1
|
Matsuoka R, Kitajima K, Nii T, Zou Z, Tanaka K, Joo K, Ohkawa Y, Ohga S, Meno C. Hyperglycaemia induces diet-dependent defects of the left-right axis by lowering intracellular pH. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167550. [PMID: 39442590 DOI: 10.1016/j.bbadis.2024.167550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/02/2024] [Accepted: 10/17/2024] [Indexed: 10/25/2024]
Abstract
Pregestational diabetes is a risk factor for congenital anomalies, including heterotaxy syndrome, a rare birth defect characterized by the abnormal arrangement of organs relative to the left-right (L-R) body axis. To provide insight into the underlying mechanism by which diabetes induces heterotaxy, we here analyzed the L-R axis of mouse embryos of diabetic dams. Various Pitx2 expression patterns indicative of disruption of L-R axis formation were apparent in such embryos. Expression of Nodal at the node, which triggers a Nodal-Pitx2 expression cascade in lateral plate mesoderm, showed marked regression associated with L-R axis malformation. This regression was similar to that apparent in Wnt3a-/- embryos, and canonical Wnt signalling was indeed found to be downregulated in embryos of diabetic dams. RNA sequencing revealed dysregulation of glycolysis in embryos of diabetic dams, and high glucose lowered intracellular pH in the primitive streak, leading to the suppression of Wnt signalling and the regression of Nodal expression. Of note, maternal vitamin A intake increased the incidence of L-R axis defects in embryos of diabetic dams, with dysregulation of retinoic acid metabolism being apparent in these embryos and in Wnt3a-/- embryos. Our results shed light on the mechanisms underlying embryopathies associated with maternal diabetes and suggest the importance of diet for prevention of heterotaxy.
Collapse
Affiliation(s)
- Ryohei Matsuoka
- Department of Developmental Biology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan; Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Keiko Kitajima
- Department of Developmental Biology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Takenobu Nii
- Department of Developmental Biology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Zhaonan Zou
- Department of Developmental Biology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Kaori Tanaka
- Division of Transcriptomics, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Kunihiko Joo
- Department of Cardiovascular Surgery, Kyushu University Hospital, Fukuoka 812-8582, Japan
| | - Yasuyuki Ohkawa
- Division of Transcriptomics, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Shouichi Ohga
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Chikara Meno
- Department of Developmental Biology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan.
| |
Collapse
|
2
|
Fainsod A, Vadigepalli R. Rethinking retinoic acid self-regulation: A signaling robustness network approach. Curr Top Dev Biol 2024; 161:113-141. [PMID: 39870431 DOI: 10.1016/bs.ctdb.2024.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2025]
Abstract
All-trans retinoic acid (ATRA) signaling is a major pathway regulating numerous differentiation, proliferation, and patterning processes throughout life. ATRA biosynthesis depends on the nutritional availability of vitamin A and other retinoids and carotenoids, while it is sensitive to dietary and environmental toxicants. This nutritional and environmental influence requires a robustness response that constantly fine-tunes the ATRA metabolism to maintain a context-specific, physiological range of signaling levels. The ATRA metabolic and signaling network is characterized by the existence of multiple enzymes, transcription factors, and binding proteins capable of performing the same activity. The partial spatiotemporal expression overlap of these enzymes and proteins yields different network compositions in the cells and tissues where this pathway is active. Genetic polymorphisms affecting the activity of individual network components further impact the network composition variability and the self-regulatory feedback response to ATRA fluctuations. Experiments directly challenging the robustness response uncovered a Pareto optimality in the ATRA network, such that some genetic backgrounds efficiently deal with excess ATRA but are very limited in their robustness response to reduced ATRA and vice versa. We discuss a network-focused framework to describe the robustness response and the Pareto optimality of the ATRA metabolic and signaling network.
