1
|
Wu Y, Xu Y, Xu L. Pharmacological therapy targeting the immune response in atherosclerosis. Int Immunopharmacol 2024; 141:112974. [PMID: 39168023 DOI: 10.1016/j.intimp.2024.112974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/14/2024] [Accepted: 08/16/2024] [Indexed: 08/23/2024]
Abstract
Atherosclerosis (AS) is a chronic inflammatory disease characterized by the formation of atherosclerotic plaques that consist of numerous cells including smooth muscle cells, endothelial cells, immune cells, and foam cells. The most abundant innate and adaptive immune cells, including neutrophils, monocytes, macrophages, B cells, and T cells, play a pivotal role in the inflammatory response, lipoprotein metabolism, and foam cell formation to accelerate atherosclerotic plaque formation. In this review, we have discussed the underlying mechanisms of activated immune cells in promoting AS and reviewed published clinical trials for the treatment of AS by suppressing immune cell activation. We have also presented some crucial shortcomings of current clinical trials. Lastly, we have discussed the therapeutic potential of novel compounds, including herbal medicine and dietary food, in alleviating AS in animals. Despite these limitations, further clinical trials and experimental studies will enhance our understanding of the mechanisms modulated by immune cells and promote widespread drug use to treat AS by suppressing immune system-induced inflammation.
Collapse
Affiliation(s)
- Yirong Wu
- Department of Cardiology, Hangzhou First People's Hospital, 310006 Zhejiang, China
| | - Yizhou Xu
- Department of Cardiology, Hangzhou First People's Hospital, 310006 Zhejiang, China.
| | - Linhao Xu
- Department of Cardiology, Hangzhou First People's Hospital, 310006 Zhejiang, China; Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Translational Medicine Research Center, Hangzhou First People's Hospital, Hangzhou 310006, Zhejiang, China.
| |
Collapse
|
2
|
Cervantes J, Koska J, Kramer F, Akilesh S, Alpers CE, Mullick AE, Reaven P, Kanter JE. Elevated apolipoprotein C3 augments diabetic kidney disease and associated atherosclerosis in type 2 diabetes. JCI Insight 2024; 9:e177268. [PMID: 38743496 PMCID: PMC11383354 DOI: 10.1172/jci.insight.177268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 05/02/2024] [Indexed: 05/16/2024] Open
Abstract
Diabetes increases the risk of both cardiovascular disease and kidney disease. Notably, most of the excess cardiovascular risk in people with diabetes is in those with kidney disease. Apolipoprotein C3 (APOC3) is a key regulator of plasma triglycerides, and it has recently been suggested to play a role in both type 1 diabetes-accelerated atherosclerosis and kidney disease progression. To investigate if APOC3 plays a role in kidney disease in people with type 2 diabetes, we analyzed plasma levels of APOC3 from the Veterans Affairs Diabetes Trial. Elevated baseline APOC3 levels predicted a greater loss of renal function. To mechanistically test if APOC3 plays a role in diabetic kidney disease and associated atherosclerosis, we treated black and tan, brachyury, WT and leptin-deficient (OB; diabetic) mice, a model of type 2 diabetes, with an antisense oligonucleotide (ASO) to APOC3 or a control ASO, all in the setting of human-like dyslipidemia. Silencing APOC3 prevented diabetes-augmented albuminuria, renal glomerular hypertrophy, monocyte recruitment, and macrophage accumulation, partly driven by reduced ICAM1 expression. Furthermore, reduced levels of APOC3 suppressed atherosclerosis associated with diabetes. This suggests that targeting APOC3 might benefit both diabetes-accelerated atherosclerosis and kidney disease.
Collapse
Affiliation(s)
- Jocelyn Cervantes
- Division of Metabolism, Endocrinology, and Nutrition, UW Medicine Diabetes Institute, University of Washington, Seattle, Washington, USA
| | - Juraj Koska
- VA Phoenix Health Care System, Phoenix, Arizona, USA
| | - Farah Kramer
- Division of Metabolism, Endocrinology, and Nutrition, UW Medicine Diabetes Institute, University of Washington, Seattle, Washington, USA
| | - Shreeram Akilesh
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Charles E. Alpers
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | | | - Peter Reaven
- VA Phoenix Health Care System, Phoenix, Arizona, USA
| | - Jenny E. Kanter
- Division of Metabolism, Endocrinology, and Nutrition, UW Medicine Diabetes Institute, University of Washington, Seattle, Washington, USA
| |
Collapse
|
3
|
Banerjee D, Boboila S, Okochi S, Angelastro JM, Kadenhe-Chiweshe AV, Lopez G, Califano A, Connolly EP, Greene LA, Yamashiro DJ. Activating Transcription Factor 5 Promotes Neuroblastoma Metastasis by Inducing Anoikis Resistance. CANCER RESEARCH COMMUNICATIONS 2023; 3:2518-2530. [PMID: 38014922 PMCID: PMC10714915 DOI: 10.1158/2767-9764.crc-23-0154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/20/2023] [Accepted: 11/16/2023] [Indexed: 11/29/2023]
Abstract
MYCN-amplified neuroblastoma often presents as a highly aggressive metastatic disease with a poor prognosis. Activating transcription factor 5 (ATF5) is implicated in neural cell differentiation and cancer cell survival. Here, we show that ATF5 is highly expressed in patients with stage 4 high-risk neuroblastoma, with increased expression correlating with a poorer prognosis. We demonstrated that ATF5 promotes the metastasis of neuroblastoma cell lines in vivo. Functionally, ATF5 depletion significantly reduced xenograft tumor growth and metastasis of neuroblastoma cells to the bone marrow and liver. Mechanistically, ATF5 endows tumor cells with resistance to anoikis, thereby increasing their survival in systemic circulation and facilitating metastasis. We identified the proapoptotic BCL-2 modifying factor (BMF) as a critical player in ATF5-regulated neuroblastoma anoikis. ATF5 suppresses BMF under suspension conditions at the transcriptional level, promoting anoikis resistance, whereas BMF knockdown significantly prevents ATF5 depletion-induced anoikis. Therapeutically, we showed that a cell-penetrating dominant-negative ATF5 peptide, CP-d/n-ATF5, inhibits neuroblastoma metastasis to the bone marrow and liver by inducing anoikis sensitivity in circulating tumor cells. Our study identified ATF5 as a metastasis promoter and CP-d/n-ATF5 as a potential antimetastatic therapeutic agent for neuroblastoma. SIGNIFICANCE This study shows that resistance to anoikis in neuroblastoma is mediated by ATF5 and offers a rationale for targeting ATF5 to treat metastatic neuroblastoma.
Collapse
Affiliation(s)
- Debarshi Banerjee
- Department of Pediatrics, Columbia University Irving Medical Center, New York, New York
| | - Shuobo Boboila
- Department of Pediatrics, Columbia University Irving Medical Center, New York, New York
- Department of Radiation Oncology, Columbia University Irving Medical Center, New York, New York
| | - Shunpei Okochi
- Department of Surgery, Columbia University Irving Medical Center, New York, New York
| | - James M. Angelastro
- Department of Molecular Biosciences, University of California, Davis, School of Veterinary Medicine, Davis, California
| | | | - Gonzalo Lopez
- Department of Systems Biology, Columbia University Irving Medical Center, New York, New York
| | - Andrea Califano
- Department of Systems Biology, Columbia University Irving Medical Center, New York, New York
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York
| | - Eileen P. Connolly
- Department of Radiation Oncology, Columbia University Irving Medical Center, New York, New York
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York
| | - Lloyd A. Greene
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York
| | - Darrell J. Yamashiro
- Department of Pediatrics, Columbia University Irving Medical Center, New York, New York
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York
| |
Collapse
|
4
|
Kothari V, Savard C, Tang J, Lee SP, Subramanian S, Wang S, den Hartigh LJ, Bornfeldt KE, Ioannou GN. sTREM2 is a plasma biomarker for human NASH and promotes hepatocyte lipid accumulation. Hepatol Commun 2023; 7:e0265. [PMID: 37820278 PMCID: PMC10578746 DOI: 10.1097/hc9.0000000000000265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 07/28/2023] [Indexed: 10/13/2023] Open
Abstract
BACKGROUND Pathogenetic mechanisms of the progression of NAFL to advanced NASH coupled with potential noninvasive biomarkers and novel therapeutic targets are active areas of investigation. The recent finding that increased plasma levels of a protein shed by myeloid cells -soluble Triggering Receptor Expressed on Myeloid cells 2 (sTREM2) -may be a biomarker for NASH has received much interest. We aimed to test sTREM2 as a biomarker for human NASH and investigate the role of sTREM2 in the pathogenesis of NASH. METHODS We conducted studies in both humans (comparing patients with NASH vs. NAFL) and in mice (comparing different mouse models of NASH) involving measurements of TREM2 gene and protein expression levels in the liver as well as circulating sTREM2 levels in plasma. We investigated the pathogenetic role of sTREM2 in hepatic steatosis using primary hepatocytes and bone marrow derived macrophages. RESULTS RNA sequencing analysis of livers from patients with NASH or NAFL as well as livers from 2 mouse models of NASH revealed elevated TREM2 expression in patients/mice with NASH as compared with NAFL. Plasma levels of sTREM2 were significantly higher in a well-characterized cohort of patients with biopsy-proven NASH versus NAFL (area under receiver-operating curve 0.807). Mechanistic studies revealed that cocultures of primary hepatocytes and macrophages with an impaired ability to shed sTREM2 resulted in reduced hepatocyte lipid droplet formation on palmitate stimulation, an effect that was counteracted by the addition of exogenous sTREM2 chimeric protein. Conversely, exogenous sTREM2 chimeric protein increased lipid droplet formation, triglyceride content, and expression of the lipid transporter CD36 in hepatocytes. Furthermore, inhibition of CD36 markedly attenuated sTREM2-induced lipid droplet formation in mouse primary hepatocytes. CONCLUSIONS Elevated levels of sTREM2 due to TREM2 shedding may directly contribute to the pathogenesis of NAFLD by promoting hepatocyte lipid accumulation, as well as serving as a biomarker for distinguishing patients with NASH versus NAFL. Further investigation of sTREM2 as a clinically useful diagnostic biomarker and of the therapeutic effects of targeting sTREM2 in NASH is warranted.
