1
|
Ma F, Liu Y, Wang Y, Chirume WM, Yao D, Lan W, Zhao Z, Xu X, Zhang W, Guo C, Kong Q. A smart drug delivery microgel system with phased intervention capabilities and dual physical state of use promotes healing of diabetic infected wounds. J Mater Chem B 2025; 13:4138-4156. [PMID: 40045793 DOI: 10.1039/d4tb02474e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2025]
Abstract
Effectively managing infected diabetic wounds involves the elimination of bacteria, neutralization of reactive oxygen species (ROS), suppression of inflammation, and induction of angiogenesis. This study describes the development of a multifunctional hyaluronic acid (HA)-based microgel system capable of serving as either an injectable wet microgel or dry microspheres (MSs). After initially engineering Fe2+/tea polyphenol (TP) metal-polyphenol network (MPN)-functionalized HAMA MS, these particles were found to suppress inflammation and facilitate ROS scavenging. A deferoxamine (DFO)-loaded zinc-based metal-organic framework (ZIF-8@DFO) was then coated using phenylboronic acid (PBA)-functionalized ε-polylysine (PPL) to produce PPZD nanoparticles with antibacterial and pro-angiogenic properties. The dynamic loading of PPZD into MPN-functionalized MS (MMS) via boron ester bonds then yielded a pH/ROS-responsive microgel system (MMS@PPZD). PPL coating endowed the prepared materials with antimicrobial properties while mitigating cytotoxic effects resulting from the rapid release of Zn2+ and DFO in acidic micro-environments. This microgel system showed superior biocompatibility and phased intervention activities aligned with the various stages of the wound healing process in vitro and in vivo. Specifically, under acidic conditions, the system sequentially released TP, PL, Zn2+, and DFO, enabling effective ROS scavenging, suppressing inflammation, exhibiting antibacterial activity, and inducing angiogenesis. Overall, this environmentally-responsive, multifunctional, versatile microgel system offers significant promise for infected diabetic wound management.
Collapse
Affiliation(s)
- Fei Ma
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.
| | - Yuheng Liu
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.
| | - Yu Wang
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.
| | - Walter Munesu Chirume
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.
| | - Dengbo Yao
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.
| | - Weiqiang Lan
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.
| | - Zhen Zhao
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.
| | - Xueyuan Xu
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Weifei Zhang
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.
| | - Chuan Guo
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.
| | - Qingquan Kong
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.
| |
Collapse
|
2
|
Madkor HR, Abd El-Aziz MK, Abd El-Maksoud MS, Ibrahim IM, Ali FEM. Stem Cells Reprogramming in Diabetes Mellitus and Diabetic Complications: Recent Advances. Curr Diabetes Rev 2025; 21:21-37. [PMID: 38173073 DOI: 10.2174/0115733998275428231210055650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/09/2023] [Accepted: 11/21/2023] [Indexed: 01/05/2024]
Abstract
BACKGROUND The incidence of diabetes mellitus (DM) is dramatically increasing worldwide, and it is expected to affect 700 million cases by 2045. Diabetes influences health care economics, human quality of life, morbidity, and mortality, which were primarily seen extensively in developing countries. Uncontrolled DM, which results in consistent hyperglycemia, may lead to severe life-threatening complications such as nephropathy, retinopathy, neuropathy, and cardiovascular complications. METHODOLOGY In addition to traditional therapies with insulin and oral anti-diabetics, researchers have developed new approaches for treatment, including stem cell (SC) therapy, which exhibits promising outcomes. Besides its significant role in treating type one DM (T1DM) and type two DM (T2DM), it can also attenuate diabetic complications. Furthermore, the development of insulin- producing cells can be achieved by using the different types of SCs, such as embryonic stem cells (ESCs), induced pluripotent stem cells (iPSCs), and multiple types of adult stem cells, such as pancreatic, hepatic, and mesenchymal stem cells (MSC). All these types have been extensively studied and proved their ability to develop insulin-producing cells, but every type has limitations. CONCLUSION This review aims to enlighten researchers about recent advances in stem cell research and their potential benefits in DM and diabetic complications.
Collapse
Affiliation(s)
- Hafez R Madkor
- Department of Biochemistry, Faculty of Pharmacy, Al-Azhar University, Assiut, 71524, Egypt
| | | | | | - Islam M Ibrahim
- Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt
| | - Fares E M Ali
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt
| |
Collapse
|
3
|
Zhang Z, Ma X, La Y, Guo X, Chu M, Bao P, Yan P, Wu X, Liang C. Advancements in the Application of scRNA-Seq in Breast Research: A Review. Int J Mol Sci 2024; 25:13706. [PMID: 39769466 PMCID: PMC11677372 DOI: 10.3390/ijms252413706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/10/2024] [Accepted: 12/18/2024] [Indexed: 01/11/2025] Open
Abstract
Single-cell sequencing technology provides apparent advantages in cell population heterogeneity, allowing individuals to better comprehend tissues and organs. Sequencing technology is currently moving beyond the standard transcriptome to the single-cell level, which is likely to bring new insights into the function of breast cells. In this study, we examine the primary cell types involved in breast development, as well as achievements in the study of scRNA-seq in the microenvironment, stressing the finding of novel cell subsets using single-cell approaches and analyzing the problems and solutions to scRNA-seq. Furthermore, we are excited about the field's promising future.
Collapse
Affiliation(s)
- Zhenyu Zhang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China;
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Gansu Provincial Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Animal Husbandry and Veterinary Medicine, Chinese Academy of Agricultural Sciences, Lanzhou 730070, China; (X.M.); (Y.L.); (X.G.); (M.C.); (P.B.); (P.Y.); (X.W.)
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730070, China
| | - Xiaoming Ma
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Gansu Provincial Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Animal Husbandry and Veterinary Medicine, Chinese Academy of Agricultural Sciences, Lanzhou 730070, China; (X.M.); (Y.L.); (X.G.); (M.C.); (P.B.); (P.Y.); (X.W.)
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730070, China
| | - Yongfu La
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Gansu Provincial Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Animal Husbandry and Veterinary Medicine, Chinese Academy of Agricultural Sciences, Lanzhou 730070, China; (X.M.); (Y.L.); (X.G.); (M.C.); (P.B.); (P.Y.); (X.W.)
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730070, China
| | - Xian Guo
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Gansu Provincial Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Animal Husbandry and Veterinary Medicine, Chinese Academy of Agricultural Sciences, Lanzhou 730070, China; (X.M.); (Y.L.); (X.G.); (M.C.); (P.B.); (P.Y.); (X.W.)
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730070, China
| | - Min Chu
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Gansu Provincial Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Animal Husbandry and Veterinary Medicine, Chinese Academy of Agricultural Sciences, Lanzhou 730070, China; (X.M.); (Y.L.); (X.G.); (M.C.); (P.B.); (P.Y.); (X.W.)
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730070, China
| | - Pengjia Bao
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Gansu Provincial Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Animal Husbandry and Veterinary Medicine, Chinese Academy of Agricultural Sciences, Lanzhou 730070, China; (X.M.); (Y.L.); (X.G.); (M.C.); (P.B.); (P.Y.); (X.W.)
