S.S.J., L.C.J.)
| | | | - R S Jones
- Pediatrics (N.J.P., R.S.J., S.S.J., L.C.J.)
| | | | - A Mahon
- Psychology (A.M., S.G.), University of California, Davis, Davis, California
| | - I Taki
- Department of Pediatrics (I.T., A.R., M.J.R.)
| | - J Juvera
- Department of Psychiatry (J.J.), University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - S Pruthi
- Departments of Radiology and Radiological Sciences (A.W.A., S.P., B.A.L.)
| | - K Gwal
- Departments of Radiology (K.G., A.O.)
| | - A Ozturk
- Departments of Radiology (K.G., A.O.)
| | - H Kang
- Biostatistics (H.K.), Vanderbilt University Medical Center, Nashville, Tennessee
| | - A Rewers
- Department of Pediatrics (I.T., A.R., M.J.R.)
| | - M J Rewers
- Department of Pediatrics (I.T., A.R., M.J.R.)
| | | | - N Glaser
- Pediatrics (N.G.), University of California Davis Health, University of California Davis School of Medicine, Sacramento, California
| | - S Ghetti
- Psychology (A.M., S.G.), University of California, Davis, Davis, California
| | - S S Jaser
- Pediatrics (N.J.P., R.S.J., S.S.J., L.C.J.)
| | - B A Landman
- From the Department of Biomedical Engineering (L.Y.C., A.W.A., B.A.L.)
- Vanderbilt University Institute of Imaging Science (A.W.A., B.A.L.)
- Department of Electrical and Computer Engineering (B.A.L.), Vanderbilt University, Nashville, Tennessee
- Departments of Radiology and Radiological Sciences (A.W.A., S.P., B.A.L.)
| | - L C Jordan
- Pediatrics (N.J.P., R.S.J., S.S.J., L.C.J.)
- Neurology (C.A.L., L.C.J.)
| |
Collapse
|
12
|
Aleppo G, DeSalvo DJ, Lauand F, Huyett LM, Chang A, Vienneau T, Ly TT. Improvements in Glycemic Outcomes in 4738 Children, Adolescents, and Adults with Type 1 Diabetes Initiating a Tubeless Insulin Management System. Diabetes Ther 2023; 14:593-610. [PMID: 36763329 PMCID: PMC9913031 DOI: 10.1007/s13300-023-01366-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 01/09/2023] [Indexed: 02/11/2023] Open
Abstract
INTRODUCTION Despite recent advances in diabetes technology, most people living with type 1 diabetes mellitus (T1D) are unable to meet glycemic targets. Real-world evidence can provide insight into outcomes achieved with specific treatment devices when used in clinical practice. The aim of this study was to analyze real-world outcomes collected from a large cohort of people living with T1D and initiating treatment with the Omnipod DASH System. METHODS In this retrospective observational study, real-world outcomes were analyzed from a database of information collected from people with T1D initiating the Omnipod DASH System. Information in the database was either taken directly from the patient's medical record or self-reported if medical records were unavailable. The primary outcome was change in glycated hemoglobin (HbA1c) from baseline (before initiation) to 3 months after initiation. Secondary outcomes were changes in total daily dose of insulin (TDD) and self-reported frequency of hypoglycemic events (< 70 mg/dL). Results are separated for the adult (≥ 18 years, N = 3341) and pediatric (< 18 years, N = 1397) cohorts. RESULTS The change in HbA1c from baseline was - 0.9 ± 1.6% ( - 10 ± 18 mmol/mol; p < 0.0001) in adults and - 0.9 ± 2.0% ( - 10 ± 22 mmol/mol; p < 0.0001) in the pediatric cohort. For those previously using multiple daily injections, HbA1c decreased by - 1.0 ± 1.7% ( - 11 ± 19 mmol/mol) in adults and - 1.0 ± 2.1% ( - 11 ± 23 mmol/mol) in the pediatric cohort (both p < 0.0001). Hypoglycemic events decreased in adults from 2.9 to 1.3 episodes per week ( - 1.6 ± 3.2 events/week; p < 0.0001), and in the pediatric cohort from 2.8 to 1.5 episodes per week ( - 1.3 ± 2.7 events/week; p < 0.0001). In adults, TDD decreased by 19.9% (p < 0.0001), and it remained stable in the pediatric cohort (p > 0.05). CONCLUSIONS Real-world outcomes from this large cohort of people initiating therapy with the Omnipod DASH System showed significant improvement in HbA1c and a substantial reduction in hypoglycemic events after 3 months of use.
Collapse
Affiliation(s)
- Grazia Aleppo
- Division of Endocrinology, Metabolism and Molecular Medicine, Feinberg School of Medicine, Northwestern University, 645 North Michigan Ave, Suite 530, Chicago, IL, 60611, USA
| | - Daniel J DeSalvo
- Baylor College of Medicine, 1 Moursund St., Houston, TX, 77030, USA
| | - Felipe Lauand
- Insulet Corporation, 100 Nagog Park, Acton, MA, 01720, USA
| | | | - Albert Chang
- Insulet Corporation, 100 Nagog Park, Acton, MA, 01720, USA
| | - Todd Vienneau
- Insulet Corporation, 100 Nagog Park, Acton, MA, 01720, USA
| | - Trang T Ly
- Insulet Corporation, 100 Nagog Park, Acton, MA, 01720, USA
| |
Collapse
|
13
|
Dahl AR, M. SJ, Pittock SJ, Pittock ST. Clinical Utility and Outcome Prediction of Early ZnT8-IgG Testing and Titer in Type 1 Diabetes. J Clin Res Pediatr Endocrinol 2023; 15:35-41. [PMID: 35984226 PMCID: PMC9976167 DOI: 10.4274/jcrpe.galenos.2022.2022-4-16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
OBJECTIVE Type 1 diabetes autoantibodies are directed against multiple antigens including: glutamic acid decarboxylase, protein tyrosine phosphatase-like islet antigen 2 (IA2), insulin (IAA), and Zinc transporter 8 protein (ZnT8). The aim of our study was to determine if the presence or titer of ZnT8 antibodies (Ab) was predictive for clinical presentation at diagnosis or for the subsequent disease course. METHODS Between January, 2003 and May, 2019, 105 patients aged ≤21 years with a clinical diagnosis of type 1 diabetes mellitus had at least 1 autoantibody measured. A retrospective chart review was completed. At diagnosis, we evaluated the body mass index z-score, hemoglobin (HbA1c), and the presence of diabetic ketoacidosis (DKA). Complications analyzed post-diagnosis included episodes of DKA, the diagnosis of autoimmune disease, and the presence of vascular complications. We evaluated cumulative lifetime excess glucose as HbA1c area under the curve (AUC) >6%. RESULTS Seventy-one patients were ZnT8-Ab(+) (68%), with 19 having low titer ZnT8-Ab and 52 with high titer ZnT8-Ab. Follow-up ranged from 10 days to 15.7 years (median 2.08 years). There were no differences in the characteristics at disease onset or in the subsequent follow-up between those with and those without ZnT8-Ab or those with high or low titers of ZnT8 Ab, except for a small but statistically significant difference in cumulative excess glucose (HbA1c AUC >6%) between those with low and high titers (p=0.0095). CONCLUSION Our study adds to the limited literature on the effect of the presence and titer of ZnT8-Ab in pediatric diabetes. The small effect of ZnT8-Ab titer on glucose excess as measured by HbA1c AUC warrants further study.
Collapse
Affiliation(s)
- Amanda R. Dahl
- Mayo Clinic, Department of Pediatric Endocrinology, Minnesota, USA
| | | | | | - Siobhan T. Pittock
- Mayo Clinic, Department of Pediatric Endocrinology, Minnesota, USA,* Address for Correspondence: Mayo Clinic, Department of Pediatric Endocrinology, Minnesota, USA E-mail:
| |
Collapse
|
14
|
Litmanovitch E, Geva R, Leshem A, Lezinger M, Heyman E, Gidron M, Yarmolovsky J, Sasson E, Tal S, Rachmiel M. Missed meal boluses and poorer glycemic control impact on neurocognitive function may be associated with white matter integrity in adolescents with type 1 diabetes. Front Endocrinol (Lausanne) 2023; 14:1141085. [PMID: 37091855 PMCID: PMC10113499 DOI: 10.3389/fendo.2023.1141085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 03/13/2023] [Indexed: 04/25/2023] Open
Abstract
Background The notion that pediatric type 1 diabetes impacts brain function and structure early in life is of great concern. Neurological manifestations, including neurocognitive and behavioral symptoms, may be present from childhood, initially mild and undetectable in daily life. Despite intensive management and technological therapeutic interventions, most pediatric patients do not achieve glycemic control targets for HbA1c. One of the most common causes of such poor control and frequent transient hyperglycemic episodes may be lifestyle factors, including missed meal boluses. Objective The aim of this study was to assess the association between specific neurocognitive accomplishments-learning and memory, inhibition ability learning, and verbal and semantic memory-during meals with and without bolusing, correlated to diffusion tensor imaging measurements of major related tracts, and glycemic control in adolescents with type 1 diabetes compared with their healthy siblings of similar age. Study design and methods This is a case-control study of 12- to 18-year-old patients with type 1 diabetes (N = 17, 8 male patients, diabetes duration of 6.53 ± 4.1 years) and their healthy siblings (N = 13). All were hospitalized for 30 h for continuous glucose monitoring and repeated neurocognitive tests as a function of a missed or appropriate pre-meal bolus. This situation was mimicked by controlled, patient blinded manipulation of lunch pre-meal bolus administration to enable capillary glucose level of <180 mg/dl and to >240 mg/d 2 hours after similar meals, at a similar time. The diabetes team randomly and blindly manipulated post-lunch glucose levels by subcutaneous injection of either rapid-acting insulin or 0.9% NaCl solution before lunch. A specific neurocognitive test battery was performed twice, after each manipulation, and its results were compared, along with additional neurocognitive tasks administered during hospitalization without insulin manipulation. Participants underwent brain imaging, including diffusion tensor imaging and tractography. Results A significant association was demonstrated between glycemic control and performance in the domains of executive functions, inhibition ability, learning and verbal memory, and semantic memory. Inhibition ability was specifically related to food management. Poorer glycemic control (>8.3%) was associated with a slower reaction time. Conclusion These findings highlight the potential impairment of brain networks responsible for learning, memory, and controlled reactivity to food in adolescents with type 1 diabetes whose glycemic control is poor.
Collapse
Affiliation(s)
- Edna Litmanovitch
- The Gonda Multidisciplinary Brain Research Center, Bar Ilan University, Ramat Gan, Israel
| | - Ronny Geva
- The Gonda Multidisciplinary Brain Research Center, Bar Ilan University, Ramat Gan, Israel
- Department of Psychology, The Developmental Neuropsychology Lab, Bar Ilan University, Ramat Gan, Israel
| | - Avital Leshem
- Pediatric Endocrinology and Diabetes Institute, Shamir (Assaf Harofeh) Medical Center, Be'er Ya'akov, Israel
| | - Mirit Lezinger
- Pediatric Neurology and Epilepsy Department, Shamir (Assaf Harofeh) Medical Center, Be’er Ya’akov, Israel
| | - Eli Heyman
- Pediatric Neurology and Epilepsy Department, Shamir (Assaf Harofeh) Medical Center, Be’er Ya’akov, Israel
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Maor Gidron
- Department of Psychology, The Developmental Neuropsychology Lab, Bar Ilan University, Ramat Gan, Israel
| | - Jessica Yarmolovsky
- Department of Psychology, The Developmental Neuropsychology Lab, Bar Ilan University, Ramat Gan, Israel
| | - Efrat Sasson
- Radiology Department, Shamir (Assaf Harofeh) Medical Center, Be'er Ya'akov, Israel
| | - Sigal Tal
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
- Radiology Department, Shamir (Assaf Harofeh) Medical Center, Be'er Ya'akov, Israel
| | - Marianna Rachmiel
- Pediatric Endocrinology and Diabetes Institute, Shamir (Assaf Harofeh) Medical Center, Be'er Ya'akov, Israel
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
- *Correspondence: Marianna Rachmiel,
| |
Collapse
|
15
|
ElSayed NA, Aleppo G, Aroda VR, Bannuru RR, Brown FM, Bruemmer D, Collins BS, Hilliard ME, Isaacs D, Johnson EL, Kahan S, Khunti K, Leon J, Lyons SK, Perry ML, Prahalad P, Pratley RE, Seley JJ, Stanton RC, Gabbay RA, on behalf of the American Diabetes Association. 14. Children and Adolescents: Standards of Care in Diabetes-2023. Diabetes Care 2023; 46:S230-S253. [PMID: 36507640 PMCID: PMC9810473 DOI: 10.2337/dc23-s014] [Citation(s) in RCA: 109] [Impact Index Per Article: 54.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The American Diabetes Association (ADA) "Standards of Care in Diabetes" includes the ADA's current clinical practice recommendations and is intended to provide the components of diabetes care, general treatment goals and guidelines, and tools to evaluate quality of care. Members of the ADA Professional Practice Committee, a multidisciplinary expert committee, are responsible for updating the Standards of Care annually, or more frequently as warranted. For a detailed description of ADA standards, statements, and reports, as well as the evidence-grading system for ADA's clinical practice recommendations and a full list of Professional Practice Committee members, please refer to Introduction and Methodology. Readers who wish to comment on the Standards of Care are invited to do so at professional.diabetes.org/SOC.