Collapse
Affiliation(s)
- Vishal Kothari
- Department of Medicine, Division of Metabolism, Endocrinology and Nutrition, UW Medicine Diabetes Institute, University of Washington, Seattle, Washington, USA
| | - Christopher Savard
- Department of Medicine, Division of Gastroenterology, Veterans Affairs Puget Sound Health Care System, Seattle, Washington, USA
- Department of Medicine, Division of Gastroenterology, University of Washington, Seattle, Washington, USA
- Research and Development, Veterans Affairs Puget Sound Health Care System, Seattle, Washington, USA
| | - Jingjing Tang
- Department of Medicine, Division of Metabolism, Endocrinology and Nutrition, UW Medicine Diabetes Institute, University of Washington, Seattle, Washington, USA
| | - Sum P. Lee
- Department of Medicine, Division of Gastroenterology, University of Washington, Seattle, Washington, USA
| | - Savitha Subramanian
- Department of Medicine, Division of Metabolism, Endocrinology and Nutrition, UW Medicine Diabetes Institute, University of Washington, Seattle, Washington, USA
| | - Shari Wang
- Department of Medicine, Division of Metabolism, Endocrinology and Nutrition, UW Medicine Diabetes Institute, University of Washington, Seattle, Washington, USA
| | - Laura J. den Hartigh
- Department of Medicine, Division of Metabolism, Endocrinology and Nutrition, UW Medicine Diabetes Institute, University of Washington, Seattle, Washington, USA
| | - Karin E. Bornfeldt
- Department of Medicine, Division of Metabolism, Endocrinology and Nutrition, UW Medicine Diabetes Institute, University of Washington, Seattle, Washington, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - George N. Ioannou
- Department of Medicine, Division of Gastroenterology, Veterans Affairs Puget Sound Health Care System, Seattle, Washington, USA
- Department of Medicine, Division of Gastroenterology, University of Washington, Seattle, Washington, USA
- Research and Development, Veterans Affairs Puget Sound Health Care System, Seattle, Washington, USA
| |
Collapse
|
5
|
Yunn NO, Kim J, Ryu SH, Cho Y. A stepwise activation model for the insulin receptor. Exp Mol Med 2023; 55:2147-2161. [PMID: 37779149 PMCID: PMC10618199 DOI: 10.1038/s12276-023-01101-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/25/2023] [Accepted: 07/24/2023] [Indexed: 10/03/2023] Open
Abstract
The binding of insulin to the insulin receptor (IR) triggers a cascade of receptor conformational changes and autophosphorylation, leading to the activation of metabolic and mitogenic pathways. Recent advances in the structural and functional analyses of IR have revealed the conformations of the extracellular domains of the IR in inactive and fully activated states. However, the early activation mechanisms of this receptor remain poorly understood. The structures of partially activated IR in complex with aptamers provide clues for understanding the initial activation mechanism. In this review, we discuss the structural and functional features of IR complexed with various ligands and propose a model to explain the sequential activation mechanism. Moreover, we discuss the structures of IR complexed with biased agonists that selectively activate metabolic pathways and provide insights into the design of selective agonists and their clinical implications.
Collapse
Affiliation(s)
- Na-Oh Yunn
- Postech Biotech Center, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea.
| | - Junhong Kim
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Sung Ho Ryu
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Yunje Cho
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea.
- Department of Biomedical Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea.
| |
Collapse
|
6
|
Manrique-Acevedo C, Soares RN, Smith JA, Park LK, Burr K, Ramirez-Perez FI, McMillan NJ, Ferreira-Santos L, Sharma N, Olver TD, Emter CA, Parks EJ, Limberg JK, Martinez-Lemus LA, Padilla J. Impact of sex and diet-induced weight loss on vascular insulin sensitivity in type 2 diabetes. Am J Physiol Regul Integr Comp Physiol 2023; 324:R293-R304. [PMID: 36622084 PMCID: PMC9942885 DOI: 10.1152/ajpregu.00249.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/02/2022] [Accepted: 12/26/2022] [Indexed: 01/10/2023]
Abstract
Vascular insulin resistance, a major characteristic of obesity and type 2 diabetes (T2D), manifests with blunting of insulin-induced vasodilation. Although there is evidence that females are more whole body insulin sensitive than males in the healthy state, whether sex differences exist in vascular insulin sensitivity is unclear. Also uncertain is whether weight loss can reestablish vascular insulin sensitivity in T2D. The purpose of this investigation was to 1) establish if sex differences in vasodilatory responses to insulin exist in absence of disease, 2) determine whether female sex affords protection against the development of vascular insulin resistance with long-term overnutrition and obesity, and 3) examine if diet-induced weight loss can restore vascular insulin sensitivity in men and women with T2D. First, we show in healthy mice and humans that sex does not influence insulin-induced femoral artery dilation and insulin-stimulated leg blood flow, respectively. Second, we provide evidence that female mice are protected against impairments in insulin-induced dilation caused by overnutrition-induced obesity. Third, we show that men and women exhibit comparable levels of vascular insulin resistance when T2D develops but that diet-induced weight loss is effective at improving insulin-stimulated leg blood flow, particularly in women. Finally, we provide indirect evidence that these beneficial effects of weight loss may be mediated by a reduction in endothelin-1. In aggregate, the present data indicate that female sex confers protection against obesity-induced vascular insulin resistance and provide supportive evidence that, in women with T2D, vascular insulin resistance can be remediated with diet-induced weight loss.
Collapse
Affiliation(s)
- Camila Manrique-Acevedo
- Division of Endocrinology and Metabolism, Department of Medicine, University of Missouri, Columbia, Missouri
- NextGen Precision Health, University of Missouri, Columbia, Missouri
- Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, Missouri
| | - Rogerio N Soares
- NextGen Precision Health, University of Missouri, Columbia, Missouri
| | - James A Smith
- NextGen Precision Health, University of Missouri, Columbia, Missouri
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri
| | - Lauren K Park
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri
- Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri
| | - Katherine Burr
- NextGen Precision Health, University of Missouri, Columbia, Missouri
| | | | - Neil J McMillan
- NextGen Precision Health, University of Missouri, Columbia, Missouri
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri
| | | | - Neekun Sharma
- NextGen Precision Health, University of Missouri, Columbia, Missouri
- Department of Medicine, Center for Precision Medicine, University of Missouri, Columbia, Missouri
| | - T Dylan Olver
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri
- Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Craig A Emter
- NextGen Precision Health, University of Missouri, Columbia, Missouri
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri
| | - Elizabeth J Parks
- NextGen Precision Health, University of Missouri, Columbia, Missouri
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Missouri, Columbia, Missouri
| | - Jacqueline K Limberg
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri
| | - Luis A Martinez-Lemus
- NextGen Precision Health, University of Missouri, Columbia, Missouri
- Department of Medicine, Center for Precision Medicine, University of Missouri, Columbia, Missouri
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri
| | - Jaume Padilla
- NextGen Precision Health, University of Missouri, Columbia, Missouri
- Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, Missouri
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri
| |
Collapse
|
7
|
Padilla J, Manrique-Acevedo C, Martinez-Lemus LA. New insights into mechanisms of endothelial insulin resistance in type 2 diabetes. Am J Physiol Heart Circ Physiol 2022; 323:H1231-H1238. [PMID: 36331555 PMCID: PMC9705017 DOI: 10.1152/ajpheart.00537.2022] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022]
Abstract
Insulin resistance in the vasculature is a hallmark of type 2 diabetes (T2D), and blunting of insulin-induced vasodilation is its primary consequence. Individuals with T2D exhibit a marked impairment in insulin-induced dilation in resistance arteries across vascular beds. Importantly, reduced insulin-stimulated vasodilation and blood flow to skeletal muscle limits glucose uptake and contributes to impaired glucose control in T2D. The study of mechanisms responsible for the suppressed vasodilatory effects of insulin has been a growing topic of interest for not only its association with glucose control and extension to T2D but also its relationship with cardiovascular disease development and progression. In this mini-review, we integrate findings from recent studies by our group with the existing literature focused on the mechanisms underlying endothelial insulin resistance in T2D.