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730070, China
| | - Ping Yan
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Gansu Provincial Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Animal Husbandry and Veterinary Medicine, Chinese Academy of Agricultural Sciences, Lanzhou 730070, China; (X.M.); (Y.L.); (X.G.); (M.C.); (P.B.); (P.Y.); (X.W.)
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730070, China
| | - Xiaoyun Wu
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Gansu Provincial Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Animal Husbandry and Veterinary Medicine, Chinese Academy of Agricultural Sciences, Lanzhou 730070, China; (X.M.); (Y.L.); (X.G.); (M.C.); (P.B.); (P.Y.); (X.W.)
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730070, China
| | - Chunnian Liang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China;
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Gansu Provincial Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Animal Husbandry and Veterinary Medicine, Chinese Academy of Agricultural Sciences, Lanzhou 730070, China; (X.M.); (Y.L.); (X.G.); (M.C.); (P.B.); (P.Y.); (X.W.)
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730070, China
| |
Collapse
|
4
|
Shetty SR, Debnath S, Majumdar K, Rajagopalan M, Ramaswamy A, Das A. Virtual screening, molecular dynamics simulations, and in vitro validation of EGFR inhibitors as breast cancer therapeutics. Bioorg Chem 2024; 153:107849. [PMID: 39368144 DOI: 10.1016/j.bioorg.2024.107849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/07/2024]
Abstract
A high abundance of Epidermal Growth Factor Receptor (EGFR) in malignant cells makes them a prospective therapeutic target for basal breast tumors. Although EGFR inhibitors are in development as anticancer therapeutics, there exists limitations due to the dose-limiting cytotoxicity that limits their clinical utilization, thereby necessitating the advancement of effective inhibitors. In the present study, we have developed common pharmacophore hypotheses using 30 known EGFR inhibitors. The best pharmacophore hypothesis DHRRR_1 was utilized for virtual screening (VS) of the Phase database containing 4.3 × 106 fully prepared compounds. The top 1000 hits were further subjected to ADME filtration followed by structure-based VS and Molecular Dynamics (MD) simulation investigations. Based on pharmacophore hypothesis matching, XP glide score, interactions between ligands and active site residues, ADME properties, and MD simulations, the five best hits (SN-01 through SN-05) were preferred for in-vitro cytotoxicity studies. All the molecules except SN-02 exhibited cytotoxicity in Triple Negative Breast Cancer (TNBC) cells. These potential EGFR inhibitors effectively downregulated the EGF-induced proliferation, migration, in-vitro tumorigenic capability, and EGFR activation (pEGFR) in the TNBCs. Additionally, in combination with doxorubicin, the identified EGFR inhibitors significantly decreased the EGF-induced proliferation. SN-04, and SN-05 in the presence of a lower concentration of doxorubicin markedly increased the apoptotic markers expression in the TNBCs, an effect which was comparable to a higher concentration of doxorubicin treatment, alone. These observations suggest that both SN-04 and/or SN-05 can improve the efficacy of chemotherapeutic drug, doxorubicin at a lower concentration to avert the higher dose of chemotherapeutic-induced side effects during breast cancer treatment.
Collapse
Affiliation(s)
- Swathi R Shetty
- Department of Applied Biology, Council of Scientific & Industrial Research-Indian Institute of Chemical Technology (CSIR-IICT), Uppal Road, Tarnaka, Hyderabad 500007 TS, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sudhan Debnath
- Maharaja Bir Bikram College, Agartala, Tripura, India; Department of Chemistry, Netaji Subhash Mahavidyalaya, Udaipur, Tripura, India
| | | | - Muthukumaran Rajagopalan
- Department of Bioinformatics, School of Life Sciences, Pondicherry University, Puducherry 605014, INDIA
| | - Amutha Ramaswamy
- Department of Bioinformatics, School of Life Sciences, Pondicherry University, Puducherry 605014, INDIA
| | - Amitava Das
- Department of Applied Biology, Council of Scientific & Industrial Research-Indian Institute of Chemical Technology (CSIR-IICT), Uppal Road, Tarnaka, Hyderabad 500007 TS, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
5
|
Xu Y, Ma X, Ni W, Zheng L, Lin Z, Lai Y, Yang N, Dai Z, Yao T, Chen Z, Shen L, Wang H, Wang L, Wu Y, Gao W. PKM2-Driven Lactate Overproduction Triggers Endothelial-To-Mesenchymal Transition in Ischemic Flap via Mediating TWIST1 Lactylation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2406184. [PMID: 39474980 DOI: 10.1002/advs.202406184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/21/2024] [Indexed: 12/19/2024]
Abstract
The accumulation of lactate is a rising risk factor for patients after flap transplantation. Endothelial-to-mesenchymal transition (EndoMT) plays a critical role in skin fibrosis. Nevertheless, whether lactate overproduction directly contributes to flap necrosis and its mechanism remain unknown. The current study reveals that skin flap mice exhibit enhanced PKM2 and fibrotic response. Endothelial-specific deletion of PKM2 attenuates flap necrosis and ameliorates flap fibrosis in mice. Administration of lactate or overexpressing PKM2 promotes dysfunction of endothelial cells and stimulates mesenchymal-like phenotype following hypoxia. Mechanistically, glycolytic-lactate induces a correlation between Twist1 and p300/CBP, leading to lactylation of Twist1 lysine 150 (K150la). The increase in K150la promotes Twist1 phosphorylation and nuclear translocation and further regulates the transcription of TGFB1, hence inducing fibrosis phenotype. Genetically deletion of endothelial-specific PKM2 in mice diminishes lactate accumulation and Twist1 lactylation, then attenuates EndoMT-associated fibrosis following flap ischemia. The serum lactate levels of flap transplantation patients are elevated and exhibit predictive value for prognosis. This findings suggested a novel role of PKM2-derived lactate in mediating Twist1 lactylation and exacerbates flap fibrosis and ischemia. Inhibition of glycolytic-lactate and Twist1 lactylation reduces flap necrosis and fibrotic response might become a potential therapeutic strategy for flap ischemia.