Collapse
Affiliation(s)
- Abraham Fainsod
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel.
| | - Rajanikanth Vadigepalli
- Daniel Baugh Institute for Functional Genomics and Computational Biology, Department of Pathology and Genomic Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States.
| |
Collapse
|
3
|
Kreins AY, Dhalla F, Flinn AM, Howley E, Ekwall O, Villa A, Staal FJT, Anderson G, Gennery AR, Holländer GA, Davies EG. European Society for Immunodeficiencies guidelines for the management of patients with congenital athymia. J Allergy Clin Immunol 2024; 154:1391-1408. [PMID: 39303894 DOI: 10.1016/j.jaci.2024.07.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 07/06/2024] [Accepted: 07/15/2024] [Indexed: 09/22/2024]
Abstract
Congenital athymia is a life-limiting disorder due to rare inborn errors of immunity causing impaired thymus organogenesis or abnormal thymic stromal cell development and function. Athymic infants have a T-lymphocyte-negative, B-lymphocyte-positive, natural killer cell-positive immunophenotype with profound T-lymphocyte deficiency and are susceptible to severe infections and autoimmunity. Patients variably display syndromic features. Expanding access to newborn screening for severe combined immunodeficiency and T lymphocytopenia and broad genetic testing, including next-generation sequencing technologies, increasingly facilitate their timely identification. The recommended first-line treatment is allogeneic thymus transplantation, which is a specialized procedure available in Europe and the United States. Outcomes for athymic patients are best with early diagnosis and thymus transplantation before the development of infectious and inflammatory complications. These guidelines on behalf of the European Society for Immunodeficiencies provide a comprehensive review for clinicians who manage patients with inborn thymic stromal cell defects; they offer clinical practice recommendations focused on the diagnosis, investigation, risk stratification, and management of congenital athymia with the aim of improving patient outcomes.
Collapse
Affiliation(s)
- Alexandra Y Kreins
- Department of Immunology and Gene Therapy, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom; Infection Immunity and Inflammation Research and Teaching Department, University College London Great Ormond Street Institute of Child Health, London, United Kingdom.
| | - Fatima Dhalla
- Department of Paediatrics and Institute of Developmental and Regenerative Medicine, University of Oxford, Oxford, United Kingdom; Department of Clinical Immunology, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Aisling M Flinn
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom; Paediatric Stem Cell Transplant Unit, Great North Children's Hospital, Newcastle upon Tyne, United Kingdom; Department of Paediatric Immunology, Children's Health Ireland at Crumlin, Crumlin, Ireland
| | - Evey Howley
- Department of Immunology and Gene Therapy, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Olov Ekwall
- Department of Pediatrics, Institute of Clinical Sciences, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Department of Rheumatology and Inflammation Research, Institute of Medicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anna Villa
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Hospital, Milan, Italy; Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale Delle Ricerche (IRGB-CNR), Milan, Italy
| | - Frank J T Staal
- Department of Pediatrics, Pediatric Stem Cell Transplantation Program, Willem-Alexander Children's Hospital, Leiden, The Netherlands; Department of Immunology, Leiden University Medical Center, Leiden, The Netherlands
| | - Graham Anderson
- Institute of Immunology and Immunotherapy, Medical School, University of Birmingham, Birmingham, United Kingdom
| | - Andrew R Gennery
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom; Paediatric Stem Cell Transplant Unit, Great North Children's Hospital, Newcastle upon Tyne, United Kingdom
| | - Georg A Holländer
- Department of Paediatrics and Institute of Developmental and Regenerative Medicine, University of Oxford, Oxford, United Kingdom; Paediatric Immunology, Department of Biomedicine, University of Basel and University Children's Hospital Basel, Basel, Switzerland; Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - E Graham Davies
- Department of Immunology and Gene Therapy, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom; Infection Immunity and Inflammation Research and Teaching Department, University College London Great Ormond Street Institute of Child Health, London, United Kingdom
| |
Collapse
|
4
|
Dinges SS, Amini K, Notarangelo LD, Delmonte OM. Primary and secondary defects of the thymus. Immunol Rev 2024; 322:178-211. [PMID: 38228406 PMCID: PMC10950553 DOI: 10.1111/imr.13306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
The thymus is the primary site of T-cell development, enabling generation, and selection of a diverse repertoire of T cells that recognize non-self, whilst remaining tolerant to self- antigens. Severe congenital disorders of thymic development (athymia) can be fatal if left untreated due to infections, and thymic tissue implantation is the only cure. While newborn screening for severe combined immune deficiency has allowed improved detection at birth of congenital athymia, thymic disorders acquired later in life are still underrecognized and assessing the quality of thymic function in such conditions remains a challenge. The thymus is sensitive to injury elicited from a variety of endogenous and exogenous factors, and its self-renewal capacity decreases with age. Secondary and age-related forms of thymic dysfunction may lead to an increased risk of infections, malignancy, and autoimmunity. Promising results have been obtained in preclinical models and clinical trials upon administration of soluble factors promoting thymic regeneration, but to date no therapy is approved for clinical use. In this review we provide a background on thymus development, function, and age-related involution. We discuss disease mechanisms, diagnostic, and therapeutic approaches for primary and secondary thymic defects.