Collapse
Affiliation(s)
- Jaume Padilla
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri
- NextGen Precision Health, University of Missouri, Columbia, Missouri
- Harry S. Truman Memorial Veterans' Hospital, Columbia, Missouri
| | - Camila Manrique-Acevedo
- NextGen Precision Health, University of Missouri, Columbia, Missouri
- Harry S. Truman Memorial Veterans' Hospital, Columbia, Missouri
- Division of Endocrinology and Metabolism, Department of Medicine, University of Missouri, Columbia, Missouri
| | - Luis A Martinez-Lemus
- NextGen Precision Health, University of Missouri, Columbia, Missouri
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri
- Center for Precision Medicine, Department of Medicine, University of Missouri, Columbia, Missouri
| |
Collapse
|
8
|
Activation of the insulin receptor by an insulin mimetic peptide. Nat Commun 2022; 13:5594. [PMID: 36151101 PMCID: PMC9508239 DOI: 10.1038/s41467-022-33274-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 09/09/2022] [Indexed: 01/21/2023] Open
Abstract
Insulin receptor (IR) signaling defects cause a variety of metabolic diseases including diabetes. Moreover, inherited mutations of the IR cause severe insulin resistance, leading to early morbidity and mortality with limited therapeutic options. A previously reported selective IR agonist without sequence homology to insulin, S597, activates IR and mimics insulin's action on glycemic control. To elucidate the mechanism of IR activation by S597, we determine cryo-EM structures of the mouse IR/S597 complex. Unlike the compact T-shaped active IR resulting from the binding of four insulins to two distinct sites, two S597 molecules induce and stabilize an extended T-shaped IR through the simultaneous binding to both the L1 domain of one protomer and the FnIII-1 domain of another. Importantly, S597 fully activates IR mutants that disrupt insulin binding or destabilize the insulin-induced compact T-shape, thus eliciting insulin-like signaling. S597 also selectively activates IR signaling among different tissues and triggers IR endocytosis in the liver. Overall, our structural and functional studies guide future efforts to develop insulin mimetics targeting insulin resistance caused by defects in insulin binding and stabilization of insulin-activated state of IR, demonstrating the potential of structure-based drug design for insulin-resistant diseases.
Collapse
|
9
|
Pettit-Mee RJ, Power G, Cabral-Amador FJ, Ramirez-Perez FI, Nogueira Soares R, Sharma N, Liu Y, Christou DD, Kanaley JA, Martinez-Lemus LA, Manrique-Acevedo CM, Padilla J. Endothelial HSP72 is not reduced in type 2 diabetes nor is it a key determinant of endothelial insulin sensitivity. Am J Physiol Regul Integr Comp Physiol 2022; 323:R43-R58. [PMID: 35470695 DOI: 10.1152/ajpregu.00006.2022] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Impaired endothelial insulin signaling and consequent blunting of insulin-induced vasodilation is a feature of type 2 diabetes (T2D) that contributes to vascular disease and glycemic dysregulation. However, the molecular mechanisms underlying endothelial insulin resistance remain poorly known. Herein, we tested the hypothesis that endothelial insulin resistance in T2D is attributed to reduced expression of heat shock protein 72(HSP72). HSP72 is a cytoprotective chaperone protein that can be upregulated with heating and is reported to promote insulin sensitivity in metabolically active tissues, in part via inhibition of JNK activity. Accordingly, we further hypothesized that, in T2D individuals, seven days of passive heat treatment via hot water immersion to waist-level would improve leg blood flow responses to an oral glucose load (i.e., endogenous insulin stimulation) via induction of endothelial HSP72. In contrast, we found that: 1) endothelial insulin resistance in T2D mice and humans was not associated with reduced HSP72 in aortas and venous endothelial cells, respectively; 2) after passive heat treatment, improved leg blood flow responses to an oral glucose load did not parallel with increased endothelial HSP72; 3) downregulation of HSP72 (via small-interfering RNA) or upregulation of HSP72 (via heating) in cultured endothelial cells did not impair or enhance insulin signaling, respectively, nor was JNK activity altered. Collectively, these findings do not support the hypothesis that reduced HSP72 is a key driver of endothelial insulin resistance in T2D but provide novel evidence that lower-body heating may be an effective strategy for improving leg blood flow responses to glucose ingestion-induced hyperinsulinemia.
Collapse
Affiliation(s)
- Ryan J Pettit-Mee
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, United States
| | - Gavin Power
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, United States
| | | | | | | | - Neekun Sharma
- Department of Medicine, University of Missouri, Columbia, MO, United States
| | - Ying Liu
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, United States
| | - Demetra D Christou
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, United States
| | - Jill A Kanaley
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, United States
| | - Luis A Martinez-Lemus
- Department of Medicine, University of Missouri, Columbia, MO, United States.,Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, United States.,Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, United States
| | - Camila M Manrique-Acevedo
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, United States.,Division of Endocrinology, Diabetes and Metabolism, Department of Medicine University of Missouri, Columbia, MO, United States.,Research Services, Harry S. Truman Memorial Veterans Hospital, Columbia, MO, United States
| | - Jaume Padilla
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, United States.,Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, United States
| |
Collapse
|
10
|
Miao R, Fang X, Wei J, Wu H, Wang X, Tian J. Akt: A Potential Drug Target for Metabolic Syndrome. Front Physiol 2022; 13:822333. [PMID: 35330934 PMCID: PMC8940245 DOI: 10.3389/fphys.2022.822333] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 02/07/2022] [Indexed: 12/21/2022] Open
Abstract
The serine/threonine kinase Akt, also known as protein kinase B (PKB), is one of the key factors regulating glucose and lipid energy metabolism, and is the core focus of current research on diabetes and metabolic diseases. Akt is mostly expressed in key metabolism-related organs and it is activated in response to various stimuli, including cell stress, cell movement, and various hormones and drugs that affect cell metabolism. Genetic and pharmacological studies have shown that Akt is necessary to maintain the steady state of glucose and lipid metabolism and a variety of cellular responses. Existing evidence shows that metabolic syndrome is related to insulin resistance and lipid metabolism disorders. Based on a large number of studies on Akt-related pathways and reactions, we believe that Akt can be used as a potential drug target to effectively treat metabolic syndrome.
Collapse
Affiliation(s)
- Runyu Miao
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.,Graduate College, Beijing University of Chinese Medicine, Beijing, China
| | - Xinyi Fang
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.,Graduate College, Beijing University of Chinese Medicine, Beijing, China
| | - Jiahua Wei
- Graduate College, Changchun University of Chinese Medicine, Changchun, China
| | - Haoran Wu
- Graduate College, Beijing University of Chinese Medicine, Beijing, China
| | - Xinmiao Wang
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jiaxing Tian
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
11
|
Ngcobo SR, Nkambule BB, Nyambuya TM, Mokgalaboni K, Ntsethe A, Mxinwa V, Ziqubu K, Ntamo Y, Nyawo TA, Dludla PV. Activated monocytes as a therapeutic target to attenuate vascular inflammation and lower cardiovascular disease-risk in patients with type 2 diabetes: A systematic review of preclinical and clinical studies. Biomed Pharmacother 2022; 146:112579. [PMID: 35062054 DOI: 10.1016/j.biopha.2021.112579] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 12/20/2021] [Accepted: 12/20/2021] [Indexed: 12/20/2022] Open
Abstract
Low grade inflammation is associated with the progression of atherosclerosis. Patients with type 2 diabetes (T2D) have altered cholesterol levels, which are targeted by free radicals to promote lipid peroxidation. Elevated levels of monocyte-associated cytokines such as interleukin (IL)-6, monocyte chemoattractant protein 1 (MCP-1), nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), and tumor necrosis factor-alpha (TNF-α), subsequently drive endothelial tissue injury. In fact, the levels of circulating platelet-monocyte aggregates in patients with T2D is a robust marker for atherosclerosis and a cardiovascular disease (CVD)-risk factor. To identify eligible studies, we searched the major online databases using PubMed and Google Scholar. The cumulative evidence synthesized in the current review suggests that, traditional therapies which include thiazolidinediones, statins and some calcium channel blockers can be useful in the primary prevention of atherosclerosis by inhibiting the formation of monocyte-derived microparticles, and pro-inflammatory cytokines such as IL-6, TNF-α, MCP-1, and NF-κB in patients with T2D. Future studies are needed to ascertain whether the combination of dietary interventions and glucose or lipid lowering agents can provide an enhanced cardioprotection in patients with T2D.