Collapse
|
16
|
de Wit M, Gajewska KA, Goethals ER, McDarby V, Zhao X, Hapunda G, Delamater AM, DiMeglio LA. ISPAD Clinical Practice Consensus Guidelines 2022: Psychological care of children, adolescents and young adults with diabetes. Pediatr Diabetes 2022; 23:1373-1389. [PMID: 36464988 PMCID: PMC10107478 DOI: 10.1111/pedi.13428] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 09/30/2022] [Indexed: 12/12/2022] Open
Affiliation(s)
- Maartje de Wit
- Amsterdam UMC, Vrije Universiteit Amsterdam, Medical Psychology, Amsterdam Public Health, Amsterdam, Netherlands
| | - Katarzyna A Gajewska
- Diabetes Ireland, Dublin, Ireland.,School of Public Health, University College Cork, Cork, Ireland
| | | | | | - Xiaolei Zhao
- The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Given Hapunda
- Department of Psychology, University of Zambia, Lusaka, Zambia
| | - Alan M Delamater
- Department of Pediatrics, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Linda A DiMeglio
- Department of Pediatrics, University of Miami Miller School of Medicine, Miami, Florida, USA.,Department of Pediatrics, Division of Pediatric Endocrinology and Diabetology, Indiana University School of Medicine, Riley Hospital for Children, Indianapolis, Indiana, USA
| |
Collapse
|
17
|
Abraham MB, Karges B, Dovc K, Naranjo D, Arbelaez AM, Mbogo J, Javelikar G, Jones TW, Mahmud FH. ISPAD Clinical Practice Consensus Guidelines 2022: Assessment and management of hypoglycemia in children and adolescents with diabetes. Pediatr Diabetes 2022; 23:1322-1340. [PMID: 36537534 PMCID: PMC10107518 DOI: 10.1111/pedi.13443] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 10/27/2022] [Indexed: 12/24/2022] Open
Affiliation(s)
- Mary B Abraham
- Department of Endocrinology and Diabetes, Perth Children's Hospital, Perth, Australia.,Children's Diabetes Centre, Telethon Kids Institute, The University of Western Australia, Perth, Australia.,Discipline of Pediatrics, Medical School, The University of Western Australia, Perth, Australia
| | - Beate Karges
- Division of Endocrinology and Diabetes, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Klemen Dovc
- Department of Pediatric Endocrinology, Diabetes and Metabolic Diseases, UMC - University Children's Hospital, Ljubljana, Slovenia, and Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Diana Naranjo
- Division of Endocrinology, Department of Pediatrics, Stanford University School of Medicine, Stanford, California, USA
| | - Ana Maria Arbelaez
- Division of Endocrinology and Diabetes, Department of Pediatrics, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Joyce Mbogo
- Department of Pediatric and Child Health, Aga Khan University Hospital, Nairobi, Kenya
| | - Ganesh Javelikar
- Department of Endocrinology and Diabetes, Max Super Speciality Hospital, New Delhi, India
| | - Timothy W Jones
- Department of Endocrinology and Diabetes, Perth Children's Hospital, Perth, Australia.,Children's Diabetes Centre, Telethon Kids Institute, The University of Western Australia, Perth, Australia.,Discipline of Pediatrics, Medical School, The University of Western Australia, Perth, Australia
| | - Farid H Mahmud
- Division of Endocrinology, Department of Pediatrics, Hospital for Sick Children, University of Toronto, Toronto, Canada
| |
Collapse
|
18
|
Reiss AL, Jo B, Arbelaez AM, Tsalikian E, Buckingham B, Weinzimer SA, Fox LA, Cato A, White NH, Tansey M, Aye T, Tamborlane W, Englert K, Lum J, Mazaika P, Foland-Ross L, Marzelli M, Mauras N. A Pilot randomized trial to examine effects of a hybrid closed-loop insulin delivery system on neurodevelopmental and cognitive outcomes in adolescents with type 1 diabetes. Nat Commun 2022; 13:4940. [PMID: 36042217 PMCID: PMC9427757 DOI: 10.1038/s41467-022-32289-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 07/26/2022] [Indexed: 12/23/2022] Open
Abstract
Type 1 diabetes (T1D) is associated with lower scores on tests of cognitive and neuropsychological function and alterations in brain structure and function in children. This proof-of-concept pilot study (ClinicalTrials.gov Identifier NCT03428932) examined whether MRI-derived indices of brain development and function and standardized IQ scores in adolescents with T1D could be improved with better diabetes control using a hybrid closed-loop insulin delivery system. Eligibility criteria for participation in the study included age between 14 and 17 years and a diagnosis of T1D before 8 years of age. Randomization to either a hybrid closed-loop or standard diabetes care group was performed after pre-qualification, consent, enrollment, and collection of medical background information. Of 46 participants assessed for eligibility, 44 met criteria and were randomized. Two randomized participants failed to complete baseline assessments and were excluded from final analyses. Participant data were collected across five academic medical centers in the United States. Research staff scoring the cognitive assessments as well as those processing imaging data were blinded to group status though participants and their families were not. Forty-two adolescents, 21 per group, underwent cognitive assessment and multi-modal brain imaging before and after the six month study duration. HbA1c and sensor glucose downloads were obtained quarterly. Primary outcomes included metrics of gray matter (total and regional volumes, cortical surface area and thickness), white matter volume, and fractional anisotropy. Estimated power to detect the predicted treatment effect was 0.83 with two-tailed, α = 0.05. Adolescents in the hybrid closed-loop group showed significantly greater improvement in several primary outcomes indicative of neurotypical development during adolescence compared to the standard care group including cortical surface area, regional gray volumes, and fractional anisotropy. The two groups were not significantly different on total gray and white matter volumes or cortical thickness. The hybrid closed loop group also showed higher Perceptual Reasoning Index IQ scores and functional brain activity more indicative of neurotypical development relative to the standard care group (both secondary outcomes). No adverse effects associated with study participation were observed. These results suggest that alterations to the developing brain in T1D might be preventable or reversible with rigorous glucose control. Long term research in this area is needed.
Collapse
Affiliation(s)
- Allan L Reiss
- Center for Interdisciplinary Brain Sciences, Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA.
- Department of Radiology, Stanford University, Stanford, CA, USA.
- Department of Pediatrics, Stanford University, Stanford, CA, USA.
| | - Booil Jo
- Center for Interdisciplinary Brain Sciences, Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Ana Maria Arbelaez
- Divisions of Endocrinology & Diabetes, at Washington University in St, Louis, St, Louis, MO, USA
| | - Eva Tsalikian
- Stead Family Department of Pediatrics, Endocrinology and Diabetes, University of Iowa, Iowa City, IA, USA
| | - Bruce Buckingham
- Department of Pediatrics, Stanford University, Stanford, CA, USA
| | | | - Larry A Fox
- Division of Endocrinology, Diabetes & Metabolism, Nemours Children's Health, Jacksonville, FL, USA
| | - Allison Cato
- Division of Neurology, Nemours Children's Health, Jacksonville, FL, USA
| | - Neil H White
- Divisions of Endocrinology & Diabetes, at Washington University in St, Louis, St, Louis, MO, USA
| | - Michael Tansey
- Stead Family Department of Pediatrics, Endocrinology and Diabetes, University of Iowa, Iowa City, IA, USA
| | - Tandy Aye
- Department of Pediatrics, Stanford University, Stanford, CA, USA
| | | | - Kimberly Englert
- Division of Endocrinology, Diabetes & Metabolism, Nemours Children's Health, Jacksonville, FL, USA
| | - John Lum
- Jaeb Center for Health Research, Tampa, FL, USA
| | - Paul Mazaika
- Center for Interdisciplinary Brain Sciences, Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Lara Foland-Ross
- Center for Interdisciplinary Brain Sciences, Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Matthew Marzelli
- Center for Interdisciplinary Brain Sciences, Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Nelly Mauras
- Division of Endocrinology, Diabetes & Metabolism, Nemours Children's Health, Jacksonville, FL, USA
| |
Collapse
|
19
|
Monaghan M, Bryant BL, Inverso H, Moore HR, Streisand R. Young Children with Type 1 Diabetes: Recent Advances in Behavioral Research. Curr Diab Rep 2022; 22:247-256. [PMID: 35435615 PMCID: PMC9013975 DOI: 10.1007/s11892-022-01465-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/14/2022] [Indexed: 12/16/2022]
Abstract
PURPOSE OF REVIEW This review provides a recent update of behavioral research pertinent to young children with T1D and addresses current priorities and future directions. RECENT FINDINGS Rates of type 1 diabetes (T1D) in young children (ages 1-7) are continuing to rise. Since 2014, changes to diabetes care and management have impacted young children and reinforced the need for increased attention and interventions to support diabetes management, especially in caregivers who are primarily responsible for their young child's diabetes management. T1D is associated with unique physiologic challenges in young children, with constant management demands elevating parental diabetes-related stress and fear of hypoglycemia. Diabetes technology use has significantly increased in young children, contributing to improvements in glycemic levels and parent and child psychosocial functioning. Yet despite the positive outcomes demonstrated in select clinical behavioral interventions, research with this young child age group remains limited in scope and quantity.
Collapse
Affiliation(s)
- Maureen Monaghan
- grid.239560.b0000 0004 0482 1586Children’s National Hospital, 111 Michigan Ave NW, Washington, DC 20010 USA
- grid.253615.60000 0004 1936 9510George Washington University School of Medicine, Washington, DC USA
| | - Breana L. Bryant
- grid.239560.b0000 0004 0482 1586Children’s National Hospital, 111 Michigan Ave NW, Washington, DC 20010 USA
| | - Hailey Inverso
- grid.239560.b0000 0004 0482 1586Children’s National Hospital, 111 Michigan Ave NW, Washington, DC 20010 USA
| | - Hailey R. Moore
- grid.239560.b0000 0004 0482 1586Children’s National Hospital, 111 Michigan Ave NW, Washington, DC 20010 USA
| | - Randi Streisand
- grid.239560.b0000 0004 0482 1586Children’s National Hospital, 111 Michigan Ave NW, Washington, DC 20010 USA
- grid.253615.60000 0004 1936 9510George Washington University School of Medicine, Washington, DC USA
| |
Collapse
|
20
|
Erichsen JM, Fadel JR, Reagan LP. Peripheral versus central insulin and leptin resistance: Role in metabolic disorders, cognition, and neuropsychiatric diseases. Neuropharmacology 2022; 203:108877. [PMID: 34762922 PMCID: PMC8642294 DOI: 10.1016/j.neuropharm.2021.108877] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 10/14/2021] [Accepted: 11/04/2021] [Indexed: 02/06/2023]
Abstract
Insulin and leptin are classically regarded as peptide hormones that play key roles in metabolism. In actuality, they serve several functions in both the periphery and central nervous system (CNS). Likewise, insulin and leptin resistance can occur both peripherally and centrally. Metabolic disorders such as diabetes and obesity share several key features including insulin and leptin resistance. While the peripheral effects of these disorders are well-known (i.e. cardiovascular disease, hypertension, stroke, dyslipidemia, etc.), the CNS complications of leptin and insulin resistance have come into sharper focus. Both preclinical and clinical findings have indicated that insulin and leptin resistance are associated with cognitive deficits and neuropsychiatric diseases such as depression. Importantly, these studies also suggest that these deficits in neuroplasticity can be reversed by restoration of insulin and leptin sensitivity. In view of these observations, this review will describe, in detail, the peripheral and central functions of insulin and leptin and explain the role of insulin and leptin resistance in various metabolic disorders, cognition, and neuropsychiatric diseases.