Collapse
Affiliation(s)
- Sarah S. Dinges
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Kayla Amini
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Luigi D. Notarangelo
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ottavia M. Delmonte
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
5
|
Lee LMY, Leung YC, Shum ASW. Hyperglycemia alters retinoic acid catabolism in embryos exposed to a maternal diabetic milieu. PLoS One 2023; 18:e0287253. [PMID: 37616226 PMCID: PMC10449132 DOI: 10.1371/journal.pone.0287253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 06/01/2023] [Indexed: 08/26/2023] Open
Abstract
Pregestational diabetes is highly associated with increased risk of birth defects. We previously reported that the expression of Cyp26a1, the major catabolizing enzyme for controlling retinoic acid (RA) homeostasis, is significantly down-regulated in embryos of diabetic mice, thereby increasing the embryo's susceptibility to malformations caused by RA dysregulation. However, the underlying mechanism for the down-regulation of Cyp26a1 remains unclear. This study aimed to investigate whether elevated maternal blood glucose in the diabetic milieu is a critical factor for the altered Cyp26a1 expression. Streptozotozin-induced diabetic pregnant mice were treated with phlorizin (PHZ) to reduce blood glucose concentrations via induction of renal glucosuria. Embryonic Cyp26a1 expression level, RA catabolic activity and susceptibility to various RA-induced abnormalities were examined. To test the dose-dependent effect of glucose on Cyp26a1 level, early head-fold stage rat embryos of normal pregnancy were cultured in vitro with varying concentrations of D-glucose, followed by quantification of Cyp26a1 transcripts. We found that Cyp26a1 expression, which was down-regulated in diabetic pregnancy, could be normalized under reduced maternal blood glucose level, concomitant with an increase in RA catabolic activity in embryonic tissues. Such normalization could successfully reduce the susceptibility to different RA-induced malformations including caudal regression, cleft palate and renal malformations. The expression level of Cyp26a1 in the embryo was inversely correlated with D-glucose concentrations. Diabetic patients suffer from retinopathy, dermopathy, male infertility and increased cancer risk. Coincidentally, RA dysregulation is also associated with these health problems. Our results provided evidence that elevated glucose can down-regulate Cyp26a1 expression level and disturb RA homeostasis, shedding light on the possibility of affecting the health of diabetic patients via a similar mechanism.