Collapse
Affiliation(s)
- Siphamandla R Ngcobo
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban 4000, South Africa
| | - Bongani B Nkambule
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban 4000, South Africa
| | - Tawanda M Nyambuya
- Department of Health Sciences, Namibia University of Science and Technology, Windhoek 9000, Namibia
| | - Kabelo Mokgalaboni
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban 4000, South Africa
| | - Aviwe Ntsethe
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban 4000, South Africa
| | - Vuyolwethu Mxinwa
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban 4000, South Africa
| | - Khanyisani Ziqubu
- Department of Biochemistry, North-West University, Mmabatho 2745, South Africa
| | - Yonela Ntamo
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg 7505, South Africa
| | - Thembeka A Nyawo
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg 7505, South Africa; Centre for Cardiometabolic Research in Africa (CARMA), Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg 7505, South Africa
| | - Phiwayinkosi V Dludla
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg 7505, South Africa.
| |
Collapse
|
12
|
Bouchareychas L, Duong P, Phu TA, Alsop E, Meechoovet B, Reiman R, Ng M, Yamamoto R, Nakauchi H, Gasper WJ, Van Keuren-Jensen K, Raffai RL. High glucose macrophage exosomes enhance atherosclerosis by driving cellular proliferation & hematopoiesis. iScience 2021; 24:102847. [PMID: 34381972 PMCID: PMC8333149 DOI: 10.1016/j.isci.2021.102847] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 05/16/2021] [Accepted: 07/09/2021] [Indexed: 02/06/2023] Open
Abstract
We investigated whether extracellular vesicles (EVs) produced under hyperglycemic conditions could communicate signaling to drive atherosclerosis. We did so by treating Apoe-/- mice with exosomes produced by bone marrow-derived macrophages (BMDM) exposed to high glucose (BMDM-HG-exo) or control. Infusions of BMDM-HG-exo increased hematopoiesis, circulating myeloid cell numbers, and atherosclerotic lesions with an accumulation of macrophage foam and apoptotic cells. Transcriptome-wide analysis of cultured macrophages treated with BMDM-HG-exo or plasma EVs isolated from subjects with type II diabetes revealed a reduced inflammatory state and increased metabolic activity. Furthermore, BMDM-HG-exo induced cell proliferation and reprogrammed energy metabolism by increasing glycolytic activity. Lastly, profiling microRNA in BMDM-HG-exo and plasma EVs from diabetic subjects with advanced atherosclerosis converged on miR-486-5p as commonly enriched and recognized in dysregulated hematopoiesis and Abca1 control. Together, our findings show that EVs serve to communicate detrimental properties of hyperglycemia to accelerate atherosclerosis in diabetes.
Collapse
Affiliation(s)
- Laura Bouchareychas
- Department of Surgery, Division of Vascular and Endovascular Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
- Northern California Institute for Research and Education, San Francisco, CA 94121, USA
| | - Phat Duong
- Northern California Institute for Research and Education, San Francisco, CA 94121, USA
| | - Tuan Anh Phu
- Northern California Institute for Research and Education, San Francisco, CA 94121, USA
| | - Eric Alsop
- Neurogenomics, The Translational Genomics Research Institute (TGen), Phoenix, AZ 85004, USA
| | - Bessie Meechoovet
- Neurogenomics, The Translational Genomics Research Institute (TGen), Phoenix, AZ 85004, USA
| | - Rebecca Reiman
- Neurogenomics, The Translational Genomics Research Institute (TGen), Phoenix, AZ 85004, USA
| | - Martin Ng
- Northern California Institute for Research and Education, San Francisco, CA 94121, USA
| | - Ryo Yamamoto
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Lorry I. Lokey Stem Cell Research Building, 265 Campus Drive, Stanford, CA 94305, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Hiromitsu Nakauchi
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Lorry I. Lokey Stem Cell Research Building, 265 Campus Drive, Stanford, CA 94305, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Warren J. Gasper
- Department of Surgery, Division of Vascular and Endovascular Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
- Department of Veterans Affairs, Surgical Service (112G), San Francisco VA Medical Center, 4150 Clement St., San Francisco, CA 94121, USA
| | | | - Robert L. Raffai
- Department of Surgery, Division of Vascular and Endovascular Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
- Northern California Institute for Research and Education, San Francisco, CA 94121, USA
- Department of Veterans Affairs, Surgical Service (112G), San Francisco VA Medical Center, 4150 Clement St., San Francisco, CA 94121, USA
| |
Collapse
|
13
|
Choi JSY, de Haan JB, Sharma A. Animal models of diabetes-associated vascular diseases: an update on available models and experimental analysis. Br J Pharmacol 2021; 179:748-769. [PMID: 34131901 DOI: 10.1111/bph.15591] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 03/08/2021] [Accepted: 06/01/2021] [Indexed: 12/19/2022] Open
Abstract
Diabetes is a chronic metabolic disorder associated with the accelerated development of macrovascular (atherosclerosis and coronary artery disease) and microvascular complications (nephropathy, retinopathy and neuropathy), which remain the principal cause of mortality and morbidity in this population. Current understanding of cellular and molecular pathways of diabetes-driven vascular complications, as well as therapeutic interventions has arisen from studying disease pathogenesis in animal models. Diabetes-associated vascular complications are multi-faceted, involving the interaction between various cellular and molecular pathways. Thus, the choice of an appropriate animal model to study vascular pathogenesis is important in our quest to identify innovative and mechanism-based targeted therapies to reduce the burden of diabetic complications. Herein, we provide up-to-date information on available mouse models of both Type 1 and Type 2 diabetic vascular complications as well as experimental analysis and research outputs.
Collapse
Affiliation(s)
- Judy S Y Choi
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Judy B de Haan
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia.,Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, Victoria, Australia.,Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, Victoria, Australia.,Faculty of Science, Engineering and Technology, Swinburne University, Melbourne, Victoria, Australia.,Baker Department of Cardiometabolic Health, University of Melbourne, Melbourne, Victoria, Australia
| | - Arpeeta Sharma
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia.,Department of Diabetes, Monash University, Central Clinical School, Melbourne, Victoria, Australia
| |
Collapse
|
14
|
Fu J, Yu MG, Li Q, Park K, King GL. Insulin's actions on vascular tissues: Physiological effects and pathophysiological contributions to vascular complications of diabetes. Mol Metab 2021; 52:101236. [PMID: 33878400 PMCID: PMC8513152 DOI: 10.1016/j.molmet.2021.101236] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 04/07/2021] [Accepted: 04/12/2021] [Indexed: 12/12/2022] Open
Abstract
Background Insulin has been demonstrated to exert direct and indirect effects on vascular tissues. Its actions in vascular cells are mediated by two major pathways: the insulin receptor substrate 1/2-phosphoinositide-3 kinase/Akt (IRS1/2/PI3K/Akt) pathway and the Src/mitogen-activated protein kinase (MAPK) pathway, both of which contribute to the expression and distribution of metabolites, hormones, and cytokines. Scope of review In this review, we summarize the current understanding of insulin's physiological and pathophysiological actions and associated signaling pathways in vascular cells, mainly in endothelial cells (EC) and vascular smooth muscle cells (VSMC), and how these processes lead to selective insulin resistance. We also describe insulin's potential new signaling and biological effects derived from animal studies and cultured capillary and arterial EC, VSMC, and pericytes. We will not provide a detailed discussion of insulin's effects on the myocardium, insulin's structure, or its signaling pathways' various steps, since other articles in this issue discuss these areas in depth. Major conclusions Insulin mediates many important functions on vascular cells via its receptors and signaling cascades. Its direct actions on EC and VSMC are important for transporting and communicating nutrients, cytokines, hormones, and other signaling molecules. These vascular actions are also important for regulating systemic fuel metabolism and energetics. Inhibiting or enhancing these pathways leads to selective insulin resistance, exacerbating the development of endothelial dysfunction, atherosclerosis, restenosis, poor wound healing, and even myocardial dysfunction. Targeted therapies to improve selective insulin resistance in EC and VSMC are thus needed to specifically mitigate these pathological processes. Insulin's actions in vascular cells have a significant influence on systemic metabolism. Insulin exerts its vascular effects through its receptors and signaling cascades. Inhibition or enhancement of different insulin signaling leads to selective insulin resistance. Loss of insulin's actions causes endothelial dysfunction and vascular complications in diabetes.
Collapse
Affiliation(s)
- Jialin Fu
- Dianne Nunnally Hoppes Laboratory for Diabetes Complications, Section of Vascular Cell Biology, Joslin Diabetes Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Marc Gregory Yu
- Dianne Nunnally Hoppes Laboratory for Diabetes Complications, Section of Vascular Cell Biology, Joslin Diabetes Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Qian Li
- Dianne Nunnally Hoppes Laboratory for Diabetes Complications, Section of Vascular Cell Biology, Joslin Diabetes Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Kyoungmin Park
- Dianne Nunnally Hoppes Laboratory for Diabetes Complications, Section of Vascular Cell Biology, Joslin Diabetes Center, Harvard Medical School, Boston, MA, 02215, USA
| | - George L King
- Dianne Nunnally Hoppes Laboratory for Diabetes Complications, Section of Vascular Cell Biology, Joslin Diabetes Center, Harvard Medical School, Boston, MA, 02215, USA.
| |
Collapse
|
15
|
Josefs T, Basu D, Vaisar T, Arets B, Kanter JE, Huggins LA, Hu Y, Liu J, Clouet-Foraison N, Heinecke JW, Bornfeldt KE, Goldberg IJ, Fisher EA. Atherosclerosis Regression and Cholesterol Efflux in Hypertriglyceridemic Mice. Circ Res 2021; 128:690-705. [PMID: 33530703 DOI: 10.1161/circresaha.120.317458] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Tatjana Josefs
- Division of Cardiology (T.J., J.L., E.A.F.), Department of Medicine, New York University School of Medicine.,Department of Internal Medicine, MUMC, Maastricht, the Netherlands (T.J., B.A.).,CARIM, MUMC, Maastricht, the Netherlands (T.J., B.A.)
