1
|
Nickerson DS, Yamasaki DS. Improving Microcirculation With Nerve Decompression: The Missing Link in Treatment of Diabetic Neuropathy and Diabetic Foot Ulcer. Int Wound J 2025; 22:e70198. [PMID: 40234038 PMCID: PMC11999732 DOI: 10.1111/iwj.70198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 01/04/2025] [Accepted: 01/16/2025] [Indexed: 04/17/2025] Open
Abstract
Sympathetic dysfunction in skin is well known in diabetic peripheral neuropathy. This produces dry, cracked, peeling skin susceptible to infection and also epidermal microcirculation insufficiency. Impaired autonomic neurovascular control opens dermal arterio-venous anastomoses and shunts microcirculation away from the epidermis and impairs skin oxygenation and nutrition. Few recognise that diabetic neuropathy includes swelling-induced entrapment neuropathy. Multiple peripheral nerves, swollen by the secondary polyol metabolic pathway, suffer local compressions at fibro-osseous tunnels. This includes the C-fibres controlling autonomic functions which constitute most of the nerve axons. No current standard of care therapy addresses the sympathetic-regulated neurovascular impairment of skin microcirculation in diabetes. Epineurolysis surgery for peripheral nerve decompression relieves local axonal compressions and generates recovery of sub-epidermal capillary flow. Clinical and animal diabetes studies have demonstrated objective improvements to epidermal hypoxia, demyelination and axonal histology. Seven surgery studies find an average 1.39% recurrence and zero amputations after prior Risk Class 3 wound healing in a mean of 1.78 years of follow-up. Deficits of electrophysiology, transcutaneous oxygenation and vasa nervorum circulation also improve. Surgically improved microcirculation is physiology-based. Nerve decompression minimises diabetic peripheral neuropathy, avoids initial diabetic foot ulcers, promotes neuropathic diabetic foot ulcer healing and minimises ulcer recurrences and subsequent amputation. The observational studies of these important benefits suggest wide application to the complications of diabetes neuropathy and beg for academic attention to Level 1 EBM confirmation.
Collapse
|
2
|
Wu D, Liu R, Cen X, Dong W, Chen Q, Lin J, Wang X, Ling Y, Mao R, Sun H, Huang R, Su H, Xu H, Qin D. Preclinical study of engineering MSCs promoting diabetic wound healing and other inflammatory diseases through M2 polarization. Stem Cell Res Ther 2025; 16:113. [PMID: 40038782 PMCID: PMC11881511 DOI: 10.1186/s13287-025-04248-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 02/20/2025] [Indexed: 03/06/2025] Open
Abstract
BACKGROUND Diabetic foot ulcer (DFU) represents a common and severe complication of diabetes mellitus. Effective and safe treatments need to be developed. Mesenchymal stem cells (MSCs) have demonstrated crucial roles in tissue regeneration, wound repair and inflammation regulation. However, the function is limited. The safety and efficacy of gene-modified MSCs is unknown. Therefore, this study aimed to investigate whether genetically modified MSCs with highly efficient expression of anti-inflammatory factors promote diabetic wound repair by regulating macrophage phenotype transition. This may provide a new approach to treating diabetic wound healing. METHODS In this study, human umbilical cord-derived MSCs (hUMSCs) were genetically modified using recombinant lentiviral vectors to simultaneously overexpress three anti-inflammatory factors, interleukin (IL)-4, IL-10, IL-13 (MSCs-3IL). Cell counting kit-8, flow cytometry and differentiation assay were used to detect the criteria of MSCs. Overexpression efficiency was evaluated using flow cytometry, quantitative real-time PCR, Western blot, enzyme-linked immunosorbent assay, and cell scratch assay. We also assessed MSCs-3IL's ability to modulate Raw264.7 macrophage phenotype using flow cytometry and quantitative real-time PCR. In addition, we evaluated diabetic wound healing through healing rate calculation, HE staining, Masson staining, and immunohistochemical analysis of PCNA, F4/80, CD31, CD86, CD206, IL-4, IL-10 and IL-13. In addition, we evaluated the safety of the MSCs-3IL cells and the effect of the cells on several other models of inflammation. RESULTS MSCs-3IL efficiently expressed high levels of IL-4 and IL-10 (mRNA transcription increased by 15,000-fold and 800,000-fold, protein secretion 400 and 200 ng/mL), and IL-13 (mRNA transcription increased by 950,000-fold, protein secretion 6 ng/mL). MSCs-3IL effectively induced phenotypic polarization of pro-inflammatory M1-like macrophages (M1) towards anti-inflammatory M2-like macrophages (M2). The enhancement of function does not change the cell phenotype. The dynamic distribution in vivo was normal and no karyotype variation and tumor risk was observed. In a mouse diabetic wound model, MSCs-3IL promoted diabetic wound healing with a wound closure rate exceeding 96% after 14 days of cell treatment. The healing process was aided by altering macrophage phenotype (reduced CD86 and increased CD206 expression) and accelerating re-epithelialization. CONCLUSIONS In summary, our study demonstrates that genetically modified hUMSCs effectively overexpressed three key anti-inflammatory factors (IL-4, IL-10, IL-13). MSCs-3IL-based therapy enhances diabetic wound healing with high efficiency and safety. This suggests that genetically modified hUMSCs could be used as a novel therapeutic approach for DFU repair.