Collapse
Affiliation(s)
- Leo Man Yuen Lee
- Department of Applied Biology and Chemical Technology, Lo Ka Chung Research Centre for Natural Anti-Cancer Drug Development and State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hong Kong, Hong Kong
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Yun-chung Leung
- Department of Applied Biology and Chemical Technology, Lo Ka Chung Research Centre for Natural Anti-Cancer Drug Development and State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hong Kong, Hong Kong
| | - Alisa Sau Wun Shum
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| |
Collapse
|
6
|
Muratore IB, Garnier S. Ontogeny of collective behaviour. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220065. [PMID: 36802780 PMCID: PMC9939274 DOI: 10.1098/rstb.2022.0065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 10/21/2022] [Indexed: 02/21/2023] Open
Abstract
During their lifetime, superorganisms, like unitary organisms, undergo transformations that change the machinery of their collective behaviour. Here, we suggest that these transformations are largely understudied and propose that more systematic research into the ontogeny of collective behaviours is needed if we hope to better understand the link between proximate behavioural mechanisms and the development of collective adaptive functions. In particular, certain social insects engage in self-assemblage, forming dynamic and physically connected architectures with striking similarities to developing multicellular organisms, making them good model systems for ontogenetic studies of collective behaviour. However, exhaustive time series and three-dimensional data are required to thoroughly characterize the different life stages of the collective structures and the transitions between these stages. The well-established fields of embryology and developmental biology offer practical tools and theoretical frameworks that could speed up the acquisition of new knowledge about the formation, development, maturity and dissolution of social insect self-assemblages and, by extension, other superorganismal behaviours. We hope that this review will encourage an expansion of the ontogenetic perspective in the field of collective behaviour and, in particular, in self-assemblage research, which has far-reaching applications in robotics, computer science and regenerative medicine. This article is part of a discussion meeting issue 'Collective behaviour through time'.
Collapse
Affiliation(s)
| | - Simon Garnier
- Department of Biological Sciences, New Jersey Institute of Technology, Newark, NJ 07102, USA
| |
Collapse
|
7
|
De la Merced-García DS, Sánchez-Barrera Á, Hernández-Yonca J, Mancilla I, García-López G, Díaz NF, Terrazas LI, Molina-Hernández A. Increased Nuclear FOXP2 Is Related to Reduced Neural Stem Cell Number and Increased Neurogenesis in the Dorsal Telencephalon of Embryos of Diabetic Rats through Histamine H 1 Receptors. Cells 2023; 12:cells12030510. [PMID: 36766852 PMCID: PMC9914739 DOI: 10.3390/cells12030510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 12/27/2022] [Indexed: 02/09/2023] Open
Abstract
Diabetic rat embryos have increased cortical neurogenesis and neuron maturation, and their offspring presented altered neuron polarity, lamination, and diminished neuron excitability. The FOXP2 overexpression results in higher cortical neurogenesis by increasing the transition of radial glia to the intermediate progenitor. Similarly, histamine through H1-receptor activation increases cortical neuron differentiation. Indeed, blocking the H1-receptor by the systemic administration of chlorpheniramine to diabetic pregnant rats prevents increased neurogenesis. Here, we explore the relationship between the H1-receptor and FOXP2 on embryo neurogenesis from diabetic dams. Through qRT-PCR, Western blot, immunohistofluorescence, and flow cytometry, we showed an increased FOXP2 expression and nuclear localization, a reduced Nestin expression and -positive cells number, and a higher PKCα expression in the cortical neuroepithelium of fourteen-day-old embryos from diabetic rats. Interestingly, this scenario was prevented by the chlorpheniramine systemic administration to diabetic pregnant rats at embryo day twelve. These data, together with the bioinformatic analysis, suggest that higher H1-receptor activity in embryos under high glucose increases FOXP2 nuclear translocation, presumably through PKCα phosphorylation, impairing the transition of radial glia to intermediate progenitor and increasing neuron differentiation in embryos of diabetic rats.