| | - Debapriya Basu
- Division of Endocrinology, Diabetes and Metabolism (D.B., L.-A.H., Y.H., I.J.G.), Department of Medicine, New York University School of Medicine.,Department of Internal Medicine, MUMC, Maastricht, the Netherlands (T.J., B.A.).,CARIM, MUMC, Maastricht, the Netherlands (T.J., B.A.)
| | - Tomas Vaisar
- Department of Medicine, UW Medicine Diabetes Institute, University of Washington, Seattle (T.V., J.E.K., N.C.-F., J.W.H., K.E.B.)
| | | | - Jenny E Kanter
- Department of Medicine, UW Medicine Diabetes Institute, University of Washington, Seattle (T.V., J.E.K., N.C.-F., J.W.H., K.E.B.)
| | - Lesley-Ann Huggins
- Division of Endocrinology, Diabetes and Metabolism (D.B., L.-A.H., Y.H., I.J.G.), Department of Medicine, New York University School of Medicine
| | - Yunying Hu
- Division of Endocrinology, Diabetes and Metabolism (D.B., L.-A.H., Y.H., I.J.G.), Department of Medicine, New York University School of Medicine
| | - Jianhua Liu
- Division of Cardiology (T.J., J.L., E.A.F.), Department of Medicine, New York University School of Medicine
| | - Noemie Clouet-Foraison
- Department of Medicine, UW Medicine Diabetes Institute, University of Washington, Seattle (T.V., J.E.K., N.C.-F., J.W.H., K.E.B.)
| | - Jay W Heinecke
- Department of Medicine, UW Medicine Diabetes Institute, University of Washington, Seattle (T.V., J.E.K., N.C.-F., J.W.H., K.E.B.)
| | - Karin E Bornfeldt
- Department of Medicine, UW Medicine Diabetes Institute, University of Washington, Seattle (T.V., J.E.K., N.C.-F., J.W.H., K.E.B.)
| | - Ira J Goldberg
- Division of Endocrinology, Diabetes and Metabolism (D.B., L.-A.H., Y.H., I.J.G.), Department of Medicine, New York University School of Medicine
| | - Edward A Fisher
- Division of Cardiology (T.J., J.L., E.A.F.), Department of Medicine, New York University School of Medicine
| |
Collapse
|
16
|
Zhang K, Qin X, Zhou X, Zhou J, Wen P, Chen S, Wu M, Wu Y, Zhuang J. Analysis of genes and underlying mechanisms involved in foam cells formation and atherosclerosis development. PeerJ 2020; 8:e10336. [PMID: 33240650 PMCID: PMC7678445 DOI: 10.7717/peerj.10336] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 10/19/2020] [Indexed: 12/17/2022] Open
Abstract
Background Foam cells (FCs) play crucial roles in the process of all stages of atherosclerosis. Smooth muscle cells (SMCs) and macrophages are the major sources of FCs. This study aimed to identify the common molecular mechanism in these two types of FCs. Methods GSE28829, GSE43292, GSE68021, and GSE54666 were included to identify the differentially expressed genes (DEGs) associated with FCs derived from SMCs and macrophages. Gene Ontology biological process (GO-BP) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were performed by using the DAVID database. The co-regulated genes associated with the two origins of FCs were validated (GSE9874), and their expression in vulnerable atherosclerosis plaques (GSE120521 and GSE41571) was assessed. Results A total of 432 genes associated with FCs derived from SMCs (SMC-FCs) and 81 genes associated with FCs derived from macrophages (M-FCs) were identified, and they were mainly involved in lipid metabolism, inflammation, cell cycle/apoptosis. Furthermore, three co-regulated genes associated with FCs were identified: GLRX, RNF13, and ABCA1. These three common genes showed an increased tendency in unstable or ruptured plaques, although in some cases, no statistically significant difference was found. Conclusions DEGs related to FCs derived from SMCs and macrophages have contributed to the understanding of the molecular mechanism underlying the formation of FCs and atherosclerosis. GLRX, RNF13, and ABCA1 might be potential targets for atherosclerosis treatment.
Collapse
Affiliation(s)
- Kai Zhang
- Department of Cardiovascular Surgery, Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong Provincial People's Hospital & Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangdong Cardiovascular Institute, Guangzhou, Guangdong, China
| | - Xianyu Qin
- Department of Cardiovascular Surgery, Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong Provincial People's Hospital & Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangdong Cardiovascular Institute, Guangzhou, Guangdong, China
| | - Xianwu Zhou
- Department of Cardiovascular Surgery, Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong Provincial People's Hospital & Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangdong Cardiovascular Institute, Guangzhou, Guangdong, China
| | - Jianrong Zhou
- Department of Cardiovascular Surgery, Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong Provincial People's Hospital & Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangdong Cardiovascular Institute, Guangzhou, Guangdong, China
| | - Pengju Wen
- Department of Cardiovascular Surgery, Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong Provincial People's Hospital & Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangdong Cardiovascular Institute, Guangzhou, Guangdong, China
| | - Shaoxian Chen
- Department of Cardiovascular Surgery, Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong Provincial People's Hospital & Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangdong Cardiovascular Institute, Guangzhou, Guangdong, China
| | - Min Wu
- Department of Cardiovascular Surgery, Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong Provincial People's Hospital & Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangdong Cardiovascular Institute, Guangzhou, Guangdong, China
| | - Yueheng Wu
- Department of Cardiovascular Surgery, Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong Provincial People's Hospital & Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangdong Cardiovascular Institute, Guangzhou, Guangdong, China
| | - Jian Zhuang
- Department of Cardiovascular Surgery, Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong Provincial People's Hospital & Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangdong Cardiovascular Institute, Guangzhou, Guangdong, China
| |
Collapse
|
17
|
Chronic treatment with cinnamaldehyde prevents spontaneous atherosclerotic plaque development in ovariectomized LDLr-/- female mice. PHARMANUTRITION 2020. [DOI: 10.1016/j.phanu.2020.100205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
18
|
Grunewald ZI, Ramirez-Perez FI, Woodford ML, Morales-Quinones M, Mejia S, Manrique-Acevedo C, Siebenlist U, Martinez-Lemus LA, Chandrasekar B, Padilla J. TRAF3IP2 (TRAF3 Interacting Protein 2) Mediates Obesity-Associated Vascular Insulin Resistance and Dysfunction in Male Mice. Hypertension 2020; 76:1319-1329. [PMID: 32829657 DOI: 10.1161/hypertensionaha.120.15262] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Insulin resistance in the vasculature is a characteristic feature of obesity and contributes to the pathogenesis of vascular dysfunction and disease. However, the molecular mechanisms underlying obesity-associated vascular insulin resistance and dysfunction remain poorly understood. We hypothesized that TRAF3IP2 (TRAF3 interacting protein 2), a proinflammatory adaptor molecule known to activate pathological stress pathways and implicated in cardiovascular diseases, plays a causal role in obesity-associated vascular insulin resistance and dysfunction. We tested this hypothesis by employing genetic-manipulation in endothelial cells in vitro, in isolated arteries ex vivo, and diet-induced obesity in a mouse model of TRAF3IP2 ablation in vivo. We show that ectopic expression of TRAF3IP2 blunts insulin signaling in endothelial cells and diminishes endothelium-dependent vasorelaxation in isolated aortic rings. Further, 16 weeks of high fat/high sucrose feeding impaired glucose tolerance, aortic insulin-induced vasorelaxation, and hindlimb postocclusive reactive hyperemia, while increasing blood pressure and arterial stiffness in wild-type male mice. Notably, TRAF3IP2 ablation protected mice from such high fat/high sucrose feeding-induced metabolic and vascular defects. Interestingly, wild-type female mice expressed markedly reduced levels of TRAF3IP2 mRNA independent of diet and were protected against high fat/high sucrose diet-induced vascular dysfunction. These data indicate that TRAF3IP2 plays a causal role in vascular insulin resistance and dysfunction. Specifically, the present findings highlight a sexual dimorphic role of TRAF3IP2 in vascular control and identify it as a promising therapeutic target in vasculometabolic derangements associated with obesity, particularly in males.