Collapse
Affiliation(s)
- Yining Xu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, 325027, China
| | - Xianhui Ma
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, 325027, China
| | - Weiyu Ni
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, 310006, China
| | - Lin Zheng
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, 325027, China
| | - Zhongnan Lin
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, 325027, China
| | - Yingying Lai
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, 325027, China
| | - Ningning Yang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, 325027, China
| | - Zhanqiu Dai
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, 325027, China
| | - Teng Yao
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, 310006, China
| | - Zeyang Chen
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, 325027, China
| | - Lifeng Shen
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, 310006, China
| | - Haitao Wang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, 310006, China
| | - Long Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, 325027, China
| | - Yizheng Wu
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, 310006, China
| | - Weiyang Gao
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, 325027, China
| |
Collapse
|
6
|
Zhang J. Non-coding RNAs and angiogenesis in cardiovascular diseases: a comprehensive review. Mol Cell Biochem 2024; 479:2921-2953. [PMID: 38306012 DOI: 10.1007/s11010-023-04919-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 12/18/2023] [Indexed: 02/03/2024]
Abstract
Non-coding RNAs (ncRNAs) have key roles in the etiology of many illnesses, including heart failure, myocardial infarction, stroke, and in physiological processes like angiogenesis. In transcriptional regulatory circuits that control heart growth, signaling, and stress response, as well as remodeling in cardiac disease, ncRNAs have become important players. Studies on ncRNAs and cardiovascular disease have made great progress recently. Here, we go through the functions of non-coding RNAs (ncRNAs) like circular RNAs (circRNAs), and microRNAs (miRNAs) as well as long non-coding RNAs (lncRNAs) in modulating cardiovascular disorders.
Collapse
Affiliation(s)
- Jie Zhang
- Medical School, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| |
Collapse
|
7
|
Jiang Z, Chen L, Huang L, Yu S, Lin J, Li M, Gao Y, Yang L. Bioactive Materials That Promote the Homing of Endogenous Mesenchymal Stem Cells to Improve Wound Healing. Int J Nanomedicine 2024; 19:7751-7773. [PMID: 39099796 PMCID: PMC11297574 DOI: 10.2147/ijn.s455469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 04/23/2024] [Indexed: 08/06/2024] Open
Abstract
Endogenous stem cell homing refers to the transport of endogenous mesenchymal stem cells (MSCs) to damaged tissue. The paradigm of using well-designed biomaterials to induce resident stem cells to home in to the injured site while coordinating their behavior and function to promote tissue regeneration is known as endogenous regenerative medicine (ERM). ERM is a promising new avenue in regenerative therapy research, and it involves the mobilizing of endogenous stem cells for homing as the principal means through which to achieve it. Comprehending how mesenchymal stem cells home in and grasp the influencing factors of mesenchymal stem cell homing is essential for the understanding and design of tissue engineering. This review summarizes the process of MSC homing, the factors influencing the homing process, analyses endogenous stem cell homing studies of interest in the field of skin tissue repair, explores the integration of endogenous homing promotion strategies with cellular therapies and details tissue engineering strategies that can be used to modulate endogenous homing of stem cells. In addition to providing more systematic theories and ideas for improved materials for endogenous tissue repair, this review provides new perspectives to explore the complex process of tissue remodeling to enhance the rational design of biomaterial scaffolds and guide tissue regeneration strategies.
Collapse
Affiliation(s)
- Ziwei Jiang
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Lianglong Chen
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Lei Huang
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Shengxiang Yu
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Jiabao Lin
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Mengyao Li
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Yanbin Gao
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Lei Yang
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| |
Collapse
|
8
|
Larionov A, Hammer CM, Fiedler K, Filgueira L. Dynamics of Endothelial Cell Diversity and Plasticity in Health and Disease. Cells 2024; 13:1276. [PMID: 39120307 PMCID: PMC11312403 DOI: 10.3390/cells13151276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/19/2024] [Accepted: 07/19/2024] [Indexed: 08/10/2024] Open
Abstract
Endothelial cells (ECs) are vital structural units of the cardiovascular system possessing two principal distinctive properties: heterogeneity and plasticity. Endothelial heterogeneity is defined by differences in tissue-specific endothelial phenotypes and their high predisposition to modification along the length of the vascular bed. This aspect of heterogeneity is closely associated with plasticity, the ability of ECs to adapt to environmental cues through the mobilization of genetic, molecular, and structural alterations. The specific endothelial cytoarchitectonics facilitate a quick structural cell reorganization and, furthermore, easy adaptation to the extrinsic and intrinsic environmental stimuli, known as the epigenetic landscape. ECs, as universally distributed and ubiquitous cells of the human body, play a role that extends far beyond their structural function in the cardiovascular system. They play a crucial role in terms of barrier function, cell-to-cell communication, and a myriad of physiological and pathologic processes. These include development, ontogenesis, disease initiation, and progression, as well as growth, regeneration, and repair. Despite substantial progress in the understanding of endothelial cell biology, the role of ECs in healthy conditions and pathologies remains a fascinating area of exploration. This review aims to summarize knowledge and concepts in endothelial biology. It focuses on the development and functional characteristics of endothelial cells in health and pathological conditions, with a particular emphasis on endothelial phenotypic and functional heterogeneity.
Collapse
Affiliation(s)
- Alexey Larionov
- Faculty of Science and Medicine, Anatomy, University of Fribourg, Route Albert-Gockel 1, CH-1700 Fribourg, Switzerland; (C.M.H.); (L.F.)
| | - Christian Manfred Hammer
- Faculty of Science and Medicine, Anatomy, University of Fribourg, Route Albert-Gockel 1, CH-1700 Fribourg, Switzerland; (C.M.H.); (L.F.)
| | - Klaus Fiedler
- Independent Researcher, CH-1700 Fribourg, Switzerland;
| | - Luis Filgueira
- Faculty of Science and Medicine, Anatomy, University of Fribourg, Route Albert-Gockel 1, CH-1700 Fribourg, Switzerland; (C.M.H.); (L.F.)
| |
Collapse
|
9
|
Choudhury S, Madhu Krishna M, Sen D, Ghosh S, Basak P, Das A. 3D Porous Polymer Scaffold-Conjugated KGF-Mimetic Peptide Promotes Functional Skin Regeneration in Chronic Diabetic Wounds. ACS APPLIED MATERIALS & INTERFACES 2024; 16:37418-37434. [PMID: 38980153 DOI: 10.1021/acsami.4c02633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
The re-epithelialization process gets severely dysregulated in chronic nonhealing diabetic foot ulcers/wounds. Keratinocyte growth factor (KGF or FGF-7) is the major modulator of the re-epithelialization process, which regulates the physiological phenotypes of cutaneous keratinocytes. The existing therapeutic strategies of growth factor administration have several limitations. To overcome these, we have designed a KGF-mimetic peptide (KGFp, 13mer) based on the receptor interaction sites in murine KGF. KGFp enhanced migration and transdifferentiation of mouse bone marrow-derived MSCs toward keratinocyte-like cells (KLCs). A significant increase in the expression of skin-specific markers Bnc1 (28.5-fold), Ck5 (14.6-fold), Ck14 (26.1-fold), Ck10 (187.7-fold), and epithelial markers EpCam (23.3-fold) and Cdh1 (64.2-fold) was associated with the activation of ERK1/2 and STAT3 molecular signaling in the KLCs. Further, to enhance the stability of KGFp in the wound microenvironment, it was conjugated to biocompatible 3D porous polymer scaffolds without compromising its active binding sites followed by chemical characterization using Fourier transform infrared spectroscopy, field-emission scanning electron microscopy, dynamic mechanical analysis, and thermogravimetry. In vitro evaluation of the KGFp-conjugated 3D polymer scaffolds revealed its potential for transdifferentiation of MSCs into KLCs. Transplantation of allogeneic MSCGFP using KGFp-conjugated 3D polymer scaffolds in chronic nonhealing type 2 diabetic wounds (db/db transgenic, 50-52 weeks old male mice) significantly enhanced re-epithelialization-mediated wound closure rate (79.3%) as compared to the control groups (Untransplanted -22.4%, MSCGFP-3D polymer scaffold -38.5%). Thus, KGFp-conjugated 3D porous polymer scaffolds drive the fate of the MSCs toward keratinocytes that may serve as potential stem cell delivery platform technology for tissue engineering and transplantation.