Collapse
Affiliation(s)
- Jennifer M Erichsen
- University of South Carolina School of Medicine, Department of Pharmacology, Physiology, and Neuroscience, Columbia, SC, 29208, USA.
| | - Jim R Fadel
- University of South Carolina School of Medicine, Department of Pharmacology, Physiology, and Neuroscience, Columbia, SC, 29208, USA
| | - Lawrence P Reagan
- University of South Carolina School of Medicine, Department of Pharmacology, Physiology, and Neuroscience, Columbia, SC, 29208, USA; Columbia VA Health Care System, Columbia, SC, 29208, USA
| |
Collapse
|
21
|
Nevo-Shenker M, Shalitin S. The Impact of Hypo- and Hyperglycemia on Cognition and Brain Development in Young Children with Type 1 Diabetes. Horm Res Paediatr 2022; 94:115-123. [PMID: 34247158 DOI: 10.1159/000517352] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 05/21/2021] [Indexed: 11/19/2022] Open
Abstract
Human and experimental animal data suggest both hyperglycemia and hypoglycemia can lead to altered brain structure and neurocognitive function in type 1 diabetes (T1D). Young children with T1D are prone to extreme fluctuations in glucose levels. The overlap of these potential dysglycemic insults to the brain during the time of most active brain and cognitive development may cause cellular and structural injuries that appear to persist into adult life. Brain structure and cognition in persons with T1D are influenced by age of onset, exposure to glycemic extremes such as severe hypoglycemic episodes, history of diabetic ketoacidosis, persistent hyperglycemia, and glucose variability. Studies using brain imaging techniques have shown brain changes that appear to be influenced by metabolic abnormalities characteristic of diabetes, changes apparent at diagnosis and persistent throughout adulthood. Some evidence suggests that brain injury might also directly contribute to psychological and mental health outcomes. Neurocognitive deficits manifest across multiple cognitive domains. Moreover, impaired executive function and mental health can affect patients' adherence to treatment. This review summarizes the current data on the impact of glycemic extremes on brain structure and cognitive function in youth with T1D and the use of new diabetes technologies that may reduce these complications.
Collapse
Affiliation(s)
- Michal Nevo-Shenker
- Jesse Z. and Lea Shafer Institute of Endocrinology and Diabetes, Schneider Children's Medical Center of Israel, Petach Tikva, Israel
| | - Shlomit Shalitin
- Jesse Z. and Lea Shafer Institute of Endocrinology and Diabetes, Schneider Children's Medical Center of Israel, Petach Tikva, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
22
|
Cacciatore M, Grasso EA, Tripodi R, Chiarelli F. Impact of glucose metabolism on the developing brain. Front Endocrinol (Lausanne) 2022; 13:1047545. [PMID: 36619556 PMCID: PMC9816389 DOI: 10.3389/fendo.2022.1047545] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
Glucose is the most important substrate for proper brain functioning and development, with an increased glucose consumption in relation to the need of creating new brain structures and connections. Therefore, alterations in glucose homeostasis will inevitably be associated with changes in the development of the Nervous System. Several studies demonstrated how the alteration of glucose homeostasis - both hyper and hypoglycemia- may interfere with the development of brain structures and cognitivity, including deficits in intelligence quotient, anomalies in learning and memory, as well as differences in the executive functions. Importantly, differences in brain structure and functionality were found after a single episode of diabetic ketoacidosis suggesting the importance of glycemic control and stressing the need of screening programs for type 1 diabetes to protect children from this dramatic condition. The exciting progresses of the neuroimaging techniques such as diffusion tensor imaging, has helped to improve the understanding of the effects, outcomes and mechanisms underlying brain changes following dysglycemia, and will lead to more insights on the physio-pathological mechanisms and related neurological consequences about hyper and hypoglycemia.
Collapse
|
23
|
Abstract
The American Diabetes Association (ADA) "Standards of Medical Care in Diabetes" includes the ADA's current clinical practice recommendations and is intended to provide the components of diabetes care, general treatment goals and guidelines, and tools to evaluate quality of care. Members of the ADA Professional Practice Committee, a multidisciplinary expert committee (https://doi.org/10.2337/dc22-SPPC), are responsible for updating the Standards of Care annually, or more frequently as warranted. For a detailed description of ADA standards, statements, and reports, as well as the evidence-grading system for ADA's clinical practice recommendations, please refer to the Standards of Care Introduction (https://doi.org/10.2337/dc22-SINT). Readers who wish to comment on the Standards of Care are invited to do so at professional.diabetes.org/SOC.
Collapse
|
24
|
Lee A, Mason ML, Lin T, Kumar SB, Kowdley D, Leung JH, Muhanna D, Sun Y, Ortega-Anaya J, Yu L, Fitzgerald J, DeVries AC, Nelson RJ, Weil ZM, Jiménez-Flores R, Parquette JR, Ziouzenkova O. Amino Acid Nanofibers Improve Glycemia and Confer Cognitive Therapeutic Efficacy to Bound Insulin. Pharmaceutics 2021; 14:pharmaceutics14010081. [PMID: 35056977 PMCID: PMC8778970 DOI: 10.3390/pharmaceutics14010081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/19/2021] [Accepted: 12/23/2021] [Indexed: 12/04/2022] Open
Abstract
Diabetes poses a high risk for debilitating complications in neural tissues, regulating glucose uptake through insulin-dependent and predominantly insulin-independent pathways. Supramolecular nanostructures provide a flexible strategy for combinatorial regulation of glycemia. Here, we compare the effects of free insulin to insulin bound to positively charged nanofibers comprised of self-assembling amino acid compounds (AACs) with an antioxidant-modified side chain moiety (AAC2) in both in vitro and in vivo models of type 1 diabetes. Free AAC2, free human insulin (hINS) and AAC2-bound-human insulin (AAC2-hINS) were tested in streptozotocin (STZ)-induced mouse model of type 1 diabetes. AAC2-hINS acted as a complex and exhibited different properties compared to free AAC2 or hINS. Mice treated with the AAC2-hINS complex were devoid of hypoglycemic episodes, had improved levels of insulin in circulation and in the brain, and increased expression of neurotransmitter taurine transporter, Slc6a6. Consequently, treatment with AAC2-hINS markedly advanced both physical and cognitive performance in mice with STZ-induced and genetic type 1 diabetes compared to treatments with free AAC2 or hINS. This study demonstrates that the flexible nanofiber AAC2 can serve as a therapeutic platform for the combinatorial treatment of diabetes and its complications.
Collapse
Affiliation(s)
- Aejin Lee
- Department of Human Sciences, The Ohio State University, Columbus, OH 43210, USA; (A.L.); (S.B.K.); (D.K.); (J.H.L.); (D.M.)
| | - McKensie L. Mason
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA; (M.L.M.); (T.L.); (Y.S.); (J.R.P.)
| | - Tao Lin
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA; (M.L.M.); (T.L.); (Y.S.); (J.R.P.)
| | - Shashi Bhushan Kumar
- Department of Human Sciences, The Ohio State University, Columbus, OH 43210, USA; (A.L.); (S.B.K.); (D.K.); (J.H.L.); (D.M.)
| | - Devan Kowdley
- Department of Human Sciences, The Ohio State University, Columbus, OH 43210, USA; (A.L.); (S.B.K.); (D.K.); (J.H.L.); (D.M.)
| | - Jacob H. Leung
- Department of Human Sciences, The Ohio State University, Columbus, OH 43210, USA; (A.L.); (S.B.K.); (D.K.); (J.H.L.); (D.M.)
| | - Danah Muhanna
- Department of Human Sciences, The Ohio State University, Columbus, OH 43210, USA; (A.L.); (S.B.K.); (D.K.); (J.H.L.); (D.M.)
| | - Yuan Sun
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA; (M.L.M.); (T.L.); (Y.S.); (J.R.P.)
| | - Joana Ortega-Anaya
- Department of Food Science and Technology, The Ohio State University, Columbus, OH 43210, USA; (J.O.-A.); (R.J.-F.)
| | - Lianbo Yu
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH 43210, USA;
| | - Julie Fitzgerald
- Department of Neuroscience, The Ohio State University, Columbus, OH 43210, USA; (J.F.); (A.C.D.); (Z.M.W.)
| | - A. Courtney DeVries
- Department of Neuroscience, The Ohio State University, Columbus, OH 43210, USA; (J.F.); (A.C.D.); (Z.M.W.)
- Department of Neuroscience, West Virginia University, Morgantown, WV 26506, USA
| | - Randy J. Nelson
- Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26506, USA;
| | - Zachary M. Weil
- Department of Neuroscience, The Ohio State University, Columbus, OH 43210, USA; (J.F.); (A.C.D.); (Z.M.W.)
| | - Rafael Jiménez-Flores
- Department of Food Science and Technology, The Ohio State University, Columbus, OH 43210, USA; (J.O.-A.); (R.J.-F.)
| | - Jon R. Parquette
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA; (M.L.M.); (T.L.); (Y.S.); (J.R.P.)
| | - Ouliana Ziouzenkova
- Department of Human Sciences, The Ohio State University, Columbus, OH 43210, USA; (A.L.); (S.B.K.); (D.K.); (J.H.L.); (D.M.)
- Correspondence: ; Tel.: +1-614-292-5034
| |
Collapse
|
25
|
Sharma S, Brown CE. Microvascular basis of cognitive impairment in type 1 diabetes. Pharmacol Ther 2021; 229:107929. [PMID: 34171341 DOI: 10.1016/j.pharmthera.2021.107929] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/23/2021] [Accepted: 05/19/2021] [Indexed: 02/07/2023]
Abstract
The complex computations of the brain require a constant supply of blood flow to meet its immense metabolic needs. Perturbations in blood supply, even in the smallest vascular networks, can have a profound effect on neuronal function and cognition. Type 1 diabetes is a prevalent and insidious metabolic disorder that progressively and heterogeneously disrupts vascular signalling and function in the brain. As a result, it is associated with an array of adverse vascular changes such as impaired regulation of vascular tone, pathological neovascularization and vasoregression, capillary plugging and blood brain barrier disruption. In this review, we highlight the link between microvascular dysfunction and cognitive impairment that is commonly associated with type 1 diabetes, with the aim of synthesizing current knowledge in this field.