Collapse
Affiliation(s)
- Di Wu
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Rencun Liu
- Shandong Province Key Laboratory of Detection Technology for Tumour Makers, School of Chemistry and Chemical Engineering, Linyi University, Linyi, China
| | - Xiaotong Cen
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
| | - Wanwen Dong
- Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
| | - Qing Chen
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Jiali Lin
- Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
| | - Xia Wang
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yixia Ling
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Rui Mao
- Laboratory Animal Research Center, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Haitao Sun
- Neurosurgery Centre, Department of Cerebrovascular Surgery, Engineering Technology Research Centre of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, The National Key Clinical Specialty, Southern Medical University, Guangzhou, Guangdong, China
| | - Rui Huang
- The Fifth Clinical College, Guangzhou Medical University, Guangzhou, China
| | - Huanxing Su
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China.
- , No.621 Gangwan Road, Huangpu District, Guangzhou, China.
| | - Hongjie Xu
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.
- , No.621 Gangwan Road, Huangpu District, Guangzhou, China.
| | - Dajiang Qin
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.
- Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China.
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China.
- , No.621 Gangwan Road, Huangpu District, Guangzhou, China.
| |
Collapse
|
3
|
Vouillarmet J, Josset-Lamaugarny A, Moret M, Cugnet-Anceau C, Michon P, Disse E, Sigaudo-Roussel D. Impairment of Microcirculation Parameters in Patients with a History of Diabetic Foot Ulcers. MEDICINA (KAUNAS, LITHUANIA) 2024; 61:2. [PMID: 39858984 PMCID: PMC11766654 DOI: 10.3390/medicina61010002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 12/17/2024] [Accepted: 12/23/2024] [Indexed: 01/27/2025]
Abstract
Background and Objectives: According to the International Working Group on Diabetic Foot (IWGDF) risk classification, the estimated risk of developing a diabetic foot ulcer (DFU) is much higher in patients with a history of DFUs (Grade 3) compared to those with a peripheral neuropathy but without a history of DFUs (Grades 1 and 2). It has been suggested that microcirculation impairment is involved in DFU genesis and could be taken into account to refine the existing risk classification. The aim of this study was to evaluate microcirculation parameters in patients with diabetes according to their estimated DFU risk. Materials and Methods: A total of 172 patients with type 2 diabetes associated with a peripheral neuropathy and/or a history of DFUs were included and classified into two groups (Grade 1-2 and Grade 3) according to the IWGDF classification. All patients underwent an evaluation of peripheral neuropathy, plantar sudomotor function, and skin microcirculation parameters. These different parameters were compared between both groups. Results: There was no significant difference between the two groups in terms of age, diabetes duration, transcutaneous oxygen pressure level, skin microcirculatory reactivity, neuropathy disability score, neuropathy symptom score, or thermal sensitivity. Patients in Grade 3 were more likely to present with retinopathy (OR 3.15, 95%CI [1.53; 6.49]) and severe sudomotor dysfunction (OR 2.73 95%CI [1.29; 5.80] but less likely to have abnormal VPT (OR 0.20 95%CI [0.05; 0.80]). Conclusions: The present study found more retinopathy and a more pronounced alteration to sudomotor function in Grade 3 patients, suggesting that these parameters could be considered to better identify patients at high risk of DFUs.
Collapse
Affiliation(s)
- Julien Vouillarmet
- Service d’Endocrinologie, Diabète et Nutrition, Centre Hospitalier Lyon-Sud, Hospices Civils de Lyon, 69310 Pierre Bénite, France
| | - Audrey Josset-Lamaugarny
- Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique, CNRS UMR 5305, 69367 Lyon, France (D.S.-R.)
- UFR Biosciences, Université Claude Bernard, Villeurbanne, 69100 Lyon, France
| | - Myriam Moret
- Service d’Endocrinologie, Diabète et Métabolisme, Groupement Hospitalier Est, Hospices Civils de Lyon, 69677 Bron, France
| | - Christine Cugnet-Anceau
- Service d’Endocrinologie, Diabète et Nutrition, Centre Hospitalier Lyon-Sud, Hospices Civils de Lyon, 69310 Pierre Bénite, France
| | - Paul Michon
- Service d’Endocrinologie, Diabète et Nutrition, Centre Hospitalier Lyon-Sud, Hospices Civils de Lyon, 69310 Pierre Bénite, France
| | - Emmanuel Disse
- Service d’Endocrinologie, Diabète et Nutrition, Centre Hospitalier Lyon-Sud, Hospices Civils de Lyon, 69310 Pierre Bénite, France
| | - Dominique Sigaudo-Roussel
- Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique, CNRS UMR 5305, 69367 Lyon, France (D.S.-R.)