Collapse
Affiliation(s)
- Subholakshmi Choudhury
- Department of Applied Biology, Council of Scientific & Industrial Research-Indian Institute of Chemical Technology (CSIR-IICT), Uppal Road, Tarnaka, Hyderabad 500007, Telangana, India
- Academy of Scientific and Innovative Research, Ghaziabad 201002, Uttar Pradesh, India
| | - Mangali Madhu Krishna
- Academy of Scientific and Innovative Research, Ghaziabad 201002, Uttar Pradesh, India
- Department of Polymers and Functional Materials, Council of Scientific & Industrial Research-Indian Institute of Chemical Technology (CSIR-IICT), Uppal Road, Tarnaka, Hyderabad 500007, Telangana, India
| | - Debanjan Sen
- BCDA College of Pharmacy and Technology, Hridaypur, Kolkata 700127, West Bengal, India
| | - Subhash Ghosh
- Academy of Scientific and Innovative Research, Ghaziabad 201002, Uttar Pradesh, India
- Department of Organic Synthesis and Process Chemistry, Council of Scientific & Industrial Research-Indian Institute of Chemical Technology (CSIR-IICT), Uppal Road, Tarnaka, Hyderabad 500007, Telangana, India
| | - Pratyay Basak
- Academy of Scientific and Innovative Research, Ghaziabad 201002, Uttar Pradesh, India
- Department of Polymers and Functional Materials, Council of Scientific & Industrial Research-Indian Institute of Chemical Technology (CSIR-IICT), Uppal Road, Tarnaka, Hyderabad 500007, Telangana, India
| | - Amitava Das
- Department of Applied Biology, Council of Scientific & Industrial Research-Indian Institute of Chemical Technology (CSIR-IICT), Uppal Road, Tarnaka, Hyderabad 500007, Telangana, India
- Academy of Scientific and Innovative Research, Ghaziabad 201002, Uttar Pradesh, India
| |
Collapse
|
10
|
Kamal R, Awasthi A, Pundir M, Thakur S. Healing the diabetic wound: Unlocking the secrets of genes and pathways. Eur J Pharmacol 2024; 975:176645. [PMID: 38759707 DOI: 10.1016/j.ejphar.2024.176645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/03/2024] [Accepted: 05/13/2024] [Indexed: 05/19/2024]
Abstract
Diabetic wounds (DWs) are open sores that can occur anywhere on a diabetic patient's body. They are often complicated by infections, hypoxia, oxidative stress, hyperglycemia, and reduced growth factors and nucleic acids. The healing process involves four phases: homeostasis, inflammation, proliferation, and remodeling, regulated by various cellular and molecular events. Numerous genes and signaling pathways such as VEGF, TGF-β, NF-κB, PPAR-γ, MMPs, IGF, FGF, PDGF, EGF, NOX, TLR, JAK-STAT, PI3K-Akt, MAPK, ERK, JNK, p38, Wnt/β-catenin, Hedgehog, Notch, Hippo, FAK, Integrin, and Src pathways are involved in these events. These pathways and genes are often dysregulated in DWs leading to impaired healing. The present review sheds light on the pathogenesis, healing process, signaling pathways, and genes involved in DW. Further, various therapeutic strategies that target these pathways and genes via nanotechnology are also discussed. Additionally, clinical trials on DW related to gene therapy are also covered in the present review.
Collapse
Affiliation(s)
- Raj Kamal
- Department of Quality Assurance, ISF College of Pharmacy, Moga, Punjab, 142001, India
| | - Ankit Awasthi
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab, 142001, India.
| | - Mandeep Pundir
- School of Pharmaceutical Sciences, RIMT University, Punjab, 142001, India; Chitkara College of Pharmacy, Chitkara University, Punjab, 142001, India
| | - Shubham Thakur
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab, 142001, India
| |
Collapse
|
11
|
Chawla S, Choudhury S, Das A. Bioengineered MSC GFPCxcr2-Mmp13 Transplantation Alleviates Hepatic Fibrosis by Regulating Mammalian Target of Rapamycin Signaling. Antioxid Redox Signal 2024; 41:110-137. [PMID: 38183635 DOI: 10.1089/ars.2023.0390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2024]
Abstract
Aims: Hepatic fibrosis is the pathological change during chronic liver diseases (CLD) that turns into cirrhosis if not reversed timely. Allogenic mesenchymal stem cell (MSC) therapy is an alternative to liver transplantation for CLD. However, poor engraftment of the transplanted MSCs limits their therapeutic efficacy. MSCs express chemokine receptors that regulate their physiology. We observed several-fold increased expressions of Cxcl3 and decreased expression of Mmp13 in the fibrotic liver. Therefore, we bioengineered MSCs with stable overexpression of Cxcr2 (CXCL3-cognate receptor) and Mmp13, collagenase (MSCGFPCxcr2-Mmp13). Results: The CXCL3/CXCR2 axis significantly increased migration through the activation of AKT/ERK/mTOR signaling. These bioengineered MSCs transdifferentiated into hepatocyte-like cells (MSCGFPCxcr2-Mmp13-HLCs) that endured the drug-/hepatotoxicant-induced toxicity by significantly increasing the antioxidants-Nrf2 and Sod2, while decreasing the apoptosis-Cyt C, Casp3, Casp9, and drug-metabolizing enzyme-Cyp1A1, Cyp1A2, Cyp2E1 markers. Therapeutic transplantation of MSCGFPCxcr2-Mmp13 abrogated AAP-/CCl4-induced hepatic fibrosis in mice by CXCR2-mediated targeted engraftment and MMP-13-mediated reduction in collagen. Mechanistically, induction of CXCL3/CXCR2 axis-activated mTOR-p70S6K signaling led to increased targeted engraftment and modulation of the oxidative stress by increasing the expression and activity of nuclear Nrf2 and SOD2 expression in the regenerated hepatic tissues. A marked change in the fate of transplanted MSCGFPCxcr2-Mmp13 toward hepatocyte lineage demonstrated by co-immunostaining of GFP/HNF4α along with reduced COL1α1 facilitated the regeneration of the fibrotic liver. Innovation and Conclusions: Our study suggests the therapeutic role of allogenic Cxcr2/Mmp13-bioengineered MSC transplantation decreases the hepatic oxidative stress as an effective translational therapy for hepatic fibrosis mitigation-mediated liver regeneration.