Collapse
Affiliation(s)
- Sorabh Sharma
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Craig E Brown
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada; Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
26
|
Petruzelkova L, Jiranova P, Soupal J, Kozak M, Plachy L, Neuman V, Pruhova S, Obermannova B, Kolouskova S, Sumnik Z. Pre-school and school-aged children benefit from the switch from a sensor-augmented pump to an AndroidAPS hybrid closed loop: A retrospective analysis. Pediatr Diabetes 2021; 22:594-604. [PMID: 33576551 DOI: 10.1111/pedi.13190] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 11/18/2020] [Accepted: 01/29/2021] [Indexed: 01/10/2023] Open
Abstract
OBJECTIVE Data on closed loop systems in young children with type 1 diabetes (T1D) are limited. We tested the efficacy and safety of an open-source, do-it-yourself automated insulin delivery system AndroidAPS in preschool and school-aged children. RESEARCH DESIGN AND METHODS This retrospective study analyzed diabetes control in 18 preschool (3-7 years) and 18 school-aged children (8-14 years) with T1D who switched from a sensor-augmented pump (SAP) to AndroidAPS. We compared the CGM parameters and HbA1c levels 3 months before and 6 months after the initiation of AndroidAPS therapy and evaluated frequency of severe adverse events during AndroidAPS use, the most frequent reasons for its interruption, and the experience and psychosocial benefits of AndroidAPS use. RESULTS General glycemic control was significantly improved after the switch from SAP to AndroidAPS. Time in range (TIR) increased in both preschool (70.8%-78.6%, p = 0.004) and school-aged children (77.2%-82.9%, p < 0.001), whereas HbA1c levels decreased (preschool children 53.8-48.5 mmol/mol, p < 0.001; school-aged children 52.6-45.1 mmol/mol, p = 0.001). Time spent in range of 3.0-3.8 mmol/L increased slightly in school children (2.6%-3.8%, p = 0.040), but not in preschool children (3.0%-3.0%, p = 0.913). Time spent at <3 mmol/L remained unchanged in both preschool (0.95%-0.67%, p = 0.432) and school-aged children (0.8%-0.8%, p = 1.000). No episodes of severe hypoglycemia or DKA and significant improvement of quality of life were reported by AndroidAPS users. CONCLUSIONS AndroidAPS seems effective for T1D control both in preschool and school-age children but further validation by prospective studies is necessary.
Collapse
Affiliation(s)
- Lenka Petruzelkova
- Department of Pediatrics, Motol University Hospital and 2nd Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Pavlina Jiranova
- Department of Pediatrics, Motol University Hospital and 2nd Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Jan Soupal
- 3rd Department of Internal Medicine, 1st Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Milos Kozak
- IT division, CLOSED LOOP Systems, Prague, Czech Republic
| | - Lukas Plachy
- Department of Pediatrics, Motol University Hospital and 2nd Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Vit Neuman
- Department of Pediatrics, Motol University Hospital and 2nd Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Stepanka Pruhova
- Department of Pediatrics, Motol University Hospital and 2nd Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Barbora Obermannova
- Department of Pediatrics, Motol University Hospital and 2nd Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Stanislava Kolouskova
- Department of Pediatrics, Motol University Hospital and 2nd Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Zdenek Sumnik
- Department of Pediatrics, Motol University Hospital and 2nd Faculty of Medicine, Charles University, Prague, Czech Republic
| |
Collapse
|
27
|
Ekhlaspour L, Schoelwer MJ, Forlenza GP, DeBoer MD, Norlander L, Hsu L, Kingman R, Boranian E, Berget C, Emory E, Buckingham BA, Breton MD, Wadwa RP. Safety and Performance of the Tandem t:slim X2 with Control-IQ Automated Insulin Delivery System in Toddlers and Preschoolers. Diabetes Technol Ther 2021; 23:384-391. [PMID: 33226837 PMCID: PMC8080923 DOI: 10.1089/dia.2020.0507] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Background: Glycemic control is particularly challenging for toddlers and preschoolers with type 1 diabetes (T1D), and data on the use of closed-loop systems in this age range are limited. Materials and Methods: We studied use of a modified investigational version of the Tandem t:slim X2 Control-IQ system in children aged 2 to 5 years during 48 h in an outpatient supervised hotel (SH) setting followed by 3 days of home use to examine the safety of this system in young children. Meals and snacks were not restricted and boluses were estimated per parents' usual routine. At least 30 min of daily exercise was required during the SH phase. All participants were remotely monitored by study staff while on closed-loop in addition to monitoring by at least one parent throughout the study. Results: Twelve participants diagnosed with T1D for at least 3 months with mean age 4.7 ± 1.0 years (range 2.0-5.8 years) and hemoglobin A1c of 7.3% ± 0.8% were enrolled at three sites. With use of Control-IQ, the percentage of participants meeting our prespecified goals of less than 6% time below 70 mg/dL and less than 40% time above 180 mg/dL increased from 33% to 83%. Control-IQ use significantly improved percent time in range (70-180 mg/dL) compared to baseline (71.3 ± 12.5 vs. 63.7 ± 15.1, P = 0.016). All participants completed the study with no adverse events. Conclusions: In this brief pilot study, use of the modified Control-IQ system was safe in 2-5-year-old children with T1D and improved glycemic control.
Collapse
Affiliation(s)
- Laya Ekhlaspour
- Division of Endocrinology and Diabetes, Department of Pediatrics, Stanford University, Palo Alto, California, USA
- Stanford Diabetes Research Center, Stanford, California, USA
| | - Melissa J. Schoelwer
- Center for Diabetes Technology, University of Virginia, Charlottesville, Virginia, USA
- Department of Pediatrics, University of Virginia, Charlottesville, Virginia, USA
| | - Gregory P. Forlenza
- Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Mark D. DeBoer
- Center for Diabetes Technology, University of Virginia, Charlottesville, Virginia, USA
- Department of Pediatrics, University of Virginia, Charlottesville, Virginia, USA
| | - Lisa Norlander
- Division of Endocrinology and Diabetes, Department of Pediatrics, Stanford University, Palo Alto, California, USA
| | - Liana Hsu
- Division of Endocrinology and Diabetes, Department of Pediatrics, Stanford University, Palo Alto, California, USA
| | - Ryan Kingman
- Division of Endocrinology and Diabetes, Department of Pediatrics, Stanford University, Palo Alto, California, USA
| | - Emily Boranian
- Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Cari Berget
- Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Emma Emory
- Center for Diabetes Technology, University of Virginia, Charlottesville, Virginia, USA
| | - Bruce A. Buckingham
- Division of Endocrinology and Diabetes, Department of Pediatrics, Stanford University, Palo Alto, California, USA
- Stanford Diabetes Research Center, Stanford, California, USA
| | - Marc D. Breton
- Center for Diabetes Technology, University of Virginia, Charlottesville, Virginia, USA
| | - R. Paul Wadwa
- Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Address correspondence to: R. Paul Wadwa, MD, Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, 1775 Aurora Court, Aurora, CO 80045, USA
| |
Collapse
|
28
|
Liu S, Kuja-Halkola R, Larsson H, Lichtenstein P, Ludvigsson JF, Svensson AM, Gudbjörnsdottir S, Tideman M, Serlachius E, Butwicka A. Poor glycaemic control is associated with increased risk of neurodevelopmental disorders in childhood-onset type 1 diabetes: a population-based cohort study. Diabetologia 2021; 64:767-777. [PMID: 33454829 PMCID: PMC7940269 DOI: 10.1007/s00125-020-05372-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 11/09/2020] [Indexed: 12/16/2022]
Abstract
AIMS/HYPOTHESIS The aim of this study was to investigate the effect of childhood-onset type 1 diabetes on the risk of subsequent neurodevelopmental disorders, and the role of glycaemic control in this association. We hypothesised that individuals with poor glycaemic control may be at a higher risk of neurodevelopmental disorders compared with the general population, as well as compared with individuals with type 1 diabetes with adequate glycaemic control. METHODS This Swedish population-based cohort study was conducted using data from health registers from 1973 to 2013. We identified 8430 patients with childhood-onset type 1 diabetes (diagnosed before age 18 years) with a median age of diabetes onset of 9.6 (IQR 5.9-12.9) and 84,300 reference individuals from the general population, matched for sex, birth year and birth county. Cox models were used to estimate the effect of HbA1c on the risk of subsequent neurodevelopmental disorders, including attention-deficit/hyperactivity disorder (ADHD), autism spectrum disorders (ASD) and intellectual disability. RESULTS During a median follow-up period of 5.6 years, 398 (4.7%) individuals with type 1 diabetes received a diagnosis of any neurodevelopmental disorder compared with 3066 (3.6%) in the general population, corresponding to an adjusted HR (HRadjusted) of 1.31 (95% CI 1.18, 1.46) after additionally adjusting for other psychiatric morbidity prior to inclusion, parental psychiatric morbidity and parental highest education level. The risk of any neurodevelopmental disorder increased with HbA1c levels and the highest risk was observed in patients with mean HbA1c >8.6% (>70 mmol/mol) (HRadjusted 1.90 [95% CI 1.51, 2.37]) compared with reference individuals without type 1 diabetes. In addition, when compared with patients with diabetes with HbA1c <7.5% (<58 mmol/mol), patients with HbA1c >8.6% (>70 mmol/mol) had the highest risk of any neurodevelopmental disorder (HRadjusted 3.71 [95% CI 2.75, 5.02]) and of specific neurodevelopmental disorders including ADHD (HRadjusted 4.16 [95% CI 2.92, 5.94]), ASD (HRadjusted 2.84 [95% CI 1.52, 5.28]) and intellectual disability (HRadjusted 3.93 [95% CI 1.38, 11.22]). CONCLUSIONS/INTERPRETATION Childhood-onset type 1 diabetes is associated with an increased risk of neurodevelopmental disorders, with the highest risk seen in individuals with poor glycaemic control. Routine neurodevelopmental follow-up visits should be considered in type 1 diabetes, especially in patients with poor glycaemic control.
Collapse
Affiliation(s)
- Shengxin Liu
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Solna, Sweden.
| | - Ralf Kuja-Halkola
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Solna, Sweden
| | - Henrik Larsson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Solna, Sweden
- School of Medical Sciences, Örebro University, Örebro, Sweden
| | - Paul Lichtenstein
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Solna, Sweden
| | - Jonas F Ludvigsson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Solna, Sweden
- Department of Pediatrics, Örebro University Hospital, Örebro, Sweden
- Division of Epidemiology and Public Health, School of Medicine, University of Nottingham, Nottingham, UK
- Department of Medicine, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Ann-Marie Svensson
- Swedish National Diabetes Register, Centre of Registers, Gothenburg, Sweden
- Department of Molecular and Clinical Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Soffia Gudbjörnsdottir
- Swedish National Diabetes Register, Centre of Registers, Gothenburg, Sweden
- Department of Molecular and Clinical Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Magnus Tideman
- School of Health and Welfare, Halmstad University, Halmstad, Sweden
| | - Eva Serlachius
- Child and Adolescent Psychiatry, Stockholm Health Care Service, Region Stockholm, Sweden
| | - Agnieszka Butwicka
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Solna, Sweden
- Child and Adolescent Psychiatry, Stockholm Health Care Service, Region Stockholm, Sweden
- Department of Child Psychiatry, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
29
|
Mauras N, Buckingham B, White NH, Tsalikian E, Weinzimer SA, Jo B, Cato A, Fox LA, Aye T, Arbelaez AM, Hershey T, Tansey M, Tamborlane W, Foland-Ross LC, Shen H, Englert K, Mazaika P, Marzelli M, Reiss AL. Impact of Type 1 Diabetes in the Developing Brain in Children: A Longitudinal Study. Diabetes Care 2021; 44:983-992. [PMID: 33568403 PMCID: PMC7985430 DOI: 10.2337/dc20-2125] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 01/05/2021] [Indexed: 02/03/2023]
Abstract
OBJECTIVE To assess whether previously observed brain and cognitive differences between children with type 1 diabetes and control subjects without diabetes persist, worsen, or improve as children grow into puberty and whether differences are associated with hyperglycemia. RESEARCH DESIGN AND METHODS One hundred forty-four children with type 1 diabetes and 72 age-matched control subjects without diabetes (mean ± SD age at baseline 7.0 ± 1.7 years, 46% female) had unsedated MRI and cognitive testing up to four times over 6.4 ± 0.4 (range 5.3-7.8) years; HbA1c and continuous glucose monitoring were done quarterly. FreeSurfer-derived brain volumes and cognitive metrics assessed longitudinally were compared between groups using mixed-effects models at 6, 8, 10, and 12 years. Correlations with glycemia were performed. RESULTS Total brain, gray, and white matter volumes and full-scale and verbal intelligence quotients (IQs) were lower in the diabetes group at 6, 8, 10, and 12 years, with estimated group differences in full-scale IQ of -4.15, -3.81, -3.46, and -3.11, respectively (P < 0.05), and total brain volume differences of -15,410, -21,159, -25,548, and -28,577 mm3 at 6, 8, 10, and 12 years, respectively (P < 0.05). Differences at baseline persisted or increased over time, and brain volumes and cognitive scores negatively correlated with a life-long HbA1c index and higher sensor glucose in diabetes. CONCLUSIONS Detectable changes in brain volumes and cognitive scores persist over time in children with early-onset type 1 diabetes followed longitudinally; these differences are associated with metrics of hyperglycemia. Whether these changes can be reversed with scrupulous diabetes control requires further study. These longitudinal data support the hypothesis that the brain is a target of diabetes complications in young children.