Collapse
Affiliation(s)
- Diana Sarahi De la Merced-García
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Montes Urales 800, Miguel Hidalgo, Ciudad de Mexico 11000, Mexico
| | - Ángel Sánchez-Barrera
- Unidad de Biomedicina, Facultad de Estudios Superiores (FES)-Iztacala, Universidad Nacional Autónoma de México (UNAM), Av. de los Barrios, Los Reyes Iztacala, Tlanepantla 54090, Mexico
| | - Juan Hernández-Yonca
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Montes Urales 800, Miguel Hidalgo, Ciudad de Mexico 11000, Mexico
| | - Ismael Mancilla
- Departamento de Infectología, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Montes Urales 800, Miguel Hidalgo, Ciudad de Mexico 11000, Mexico
| | - Guadalupe García-López
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Montes Urales 800, Miguel Hidalgo, Ciudad de Mexico 11000, Mexico
| | - Néstor Fabián Díaz
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Montes Urales 800, Miguel Hidalgo, Ciudad de Mexico 11000, Mexico
| | - Luis Ignacio Terrazas
- Departamento de Infectología, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Montes Urales 800, Miguel Hidalgo, Ciudad de Mexico 11000, Mexico
- Laboratorio Nacional en Salud FES-Iztacala, Universidad Nacional Autónoma de México (UNAM), Av. de los Barrios, Los Reyes Iztacala, Tlanepantla 54090, Mexico
| | - Anayansi Molina-Hernández
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Montes Urales 800, Miguel Hidalgo, Ciudad de Mexico 11000, Mexico
- Correspondence:
| |
Collapse
|
8
|
Abstract
Vitamin A (retinol) is a critical micronutrient required for the control of stem cell functions, cell differentiation, and cell metabolism in many different cell types, both during embryogenesis and in the adult organism. However, we must obtain vitamin A from food sources. Thus, the uptake and metabolism of vitamin A by intestinal epithelial cells, the storage of vitamin A in the liver, and the metabolism of vitamin A in target cells to more biologically active metabolites, such as retinoic acid (RA) and 4-oxo-RA, must be precisely regulated. Here, I will discuss the enzymes that metabolize vitamin A to RA and the cytochrome P450 Cyp26 family of enzymes that further oxidize RA. Because much progress has been made in understanding the regulation of ALDH1a2 (RALDH2) actions in the intestine, one focus of this review is on the metabolism of vitamin A in intestinal epithelial cells and dendritic cells. Another focus is on recent data that 4-oxo-RA is a ligand required for the maintenance of hematopoietic stem cell dormancy and the important role of RARβ (RARB) in these stem cells. Despite this progress, many questions remain in this research area, which links vitamin A metabolism to nutrition, immune functions, developmental biology, and nuclear receptor pharmacology.
Collapse
Affiliation(s)
- Lorraine J Gudas
- Department of Pharmacology, and Revlon Pharmaceutical Professor of Pharmacology and Toxicology, Pharmacology Department, and the Meyer Cancer Center of Weill Cornell Medicine of Cornell University, 1300 York Ave, New York, NY 10065
| |
Collapse
|
9
|
Kreins AY, Maio S, Dhalla F. Inborn errors of thymic stromal cell development and function. Semin Immunopathol 2020; 43:85-100. [PMID: 33257998 PMCID: PMC7925491 DOI: 10.1007/s00281-020-00826-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 11/09/2020] [Indexed: 12/31/2022]
Abstract
As the primary site for T cell development, the thymus is responsible for the production and selection of a functional, yet self-tolerant T cell repertoire. This critically depends on thymic stromal cells, derived from the pharyngeal apparatus during embryogenesis. Thymic epithelial cells, mesenchymal and vascular elements together form the unique and highly specialised microenvironment required to support all aspects of thymopoiesis and T cell central tolerance induction. Although rare, inborn errors of thymic stromal cells constitute a clinically important group of conditions because their immunological consequences, which include autoimmune disease and T cell immunodeficiency, can be life-threatening if unrecognised and untreated. In this review, we describe the molecular and environmental aetiologies of the thymic stromal cell defects known to cause disease in humans, placing particular emphasis on those with a propensity to cause thymic hypoplasia or aplasia and consequently severe congenital immunodeficiency. We discuss the principles underpinning their diagnosis and management, including the use of novel tools to aid in their identification and strategies for curative treatment, principally transplantation of allogeneic thymus tissue.