Collapse
Affiliation(s)
- Shilpa Chawla
- Department of Applied Biology, Council of Scientific & Industrial Research-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Subholakshmi Choudhury
- Department of Applied Biology, Council of Scientific & Industrial Research-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Amitava Das
- Department of Applied Biology, Council of Scientific & Industrial Research-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
12
|
Choudhury S, Dhoke NR, Chawla S, Das A. Bioengineered MSC Cxcr2 transdifferentiated keratinocyte-like cell-derived organoid potentiates skin regeneration through ERK1/2 and STAT3 signaling in diabetic wound. Cell Mol Life Sci 2024; 81:172. [PMID: 38597972 PMCID: PMC11006766 DOI: 10.1007/s00018-023-05057-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 11/17/2023] [Accepted: 11/18/2023] [Indexed: 04/11/2024]
Abstract
Skin regeneration is severely compromised in diabetic foot ulcers. Allogeneic mesenchymal stem cell (MSC) transplantation is limited due to the poor engraftment, mitogenic, and differentiation potential in the harsh wound microenvironment. Thus, to improve the efficacy of cell therapy, the chemokine receptor Cxcr2 was overexpressed in MSCs (MSCCxcr2). CXCL2/CXCR2 axis induction led to the enhanced proliferation of MSCs through the activation of STAT3 and ERK1/2 signaling. Transcriptional upregulation of FGFR2IIIb (KGF Receptor) promoter by the activated STAT3 and ERK1/2 suggested trans-differentiation of MSCs into keratinocytes. These stable MSCCxcr2 in 2D and 3D (spheroid) cell cultures efficiently transdifferentiated into keratinocyte-like cells (KLCs). An in vivo therapeutic potential of MSCCxcr2 transplantation and its keratinocyte-specific cell fate was observed by accelerated skin tissue regeneration in an excisional splinting wound healing murine model of streptozotocin-induced type 1 diabetes. Finally, 3D skin organoids generated using MSCCxcr2-derived KLCs upon grafting in a relatively avascular and non-healing wounds of type 2 diabetic db/db transgenic old mice resulted in a significant enhancement in the rate of wound closure by increased epithelialization (epidermal layer) and endothelialization (dermal layer). Our findings emphasize the therapeutic role of the CXCL2/CXCR2 axis in inducing trans-differentiation of the MSCs toward KLCs through the activation of ERK1/2 and STAT3 signaling and enhanced skin regeneration potential of 3D organoids grafting in chronic diabetic wounds.
Collapse
Affiliation(s)
- Subholakshmi Choudhury
- Department of Applied Biology, Council of Scientific & Industrial Research-Indian Institute of Chemical Technology (CSIR-IICT), Uppal Road, Tarnaka, Hyderabad, 500007, TS, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Neha R Dhoke
- Department of Applied Biology, Council of Scientific & Industrial Research-Indian Institute of Chemical Technology (CSIR-IICT), Uppal Road, Tarnaka, Hyderabad, 500007, TS, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Shilpa Chawla
- Department of Applied Biology, Council of Scientific & Industrial Research-Indian Institute of Chemical Technology (CSIR-IICT), Uppal Road, Tarnaka, Hyderabad, 500007, TS, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Amitava Das
- Department of Applied Biology, Council of Scientific & Industrial Research-Indian Institute of Chemical Technology (CSIR-IICT), Uppal Road, Tarnaka, Hyderabad, 500007, TS, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
13
|
Mekala S, Sukumar G, Chawla S, Geesala R, Prashanth J, Reddy BJM, Mainkar P, Das A. Therapeutic Potential of Benzimidazoisoquinoline Derivatives in Alleviating Murine Hepatic Fibrosis. Chem Biodivers 2024; 21:e202301429. [PMID: 38221801 DOI: 10.1002/cbdv.202301429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/09/2024] [Accepted: 01/09/2024] [Indexed: 01/16/2024]
Abstract
Short Title: Benzimidazoisoquinoline derivatives as potent antifibrotics Hepatic fibrosis is a pathological condition of liver disease with an increasing number of cases worldwide. Therapeutic strategies are warranted to target the activated hepatic stellate cells (HSCs), the collagen-producing cells, an effective strategy for controlling the disease progression. Benzimidazoisoquinoline derivatives were synthesized as hybrid molecules by the combination of benzimidazoles and isoquinolines to evaluate their anti-fibrotic potential using an in-vitro and in-vivo model of hepatic fibrosis. A small library of benzimidazoisoquinoline derivatives (1-17 and 18-21) was synthesized from 2-aryl benzimidazole and acetylene functionalities through C-H and N-H activation. Compounds (10 and its recently synthesized derivatives 18-21) depicted a significant decrease in PDGF-BB and/or TGFβ-induced proliferation (1.7-1.9 -fold), migration (3.5-5.0 -fold), and fibrosis-related gene expressions in HSCs. These compounds could revert the hepatic damage caused by chronic exposure to hepatotoxicants, ethanol, and/or carbon tetrachloride as evident from the histological, biochemical, and molecular analysis. Anti-fibrotic effect of the compounds was supported by the decrease in the malondialdehyde level, collagen deposition, and gene expression levels of fibrosis-related markers such as α-SMA, COL1α1, PDGFRβ, and TGFRIIβ in the preclinical models of hepatic fibrosis. In conclusion, the synthesized benzimidazoisoquinoline derivatives (compounds 18, 19, 20, and 21) possess anti-fibrotic therapeutic potential against liver fibrosis.
Collapse
Affiliation(s)
- Sowmya Mekala
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad, TS-500 007, INDIA
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, INDIA
| | - Genji Sukumar
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad, TS-500007, INDIA
- Department of Chemistry, Adikavi Nannaya University, Rajamahendravaram, AP-533 296, INDIA
| | - Shilpa Chawla
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad, TS-500 007, INDIA
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, INDIA
| | - Ramasatyaveni Geesala
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad, TS-500 007, INDIA
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, INDIA
| | - Jupally Prashanth
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, INDIA
- Centre for X-ray Crystallography, Department of Analytical & Structural Chemistry, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad, TS-500 007, INDIA
| | - B Jagan Mohan Reddy
- Department of Chemistry, Adikavi Nannaya University, Rajamahendravaram, AP-533 296, INDIA
| | - Prathama Mainkar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, INDIA
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad, TS-500007, INDIA
| | - Amitava Das
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad, TS-500 007, INDIA
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, INDIA
| |
Collapse
|
14
|
Deng JY, Wu XQ, He WJ, Liao X, Tang M, Nie XQ. Targeting DNA methylation and demethylation in diabetic foot ulcers. J Adv Res 2023; 54:119-131. [PMID: 36706989 PMCID: PMC10703625 DOI: 10.1016/j.jare.2023.01.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/07/2023] [Accepted: 01/10/2023] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Poor wound healing is a significant complication of diabetes, which is commonly caused by neuropathy, trauma, deformities, plantar hypertension and peripheral arterial disease. Diabetic foot ulcers (DFU) are difficult to heal, which makes patients susceptible to infections and can ultimately conduce to limb amputation or even death in severe cases. An increasing number of studies have found that epigenetic alterations are strongly associated with poor wound healing in diabetes. AIM OF REVIEW This work provides significant insights into the development of therapeutics for improving chronic diabetic wound healing, particularly by targeting and regulating DNA methylation and demethylation in DFU. Key scientific concepts of review: DNA methylation and demethylation play an important part in diabetic wound healing, via regulating corresponding signaling pathways in different breeds of cells, including macrophages, vascular endothelial cells and keratinocytes. In this review, we describe the four main phases of wound healing and their abnormality in diabetic patients. Furthermore, we provided an in-depth summary and discussion on how DNA methylation and demethylation regulate diabetic wound healing in different types of cells; and gave a brief summary on recent advances in applying cellular reprogramming techniques for improving diabetic wound healing.