- UFR Biosciences, Université Claude Bernard, Villeurbanne, 69100 Lyon, France
| |
Collapse
|
4
|
Nickerson DS, Yamasaki DS. Objective Evidence That Nerve Decompression Surgery Reduces Neuropathic DFU Recurrence Risk to Less than 5%. Adv Wound Care (New Rochelle) 2024; 13:363-374. [PMID: 38511527 DOI: 10.1089/wound.2023.0199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024] Open
Abstract
Significance: Despite 20 years of research and new treatment methods, diabetic foot ulcer (DFU) remains a common problem with frequent recurrences and complications. Recent Advances: There are reports that nerve decompression (ND) surgery has been observed to produce significantly fewer DFU recurrences than standard of care (SOC). The explanation of this apparent superiority has not been understood. Critical Issues: Microcirculation is understood to be involved in diabetic peripheral neuropathy (DPN) and DFU. There is an underappreciation of the participation in DPN of entrapment neuropathy (EN) due to nerve swelling and impingement in fibro-osseous tunnels. Reducing c-fiber compression in EN by ND generates recovery of subepidermal capillary flow. ND studies have found improved neuromuscular function and epidermal microcirculation phenomena, including chronic capillary ischemia (CCI) and pressure-induced vasodilatation (PIV). There is no current therapy recommended for impaired microcirculation. Clinical and animal evidence has demonstrated that release of locally compressed peripheral nerves improves the epidermal microcirculation which is under sympathetic control. Future Directions: Using epineurolysis to relieve nerve compressions is a physiology-based therapeutic intervention and provides the scientific foundation clarifying how ND reduces DFU recurrence risk. Incorporating ND with current SOC treatments could improve DFU recurrence risk, hard-to-heal ulcers, neuroischemic wounds, amputation risk, and the resulting costs to society. More studies using ND for DFU, especially evidence-based medicine Level I studies, are needed to confirm these preliminary outcomes.
Collapse
|
5
|
Castro-Martins P, Marques A, Coelho L, Vaz M, Costa JT. Plantar pressure thresholds as a strategy to prevent diabetic foot ulcers: A systematic review. Heliyon 2024; 10:e26161. [PMID: 38390156 PMCID: PMC10882031 DOI: 10.1016/j.heliyon.2024.e26161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 11/22/2023] [Accepted: 02/08/2024] [Indexed: 02/24/2024] Open
Abstract
Background The development of ulcers in the plantar region of the diabetic foot originates mainly from sites subjected to high pressure. The monitoring of these events using maximum allowable pressure thresholds is a fundamental procedure in the prevention of ulceration and its recurrence. Objective The aim of this review was to identify data in the literature that reveal an objective threshold of plantar pressure in the diabetic foot, where pressure is classified as promoting ulceration. The aim is not to determine the best and only pressure threshold for ulceration, but rather to clarify the threshold values most used in clinical practice and research, also considering the devices used and possible applications for offloading plantar pressure. Design A systematic review. Methods The search was performed in three electronic databases, by the PRISMA methodology, for studies that used a pressure threshold to minimize the risk of ulceration in the diabetic foot. The selected studies were subjected to eligibility criteria. Results Twenty-six studies were included in this review. Seven thresholds were identified, five of which are intended for the inside of the shoe: a threshold of average peak pressure of 200 kPa; 25 % and 40-80 % reduction from initial baseline pressure; 32-35 mm Hg for a capillary perfusion pressure; and a matrix of thresholds based on patient risk, shoe size and foot region. Two other thresholds are intended for the barefoot, 450 and 750 kPa. The threshold of 200 kPa of pressure inside the shoe is the most agreed upon among the studies. Regarding the prevention of ulceration and its recurrence, the efficacy of the proposed threshold matrix and the threshold of reducing baseline pressure by 40-80 % has not yet been evaluated, and the evidence for the remaining thresholds still needs further studies. Conclusions Some heterogeneity was found in the studies, especially regarding the measurement systems used, the number of regions of interest and the number of steps to be considered for the threshold. Even so, this review reveals the way forward to obtain a threshold indicative of an effective steppingstone in the prevention of diabetic foot ulcer.