Collapse
Affiliation(s)
- Alexandra Y Kreins
- UCL Great Ormond Street Institute of Child Health, London, UK.,Department of Immunology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Stefano Maio
- Developmental Immunology, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Fatima Dhalla
- Developmental Immunology, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK. .,Department of Clinical Immunology, Oxford University Hospitals, Oxford, UK.
| |
Collapse
|
10
|
Bhalla P, Wysocki CA, van Oers NSC. Molecular Insights Into the Causes of Human Thymic Hypoplasia With Animal Models. Front Immunol 2020; 11:830. [PMID: 32431714 PMCID: PMC7214791 DOI: 10.3389/fimmu.2020.00830] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 04/14/2020] [Indexed: 12/30/2022] Open
Abstract
22q11.2 deletion syndrome (DiGeorge), CHARGE syndrome, Nude/SCID and otofaciocervical syndrome type 2 (OTFCS2) are distinct clinical conditions in humans that can result in hypoplasia and occasionally, aplasia of the thymus. Thymic hypoplasia/aplasia is first suggested by absence or significantly reduced numbers of recent thymic emigrants, revealed in standard-of-care newborn screens for T cell receptor excision circles (TRECs). Subsequent clinical assessments will often indicate whether genetic mutations are causal to the low T cell output from the thymus. However, the molecular mechanisms leading to the thymic hypoplasia/aplasia in diverse human syndromes are not fully understood, partly because the problems of the thymus originate during embryogenesis. Rodent and Zebrafish models of these clinical syndromes have been used to better define the underlying basis of the clinical presentations. Results from these animal models are uncovering contributions of different cell types in the specification, differentiation, and expansion of the thymus. Cell populations such as epithelial cells, mesenchymal cells, endothelial cells, and thymocytes are variably affected depending on the human syndrome responsible for the thymic hypoplasia. In the current review, findings from the diverse animal models will be described in relation to the clinical phenotypes. Importantly, these results are suggesting new strategies for regenerating thymic tissue in patients with distinct congenital disorders.
Collapse
Affiliation(s)
- Pratibha Bhalla
- Department of Immunology, The University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Christian A. Wysocki
- Department of Pediatrics, The University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Nicolai S. C. van Oers
- Department of Immunology, The University of Texas Southwestern Medical Center, Dallas, TX, United States
- Department of Pediatrics, The University of Texas Southwestern Medical Center, Dallas, TX, United States
- Department of Microbiology, The University of Texas Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
11
|
Du Q, de la Morena MT, van Oers NSC. The Genetics and Epigenetics of 22q11.2 Deletion Syndrome. Front Genet 2020; 10:1365. [PMID: 32117416 PMCID: PMC7016268 DOI: 10.3389/fgene.2019.01365] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 12/12/2019] [Indexed: 12/19/2022] Open
Abstract
Chromosome 22q11.2 deletion syndrome (22q11.2del) is a complex, multi-organ disorder noted for its varying severity and penetrance among those affected. The clinical problems comprise congenital malformations; cardiac problems including outflow tract defects, hypoplasia of the thymus, hypoparathyroidism, and/or dysmorphic facial features. Additional clinical issues that can appear over time are autoimmunity, renal insufficiency, developmental delay, malignancy and neurological manifestations such as schizophrenia. The majority of individuals with 22q11.2del have a 3 Mb deletion of DNA on chromosome 22, leading to a haploinsufficiency of ~106 genes, which comprise coding RNAs, noncoding RNAs, and pseudogenes. The consequent haploinsufficiency of many of the coding genes are well described, including the key roles of T-box Transcription Factor 1 (TBX1) and DiGeorge Critical Region 8 (DGCR8) in the clinical phenotypes. However, the haploinsufficiency of these genes alone cannot account for the tremendous variation in the severity and penetrance of the clinical complications among those affected. Recent RNA and DNA sequencing approaches are uncovering novel genetic and epigenetic differences among 22q11.2del patients that can influence disease severity. In this review, the role of coding and non-coding genes, including microRNAs (miRNA) and long noncoding RNAs (lncRNAs), will be discussed in relation to their bearing on 22q11.2del with an emphasis on TBX1.