Collapse
Affiliation(s)
- Jun-Yu Deng
- Key Lab of the Basic Pharmacology of the Ministry of Education, Zunyi Medical University, Zunyi 563006, China; Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China; College of Pharmacy, Zunyi Medical University, Zunyi 563006, China
| | - Xing-Qian Wu
- College of Pharmacy, Zunyi Medical University, Zunyi 563006, China
| | - Wen-Jie He
- College of Pharmacy, Zunyi Medical University, Zunyi 563006, China
| | - Xin Liao
- Affiliated Hospital of Zunyi Medical University, Zunyi 563006, China
| | - Ming Tang
- Queensland University of Technology (QUT), School of Biomedical Sciences, Centre for Genomics and Personalized Health at the Translational Research Institute (TRI), Brisbane, QLD 4102, Australia.
| | - Xu-Qiang Nie
- Key Lab of the Basic Pharmacology of the Ministry of Education, Zunyi Medical University, Zunyi 563006, China; Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China; College of Pharmacy, Zunyi Medical University, Zunyi 563006, China; Queensland University of Technology (QUT), School of Biomedical Sciences, Centre for Genomics and Personalized Health at the Translational Research Institute (TRI), Brisbane, QLD 4102, Australia.
| |
Collapse
|
15
|
Wang W, Gao Y, Zhang M, Li Y, Tang BZ. Neutrophil-like Biomimic AIE Nanoparticles with High-Efficiency Inflammatory Cytokine Targeting Enable Precise Photothermal Therapy and Alleviation of Inflammation. ACS NANO 2023; 17:7394-7405. [PMID: 37009988 DOI: 10.1021/acsnano.2c11762] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Although photothermal therapy (PTT) has thrived as a promising treatment for drug-resistant bacterial infections by avoiding the abuse of antibiotics, the remaining challenges that limit the treatment efficiency are the poor targeting properties of infected lesions and low penetration to the cell membrane of Gram-negative bacteria. Herein, we developed a biomimetic neutrophil-like aggregation-induced emission (AIE) nanorobot (CM@AIE NPs) for precise inflammatory site homing and efficient PTT effects. Due to their surface-loaded neutrophil membranes, CM@AIE NPs can mimic the source cell and thus interact with immunomodulatory molecules that would otherwise target endogenous neutrophils. Coupled with the secondary near-infrared region absorption and excellent photothermal properties of AIE luminogens (AIEgens), precise localization, and treatment in inflammatory sites can be achieved, thereby minimizing damage to surrounding normal tissues. Moreover, CM@AIE NP-mediated PTT was stimulated in vivo by a 980 nm laser irradiation, which contributed to the extent of the therapeutic depth and limited the damage to skin tissues. The good biocompatibility and excellent in vitro and in vivo antibacterial effects prove that CM@AIE NPs can provide a strategy for broad-spectrum antibacterial applications.
Collapse
Affiliation(s)
- Wentao Wang
- Department of Health Technology, Technical University of Denmark, Kongens Lyngby DK-2800, Denmark
| | - Yumeng Gao
- Jiangsu Collaborative Innovation Center for Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Ming Zhang
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing 210029, China
| | - Yuanyuan Li
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
| |
Collapse
|
16
|
Du F, Liu M, Wang J, Hu L, Zeng D, Zhou S, Zhang L, Wang M, Xu X, Li C, Zhang J, Yu S. Metformin coordinates with mesenchymal cells to promote VEGF-mediated angiogenesis in diabetic wound healing through Akt/mTOR activation. Metabolism 2023; 140:155398. [PMID: 36627079 DOI: 10.1016/j.metabol.2023.155398] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/16/2022] [Accepted: 01/03/2023] [Indexed: 01/09/2023]
Abstract
INTRODUCTION Cell therapy with mesenchymal stem cells (MSCs) and biomaterials holds great potential for the treatment of diabetic ulceration; however, the underlying mechanism as well as its compatibility with the first-line anti-diabetic drug, metformin (MTF), has not been well elucidated. METHODS MSCs derived from the umbilical cord were labeled with fluorescent proteins, followed by transplantation in a fibrin scaffold (MSCs/FG) onto the STZ-induced diabetic wound in a C57BL6/J mouse model. MTF was administered by oral gavage at a dose of 250 mg/kg/day. The wound healing rate, epithelization, angiogenesis, and underlying mechanism were evaluated in MSCs/FG- and MTF-treated diabetic wounds. Moreover, the dose-dependent effects of MTF and involvement of the Akt/mTOR pathway were analyzed in keratinocyte and fibroblast cultures. RESULTS MSCs/FG significantly promoted angiogenesis in diabetic wound healing without signs of differentiation or integration. The recruitment of fibroblasts and keratinocytes by MSCs/FG promotes migration and vascular endothelial growth factor (VEGF) expression in an Akt/mTOR-dependent manner. MTF, which is generally considered a mTOR inhibitor, displayed dose-dependent effects on MSC-unregulated Akt/mTOR and VEGF expression. Oral administration of MTF at an anti-diabetic dosage synergistically acted with MSCs/FG to promote Akt/mTOR activation, VEGF expression, and subsequent angiogenesis in diabetic wounds; however, it reduced the survival of MSCs. CONCLUSIONS Our study identifies that MTF coordinates with mesenchymal cells to promote Akt/mTOR activation and VEGF-mediated angiogenesis during diabetic wound healing. These findings offer new insights into MSCs engraftment in FG scaffolds for diabetic wound healing and provide support for the promotion of MSCs therapy in patients prescribed with MTF.