Collapse
Affiliation(s)
- Nelly Mauras
- Division of Endocrinology, Diabetes & Metabolism, Department of Pediatrics, Nemours Children's Health System, Jacksonville, FL
| | - Bruce Buckingham
- Division of Endocrinology and Diabetes, Department of Pediatrics, Stanford University, Stanford, CA
| | - Neil H White
- Division of Endocrinology and Diabetes, Department of Pediatrics, Washington University in St. Louis, St. Louis, MO
| | - Eva Tsalikian
- Division of Endocrinology and Diabetes, Stead Family Department of Pediatrics, University of Iowa, Iowa City, IA
| | | | - Booil Jo
- Center for Interdisciplinary Brain Sciences, Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA
| | - Allison Cato
- Division of Neurology, Nemours Children's Health System, Jacksonville, FL
| | - Larry A Fox
- Division of Endocrinology, Diabetes & Metabolism, Department of Pediatrics, Nemours Children's Health System, Jacksonville, FL
| | - Tandy Aye
- Division of Endocrinology and Diabetes, Department of Pediatrics, Stanford University, Stanford, CA
| | - Ana Maria Arbelaez
- Division of Endocrinology and Diabetes, Department of Pediatrics, Washington University in St. Louis, St. Louis, MO
| | - Tamara Hershey
- Departments of Radiology and Psychiatry, Washington University in St. Louis, St. Louis, MO
| | - Michael Tansey
- Division of Endocrinology and Diabetes, Stead Family Department of Pediatrics, University of Iowa, Iowa City, IA
| | | | - Lara C Foland-Ross
- Center for Interdisciplinary Brain Sciences, Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA
| | - Hanyang Shen
- Center for Interdisciplinary Brain Sciences, Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA
| | - Kimberly Englert
- Division of Endocrinology, Diabetes & Metabolism, Department of Pediatrics, Nemours Children's Health System, Jacksonville, FL
| | - Paul Mazaika
- Center for Interdisciplinary Brain Sciences, Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA
| | - Matthew Marzelli
- Center for Interdisciplinary Brain Sciences, Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA
| | | |
Collapse
|
30
|
Abstract
PURPOSE OF REVIEW To synthesize findings from studies of neurocognitive complications in children with type 1 diabetes (T1D) and highlight potential risk and protective factors. RECENT FINDINGS Emerging evidence suggests that hyperglycemia and time in range may be more important for brain development than episodes of hypoglycemia. Further, diabetic ketoacidosis (DKA) at the time of T1D diagnosis appears to be a particular risk factor for neurocognitive complications, particularly deficits in executive function skills and memory, with differences in cerebral white matter microstructure seen via advanced magnetic resonance imaging methods, and lower scores on measures of attention and memory observed among children who were diagnosed in DKA. Other factors that may influence neurocognitive development include child sleep, caregiver distress, and diabetes device use, presumably due to improved glycemic control. We highlight neurocognitive risk and protective factors for children with T1D and priorities for future research in this high-risk population.
Collapse
Affiliation(s)
- Sarah S Jaser
- Department of Pediatrics, Vanderbilt University Medical Center, 2525 West End Ave., Suite 1200, Nashville, TN, 37203, USA.
| | - Lori C Jordan
- Department of Pediatrics, Vanderbilt University Medical Center, 2525 West End Ave., Suite 1200, Nashville, TN, 37203, USA
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Radiology and Radiological Science, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
31
|
Ding K, Reynolds CM, Driscoll KA, Janicke DM. The Relationship Between Executive Functioning, Type 1 Diabetes Self-Management Behaviors, and Glycemic Control in Adolescents and Young Adults. Curr Diab Rep 2021; 21:10. [PMID: 33616838 DOI: 10.1007/s11892-021-01379-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/13/2021] [Indexed: 10/22/2022]
Abstract
PURPOSE OF REVIEW Understanding barriers to self-management behaviors and glycemic stability may inform specific needs for behavior change in adolescents and young adults with type 1 diabetes (T1D). The current review aims to systematically synthesize the literature on the relationships between executive functioning, self-management, and A1C in adolescents and young adults with T1D. Fifteen studies were retained in the current review. Study quality assessment for the majority of the studies were "Fair" or "Good." RECENT FINDINGS This review highlights several advances in research design, including use of longitudinal designs, data from multiple informants, and use of objective measures. Adolescents and young adults reported that more executive functioning weaknesses were related to decreased self-management behaviors and higher A1C. The current review demonstrated that self-perceived executive functioning weaknesses negatively impact self-management behaviors and A1C. Future research is needed to determine the utility of objective measures in assessing the relationships between executive functioning, T1D self-management, and A1C.
Collapse
Affiliation(s)
- Ke Ding
- Department of Clinical and Health Psychology, University of Florida, P.O. Box 100165, Gainesville, Florida, 32610, USA.
| | - Cheyenne M Reynolds
- Department of Clinical and Health Psychology, University of Florida, P.O. Box 100165, Gainesville, Florida, 32610, USA
| | - Kimberly A Driscoll
- Department of Clinical and Health Psychology, University of Florida, P.O. Box 100165, Gainesville, Florida, 32610, USA
| | - David M Janicke
- Department of Clinical and Health Psychology, University of Florida, P.O. Box 100165, Gainesville, Florida, 32610, USA
| |
Collapse
|
32
|
Şahin İO. How curcumin affects hyperglycemia-induced optic nerve damage: A short review. J Chem Neuroanat 2021; 113:101932. [PMID: 33581265 DOI: 10.1016/j.jchemneu.2021.101932] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 01/30/2021] [Accepted: 02/03/2021] [Indexed: 11/19/2022]
Abstract
Considered to be one of the most important non-contagious systemic diseases worldwide, diabetes mellitus is still a topical issue on the health agenda with the problems it causes. Exposure to long-term hyperglycemia causes diabetic complications (diabetic neuropathy, nephropathy and retinopathy). The optic nerve can suffer damage by both diabetic retinopathy and neuropathy during diabetes, both because it is formed by axons of retinal ganglion cells and these axons belong to the central nervous system. The issue of hyperglycemia on the optic nerve have been described as diabetic papillopathy, posterior ischemic optic neuropathy, nonarteritic anterior ischemic optic neuropathy and optic atrophy in clinical studies. Experimental studies indicated axon-myelin degeneration in addition to microvascular and ultrastructural changes caused by the hyperglycemia-induced optic nerve damage. Although there are several proposed biochemical mechanisms to cause these damages, oxidative stress emerges as an important factor among them. Oxidative stress leads to pathological state on the nerve cells by affecting the DNA, protein and lipids at different levels. These are causing deterioration on nerve conduction velocity, myelin sheath and nerve structure, neurotrophic support system, glial cells and nerve function. Curcumin, as an important antioxidant, can be an ideal prophylactic agent to eliminate damages on optic nerve. Curcumin helps to regulate the balance of antioxidant and reactive oxygen species by targeting various molecules (NF-κB, STAT3, MAPK, Mfn2, Nrf2, pro-inflammatory cytokines). In addition, it shows healing or preventive effects on myelin sheath damage via regulating ferritin protein in oligodendrocytes. It is also effective in preventing neurovascular damage.
Collapse
Affiliation(s)
- İzem Olcay Şahin
- Department of Histology and Embryology, Medical School, Ondokuz Mayis University, 55139 Samsun, Turkey.
| |
Collapse
|
33
|
Redondo MJ, Libman I, Maahs DM, Lyons SK, Saraco M, Reusch J, Rodriguez H, DiMeglio LA. The Evolution of Hemoglobin A 1c Targets for Youth With Type 1 Diabetes: Rationale and Supporting Evidence. Diabetes Care 2021; 44:301-312. [PMID: 33431422 PMCID: PMC7818324 DOI: 10.2337/dc20-1978] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 11/08/2020] [Indexed: 02/03/2023]
Abstract
The American Diabetes Association 2020 Standards of Medical Care in Diabetes (Standards of Care) recommends a hemoglobin A1c (A1C) of <7% (53 mmol/mol) for many children with type 1 diabetes (T1D), with an emphasis on target personalization. A higher A1C target of <7.5% may be more suitable for youth who cannot articulate symptoms of hypoglycemia or have hypoglycemia unawareness and for those who do not have access to analog insulins or advanced diabetes technologies or who cannot monitor blood glucose regularly. Even less stringent A1C targets (e.g., <8%) may be warranted for children with a history of severe hypoglycemia, severe morbidities, or short life expectancy. During the "honeymoon" period and in situations where lower mean glycemia is achievable without excessive hypoglycemia or reduced quality of life, an A1C <6.5% may be safe and effective. Here, we provide a historical perspective of A1C targets in pediatrics and highlight evidence demonstrating detrimental effects of hyperglycemia in children and adolescents, including increased likelihood of brain structure and neurocognitive abnormalities, microvascular and macrovascular complications, long-term effects, and increased mortality. We also review data supporting a decrease over time in overall severe hypoglycemia risk for youth with T1D, partly associated with the use of newer insulins and devices, and weakened association between lower A1C and severe hypoglycemia risk. We present common barriers to achieving glycemic targets in pediatric diabetes and discuss some strategies to address them. We aim to raise awareness within the community on Standards of Care updates that impact this crucial goal in pediatric diabetes management.
Collapse
Affiliation(s)
- Maria J Redondo
- Texas Children's Hospital, Baylor College of Medicine, Houston, TX
| | - Ingrid Libman
- Division of Pediatric Endocrinology, Diabetes and Metabolism, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA
| | - David M Maahs
- Division of Pediatric Endocrinology and Diabetes, Stanford University, Stanford, CA
- Stanford Diabetes Research Center, Stanford University, Stanford, CA
- Health Research and Policy (Epidemiology), Stanford University, Stanford, CA
| | - Sarah K Lyons
- Texas Children's Hospital, Baylor College of Medicine, Houston, TX
| | | | - Jane Reusch
- University of Colorado and Rocky Mountain Regional VA Medical Center, Aurora, CO
| | - Henry Rodriguez
- USF Diabetes and Endocrinology Section, University of South Florida, Tampa, FL
| | - Linda A DiMeglio
- Division of Pediatric Endocrinology and Diabetology and Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN
| |
Collapse
|
34
|
Abstract
The American Diabetes Association (ADA) "Standards of Medical Care in Diabetes" includes the ADA's current clinical practice recommendations and is intended to provide the components of diabetes care, general treatment goals and guidelines, and tools to evaluate quality of care. Members of the ADA Professional Practice Committee, a multidisciplinary expert committee (https://doi.org/10.2337/dc21-SPPC), are responsible for updating the Standards of Care annually, or more frequently as warranted. For a detailed description of ADA standards, statements, and reports, as well as the evidence-grading system for ADA's clinical practice recommendations, please refer to the Standards of Care Introduction (https://doi.org/10.2337/dc21-SINT). Readers who wish to comment on the Standards of Care are invited to do so at professional.diabetes.org/SOC.