Collapse
Affiliation(s)
- Qiumei Du
- Department of Immunology, The University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - M. Teresa de la Morena
- Department of Pediatrics, The University of Washington and Seattle Children’s Hospital, Seattle, WA, United States
| | - Nicolai S. C. van Oers
- Department of Immunology, The University of Texas Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
12
|
Sirbu IO, Chiş AR, Moise AR. Role of carotenoids and retinoids during heart development. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158636. [PMID: 31978553 DOI: 10.1016/j.bbalip.2020.158636] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/15/2020] [Accepted: 01/16/2020] [Indexed: 02/08/2023]
Abstract
The nutritional requirements of the developing embryo are complex. In the case of dietary vitamin A (retinol, retinyl esters and provitamin A carotenoids), maternal derived nutrients serve as precursors to signaling molecules such as retinoic acid, which is required for embryonic patterning and organogenesis. Despite variations in the composition and levels of maternal vitamin A, embryonic tissues need to generate a precise amount of retinoic acid to avoid congenital malformations. Here, we summarize recent findings regarding the role and metabolism of vitamin A during heart development and we survey the association of genes known to affect retinoid metabolism or signaling with various inherited disorders. A better understanding of the roles of vitamin A in the heart and of the factors that affect retinoid metabolism and signaling can help design strategies to meet nutritional needs and to prevent birth defects and disorders associated with altered retinoid metabolism. This article is part of a Special Issue entitled Carotenoids recent advances in cell and molecular biology edited by Johannes von Lintig and Loredana Quadro.
Collapse
Affiliation(s)
- Ioan Ovidiu Sirbu
- Biochemistry Department, Victor Babes University of Medicine and Pharmacy, Eftimie Murgu Nr. 2, 300041 Timisoara, Romania; Timisoara Institute of Complex Systems, V. Lucaciu 18, 300044 Timisoara, Romania.
| | - Aimée Rodica Chiş
- Biochemistry Department, Victor Babes University of Medicine and Pharmacy, Eftimie Murgu Nr. 2, 300041 Timisoara, Romania
| | - Alexander Radu Moise
- Medical Sciences Division, Northern Ontario School of Medicine, Sudbury, ON P3E 2C6, Canada; Department of Chemistry and Biochemistry, Biology and Biomolecular Sciences Program, Laurentian University, Sudbury, ON P3E 2C6, Canada.
| |
Collapse
|
13
|
Highly Sensitive Quantitative Determination of Retinoic Acid Levels, Retinoic Acid Synthesis, and Catabolism in Embryonic Tissue Using a Reporter Cell-Based Method. Methods Mol Biol 2019. [PMID: 31359397 DOI: 10.1007/978-1-4939-9585-1_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
The effect of all-trans retinoic acid (RA) on embryogenesis is tissue specific and highly concentration dependent. Using a liquid chromatography/mass spectrometry-based method to quantify trace amounts of RA in embryonic tissue requires expensive specialist facilities. Here, we describe the use of a RA response element (RARE)-lacZ reporter cell-based method, which is simple and cost effective, to measure RA levels in small pieces of tissue from the embryo. We further apply this method to quantitatively assay activities of RA-synthesizing and RA-catabolizing enzymes, the key regulators of RA bioavailability in tissues and developing organs of the embryo.
Collapse
|
14
|
Di Renzo F, Metruccio F, Battistoni M, Moretto A, Menegola E. Relative potency ranking of azoles altering craniofacial morphogenesis in rats: An in vitro data modelling approach. Food Chem Toxicol 2019; 123:553-560. [DOI: 10.1016/j.fct.2018.12.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 12/03/2018] [Accepted: 12/04/2018] [Indexed: 12/30/2022]
|