Collapse
Affiliation(s)
- Pedro Castro-Martins
- CIETI, ISEP, Polytechnic of Porto, Portugal
- Faculty of Engineering, University of Porto, Portugal
| | - Arcelina Marques
- CIETI, ISEP, Polytechnic of Porto, Portugal
- Institute for Science and Innovation in Mechanical and Industrial Engineering, Porto, Portugal
| | - Luís Coelho
- CIETI, ISEP, Polytechnic of Porto, Portugal
- INESC-TEC, Centre for Robotics in Industry and Intelligent Systems, Porto, Portugal
| | - Mário Vaz
- Faculty of Engineering, University of Porto, Portugal
- Institute for Science and Innovation in Mechanical and Industrial Engineering, Porto, Portugal
| | - José Torres Costa
- Faculty of Engineering, University of Porto, Portugal
- Faculty of Medicine, University of Porto, Portugal
| |
Collapse
|
6
|
Kottner J, Coleman S. The theory and practice of pressure ulcer/injury risk assessment: a critical discussion. J Wound Care 2023; 32:560-569. [PMID: 37682783 DOI: 10.12968/jowc.2023.32.9.560] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2023]
Abstract
Pressure ulcer/injury (PU) risk assessment is widely considered an essential component in clinical practice. It is a complex and broad concept that includes different approaches, such as clinical judgement, using standardised risk assessment instruments, skin assessments, or using devices to measure skin or tissue properties. A distinction between PU risk assessment and early detection is important. PU risk measures the individual's susceptibility to developing a PU under a specific exposure (primary prevention), and early detection includes the assessment of early (sub)clinical signs and symptoms to prevent progression and to support healing (secondary prevention). PU risk is measured using prognostic/risk factors or prognostic models. Every risk estimate is a probability statement containing varying degrees of uncertainty. It therefore follows that every clinical decision based on risk estimates also contains uncertainty. PU risk assessment and prevention is a complex intervention, where delivery contains several interacting components. There is a huge body of evidence indicating that risk assessment and its outcomes, the selection of preventive interventions and PU incidence are not well connected. Methods for prognostic model development and testing in PU risk research must be improved and follow state-of-the-art methodological standards. Despite these challenges, we do have substantial knowledge about PU risk factors that helps us to make better clinical decisions. An important next step in the development of PU risk prediction might be the combination of clinical and other predictors for more individualised care. Any prognostic test or procedure must lead to better prevention at an acceptable cost.
Collapse
Affiliation(s)
- Jan Kottner
- Charité-Universitätsmedizin Berlin, Institute of Clinical Nursing Science, Berlin, Germany
| | - Susanne Coleman
- Leeds Institute of Clinical Trials Research, University of Leeds, UK
| |
Collapse
|
7
|
Sanchez B, Ferraro S, Josset-Lamaugarny A, Pagnon A, Hee CK, Nakab L, Sigaudo-Roussel D, Fromy B. Skin Cell and Tissue Responses to Cross-Linked Hyaluronic Acid in Low-Grade Inflammatory Conditions. Int J Inflam 2023; 2023:3001080. [PMID: 37663889 PMCID: PMC10474960 DOI: 10.1155/2023/3001080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 07/18/2023] [Accepted: 08/17/2023] [Indexed: 09/05/2023] Open
Abstract
Hyaluronic acid (HA), used in a variety of medical applications, is associated in rare instances to long-term adverse effects. Although the aetiology of these events is unknown, a number of hypotheses have been proposed, including low molecular weight of HA (LMW-HA) in the filler products. We hypothesized that cross-linked HA and its degradation products, in a low-grade inflammatory microenvironment, could impact immune responses that could affect cell behaviours in the dermis. Using two different cross-linking technologies VYC-15L and HYC-24L+, and their hyaluronidase-induced degradation products, we observed for nondegraded HA, VYC-15L and HYC-24L+, a moderate and transient increase in IL-1β, TNF-α in M1 macrophages under low-grade inflammatory conditions. Endothelial cells and fibroblasts were preconditioned using inflammatory medium produced by M1 macrophages. 24 h after LMW-HA fragments and HA stimulation, no cytokine was released in these preconditioned cells. To further characterize HA responses, we used a novel in vivo murine model exhibiting a systemic low-grade inflammatory phenotype. The intradermal injection of VYC-15L and its degradation products induced an inflammation and cell infiltration into the skin that was more pronounced than those by HYC-24L+. This acute cutaneous inflammation was likely due to mechanical effects due to filler injection and tissue integration rather than its biological effects on inflammation. VYC-15L and its degradation product potentiated microvascular response to acetylcholine in the presence of a low-grade inflammation. The different responses with 2D cell models and mouse model using the two tested cross-linking HA technologies showed the importance to use integrative complex model to better understand the effects of HA products according to inflammatory state.