Collapse
|
35
|
Fox LA, Pfeffer E, Stockman J, Shapiro S, Dully K. Medical Neglect in Children and Adolescents with Diabetes Mellitus. JOURNAL OF CHILD & ADOLESCENT TRAUMA 2020; 13:259-269. [PMID: 33088382 PMCID: PMC7561625 DOI: 10.1007/s40653-018-0215-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Diabetes mellitus was a fatal disease for thousands of years, but the discovery of insulin in 1921 and major substantial improvements in care have made living with diabetes a chronic rather than fatal disease for many people, including children and adolescents. Diabetes mellitus is a lifestyle-altering diagnosis for the entire family. In some families, children and adolescents do not get the daily care they depend upon. This article reviews the consequences of medical neglect of children with diabetes and the optimal community response to concerns of medical neglect of diabetes. Criteria for placement in foster or substitute care are suggested.
Collapse
Affiliation(s)
- Larry A. Fox
- Northeast Florida Pediatric Diabetes Center, Jacksonville, FL USA
- Division of Endocrinology, Metabolism and Diabetes, Nemours Children’s Health System, Jacksonville, FL USA
| | - Erin Pfeffer
- Division of Endocrinology, Metabolism and Diabetes, Nemours Children’s Health System, Jacksonville, FL USA
| | | | - Sandra Shapiro
- Division of Forensic Pediatrics, First Coast Child Protection Team, University of Florida College of Medicine, 4539 Beach Boulevard, Jacksonville, FL 32207 USA
| | - Kathleen Dully
- Division of Forensic Pediatrics, First Coast Child Protection Team, University of Florida College of Medicine, 4539 Beach Boulevard, Jacksonville, FL 32207 USA
| |
Collapse
|
36
|
Foland-Ross LC, Tong G, Mauras N, Cato A, Aye T, Tansey M, White NH, Weinzimer SA, Englert K, Shen H, Mazaika PK, Reiss AL. Brain Function Differences in Children With Type 1 Diabetes: A Functional MRI Study of Working Memory. Diabetes 2020; 69:1770-1778. [PMID: 32471809 PMCID: PMC7372069 DOI: 10.2337/db20-0123] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 05/21/2020] [Indexed: 12/12/2022]
Abstract
Glucose is a primary fuel source to the brain, yet the influence of dysglycemia on neurodevelopment in children with type 1 diabetes remains unclear. We examined brain activation using functional MRI in 80 children with type 1 diabetes (mean ± SD age 11.5 ± 1.8 years; 46% female) and 47 children without diabetes (control group) (age 11.8 ± 1.5 years; 51% female) as they performed a visuospatial working memory (N-back) task. Results indicated that in both groups, activation scaled positively with increasing working memory load across many areas, including the frontoparietal cortex, caudate, and cerebellum. Between groups, children with diabetes exhibited reduced performance on the N-back task relative to children in the control group, as well as greater modulation of activation (i.e., showed greater increase in activation with higher working memory load). Post hoc analyses indicated that greater modulation was associated in the diabetes group with better working memory function and with an earlier age of diagnosis. These findings suggest that increased modulation may occur as a compensatory mechanism, helping in part to preserve working memory ability, and further, that children with an earlier onset require additional compensation. Future studies that test whether these patterns change as a function of improved glycemic control are warranted.
Collapse
Affiliation(s)
- Lara C Foland-Ross
- Center for Interdisciplinary Brain Sciences Research, Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA
| | - Gabby Tong
- Center for Interdisciplinary Brain Sciences Research, Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA
| | - Nelly Mauras
- Division of Endocrinology, Diabetes and Metabolism, Nemours Children's Health System, Jacksonville, FL
| | - Allison Cato
- Division of Neurology, Nemours Children's Health System, Jacksonville, FL
| | - Tandy Aye
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA
| | - Michael Tansey
- Department of Pediatrics, The University of Iowa, Iowa City, IA
| | - Neil H White
- Department of Pediatrics, Washington University in St. Louis and the St. Louis Children's Hospital, St. Louis, MO
| | | | - Kimberly Englert
- Division of Endocrinology, Diabetes and Metabolism, Nemours Children's Health System, Jacksonville, FL
| | - Hanyang Shen
- Center for Interdisciplinary Brain Sciences Research, Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA
| | - Paul K Mazaika
- Center for Interdisciplinary Brain Sciences Research, Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA
| | | | | |
Collapse
|
37
|
Šuput Omladič J, Slana Ozimič A, Vovk A, Šuput D, Repovš G, Dovc K, Bratina N, Avbelj Stefanija M, Battelino T. Acute Hyperglycemia and Spatial Working Memory in Adolescents With Type 1 Diabetes. Diabetes Care 2020; 43:1941-1944. [PMID: 32471909 PMCID: PMC7372055 DOI: 10.2337/dc20-0171] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 04/13/2020] [Indexed: 02/03/2023]
Abstract
OBJECTIVE To investigate the effect of acute hyperglycemia on brain function in adolescents with type 1 diabetes (T1D). RESEARCH DESIGN AND METHODS Twenty participants with T1D (aged 14.64 ± 1.78 years) and 20 age-matched healthy control subjects (aged 14.40 ± 2.82 years) performed two functional MRI sessions. Participants with T1D performed the first scanning session under euglycemic and the second under hyperglycemic clamp (20 mmol/L [360 mg/dL]). RESULTS Lower spatial working memory (sWM) capacity during acute hyperglycemia and significant differences in activation of regions of interest during different stages of the sWM task (P = 0.014) were observed. CONCLUSIONS Acute hyperglycemia negatively affected sWM capacity in adolescents with T1D, which is relevant for daily functioning and academic performance.
Collapse
Affiliation(s)
- Jasna Šuput Omladič
- UMC-University Children's Hospital Ljubljana, Ljubljana, Slovenia.,Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | | | - Andrej Vovk
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Dušan Šuput
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Grega Repovš
- Faculty of Arts, University of Ljubljana, Ljubljana, Slovenia
| | - Klemen Dovc
- UMC-University Children's Hospital Ljubljana, Ljubljana, Slovenia.,Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Nataša Bratina
- UMC-University Children's Hospital Ljubljana, Ljubljana, Slovenia.,Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Magdalena Avbelj Stefanija
- UMC-University Children's Hospital Ljubljana, Ljubljana, Slovenia.,Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Tadej Battelino
- UMC-University Children's Hospital Ljubljana, Ljubljana, Slovenia .,Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
38
|
Danne T, Tamborlane WV, Malievsky OA, Franco DR, Kawamura T, Demissie M, Niemoeller E, Goyeau H, Wardecki M, Battelino T. Efficacy and Safety of Insulin Glargine 300 Units/mL (Gla-300) Versus Insulin Glargine 100 Units/mL (Gla-100) in Children and Adolescents (6-17 years) With Type 1 Diabetes: Results of the EDITION JUNIOR Randomized Controlled Trial. Diabetes Care 2020; 43:1512-1519. [PMID: 32430458 PMCID: PMC7305011 DOI: 10.2337/dc19-1926] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 04/20/2020] [Indexed: 02/03/2023]
Abstract
OBJECTIVE To compare efficacy and safety of insulin glargine 300 units/mL (Gla-300) and 100 units/mL (Gla-100) in children and adolescents (6-17 years old) with type 1 diabetes. RESEARCH DESIGN AND METHODS EDITION JUNIOR was a noninferiority, international, open-label, two-arm, parallel-group, phase 3b trial. Participants were randomized 1:1 to Gla-300 or Gla-100, titrated to achieve fasting self-monitored plasma glucose levels of 90-130 mg/dL (5.0-7.2 mmol/L), with continuation of prior prandial insulin. The primary end point was change in HbA1c from baseline to week 26. Other assessments included change in fasting plasma glucose (FPG), hypoglycemia, hyperglycemia with ketosis, and adverse events. RESULTS In 463 randomized participants (Gla-300, n = 233; Gla-100, n = 230), comparable least squares (LS) mean (SE) reductions in HbA1c were observed from baseline to week 26 (-0.40% [0.06%] for both groups), with LS mean between-group difference of 0.004% (95% CI -0.17 to 0.18), confirming noninferiority at the prespecified 0.3% (3.3 mmol/mol) margin. Mean FPG change from baseline to week 26 was also similar between groups. During the 6-month treatment period, incidence and event rates of severe or documented (≤70 mg/dL [≤3.9 mmol/L]) hypoglycemia were similar between groups. Incidence of severe hypoglycemia was 6.0% with Gla-300 and 8.8% with Gla-100 (relative risk 0.68 [95% CI 0.35-1.30]). Incidence of any hyperglycemia with ketosis was 6.4% with Gla-300 and 11.8% with Gla-100. CONCLUSIONS Gla-300 provided similar glycemic control and safety profiles to Gla-100 in children and adolescents with type 1 diabetes, indicating that Gla-300 is a suitable therapeutic option in this population.
Collapse
Affiliation(s)
- Thomas Danne
- Children's Hospital AUF DER BULT, Hannover Medical School, Hannover, Germany
| | | | - Oleg A Malievsky
- Department of Pediatrics, Bashkir State Medical University, Ufa, Russian Federation
| | | | - Tomoyuki Kawamura
- Department of Pediatrics, Osaka City University Graduate School of Medicine, Osaka, Japan
| | | | | | | | | | - Tadej Battelino
- UMC - University Children's Hospital and Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
39
|
Mazaika PK, Marzelli M, Tong G, Foland-Ross LC, Buckingham BA, Aye T, Reiss AL. Functional near-infrared spectroscopy detects increased activation of the brain frontal-parietal network in youth with type 1 diabetes. Pediatr Diabetes 2020; 21:515-523. [PMID: 32003523 DOI: 10.1111/pedi.12992] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 01/16/2020] [Accepted: 01/24/2020] [Indexed: 12/30/2022] Open
Abstract
When considered as a group, children with type 1 diabetes have subtle cognitive deficits relative to neurotypical controls. However, the neural correlates of these differences remain poorly understood. Using functional near-infrared spectroscopy (fNIRS), we investigated the brain functional activations of young adolescents (19 individuals with type 1 diabetes, 18 healthy controls, ages 8-16 years) during a Go/No-Go response inhibition task. Both cohorts had the same performance on the task, but the individuals with type 1 diabetes subjects had higher activations in a frontal-parietal network including the bilateral supramarginal gyri and bilateral rostrolateral prefrontal cortices. The activations in these regions were positively correlated with fewer parent-reported conduct problems (ie, lower Conduct Problem scores) on the Behavioral Assessment System for Children, Second Edition. Lower Conduct Problem scores are characteristic of less rule-breaking behavior suggesting a link between this brain network and better self-control. These findings are consistent with a large functional magnetic resonance imaging (fMRI) study of children with type 1 diabetes using completely different participants. Perhaps surprisingly, the between-group activation results from fNIRS were statistically stronger than the results using fMRI. This pilot study is the first fNIRS investigation of executive function for individuals with type 1 diabetes. The results suggest that fNIRS is a promising functional neuroimaging resource for detecting the brain correlates of behavior in the pediatric clinic.