Collapse
Affiliation(s)
- Fangzhou Du
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China; Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, China
| | - Mengmeng Liu
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China; Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, China
| | - Jingwen Wang
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, China
| | - Lvzhong Hu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Dongao Zeng
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China; Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, China
| | - Shaocong Zhou
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China; Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, China
| | - Lixing Zhang
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, China
| | - Meijia Wang
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, China
| | - Xi Xu
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, China
| | - Chenglong Li
- Department of Vascular Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.
| | - Jingzhong Zhang
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China; Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, China; Xuzhou Medical University, Xuzhou, Jiangsu, China; Zhengzhou Zhongke Academy of Biomedical Engineering and Technology, Zhengzhou, Henan, China.
| | - Shuang Yu
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China; Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, China; Xuzhou Medical University, Xuzhou, Jiangsu, China.
| |
Collapse
|
17
|
Liu WS, Liu Y, Gao J, Zheng H, Lu ZM, Li M. Biomembrane-Based Nanostructure- and Microstructure-Loaded Hydrogels for Promoting Chronic Wound Healing. Int J Nanomedicine 2023; 18:385-411. [PMID: 36703725 PMCID: PMC9871051 DOI: 10.2147/ijn.s387382] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 12/20/2022] [Indexed: 01/20/2023] Open
Abstract
Wound healing is a complex and dynamic process, and metabolic disturbances in the microenvironment of chronic wounds and the severe symptoms they cause remain major challenges to be addressed. The inherent properties of hydrogels make them promising wound dressings. In addition, biomembrane-based nanostructures and microstructures (such as liposomes, exosomes, membrane-coated nanostructures, bacteria and algae) have significant advantages in the promotion of wound healing, including special biological activities, flexible drug loading and targeting. Therefore, biomembrane-based nanostructure- and microstructure-loaded hydrogels can compensate for their respective disadvantages and combine the advantages of both to significantly promote chronic wound healing. In this review, we outline the loading strategies, mechanisms of action and applications of different types of biomembrane-based nanostructure- and microstructure-loaded hydrogels in chronic wound healing.
Collapse
Affiliation(s)
- Wen-Shang Liu
- Department of Dermatology, Shanghai Ninth People’s Hospital, Shanghai Jiaotong University, Shanghai, People’s Republic of China
| | - Yu Liu
- Department of Gastroenterology, Jinling Hospital, Medical School of Nanjing University, Nanjing, People’s Republic of China
| | - Jie Gao
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, People’s Republic of China
| | - Hao Zheng
- Department of General Surgery, Shanghai Changhai Hospital, Naval Medical University, Shanghai, People’s Republic of China
| | - Zheng-Mao Lu
- Department of General Surgery, Shanghai Changhai Hospital, Naval Medical University, Shanghai, People’s Republic of China,Zheng-Mao Lu, Department of General Surgery, Shanghai Changhai Hospital, Naval Medical University, Shanghai, People’s Republic of China, Tel +086-13651688596, Fax +086-021-31161589, Email
| | - Meng Li
- Department of Dermatology, Shanghai Ninth People’s Hospital, Shanghai Jiaotong University, Shanghai, People’s Republic of China,Correspondence: Meng Li, Department of Dermatology, Shanghai Ninth People’s Hospital, Shanghai Jiaotong University, Shanghai, People’s Republic of China, Tel +086-15000879978, Fax +086-021-23271699, Email
| |
Collapse
|
18
|
Extracellular vesicles enriched with an endothelial cell pro-survival microRNA affects skin tissue regeneration. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 28:307-327. [PMID: 35474734 PMCID: PMC9010519 DOI: 10.1016/j.omtn.2022.03.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 03/18/2022] [Indexed: 02/08/2023]
Abstract
Endothelial cell (EC) activity is essential for tissue regeneration in several (patho)physiological contexts. However, our capacity to deliver in vivo biomolecules capable of controlling EC fate is relatively limited. Here, we screened a library of microRNA (miR) mimics and identified 25 miRs capable of enhancing the survival of ECs exposed to ischemia-mimicking conditions. In vitro, we showed that miR-425-5p, one of the hits, was able to enhance EC survival and migration. In vivo, using a mouse Matrigel plug assay, we showed that ECs transfected with miR-425-5p displayed enhanced survival compared with scramble-transfected ECs. Mechanistically, we showed that miR-425-5p modulated the PTEN/PI3K/AKT pathway and inhibition of miR-425-5p target genes (DACH1, PTEN, RGS5, and VASH1) phenocopied the pro-survival. For the in vivo delivery of miR-425-5p, we modulated small extracellular vesicles (sEVs) with miR-425-5p and showed, in vitro, that miR-425-5p-modulated sEVs were (1) capable of enhancing the survival of ECs exposed to ischemia-mimic conditions, and (2) efficiently internalized by skin cells. Finally, using a streptozotocin-induced diabetic wound healing mouse model, we showed that, compared with miR-scrambled-modulated sEVs, topical administration of miR-425-5p-modulated sEVs significantly enhanced wound healing, a process mediated by enhanced vascularization and skin re-epithelialization.
Collapse
|
19
|
Zhang L, Zhang SS, Wang KF, Li YH, Xu HJ, Sun KX, Ma S, Leng HM, Chen SZ, Jia WJ, Zhu XJ, Li J. Overexpression of Twist1 in vascular endothelial cells promotes pathological retinal angiogenesis in mice. Zool Res 2022; 43:64-74. [PMID: 34845879 PMCID: PMC8743260 DOI: 10.24272/j.issn.2095-8137.2021.281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 11/29/2021] [Indexed: 11/07/2022] Open
Abstract
Retinal angiogenesis is a critical process for normal retinal function. However, uncontrolled angiogenesis can lead to pathological neovascularization (NV), which is closely related to most irreversible blindness-causing retinal diseases. Understanding the molecular basis behind pathological NV is important for the treatment of related diseases. Twist-related protein 1 (TWIST1) is a well-known transcription factor and principal inducer of epithelial-mesenchymal transition (EMT) in many human cancers. Our previous study showed that Twist1 expression is elevated in pathological retinal NV. To date, however, the role of TWIST1 in retinal pathological angiogenesis remains to be elucidated. To study the role of TWIST1 in pathological retinal NV and identify specific molecular targets for antagonizing pathological NV, we generated an inducible vascular endothelial cell (EC)-specific Twist1 transgenic mouse model ( Tg-Twist1 iEC+ ). Whole-mount retinas from Tg-Twist1 iEC+ mice showed retarded vascular progression and increased vascular density in the front end of the growing retinal vasculature, as well as aneurysm-like pathological retinal NV. Furthermore, overexpression of Twist1 in the ECs promoted cell proliferation but disturbed cell polarity, thus leading to uncontrolled retinal angiogenesis. TWIST1 promoted pathological NV by activating the Wnt/β-catenin signaling pathway and inducing the expression of NV formation-related genes, thereby acting as a 'valve' in the regulation of pathological angiogenesis. This study identified the critical role of TWIST1 in retinal pathological NV, thus providing a potential therapeutic target for pathological NV.