Collapse
Affiliation(s)
- Benjamin Sanchez
- Laboratoire Biologie Tissulaire et Ingénierie Thérapeutique, Centre national de la recherche scientifique (CNRS), UMR 5305, LBTI, 7 Passage du Vercors, F-69367 Lyon cedex 7, France
- University of Lyon 1, UMR 5305, LBTI, 7 Passage du Vercors, F-69367 Lyon cedex 7, France
| | - Sandra Ferraro
- Laboratoire Biologie Tissulaire et Ingénierie Thérapeutique, Centre national de la recherche scientifique (CNRS), UMR 5305, LBTI, 7 Passage du Vercors, F-69367 Lyon cedex 7, France
- University of Lyon 1, UMR 5305, LBTI, 7 Passage du Vercors, F-69367 Lyon cedex 7, France
| | - Audrey Josset-Lamaugarny
- Laboratoire Biologie Tissulaire et Ingénierie Thérapeutique, Centre national de la recherche scientifique (CNRS), UMR 5305, LBTI, 7 Passage du Vercors, F-69367 Lyon cedex 7, France
- University of Lyon 1, UMR 5305, LBTI, 7 Passage du Vercors, F-69367 Lyon cedex 7, France
| | - Aurélie Pagnon
- NOVOTEC, ZAC du Chêne Europarc, 11 Rue Edison, 69500 Bron, France
| | - Charlie K. Hee
- Allergan Aesthetics, An AbbVie Company, 2525 Dupont Dr., Irvine, CA 92612, USA
| | - Lauren Nakab
- Allergan Aesthetics, An AbbVie Company, 2525 Dupont Dr., Irvine, CA 92612, USA
| | - Dominique Sigaudo-Roussel
- Laboratoire Biologie Tissulaire et Ingénierie Thérapeutique, Centre national de la recherche scientifique (CNRS), UMR 5305, LBTI, 7 Passage du Vercors, F-69367 Lyon cedex 7, France
- University of Lyon 1, UMR 5305, LBTI, 7 Passage du Vercors, F-69367 Lyon cedex 7, France
| | - Bérengère Fromy
- Laboratoire Biologie Tissulaire et Ingénierie Thérapeutique, Centre national de la recherche scientifique (CNRS), UMR 5305, LBTI, 7 Passage du Vercors, F-69367 Lyon cedex 7, France
- University of Lyon 1, UMR 5305, LBTI, 7 Passage du Vercors, F-69367 Lyon cedex 7, France
| |
Collapse
|
8
|
Wang P, Wang Y, Yi Y, Gong Y, Ji H, Gan Y, Xie F, Fan J, Wang X. MXenes-integrated microneedle combined with asiaticoside to penetrate the cuticle for treatment of diabetic foot ulcer. J Nanobiotechnology 2022; 20:259. [PMID: 35672708 PMCID: PMC9172054 DOI: 10.1186/s12951-022-01468-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 05/19/2022] [Indexed: 11/10/2022] Open
Abstract
AbstractPatients with diabetic foot ulcers usually suffer from inefficient epithelisation and angiogenesis accompanied by chronic wound healing. Diabetic foot ulcers remain a major challenge in clinical medicine; however, traditional treatments are incapable of transdermal drug delivery, resulting in a low drug delivery rate. We report the development of Ti2C3 MXenes-integrated poly-γ-glutamic acid (γ-PGA) hydrogel microneedles to release asiaticoside (MN-MXenes-AS). Asiaticoside was loaded into PGA-MXenes hydrogel to facilitate cell proliferation while regulating angiogenesis. The characterisation and mechanical strength of the microneedles were investigated in vitro, and the wound-healing efficacy of the microneedles was confirmed in diabetic mice. MXenes significantly improved the mechanical strength of microneedles, while γ-PGA hydrogels provided a moist microenvironment for wound healing. Mice treated with MN-MXenes-AS demonstrated obvious improvements in wound healing process. We successfully fabricated an MXenes-integrated microneedle that possesses sufficient rigidity to penetrate the cuticle for subcutaneous drug delivery, thereby accelerating diabetic wound healing. We demonstrated that MN-MXenes-AS is effective in promoting growth both in vivo and in vitro. Collectively, our data show that MN-MXenes-AS accelerated the healing of diabetic foot ulcers, supporting the use of these microneedles in the treatment of chronic wounds.
Graphical Abstract
Collapse
|
9
|
Balasubramanian GV, Chockalingam N, Naemi R. The Role of Cutaneous Microcirculatory Responses in Tissue Injury, Inflammation and Repair at the Foot in Diabetes. Front Bioeng Biotechnol 2021; 9:732753. [PMID: 34595160 PMCID: PMC8476833 DOI: 10.3389/fbioe.2021.732753] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 08/26/2021] [Indexed: 12/23/2022] Open
Abstract
Diabetic foot syndrome is one of the most costly complications of diabetes. Damage to the soft tissue structure is one of the primary causes of diabetic foot ulcers and most of the current literature focuses on factors such as neuropathy and excessive load. Although the role of blood supply has been reported in the context of macro-circulation, soft tissue damage and its healing in the context of skin microcirculation have not been adequately investigated. Previous research suggested that certain microcirculatory responses protect the skin and their impairment may contribute to increased risk for occlusive and ischemic injuries to the foot. The purpose of this narrative review was to explore and establish the possible link between impairment in skin perfusion and the chain of events that leads to ulceration, considering the interaction with other more established ulceration factors. This review highlights some of the key skin microcirculatory functions in response to various stimuli. The microcirculatory responses observed in the form of altered skin blood flow are divided into three categories based on the type of stimuli including occlusion, pressure and temperature. Studies on the three categories were reviewed including: the microcirculatory response to occlusive ischemia or Post-Occlusive Reactive Hyperaemia (PORH); the microcirculatory response to locally applied pressure such as Pressure-Induced Vasodilation (PIV); and the interplay between microcirculation and skin temperature and the microcirculatory responses to thermal stimuli such as reduced/increased blood flow due to cooling/heating. This review highlights how microcirculatory responses protect the skin and the plantar soft tissues and their plausible dysfunction in people with diabetes. Whilst discussing the link between impairment in skin perfusion as a result of altered microcirculatory response, the review describes the chain of events that leads to ulceration. A thorough understanding of the microcirculatory function and its impaired reactive mechanisms is provided, which allows an understanding of the interaction between functional disturbances of microcirculation and other more established factors for foot ulceration.