Collapse
Affiliation(s)
- Zachary I Grunewald
- From the Department of Nutrition and Exercise Physiology (Z.I.G., M.L.W., J.P.), University of Missouri, Columbia.,Dalton Cardiovascular Research Center (Z.I.G., F.I.R.-P., M.L.W., M.M.-Q., S.M., C.M.-A., L.A.M.-L., B.C., J.P.), University of Missouri, Columbia
| | - Francisco I Ramirez-Perez
- Dalton Cardiovascular Research Center (Z.I.G., F.I.R.-P., M.L.W., M.M.-Q., S.M., C.M.-A., L.A.M.-L., B.C., J.P.), University of Missouri, Columbia.,Department of Biological Engineering (F.I.R.-P., L.A.M.-L.), University of Missouri, Columbia
| | - Makenzie L Woodford
- From the Department of Nutrition and Exercise Physiology (Z.I.G., M.L.W., J.P.), University of Missouri, Columbia.,Dalton Cardiovascular Research Center (Z.I.G., F.I.R.-P., M.L.W., M.M.-Q., S.M., C.M.-A., L.A.M.-L., B.C., J.P.), University of Missouri, Columbia
| | - Mariana Morales-Quinones
- Dalton Cardiovascular Research Center (Z.I.G., F.I.R.-P., M.L.W., M.M.-Q., S.M., C.M.-A., L.A.M.-L., B.C., J.P.), University of Missouri, Columbia
| | - Salvador Mejia
- Dalton Cardiovascular Research Center (Z.I.G., F.I.R.-P., M.L.W., M.M.-Q., S.M., C.M.-A., L.A.M.-L., B.C., J.P.), University of Missouri, Columbia
| | - Camila Manrique-Acevedo
- Dalton Cardiovascular Research Center (Z.I.G., F.I.R.-P., M.L.W., M.M.-Q., S.M., C.M.-A., L.A.M.-L., B.C., J.P.), University of Missouri, Columbia.,Division of Endocrinology and Metabolism, Department of Medicine (C.M.-A.), University of Missouri, Columbia.,Harry S. Truman Memorial Veterans' Hospital, Columbia, MO (C.M.-A., B.C.)
| | | | - Luis A Martinez-Lemus
- Dalton Cardiovascular Research Center (Z.I.G., F.I.R.-P., M.L.W., M.M.-Q., S.M., C.M.-A., L.A.M.-L., B.C., J.P.), University of Missouri, Columbia.,Department of Biological Engineering (F.I.R.-P., L.A.M.-L.), University of Missouri, Columbia.,Department of Medical Pharmacology and Physiology (L.A.M.-L., B.C.), University of Missouri, Columbia
| | - Bysani Chandrasekar
- Dalton Cardiovascular Research Center (Z.I.G., F.I.R.-P., M.L.W., M.M.-Q., S.M., C.M.-A., L.A.M.-L., B.C., J.P.), University of Missouri, Columbia.,Division of Cardiovascular Medicine, Department of Medicine (B.C.), University of Missouri, Columbia.,Department of Medical Pharmacology and Physiology (L.A.M.-L., B.C.), University of Missouri, Columbia.,Harry S. Truman Memorial Veterans' Hospital, Columbia, MO (C.M.-A., B.C.)
| | - Jaume Padilla
- From the Department of Nutrition and Exercise Physiology (Z.I.G., M.L.W., J.P.), University of Missouri, Columbia.,Dalton Cardiovascular Research Center (Z.I.G., F.I.R.-P., M.L.W., M.M.-Q., S.M., C.M.-A., L.A.M.-L., B.C., J.P.), University of Missouri, Columbia
| |
Collapse
|
19
|
Stitziel NO, Kanter JE, Bornfeldt KE. Emerging Targets for Cardiovascular Disease Prevention in Diabetes. Trends Mol Med 2020; 26:744-757. [PMID: 32423639 PMCID: PMC7395866 DOI: 10.1016/j.molmed.2020.03.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 03/18/2020] [Accepted: 03/31/2020] [Indexed: 12/26/2022]
Abstract
Type 1 and type 2 diabetes mellitus (T1DM and T2DM) increase the risk of atherosclerotic cardiovascular disease (CVD), resulting in acute cardiovascular events, such as heart attack and stroke. Recent clinical trials point toward new treatment and prevention strategies for cardiovascular complications of T2DM. New antidiabetic agents show unexpected cardioprotective benefits. Moreover, genetic and reverse translational strategies have revealed potential novel targets for CVD prevention in diabetes, including inhibition of apolipoprotein C3 (APOC3). Modeling and pharmacology-based approaches to improve insulin action provide additional potential strategies to combat CVD. The development of new strategies for improved diabetes and lipid control fuels hope for future prevention of CVD associated with diabetes.
Collapse
Affiliation(s)
- Nathan O Stitziel
- Department of Internal Medicine, Cardiovascular Division, Washington University School of Medicine, St Louis, MO 63110, USA; Department of Genetics, Washington University School of Medicine, St Louis, MO 63110, USA; McDonnell Genome Institute, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Jenny E Kanter
- Department of Medicine, Division of Metabolism, Endocrinology and Nutrition, University of Washington Medicine Diabetes Institute, University of Washington School of Medicine, Seattle, WA 98109, USA
| | - Karin E Bornfeldt
- Department of Medicine, Division of Metabolism, Endocrinology and Nutrition, University of Washington Medicine Diabetes Institute, University of Washington School of Medicine, Seattle, WA 98109, USA; Department of Pathology, University of Washington Medicine Diabetes Institute, University of Washington School of Medicine, Seattle, WA 98109, USA.
| |
Collapse
|
20
|
Abstract
Cardiovascular disease, with atherosclerosis as the major underlying factor, remains the leading cause of death worldwide. It is well established that cholesterol ester-enriched foam cells are the hallmark of atherosclerotic plaques. Multiple lines of evidence support that enhancing foam cell cholesterol efflux by HDL (high-density lipoprotein) particles, the first step of reverse cholesterol transport (RCT), is a promising antiatherogenic strategy. Yet, excitement towards the therapeutic potential of manipulating RCT for the treatment of cardiovascular disease has faded because of the lack of the association between cardiovascular disease risk and what was typically measured in intervention trials, namely HDL cholesterol, which has an inconsistent relationship to HDL function and RCT. In this review, we will summarize some of the potential reasons for this inconsistency, update the mechanisms of RCT, and highlight conditions in which impaired HDL function or RCT contributes to vascular disease. On balance, the evidence still argues for further research to better understand how HDL functionality contributes to RCT to develop prevention and treatment strategies to reduce the risk of cardiovascular disease.
Collapse
Affiliation(s)
- Mireille Ouimet
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa Heart Institute, University of Ottawa, Canada (M.O.)
| | - Tessa J Barrett
- Division of Cardiology, Department of Medicine, New York University School of Medicine, New York (T.J.B., E.A.F.)
| | - Edward A Fisher
- Division of Cardiology, Department of Medicine, New York University School of Medicine, New York (T.J.B., E.A.F.)
| |
Collapse
|
21
|
Kanter JE, Hsu CC, Bornfeldt KE. Monocytes and Macrophages as Protagonists in Vascular Complications of Diabetes. Front Cardiovasc Med 2020; 7:10. [PMID: 32118048 PMCID: PMC7033616 DOI: 10.3389/fcvm.2020.00010] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 01/27/2020] [Indexed: 12/16/2022] Open
Abstract
With the increasing prevalence of diabetes worldwide, vascular complications of diabetes are also on the rise. Diabetes results in an increased risk of macrovascular complications, with atherosclerotic cardiovascular disease (CVD) being the leading cause of death in adults with diabetes. The exact mechanisms for how diabetes promotes CVD risk are still unclear, although it is evident that monocytes and macrophages are key players in all stages of atherosclerosis both in the absence and presence of diabetes, and that phenotypes of these cells are altered by the diabetic environment. Evidence suggests that at least five pro-atherogenic mechanisms involving monocytes and macrophages contribute to the accelerated atherosclerotic lesion progression and hampered lesion regression associated with diabetes. These changes include (1) increased monocyte recruitment to lesions; (2) increased inflammatory activation; (3) altered macrophage lipid accumulation and metabolism; (4) increased macrophage cell death; and (5) reduced efferocytosis. Monocyte and macrophage phenotypes and mechanisms have been revealed mostly by different animal models of diabetes. The roles of specific changes in monocytes and macrophages in humans with diabetes remain largely unknown. There is an ongoing debate on whether the changes in monocytes and macrophages are caused by altered glucose levels, insulin deficiency or insulin resistance, lipid abnormalities, or combinations of these factors. Current research in humans and mouse models suggests that reduced clearance of triglyceride-rich lipoproteins and their remnants is one important mechanism whereby diabetes adversely affects macrophages and promotes atherosclerosis and CVD risk. Although monocytes and macrophages readily respond to the diabetic environment and can be seen as protagonists in diabetes-accelerated atherosclerosis, they are likely not instigators of the increased CVD risk.