Collapse
Affiliation(s)
- Paul K Mazaika
- Department of Psychiatry and Behavioral Sciences, Center for Interdisciplinary Brain Sciences Research (CIBSR), Stanford University School of Medicine, Stanford, California
| | - Matthew Marzelli
- Department of Psychiatry and Behavioral Sciences, Center for Interdisciplinary Brain Sciences Research (CIBSR), Stanford University School of Medicine, Stanford, California
| | - Gabby Tong
- Department of Psychiatry and Behavioral Sciences, Center for Interdisciplinary Brain Sciences Research (CIBSR), Stanford University School of Medicine, Stanford, California
| | - Lara C Foland-Ross
- Department of Psychiatry and Behavioral Sciences, Center for Interdisciplinary Brain Sciences Research (CIBSR), Stanford University School of Medicine, Stanford, California
| | - Bruce A Buckingham
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California
| | - Tandy Aye
- Department of Psychiatry and Behavioral Sciences, Center for Interdisciplinary Brain Sciences Research (CIBSR), Stanford University School of Medicine, Stanford, California.,Department of Pediatrics, Stanford University School of Medicine, Stanford, California
| | - Allan L Reiss
- Department of Psychiatry and Behavioral Sciences, Center for Interdisciplinary Brain Sciences Research (CIBSR), Stanford University School of Medicine, Stanford, California.,Department of Pediatrics, Stanford University School of Medicine, Stanford, California.,Department of Radiology, Stanford University School of Medicine, Stanford, California
| |
Collapse
|
40
|
Karnebeek K, Rijks JM, Dorenbos E, Gerver WJM, Plat J, Vreugdenhil ACE. Changes in Free-Living Glycemic Profiles after 12 Months of Lifestyle Intervention in Children with Overweight and with Obesity. Nutrients 2020; 12:E1228. [PMID: 32357570 PMCID: PMC7282030 DOI: 10.3390/nu12051228] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/21/2020] [Accepted: 04/22/2020] [Indexed: 02/06/2023] Open
Abstract
Previous studies demonstrated that hyperglycemic glucose concentrations are observed in children that are overweight or have obesity. The aim of this study was to evaluate the effect of a 12 month lifestyle intervention on free-living glycemic profiles in children that were overweight or had obesity, and the association of the alterations with changes in cardiovascular risk parameters. BMI z-score, free-living glycemic profiles, continuous overlapping net glycemic action (CONGA), and cardiovascular parameters were evaluated before and after a multidisciplinary lifestyle intervention, in 33 non-diabetic children that were overweight or had obesity. In children with a decrease in BMI z-score, the duration which glucose concentrations were above the high-normal threshold (6.7 mmol/L) and the glycemic variability decreased significantly. In these children, a decrease in median sensor glucose was associated with decreases in LDL-cholesterol, and systolic and diastolic blood pressure z-score. A decrease in BMI z-score was associated with a decrease in CONGA1, 2, and 4. In conclusion, the glycemic profiles in free-living conditions in children that were overweight improved in children with a decrease in BMI z-score after lifestyle intervention. In those children, changes in median sensor glucose concentrations were associated with changes in LDL-cholesterol and blood pressure z-scores. These results suggest that glucose homeostasis can improve after one year of lifestyle intervention and that these improvements are associated with improvements in cardiovascular health parameters.
Collapse
Affiliation(s)
- Kylie Karnebeek
- Centre for Overweight Adolescent and Children’s Healthcare (COACH), Department of Paediatrics, Maastricht University Medical Centre, 6229 HX Maastricht, The Netherlands; (K.K.); (J.M.R.); (E.D.)
- School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Jesse M. Rijks
- Centre for Overweight Adolescent and Children’s Healthcare (COACH), Department of Paediatrics, Maastricht University Medical Centre, 6229 HX Maastricht, The Netherlands; (K.K.); (J.M.R.); (E.D.)
- School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Elke Dorenbos
- Centre for Overweight Adolescent and Children’s Healthcare (COACH), Department of Paediatrics, Maastricht University Medical Centre, 6229 HX Maastricht, The Netherlands; (K.K.); (J.M.R.); (E.D.)
- School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Willem-Jan M. Gerver
- Department of Paediatrics, Maastricht University Medical Centre, 6229 HX Maastricht, The Netherlands;
| | - Jogchum Plat
- Department of Nutrition and Movement Sciences, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, 6229 ER Maastricht, The Netherlands;
| | - Anita C. E. Vreugdenhil
- Centre for Overweight Adolescent and Children’s Healthcare (COACH), Department of Paediatrics, Maastricht University Medical Centre, 6229 HX Maastricht, The Netherlands; (K.K.); (J.M.R.); (E.D.)
- School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, 6229 ER Maastricht, The Netherlands
| |
Collapse
|
41
|
van Duinkerken E, Snoek FJ, de Wit M. The cognitive and psychological effects of living with type 1 diabetes: a narrative review. Diabet Med 2020; 37:555-563. [PMID: 31850538 PMCID: PMC7154747 DOI: 10.1111/dme.14216] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/13/2019] [Indexed: 01/09/2023]
Abstract
Across the lifespan, type 1 diabetes mellitus has a profound (neuro)psychological impact. In young people, type 1 diabetes can interfere with psychosocial development and hamper school performance. In adulthood, it can interfere with work life, relationships and parenting. A substantial minority of adults with type 1 diabetes experience coping difficulties and high diabetes-related distress. In youth and adulthood, type 1 diabetes is related to mild cognitive decrements as well as affective disorders, such as depression and anxiety. There is limited literature available that explores the interaction between cognitive and psychological comorbidity and underlying mechanisms. The aims of the present narrative review were to summarize the current state of the literature regarding both cognitive and psychological comorbidities in type 1 diabetes across the lifespan, and to explore potential links between the two domains of interest to make suggestions for future research and clinical practice.
Collapse
Affiliation(s)
- E. van Duinkerken
- Epilepsy CentreInstituto Estadual do Cérebro Paulo NiemeyerRio de JaneiroRJBrazil
- Department of Medical PsychologyAmsterdam University Medical CentresVrije UniveristeitAmsterdamThe Netherlands
- Amsterdam Diabetes Centre/Department of Internal MedicineAmsterdam University Medical CentresVrije UniveristeitAmsterdamThe Netherlands
| | - F. J. Snoek
- Department of Medical PsychologyAmsterdam University Medical CentresVrije UniveristeitAmsterdamThe Netherlands
| | - M. de Wit
- Department of Medical PsychologyAmsterdam University Medical CentresVrije UniveristeitAmsterdamThe Netherlands
| |
Collapse
|
42
|
Corathers SD, DeSalvo DJ. Therapeutic Inertia in Pediatric Diabetes: Challenges to and Strategies for Overcoming Acceptance of the Status Quo. Diabetes Spectr 2020; 33:22-30. [PMID: 32116450 PMCID: PMC7026749 DOI: 10.2337/ds19-0017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Despite significant advances in therapies for pediatric type 1 diabetes, achievement of glycemic targets remains elusive, and management remains burdensome for patients and their families. This article identifies common challenges in diabetes management at the patient-provider and health care system levels and proposes practical approaches to overcoming therapeutic inertia to enhance health outcomes for youth with type 1 diabetes.
Collapse
Affiliation(s)
- Sarah D. Corathers
- Division of Endocrinology, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH
| | | |
Collapse
|
43
|
Diabetes mellitus in the young and the old: Effects on cognitive functioning across the life span. Neurobiol Dis 2020; 134:104608. [DOI: 10.1016/j.nbd.2019.104608] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 08/06/2019] [Accepted: 09/04/2019] [Indexed: 01/12/2023] Open
|
44
|
Abstract
The American Diabetes Association (ADA) "Standards of Medical Care in Diabetes" includes the ADA's current clinical practice recommendations and is intended to provide the components of diabetes care, general treatment goals and guidelines, and tools to evaluate quality of care. Members of the ADA Professional Practice Committee, a multidisciplinary expert committee (https://doi.org/10.2337/dc20-SPPC), are responsible for updating the Standards of Care annually, or more frequently as warranted. For a detailed description of ADA standards, statements, and reports, as well as the evidence-grading system for ADA's clinical practice recommendations, please refer to the Standards of Care Introduction (https://doi.org/10.2337/dc20-SINT). Readers who wish to comment on the Standards of Care are invited to do so at professional.diabetes.org/SOC.
Collapse
|
45
|
Rama Chandran S, Jacob P, Choudhary P. A systematic review of the effect of prior hypoglycaemia on cognitive function in type 1 diabetes. Ther Adv Endocrinol Metab 2020; 11:2042018820906017. [PMID: 32110374 PMCID: PMC7025428 DOI: 10.1177/2042018820906017] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Accepted: 01/17/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The effect of prior hypoglycaemia on cognitive function in type 1 diabetes is an important unresolved clinical question. In this systematic review, we aimed to summarize the studies exploring the impact of prior hypoglycaemia on any aspect of cognitive function in type 1 diabetes. METHODS We used a multidatabase search platform Healthcare Database Advanced Search to search Medline, PubMed, EMBASE, EMCARE, CINAHL, PsycINFO, BNI, HMIC, and AMED from inception until 1 May 2019. We included studies on type 1 diabetes of any age. The outcome measure was any aspect of cognitive function. RESULTS The 62 studies identified were grouped as severe hypoglycaemia (SH) in childhood (⩽18 years) and adult-onset (>18 years) diabetes, nonsevere hypoglycaemia (NSH) and nocturnal hypoglycaemia (NH). SH in early childhood-onset diabetes, especially seizures and coma, was associated with poorer memory (verbal and visuospatial), as well as verbal intelligence. Among adult-onset diabetes, SH was associated with poorer cognitive performance in the older age (>55 years) group only. Early versus late exposure to SH had a significant association with cognitive dysfunction (CD). NSH and NH did not have any significant association with CD, while impaired awareness of hypoglycaemia was associated with poorer memory and cognitive-processing speeds. CONCLUSION The effect of SH on cognitive function is age dependent. Exposure to SH in early childhood (<10 years) and older age groups (>55 years) was associated with a moderate effect on the decrease in cognitive function in type 1 diabetes [PROSPERO ID: CRD42019141321].
Collapse
Affiliation(s)
| | - Peter Jacob
- King’s College London, Weston Education Centre, London, UK
| | - Pratik Choudhary
- Department of Diabetes, King’s College Hospital, London, UK
- King’s College London, Weston Education Centre, London, UK
| |
Collapse
|
46
|
Yang X, Chen Y, Zhang W, Zhang Z, Yang X, Wang P, Yuan H. Association Between Inflammatory Biomarkers and Cognitive Dysfunction Analyzed by MRI in Diabetes Patients. Diabetes Metab Syndr Obes 2020; 13:4059-4065. [PMID: 33149645 PMCID: PMC7605599 DOI: 10.2147/dmso.s271160] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 10/02/2020] [Indexed: 01/05/2023] Open
Abstract
AIM To explore the relationship between inflammatory biomarkers and cognitive dysfunction in patients with type 1 diabetes mellitus (T1DM) and type 2 diabetes mellitus (T2DM). METHODS T1DM patients (n=32), T2DM patients (n=90) and age-matched controls (n=36 and 81, respectively) were included. The 72-hour dynamic blood glucose test and cognitive function, including visuoconstructive function, executive function, learning and memory, attention, language expression ability, and orientation, were analyzed. The head, body and tail grey matter of the hippocampus were analyzed by magnetic resonance spectroscopy. In addition, serum HMGB1, IL-1β, IL-6, and TNF-α concentrations were examined. RESULTS HbA1C, MAGE and MODD were higher in T1DM patients than in T2DM patients (p<0.05). MoCA scores and IL-1β and IL-6 levels in patients with T2DM were higher than T1DM patients. NAA/Cr and Cho/Cr of the hippocampus were higher in patients with T1DM than in those with T2DM. Levels of inflammatory factors in T1DM and T2DM patients were higher than in nondiabetic subjects (p<0.05). Regression analysis showed that cognition was associated with MAGE, MODD, NAA/Cr of the left hippocampus and HMGB1 in T1DM patients, after adjustment for age, sex, BMI and other co-variables. In T2DM patients, cognitive impairment was associated with MAGE, NAA/Cr of the left hippocampus, HMGB1 and IL-6, after adjustment for co-variables such as sex, age and BMI. CONCLUSION T2DM patients have more cognitive impairment than T1DM patients. Changes in brain function connections and metabolites may be the structural basis of the differences in cognitive functional impairment. Inflammation is related to cognitive impairment in diabetes patients, especially in T2DM patients.