Collapse
Affiliation(s)
| | | | - Roozbeh Naemi
- Centre for Biomechanics and Rehabilitation Technologies, Staffordshire University, Stoke-on-Trent, United Kingdom
| |
Collapse
|
10
|
O'Brien TD. Impaired dermal microvascular reactivity and implications for diabetic wound formation and healing: an evidence review. J Wound Care 2021; 29:S21-S28. [PMID: 32924808 DOI: 10.12968/jowc.2020.29.sup9.s21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Diabetic foot ulcers (DFUs) are among the most consequential and costly complications faced by patients with diabetes and the global healthcare system. Acknowledged risk factors for DFUs include diabetic peripheral neuropathy (DPN), peripheral arterial disease (PAD), microtrauma and foot deformities. Research on additional risk factors for DFUs has recently focused on dysregulated, autonomic vasomotor control in the skin of patients with DPN. In particular, impaired dermal microvascular reactivity (IDMR) with its attendant reduction in nutritive capillary blood flow has been identified as an emerging risk factor. This especially relates to refractory wounds noted in patients without overt PAD signs. In this paper, evidence will be reviewed supporting the evolving understanding of IDMR and its impact on DFU formation and healing. Advances in diagnostic instrumentation driving this research along with the most promising potential therapies aimed at improving microvascular function in the diabetic foot will be discussed in brief.
Collapse
Affiliation(s)
- Todd D O'Brien
- Penobscot Community Health Care, Bangor, ME, US.,University of Maine, Orono, ME, US
| |
Collapse
|
11
|
Murphy GA, Singh-Moon RP, Mazhar A, Cuccia DJ, Rowe VL, Armstrong DG. Quantifying dermal microcirculatory changes of neuropathic and neuroischemic diabetic foot ulcers using spatial frequency domain imaging: a shade of things to come? BMJ Open Diabetes Res Care 2020; 8:8/2/e001815. [PMID: 33219118 PMCID: PMC7682192 DOI: 10.1136/bmjdrc-2020-001815] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 10/06/2020] [Accepted: 11/03/2020] [Indexed: 12/17/2022] Open
Abstract
INTRODUCTION The use of non-invasive vascular and perfusion diagnostics are an important part of assessing lower extremity ulceration and amputation risk in patients with diabetes mellitus. Methods for detecting impaired microvascular vasodilatory function in patients with diabetes may have the potential to identify sites at risk of ulceration prior to clinically identifiable signs. Spatial frequency domain imaging (SFDI) uses patterned near-infrared and visible light spectroscopy to determine tissue oxygen saturation and hemoglobin distribution within the superficial and deep dermis, showing distinct microcirculatory and oxygenation changes that occur prior to neuropathic and neuroischemic ulceration. RESEARCH DESIGNS AND METHODS 35 patients with diabetes mellitus and a history of diabetic foot ulceration were recruited for monthly imaging with SFDI. Two patients who ulcerated during the year-long longitudinal study were selected for presentation of their clinical course alongside the dermal microcirculation biomarkers from SFDI. RESULTS Patient 1 developed a neuropathic ulcer portended by a focal increase in tissue oxygen saturation and decrease in superficial papillary hemoglobin concentration 3 months prior. Patient 2 developed bilateral neuroischemic ulcers showing decreased tissue oxygen saturation and increased superficial papillary and deep dermal reticular hemoglobin concentrations. CONCLUSIONS Wounds of different etiology show unique dermal microcirculatory changes prior to gross ulceration. Before predictive models can be developed from SFDI, biomarker data must be correlated with the clinical course of patients who ulcerate while being followed longitudinally. TRIAL REGISTRATION NUMBER NCT03341559.