Collapse
Affiliation(s)
- Jenny E Kanter
- Department of Medicine, University of Washington Medicine Diabetes Institute, University of Washington School of Medicine, Seattle, WA, United States
| | - Cheng-Chieh Hsu
- Department of Medicine, University of Washington Medicine Diabetes Institute, University of Washington School of Medicine, Seattle, WA, United States
| | - Karin E Bornfeldt
- Department of Medicine, University of Washington Medicine Diabetes Institute, University of Washington School of Medicine, Seattle, WA, United States.,Department of Pathology, University of Washington Medicine Diabetes Institute, University of Washington School of Medicine, Seattle, WA, United States
| |
Collapse
|
22
|
Lou X, Ma X, Wang D, Li X, Sun B, Zhang T, Qin M, Ren L. Systematic analysis of long non-coding RNA and mRNA expression changes in ApoE-deficient mice during atherosclerosis. Mol Cell Biochem 2019; 462:61-73. [PMID: 31446617 PMCID: PMC6834762 DOI: 10.1007/s11010-019-03610-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Accepted: 08/10/2019] [Indexed: 12/28/2022]
Abstract
Atherosclerosis plays an important role in the pathology of coronary heart disease, cerebrovascular disease, and systemic vascular disease. Long non-coding RNAs (lncRNAs) are involved in most biological processes and are deregulated in many human diseases. However, the expression alteration and precise role of lncRNAs during atherosclerosis are unknown. We report here the systematic profiling of lncRNAs and mRNAs in an ApoE-deficient (ApoE-/-) mouse model of atherosclerosis. Clariom D solutions for the mouse Affymetrix Gene Chip were employed to analyze the RNAs from control and ApoE-/- mice. The functions of the differentially expressed mRNAs and lncRNAs and the relationships of their expression with atherosclerosis were analyzed by gene ontology, co-expression network, pathway enrichment, and lncRNA target pathway network analyses. Quantitative real-time PCR (QRT-PCR) was used to determine the expression of mRNAs and lncRNAs. A total of 2212 differentially expressed lncRNAs were identified in ApoE-/- mice, including 1186 up-regulated and 1026 down-regulated lncRNAs (|FC| ≥ 1.1, p < 0.05). A total of 1190 differentially expressed mRNAs were found in the ApoE-/- mice with 384 up-regulated and 806 down-regulated (|FC| ≥ 1.1, p < 0.05). Bioinformatics analyses demonstrated extensive co-expression of lncRNAs and mRNAs and concomitant deregulation of multiple signaling pathways associated with the initiation and progression of atherosclerosis. The identified differentially expressed mRNAs and lncRNAs as well as the related signaling pathways may provide systematic information for understanding the pathogenesis and identifying biomarkers for the diagnosis, treatment, and prognosis of atherosclerosis.
Collapse
Affiliation(s)
- Xiaoqian Lou
- Department of Experimental Pharmacology and Toxicology, School of Pharmacy, Jilin University, Changchun, 130021, Jilin, People's Republic of China
- Department of Endocrinology, The First Hospital of Jilin University, Changchun, 130021, Jilin, People's Republic of China
| | - Xiaoyan Ma
- Department of Cardiology, The Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, 130021, Jilin, People's Republic of China
| | - Dawei Wang
- Department of Emergency, The First Hospital of Jilin University, Changchun, 130021, Jilin, People's Republic of China
| | - Xiangjun Li
- Department of Experimental Pharmacology and Toxicology, School of Pharmacy, Jilin University, Changchun, 130021, Jilin, People's Republic of China
| | - Bo Sun
- Department of Experimental Pharmacology and Toxicology, School of Pharmacy, Jilin University, Changchun, 130021, Jilin, People's Republic of China
| | - Tong Zhang
- Department of Experimental Pharmacology and Toxicology, School of Pharmacy, Jilin University, Changchun, 130021, Jilin, People's Republic of China
| | - Meng Qin
- Department of Experimental Pharmacology and Toxicology, School of Pharmacy, Jilin University, Changchun, 130021, Jilin, People's Republic of China
| | - Liqun Ren
- Department of Experimental Pharmacology and Toxicology, School of Pharmacy, Jilin University, Changchun, 130021, Jilin, People's Republic of China.
| |
Collapse
|
23
|
Olver TD, Grunewald ZI, Ghiarone T, Restaino RM, Sales ARK, Park LK, Thorne PK, Ganga RR, Emter CA, Lemon PWR, Shoemaker JK, Manrique-Acevedo C, Martinez-Lemus LA, Padilla J. Persistent insulin signaling coupled with restricted PI3K activation causes insulin-induced vasoconstriction. Am J Physiol Heart Circ Physiol 2019; 317:H1166-H1172. [PMID: 31603345 DOI: 10.1152/ajpheart.00464.2019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Insulin modulates vasomotor tone through vasodilator and vasoconstrictor signaling pathways. The purpose of the present work was to determine whether insulin-stimulated vasoconstriction is a pathophysiological phenomenon that can result from a combination of persistent insulin signaling, suppressed phosphatidylinositol-3 kinase (PI3K) activation, and an ensuing relative increase in MAPK/endothelin-1 (ET-1) activity. First, we examined previously published work from our group where we assessed changes in lower-limb blood flow in response to an oral glucose tolerance test (endogenous insulin stimulation) in lean and obese subjects. The new analyses showed that the peak rise in vascular resistance during the postprandial state was greater in obese compared with lean subjects. We next extended on these findings by demonstrating that insulin-induced vasoconstriction in isolated resistance arteries from obese subjects was attenuated with ET-1 receptor antagonism, thus implicating ET-1 signaling in this constriction response. Last, we examined in isolated resistance arteries from pigs the dual roles of persistent insulin signaling and blunted PI3K activation in modulating vasomotor responses to insulin. We found that prolonged insulin stimulation did not alter vasomotor responses to insulin when insulin-signaling pathways remained unrestricted. However, prolonged insulinization along with pharmacological suppression of PI3K activity resulted in insulin-induced vasoconstriction, rather than vasodilation. Notably, such aberrant vascular response was rescued with either MAPK inhibition or ET-1 receptor antagonism. In summary, we demonstrate that insulin-induced vasoconstriction is a pathophysiological phenomenon that can be recapitulated when sustained insulin signaling is coupled with depressed PI3K activation and the concomitant relative increase in MAPK/ET-1 activity.NEW & NOTEWORTHY This study reveals that insulin-induced vasoconstriction is a pathophysiological phenomenon. We also provide evidence that in the setting of persistent insulin signaling, impaired phosphatidylinositol-3 kinase activation appears to be a requisite feature precipitating MAPK/endothelin 1-dependent insulin-induced vasoconstriction.
Collapse
Affiliation(s)
- T Dylan Olver
- Department of Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatchewan, Canada
| | - Zachary I Grunewald
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri.,Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
| | - Thaysa Ghiarone
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
| | - Robert M Restaino
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri.,Department of Health and Human Physiological Sciences, Skidmore College, Saratoga Springs, New York
| | - Allan R K Sales
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri.,Heart Institute (InCor), University of São Paulo Medical School, São Paulo, Brazil.,D'Or Institute for Research and Education, São Paulo, Brazil
| | - Lauren K Park
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri.,Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
| | - Pamela K Thorne
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri
| | - Rama Rao Ganga
- Department of Surgery, University of Missouri, Columbia, Missouri
| | - Craig A Emter
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri
| | - Peter W R Lemon
- School of Kinesiology, The University of Western Ontario, London, Ontario, Canada
| | - J Kevin Shoemaker
- School of Kinesiology, The University of Western Ontario, London, Ontario, Canada
| | - Camila Manrique-Acevedo
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri.,Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Missouri, Columbia, Missouri.,Research Services, Harry S. Truman Memorial Veterans Hospital, Columbia, Missouri
| | - Luis A Martinez-Lemus
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri.,Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri
| | - Jaume Padilla
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri.,Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
| |
Collapse
|
24
|
Burke AC, Sutherland BG, Telford DE, Morrow MR, Sawyez CG, Edwards JY, Huff MW. Naringenin enhances the regression of atherosclerosis induced by a chow diet in Ldlr -/- mice. Atherosclerosis 2019; 286:60-70. [PMID: 31102954 DOI: 10.1016/j.atherosclerosis.2019.05.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 03/31/2019] [Accepted: 05/08/2019] [Indexed: 12/27/2022]
Abstract
BACKGROUND AND AIMS Naringenin is a citrus-derived flavonoid with lipid-lowering and insulin-sensitizing effects leading to athero-protection in Ldlr-/- mice fed a high-fat diet. However, the ability of naringenin to promote atherosclerosis regression is unknown. In the present study, we assessed the capacity of naringenin to enhance regression in Ldlr-/- mice with diet-induced intermediate atherosclerosis intervened with a chow diet. METHODS Male Ldlr-/- mice were fed a high-fat, cholesterol-containing (HFHC) diet for 12 weeks to induce intermediate atherosclerosis and metabolic dysfunction. Subsequently, a group of these mice were sacrificed for baseline analyses and the remainder either 1) continued on the HFHC diet, 2) switched to a chow diet or 3) switched to chow diet supplemented with naringenin. RESULTS After 12 weeks induction, intermediate lesions developed in the aortic sinus. Intervention with chow alone slowed lesion growth, while intervention with naringenin-supplemented chow completely halted lesion growth. Lesions were characterized by features of improved morphology. Compared to chow alone, naringenin reduced plaque macrophages and modestly increased smooth muscle cells. Investigating processes that contributed to improved plaque morphology, we showed naringenin further reduced plasma triglycerides and cholesterol compared to chow alone. Furthermore, elevated monocytosis and myelopoiesis were further corrected by intervention with naringenin compared to chow alone. Metabolically, naringenin enhanced the correction of insulin resistance, hepatic steatosis and obesity compared to chow alone, potentially contributing to enhanced regression. CONCLUSIONS Naringenin supplementation to chow enhances atherosclerosis regression in male Ldlr-/- mice. These studies further underscore the potential therapeutic utility of naringenin.