Collapse
Affiliation(s)
- Xue Yang
- Department of Education and Training, Diabetes Research Center, Henan Province People’s Hospital, Zhengzhou, Henan Province, People’s Republic of China
| | - Yiqi Chen
- Department of Endocrinology and Metabolism, Diabetes Research Center, Henan Province People’s Hospital, Zhengzhou, Henan Province, People’s Republic of China
| | - Wenshuo Zhang
- Department of Health Examination, Henan Province People’s Hospital, Zhengzhou, Henan Province, People’s Republic of China
| | - Zhen Zhang
- Department of Endocrinology, Zhoukou Central Hospital, Zhoukou, Henan Province, People’s Republic of China
| | - Xueli Yang
- Department of Endocrinology and Metabolism, Diabetes Research Center, Henan Province People’s Hospital, Zhengzhou, Henan Province, People’s Republic of China
| | - Pengxu Wang
- Department of Endocrinology and Metabolism, Diabetes Research Center, Henan Province People’s Hospital, Zhengzhou, Henan Province, People’s Republic of China
| | - Huijuan Yuan
- Department of Endocrinology and Metabolism, Diabetes Research Center, Henan Province People’s Hospital, Zhengzhou, Henan Province, People’s Republic of China
- Correspondence: Huijuan YuanDepartment of Endocrinology and Metabolism, Diabetes Research Center, Zhengzhou, Henan Province450003, People’s Republic of China Email
| |
Collapse
|
47
|
Voxel-based morphometry reveals regional reductions of gray matter volume in school-aged children with short-term type 1 diabetes mellitus. Neuroreport 2019; 30:516-521. [PMID: 30913134 DOI: 10.1097/wnr.0000000000001238] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Follow-up observation is needed for type 1 diabetes mellitus (T1DM) children due to the potential injury to the brain. However, the effect of short-term T1DM on gray matter in school-aged children is still unclear. This study aimed to evaluate gray matter volume (GMV) changes and their relationships with clinical variables in school-aged children with short-term T1DM. Twenty-one school-aged T1DM children were compared with 21 control patients, matched for sex and age. T1-weighted gradient echo three-dimensional MRI was performed using a 3.0-Tesla scanner and the resulting images were processed with FSL software to assess the difference in GMV between the two groups. The children with T1DM presented with decreased GMV in the left middle temporal gyrus (LMTG), the right postcentral gyrus, and the left triangular part of the frontal inferior gyrus (LTP-FIG). No significant changes in intelligence quotient (IQ) were found between the T1DM and control groups. In T1DM patients, there was a significant positive correlation between the GMV of LMTG and full-scale IQ or linguistic IQ. In addition, an increased glycosylated hemoglobin level was negatively correlated with reduced GMV in the LMTG and LTP-FIG in the T1DM group. These findings suggest that short-term T1DM could lead to regional structural brain deficits in school-aged children. The GMV of the LMTG may affect IQ, and poor recent glycemic control may have an adverse effect on GMV in the LMTG and LTP-FIG in T1DM children.Video abstract: http://links.lww.com/WNR/A506.
Collapse
|
48
|
Foland-Ross LC, Buckingam B, Mauras N, Arbelaez AM, Tamborlane WV, Tsalikian E, Cato A, Tong G, Englert K, Mazaika PK, Reiss AL. Executive task-based brain function in children with type 1 diabetes: An observational study. PLoS Med 2019; 16:e1002979. [PMID: 31815939 PMCID: PMC6901178 DOI: 10.1371/journal.pmed.1002979] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 11/04/2019] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Optimal glycemic control is particularly difficult to achieve in children and adolescents with type 1 diabetes (T1D), yet the influence of dysglycemia on the developing brain remains poorly understood. METHODS AND FINDINGS Using a large multi-site study framework, we investigated activation patterns using functional magnetic resonance imaging (fMRI) in 93 children with T1D (mean age 11.5 ± 1.8 years; 45.2% female) and 57 non-diabetic (control) children (mean age 11.8 ± 1.5 years; 50.9% female) as they performed an executive function paradigm, the go/no-go task. Children underwent scanning and cognitive and clinical assessment at 1 of 5 different sites. Group differences in activation occurring during the contrast of "no-go > go" were examined while controlling for age, sex, and scan site. Results indicated that, despite equivalent task performance between the 2 groups, children with T1D exhibited increased activation in executive control regions (e.g., dorsolateral prefrontal and supramarginal gyri; p = 0.010) and reduced suppression of activation in the posterior node of the default mode network (DMN; p = 0.006). Secondary analyses indicated associations between activation patterns and behavior and clinical disease course. Greater hyperactivation in executive control regions in the T1D group was correlated with improved task performance (as indexed by shorter response times to correct "go" trials; r = -0.36, 95% CI -0.53 to -0.16, p < 0.001) and with better parent-reported measures of executive functioning (r values < -0.29, 95% CIs -0.47 to -0.08, p-values < 0.007). Increased deficits in deactivation of the posterior DMN in the T1D group were correlated with an earlier age of T1D onset (r = -0.22, 95% CI -0.41 to -0.02, p = 0.033). Finally, exploratory analyses indicated that among children with T1D (but not control children), more severe impairments in deactivation of the DMN were associated with greater increases in hyperactivation of executive control regions (T1D: r = 0.284, 95% CI 0.08 to 0.46, p = 0.006; control: r = 0.108, 95% CI -0.16 to 0.36, p = 0.423). A limitation to this study involves glycemic effects on brain function; because blood glucose was not clamped prior to or during scanning, future studies are needed to assess the influence of acute versus chronic dysglycemia on our reported findings. In addition, the mechanisms underlying T1D-associated alterations in activation are unknown. CONCLUSIONS These data indicate that increased recruitment of executive control areas in pediatric T1D may act to offset diabetes-related impairments in the DMN, ultimately facilitating cognitive and behavioral performance levels that are equivalent to that of non-diabetic controls. Future studies that examine whether these patterns change as a function of improved glycemic control are warranted.
Collapse
Affiliation(s)
- Lara C. Foland-Ross
- Center for Interdisciplinary Brain Sciences Research, Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, California, United States of America
- * E-mail:
| | - Bruce Buckingam
- Division of Pediatric Endocrinology and Diabetes, Stanford University School of Medicine, Stanford, California, United States of America
| | - Nelly Mauras
- Division of Endocrinology, Diabetes and Metabolism, Nemours Children’s Health System, Jacksonville, Florida, United States of America
| | - Ana Maria Arbelaez
- Division of Endocrinology, Washington University, Saint Louis, Missouri, United States of America
| | - William V. Tamborlane
- Division of Endocrinology, Yale University, New Haven, Connecticut, United States of America
| | - Eva Tsalikian
- Division of Endocrinology, University of Iowa, Iowa City, Iowa, United States of America
| | - Allison Cato
- Division of Neurology, Nemours Children’s Health System, Jacksonville, Florida, United States of America
| | - Gabby Tong
- Center for Interdisciplinary Brain Sciences Research, Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, California, United States of America
| | - Kimberly Englert
- Division of Endocrinology, Diabetes and Metabolism, Nemours Children’s Health System, Jacksonville, Florida, United States of America
| | - Paul K. Mazaika
- Center for Interdisciplinary Brain Sciences Research, Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, California, United States of America
| | - Allan L. Reiss
- Center for Interdisciplinary Brain Sciences Research, Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, California, United States of America
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California, United States of America
- Department of Radiology, Stanford University School of Medicine, Stanford, California, United States of America
| | | |
Collapse
|
49
|
Cameron FJ, Northam EA, Ryan CM. The effect of type 1 diabetes on the developing brain. THE LANCET CHILD & ADOLESCENT HEALTH 2019; 3:427-436. [PMID: 30987935 DOI: 10.1016/s2352-4642(19)30055-0] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 02/17/2019] [Accepted: 02/18/2019] [Indexed: 12/25/2022]
Abstract
The effect of type 1 diabetes on the developing brain is a topic of primary research interest. A variety of potential dysglycaemic insults to the brain can cause cellular and structural injury and lead to altered neuropsychological outcomes. These outcomes might be subtle in terms of cognition but appear to persist into adult life. Age and circumstance at diagnosis appear to play a substantial role in potential CNS injury. A history of diabetic ketoacidosis and chronic hyperglycaemia appear to be more injurious than previously suspected, whereas a history of severe hypoglycaemia is perhaps less injurious. Neurocognitive deficits manifest across multiple cognitive domains, including executive function and speed of information processing. Some evidence suggests that subtle brain injury might directly contribute to psychological and mental health outcomes. Impaired executive function and mental health, in turn, could affect patients' adherence and the ability to make adaptive lifestyle choices. Impaired executive functioning creates a potential feedback loop of diabetic dysglycaemia leading to brain injury, further impaired executive function and mental health, which results in suboptimal adherence, and further dysglycaemia. Clinicians dealing with patients with suboptimal glycaemic outcomes should be aware of these potential issues.
Collapse
Affiliation(s)
- Fergus J Cameron
- The Department of Endocrinology and Diabetes, Royal Children's Hospital, Melbourne, VIC, Australia; The Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia; Murdoch Children's Research Institute, Melbourne, VIC, Australia.
| | - Elisabeth A Northam
- The School of Psychological Sciences, University of Melbourne, Melbourne, VIC, Australia; Murdoch Children's Research Institute, Melbourne, VIC, Australia
| | - Christopher M Ryan
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
50
|
Aye T, Mazaika PK, Mauras N, Marzelli MJ, Shen H, Hershey T, Cato A, Weinzimer SA, White NH, Tsalikian E, Jo B, Reiss AL. Impact of Early Diabetic Ketoacidosis on the Developing Brain. Diabetes Care 2019; 42:443-449. [PMID: 30573652 PMCID: PMC6385695 DOI: 10.2337/dc18-1405] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 11/19/2018] [Indexed: 02/03/2023]
Abstract
OBJECTIVE This study examined whether a history of diabetic ketoacidosis (DKA) is associated with changes in longitudinal cognitive and brain development in young children with type 1 diabetes. RESEARCH DESIGN AND METHODS Cognitive and brain imaging data were analyzed from 144 children with type 1 diabetes, ages 4 to <10 years, who participated in an observational study of the Diabetes Research in Children Network (DirecNet). Participants were grouped according to history of DKA severity (none/mild or moderate/severe). Each participant had unsedated MRI scans and cognitive testing at baseline and 18 months. RESULTS In 48 of 51 subjects, the DKA event occurred at the time of onset, at an average of 2.9 years before study entry. The moderate/severe DKA group gained more total and regional white and gray matter volume over the observed 18 months compared with the none/mild group. When matched by age at time of enrollment and average HbA1c during the 18-month interval, participants who had a history of moderate/severe DKA compared with none/mild DKA were observed to have significantly lower Full Scale Intelligence Quotient scores and cognitive performance on the Detectability and Commission subtests of the Conners' Continuous Performance Test II and the Dot Locations subtest of the Children's Memory Scale. CONCLUSIONS A single episode of moderate/severe DKA in young children at diagnosis is associated with lower cognitive scores and altered brain growth. Further studies are needed to assess whether earlier diagnosis of type 1 diabetes and prevention of DKA may reduce the long-term effect of ketoacidosis on the developing brain.
Collapse
Affiliation(s)
- Tandy Aye
- Division of Pediatric Endocrinology, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA
| | - Paul K Mazaika
- Center for Interdisciplinary Brain Sciences Research, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA
| | - Nelly Mauras
- Division of Pediatric Endocrinology, Department of Pediatrics, Nemours Children's Health System, Jacksonville, FL
| | - Matthew J Marzelli
- Center for Interdisciplinary Brain Sciences Research, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA
| | - Hanyang Shen
- Center for Interdisciplinary Brain Sciences Research, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA
| | - Tamara Hershey
- Departments of Psychiatry and Radiology, Washington University School of Medicine, St. Louis, MO
| | - Allison Cato
- Division of Neurology, Department of Pediatrics, Nemours Children's Health System, Jacksonville, FL
| | - Stuart A Weinzimer
- Section of Pediatric Endocrinology, Department of Pediatrics, Yale University, New Haven, CT
| | - Neil H White
- Division of Endocrinology and Diabetes, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO
| | - Eva Tsalikian
- Division of Endocrinology and Diabetes, Stead Family Department of Pediatrics, University of Iowa, Iowa City, IA
| | - Booil Jo
- Center for Interdisciplinary Brain Sciences Research, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA
| | | |
Collapse
|