Collapse
Affiliation(s)
- Grant A Murphy
- Department of Surgery, University of Southern California Keck School of Medicine, Los Angeles, California, USA
| | | | - Amaan Mazhar
- Department of Research and Development, Modulim, Irvine, California, USA
| | - David J Cuccia
- Department of Research and Development, Modulim, Irvine, California, USA
| | - Vincent L Rowe
- Department of Surgery, University of Southern California Keck School of Medicine, Los Angeles, California, USA
| | - David G Armstrong
- Department of Surgery, University of Southern California Keck School of Medicine, Los Angeles, California, USA
| |
Collapse
|
12
|
Balasubramanian G, Vas P, Chockalingam N, Naemi R. A Synoptic Overview of Neurovascular Interactions in the Foot. Front Endocrinol (Lausanne) 2020; 11:308. [PMID: 32528410 PMCID: PMC7256167 DOI: 10.3389/fendo.2020.00308] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 04/22/2020] [Indexed: 12/13/2022] Open
Abstract
Diabetes is a worldwide public health concern as it is associated with various complications. One of the major complications of diabetes is diabetic foot syndrome that results in catastrophic events such as ulceration and amputation. Therefore, the main four strategies of diabetic foot care involve risk prediction, prevention, and early diagnosis and prompt intervention. The drivers of ulceration are multifactorial, and importantly, include microcirculatory changes in the diabetic skin. Cutaneous microcirculation on the foot is greatly influenced by the small fibers which mediate thermal sensation and pain perception in addition to sympathetic activities such as thermoregulation and vasodilation. The interdependence between the neurovascular elements means with the loss of small fiber functions, the corresponding microcirculatory responses may be compromised. Thus, it can be hypothesized that the impairment of the microcirculation may follow the order of the corresponding small fiber nerve dysfunction or vice versa. In this review, select neurovascular investigations that inform the cutaneous microcirculatory and small fiber nerve function in response to pain, cold, and heat and pressure stimuli are reviewed and discussed in this order of sensory loss: the loss of pain, cold, warmth, touch and deep pressure sensation. We also discuss the neurological and vascular characteristics of each of these neurovascular responses. This review highlights the influence of small fibers on cutaneous microcirculation and the need for prospective studies that can determine the course of microcirculatory impairment over time. This, in turn, may help clarify the exact role of microcirculatory changes in the pathway of ulceration. The insights from this review can be pertinent to understand key microcirculatory disturbances and given that the microcirculatory impairment develops at an early stage, relevant interventions can be implemented to possibly reverse or regress the course of the disease. Therefore, knowledge of the neurovascular interactions aids to map the disease progression for early diagnosis and prevention of adverse complications.
Collapse
Affiliation(s)
- Gayathri Balasubramanian
- Centre for Biomechanics and Rehabilitation Technologies, Science Centre, Staffordshire University, Stoke-on-Trent, United Kingdom
| | - Prashanth Vas
- King's College Hospital NHS Foundation Trust, London, United Kingdom
| | - Nachiappan Chockalingam
- Centre for Biomechanics and Rehabilitation Technologies, Science Centre, Staffordshire University, Stoke-on-Trent, United Kingdom
- Faculty of Health Sciences, University of Malta, Msida, Malta
| | - Roozbeh Naemi
- Centre for Biomechanics and Rehabilitation Technologies, Science Centre, Staffordshire University, Stoke-on-Trent, United Kingdom
| |
Collapse
|
13
|
Abbott CA, Chatwin KE, Foden P, Hasan AN, Sange C, Rajbhandari SM, Reddy PN, Vileikyte L, Bowling FL, Boulton AJM, Reeves ND. Innovative intelligent insole system reduces diabetic foot ulcer recurrence at plantar sites: a prospective, randomised, proof-of-concept study. LANCET DIGITAL HEALTH 2019; 1:e308-e318. [PMID: 33323253 DOI: 10.1016/s2589-7500(19)30128-1] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 08/19/2019] [Accepted: 08/21/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Prevention of diabetic foot ulcer recurrence in high risk patients, using current standard of care methods, remains a challenge. We hypothesised that an innovative intelligent insole system would be effective in reducing diabetic foot ulcer recurrence in such patients. METHODS In this prospective, randomised, proof-of-concept study, patients with diabetes, and with peripheral neuropathy and a recent history of plantar foot ulceration were recruited from two multidisciplinary outpatient diabetic foot clinics in the UK, and were randomly assigned to either intervention or control. All patients received an insole system, which measured plantar pressure continuously during daily life. The intervention group received audiovisual alerts via a smartwatch linked to the insole system and offloading instructions when aberrant pressures were detected; the control group did not receive any alerts. The primary outcome was plantar foot ulcer occurrence within 18 months. This trial is registered with ISRCTN, ISRCTN05585501, and is closed to accrual and complete. FINDINGS Between March 18, 2014, and Dec 20, 2016, 90 patients were recruited and consented to the study, and 58 completed the study. At follow-up, ten ulcers from 8638 person-days were recorded in the control group and four ulcers from 11 835 person-days in the intervention group: a 71% reduction in ulcer incidence in the intervention group compared with the control group (incidence rate ratio 0·29, 95% CI, 0·09-0·93; p=0·037). The number of patients who ulcerated was similar between groups (six of 26 [control group] vs four of 32 [intervention group]; p=0·29); however, individual plantar sites ulcerated more often in the control group (ten of 416) than in the intervention group (four of 512; p=0·047). In an exploratory analysis of good compliers (n=40), ulcer incidence was reduced by 86% in the intervention group versus control group (incidence rate ratio 0·14, 95% CI 0·03-0·63; p=0·011). In the exploratory analysis, plantar callus severity (change from baseline to 6 months) was greater in re-ulcerating patients (6·5, IQR 4·0-8·3) than non-re-ulcerating patients (2·0, 0·0-4·8; p=0·040). INTERPRETATION To our knowledge, this study is the first to show that continuous plantar pressure monitoring and dynamic offloading guidance, provided by an innovative intelligent insole system, can lead to a reduction in diabetic foot ulcer site recurrence. FUNDING Diabetes UK and Orpyx Medical Technologies.