Collapse
Affiliation(s)
- Amy C Burke
- Molecular Medicine, Robarts Research Institute, The University of Western Ontario, 1151 Richmond St N., London, Ontario, N6A 5B7, Canada; Department of Biochemistry, The University of Western Ontario, 1151 Richmond St N., London, Ontario, N6A 5B7, Canada
| | - Brian G Sutherland
- Molecular Medicine, Robarts Research Institute, The University of Western Ontario, 1151 Richmond St N., London, Ontario, N6A 5B7, Canada
| | - Dawn E Telford
- Molecular Medicine, Robarts Research Institute, The University of Western Ontario, 1151 Richmond St N., London, Ontario, N6A 5B7, Canada; Department of Medicine, The University of Western Ontario, 1151 Richmond St N., London, Ontario, N6A 5B7, Canada
| | - Marisa R Morrow
- Molecular Medicine, Robarts Research Institute, The University of Western Ontario, 1151 Richmond St N., London, Ontario, N6A 5B7, Canada
| | - Cynthia G Sawyez
- Molecular Medicine, Robarts Research Institute, The University of Western Ontario, 1151 Richmond St N., London, Ontario, N6A 5B7, Canada; Department of Medicine, The University of Western Ontario, 1151 Richmond St N., London, Ontario, N6A 5B7, Canada
| | - Jane Y Edwards
- Molecular Medicine, Robarts Research Institute, The University of Western Ontario, 1151 Richmond St N., London, Ontario, N6A 5B7, Canada; Department of Medicine, The University of Western Ontario, 1151 Richmond St N., London, Ontario, N6A 5B7, Canada
| | - Murray W Huff
- Molecular Medicine, Robarts Research Institute, The University of Western Ontario, 1151 Richmond St N., London, Ontario, N6A 5B7, Canada; Department of Biochemistry, The University of Western Ontario, 1151 Richmond St N., London, Ontario, N6A 5B7, Canada; Department of Medicine, The University of Western Ontario, 1151 Richmond St N., London, Ontario, N6A 5B7, Canada.
| |
Collapse
|
25
|
Walsh LK, Ghiarone T, Olver TD, Medina-Hernandez A, Edwards JC, Thorne PK, Emter CA, Lindner JR, Manrique-Acevedo C, Martinez-Lemus LA, Padilla J. Increased endothelial shear stress improves insulin-stimulated vasodilatation in skeletal muscle. J Physiol 2018; 597:57-69. [PMID: 30328623 DOI: 10.1113/jp277050] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 10/08/2018] [Indexed: 12/12/2022] Open
Abstract
KEY POINTS It has been postulated that increased blood flow-associated shear stress on endothelial cells is an underlying mechanism by which physical activity enhances insulin-stimulated vasodilatation. This report provides evidence supporting the hypothesis that increased shear stress exerts insulin-sensitizing effects in the vasculature and this evidence is based on experiments in vitro in endothelial cells, ex vivo in isolated arterioles and in vivo in humans. Given the recognition that vascular insulin signalling, and associated enhanced microvascular perfusion, contributes to glycaemic control and maintenance of vascular health, strategies that stimulate an increase in limb blood flow and shear stress have the potential to have profound metabolic and vascular benefits mediated by improvements in endothelial insulin sensitivity. ABSTRACT The vasodilator actions of insulin contribute to glucose uptake by skeletal muscle, and previous studies have demonstrated that acute and chronic physical activity improves insulin-stimulated vasodilatation and glucose uptake. Because this effect of exercise primarily manifests in vascular beds highly perfused during exercise, it has been postulated that increased blood flow-associated shear stress on endothelial cells is an underlying mechanism by which physical activity enhances insulin-stimulated vasodilatation. Accordingly, herein we tested the hypothesis that increased shear stress, in the absence of muscle contraction, can acutely render the vascular endothelium more insulin-responsive. To test this hypothesis, complementary experiments were conducted using (1) cultured endothelial cells, (2) isolated and pressurized skeletal muscle arterioles from swine, and (3) humans. In cultured endothelial cells, 1 h of increased shear stress from 3 to 20 dynes cm-2 caused a significant shift in insulin signalling characterized by greater activation of eNOS relative to MAPK. Similarly, isolated arterioles exposed to 1 h of intraluminal shear stress (20 dynes cm-2 ) subsequently exhibited greater insulin-induced vasodilatation compared to arterioles kept under no-flow conditions. Finally, we found in humans that increased leg blood flow induced by unilateral limb heating for 1 h subsequently augmented insulin-stimulated popliteal artery blood flow and muscle perfusion. In aggregate, these findings across models (cells, isolated arterioles and humans) support the hypothesis that elevated shear stress causes the vascular endothelium to become more insulin-responsive and thus are consistent with the notion that shear stress may be a principal mechanism by which physical activity enhances insulin-stimulated vasodilatation.
Collapse
Affiliation(s)
- Lauren K Walsh
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, USA
| | - Thaysa Ghiarone
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA
| | - T Dylan Olver
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatchewan, Canada
| | | | - Jenna C Edwards
- Department of Biomedical Sciences, University of Missouri, Columbia, MO, USA
| | - Pamela K Thorne
- Department of Biomedical Sciences, University of Missouri, Columbia, MO, USA
| | - Craig A Emter
- Department of Biomedical Sciences, University of Missouri, Columbia, MO, USA
| | - Jonathan R Lindner
- Knight Cardiovascular Institute and the Oregon National Primate Research Center, Oregon Health & Science University, Portland, OR, USA
| | - Camila Manrique-Acevedo
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Missouri, Columbia, MO, USA.,Diabetes and Cardiovascular Research Center, University of Missouri, Columbia, MO, USA.,Research Services, Harry S. Truman Memorial Veterans Hospital, Columbia, MO, USA
| | - Luis A Martinez-Lemus
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA.,Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA
| | - Jaume Padilla
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, USA.,Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA.,Department of Child Health, University of Missouri, Columbia, MO, USA
| |
Collapse
|
26
|
Wall VZ, Barnhart S, Kanter JE, Kramer F, Shimizu-Albergine M, Adhikari N, Wight TN, Hall JL, Bornfeldt KE. Smooth muscle glucose metabolism promotes monocyte recruitment and atherosclerosis in a mouse model of metabolic syndrome. JCI Insight 2018; 3:96544. [PMID: 29875324 DOI: 10.1172/jci.insight.96544] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 05/01/2018] [Indexed: 12/21/2022] Open
Abstract
Metabolic syndrome contributes to cardiovascular disease partly through systemic risk factors. However, local processes in the artery wall are becoming increasingly recognized to exacerbate atherosclerosis both in mice and humans. We show that arterial smooth muscle cell (SMC) glucose metabolism markedly synergizes with metabolic syndrome in accelerating atherosclerosis progression, using a low-density lipoprotein receptor-deficient mouse model. SMCs in proximity to atherosclerotic lesions express increased levels of the glucose transporter GLUT1. Cytokines, such as TNF-α produced by lesioned arteries, promote GLUT1 expression in SMCs, which in turn increases expression of the chemokine CCL2 through increased glycolysis and the polyol pathway. Furthermore, overexpression of GLUT1 in SMCs, but not in myeloid cells, accelerates development of larger, more advanced lesions in a mouse model of metabolic syndrome, which also exhibits elevated levels of circulating Ly6Chi monocytes expressing the CCL2 receptor CCR2. Accordingly, monocyte tracing experiments demonstrate that targeted SMC GLUT1 overexpression promotes Ly6Chi monocyte recruitment to lesions. Strikingly, SMC-targeted GLUT1 overexpression fails to accelerate atherosclerosis in mice that do not exhibit the metabolic syndrome phenotype or monocytosis. These results reveal a potentially novel mechanism whereby arterial smooth muscle glucose metabolism synergizes with metabolic syndrome to accelerate monocyte recruitment and atherosclerosis progression.
Collapse
Affiliation(s)
- Valerie Z Wall
- Department of Medicine, University of Washington Medicine Diabetes Institute, University of Washington School of Medicine, Seattle, Washington, USA
| | - Shelley Barnhart
- Department of Medicine, University of Washington Medicine Diabetes Institute, University of Washington School of Medicine, Seattle, Washington, USA
| | - Jenny E Kanter
- Department of Medicine, University of Washington Medicine Diabetes Institute, University of Washington School of Medicine, Seattle, Washington, USA
| | - Farah Kramer
- Department of Medicine, University of Washington Medicine Diabetes Institute, University of Washington School of Medicine, Seattle, Washington, USA
| | - Masami Shimizu-Albergine
- Department of Medicine, University of Washington Medicine Diabetes Institute, University of Washington School of Medicine, Seattle, Washington, USA
| | - Neeta Adhikari
- Lillehei Heart Institute, University of Minnesota, Minneapolis, Minnesota, USA
| | - Thomas N Wight
- Benaroya Research Institute, Matrix Biology Program, Seattle, Washington, USA
| | - Jennifer L Hall
- Lillehei Heart Institute, University of Minnesota, Minneapolis, Minnesota, USA.,American Heart Association Institute for Precision Cardiovascular Medicine, Dallas, Texas USA
| | - Karin E Bornfeldt
- Department of Medicine, University of Washington Medicine Diabetes Institute, University of Washington School of Medicine, Seattle, Washington, USA.,Department of Pathology, University of Washington Medicine Diabetes Institute, University of Washington School of Medicine, Seattle, Washington, USA
| |
Collapse
|