Collapse
Affiliation(s)
- Caroline A Abbott
- Research Centre for Musculoskeletal Science & Sports Medicine, Department of Life Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, UK.
| | - Katie E Chatwin
- Research Centre for Musculoskeletal Science & Sports Medicine, Department of Life Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, UK
| | - Philip Foden
- Medical Statistics Department, University Hospital of South Manchester NHS Foundation Trust, Manchester, UK
| | - Ahmad N Hasan
- Research Centre for Musculoskeletal Science & Sports Medicine, Department of Life Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, UK; Institute of Medical Science and Technology, University Kuala Lumpur, Kuala Lumpur, Malaysia
| | - Chandbi Sange
- Diabetes Centre, Lancashire Teaching Hospitals NHS Foundation Trust, Lancashire, UK
| | - Satyan M Rajbhandari
- Diabetes Centre, Lancashire Teaching Hospitals NHS Foundation Trust, Lancashire, UK
| | - Prabhav N Reddy
- Department of Medical Physics and Biomedical Engineering, University College London, London, UK
| | - Loretta Vileikyte
- Department of Medicine, Manchester Royal Infirmary, Manchester, UK; Diabetes Research Institute, University of Miami, Miami, FL, USA
| | - Frank L Bowling
- Division of Diabetes, Endocrinology & Gastroenterology University of Manchester, Manchester, UK
| | - Andrew J M Boulton
- Department of Medicine, Manchester Royal Infirmary, Manchester, UK; Diabetes Research Institute, University of Miami, Miami, FL, USA
| | - Neil D Reeves
- Research Centre for Musculoskeletal Science & Sports Medicine, Department of Life Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, UK
| |
Collapse
|
14
|
Fouchard M, Misery L, Le Garrec R, Sigaudo-Roussel D, Fromy B. Alteration of Pressure-Induced Vasodilation in Aging and Diabetes, a Neuro-Vascular Damage. Front Physiol 2019; 10:862. [PMID: 31333501 PMCID: PMC6616153 DOI: 10.3389/fphys.2019.00862] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 06/20/2019] [Indexed: 12/11/2022] Open
Abstract
Skin is constantly subjected to pressure at different levels. Pressure-induced vasodilation (PIV) is one of the response mechanisms to low pressure that maintains the homeostasis of the skin. PIV results from the interaction of primary afferent nerves and vascular endothelium of skin vessels. Thanks to this cutaneous neuro-vascular interaction, the cutaneous blood flow increase allows the maintenance of an optimal level of oxygenation and minimizes the lack of vascularization of the skin tissue under low pressure. It seems to be associated with the cutaneous protection mechanisms to prevent pressure ulcers. In some contexts, where microangiopathy and neuropathy can occur, such as aging and diabetes, PIV is impaired, leading to a dramatic early decrease in local skin blood flow when low pressure is applied. In aging, PIV alteration is due to endothelial dysfunction, essentially from an alteration of the nitric oxide pathway. In the inflamm-aging context, oxidative stress increases leading to endothelial cell and nerve damages. An age-related sensory neuropathy will exacerbate the alteration of PIV during the aging process. In diabetes, non-controlled hyperglycaemia leads to an increase in several pathological biochemical pathways that involve oxidative stress and can affect PIV. Sorbinil, alagebrium and alpha-lipoic acid are able individually to restore PIV through a possible oxidative stress reduction. Candesartan, an angiotensin II type 1 receptor blocker, is also able to restore PIV and prevent pressure ulcer formation. The possibility of preventing pressure ulcer associated to diabetes and/or aging with the restoration of PIV seems to be a promising research path.
Collapse
Affiliation(s)
- Maxime Fouchard
- LIEN, F-29200, University of Brest, Brest, France.,Department of Dermatology, University Hospital of Brest, Brest, France
| | - Laurent Misery
- LIEN, F-29200, University of Brest, Brest, France.,Department of Dermatology, University Hospital of Brest, Brest, France
| | | | | | | |
Collapse
|