Collapse
Affiliation(s)
- Lin Zhang
- Department of Ophthalmology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and Department of Laboratory Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
- Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences, Chengdu, Sichuan 610072, China
- Qinghai Key Laboratory of Qinghai-Tibetan Plateau Biological Resources, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai 810008, China
- University of Chinese Academy of Science, Beijing 100049, China
| | - Shan-Shan Zhang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and Department of Laboratory Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
- Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences, Chengdu, Sichuan 610072, China
| | - Kai-Fang Wang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and Department of Laboratory Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
- Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences, Chengdu, Sichuan 610072, China
| | - Yi-Hui Li
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and Department of Laboratory Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
- Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences, Chengdu, Sichuan 610072, China
| | - Hui-Juan Xu
- Department of Ophthalmology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and Department of Laboratory Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
- Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences, Chengdu, Sichuan 610072, China
| | - Kuan-Xiang Sun
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and Department of Laboratory Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
- Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences, Chengdu, Sichuan 610072, China
| | - Shi Ma
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and Department of Laboratory Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
- Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences, Chengdu, Sichuan 610072, China
| | - Hong-Mei Leng
- Department of Ophthalmology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
| | - Si-Zhu Chen
- Department of Ophthalmology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
| | - Wen-Jing Jia
- Qinghai Key Laboratory of Qinghai-Tibetan Plateau Biological Resources, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai 810008, China
- University of Chinese Academy of Science, Beijing 100049, China
| | - Xian-Jun Zhu
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and Department of Laboratory Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
- Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences, Chengdu, Sichuan 610072, China
- Qinghai Key Laboratory of Qinghai-Tibetan Plateau Biological Resources, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai 810008, China
- University of Chinese Academy of Science, Beijing 100049, China
| | - Jie Li
- Department of Ophthalmology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and Department of Laboratory Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
- Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences, Chengdu, Sichuan 610072, China. E-mail:
| |
Collapse
|
20
|
Al-Romaima A, Guan X, Qin X, Liao Y, Qin G, Tang S, Feng J. Topical Application of Chinese Formula Yeliangen Promotes Wound Healing in Streptozotocin-Induced Diabetic Rats. J Diabetes Res 2022; 2022:1193392. [PMID: 36484062 PMCID: PMC9726244 DOI: 10.1155/2022/1193392] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 10/28/2022] [Accepted: 11/01/2022] [Indexed: 12/02/2022] Open
Abstract
Diabetic wound is one of the most severe complications of diabetes mellitus (DM). Despite the associated risks of wound healing impairment in diabetes, treatment strategies remain limited. Yeliangen (YLG) is a Chinese formulation mainly composed of the rhizome of Coptis chinensis, the root of Isatis tinctoria, and the leaf of Isatis indigotica. We investigated the wound healing effects of YLG in type 2 diabetic (T2DM) rats, which were induced by intraperitoneal administration of streptozotocin after a high-fat diet for four weeks. 3 × 3 cm2 full-thickness excisional wounds were created on the dorsal surface of rats and then divided to control (DC), negative (DPJ), positive (DPC), and YLG-treated (DYLG) groups. Rat's wounds were treated twice daily for 21 days. Wound area and wound contraction were detected on days 0, 3, 7, 14, and 21. Histopathological examinations were performed by H&E staining and immunohistochemistry (IHC). The biochemical parameters, mRNAs, and protein expressions were analyzed through enzyme-linked immunoassays (ELISA), qPCR, and western blot, respectively. Compared with other groups, the histological changes of wound tissue in the DYLG group were improved, and the expressions of CD31, eNOS, and PCNA were significantly upregulated. Besides, YLG significantly reduced the inflammatory factors' expressions of TNF-α, NF-κB, MMP-9, and IL-1B on days 7, 14, and 21 postwounding. Moreover, YLG induced angiogenesis and neovascularization by significantly increasing the levels of VEGF, TGF-β1, EGF, PDGF, and SDF-1α on days 3, 7, and 14. In conclusion, YLG improved wound healing by reducing inflammation and increasing angiogenesis which may provide an alternative and effective approach for diabetic wound therapy.
Collapse
Affiliation(s)
- Abdulbaset Al-Romaima
- School of Pharmaceutical Science, Guangxi Medical University, Nanning, 530021 Guangxi, China
| | - Xiong Guan
- The Eighth People's Hospital of Nanning, Nanning 530007, China
| | - Xihui Qin
- School of Pharmaceutical Science, Guangxi Medical University, Nanning, 530021 Guangxi, China
| | - Yinan Liao
- School of Pharmaceutical Science, Guangxi Medical University, Nanning, 530021 Guangxi, China
| | - Guiming Qin
- School of Pharmaceutical Science, Guangxi Medical University, Nanning, 530021 Guangxi, China
| | - Shixiong Tang
- The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007 Guangxi, China
| | - Jie Feng
- School of Pharmaceutical Science, Guangxi Medical University, Nanning, 530021 Guangxi, China
| |
Collapse
|
21
|
Yeeravalli R, Das A. Mesenchymal Stem Cells. HANDBOOK OF OXIDATIVE STRESS IN CANCER: THERAPEUTIC ASPECTS 2022:2465-2487. [DOI: 10.1007/978-981-16-5422-0_228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
22
|
Singh D, Deshmukh RK, Das A. SNAI1-mediated transcriptional regulation of epithelial-to-mesenchymal transition genes in breast cancer stem cells. Cell Signal 2021; 87:110151. [PMID: 34537302 DOI: 10.1016/j.cellsig.2021.110151] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/09/2021] [Accepted: 09/13/2021] [Indexed: 01/12/2023]
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) tumors are composed of a heterogeneous population containing both cancer cells and cancer stem cells (CSCs). These CSCs are generated through an epithelial-to-mesenchymal transition (EMT), thus making it pertinent to identify the unique EMT-molecular targets that regulate this phenomenon. METHODS AND RESULTS In the present study, we performed in silico analysis of microarray data from luminal, Her2+, and TNBC cell lines and identified 15 relatively unexplored EMT-related differentially expressed genes (DEGs) along with the markedly high expression of EMT-transcription factor (EMT-TF), SNAI1. Interestingly, stable overexpression of SNAI1 in MCF-7 induced the expression of DEGs along with increased migration, invasion, and in vitro tumorigenesis that was comparable to TNBCs. Next, stable SNAI1 overexpression led to increased expression of DEGs that was reverted with SNAI1 silencing in both breast cancer cells and CSCs sorted from various TNBC cell lines. Higher fold enrichment of SNAI1 on E-boxes in the promoter regions suggested a positive regulation of ALCAM, MMP2, MMP13, MMP14, VCAN, ANKRD1, KRT16, CTGF, TGFRIIβ, PROCR negative regulation of CDH1, DSP and DSC3B by SNAI1 leading to EMT. Furthermore, SNAI1-mediated increased migration, invasion, and tumorigenesis in these sorted cells led to the activation of signaling mediators, ERK1/2, STAT3, Src, and FAK. Finally, the SNAI1-mediated activation of breast CSC phenotypes was perturbed by inhibition of downstream target, MMPs using Ilomastat. CONCLUSION Thus, the molecular investigation for the gene regulatory framework in the present study identified MMPs, a downstream effector in the SNAI1-mediated EMT regulation.
Collapse
Affiliation(s)
- Digvijay Singh
- Department of Applied Biology, Council of Scientific and Industrial Research-Indian Institute of Chemical Technology (CSIR-IICT), Uppal Road, Tarnaka, Hyderabad 500 007, TS, India; Academy of Science and Innovative Research (AcSIR), Ghaziabad, UP 201 002, India
| | - Rohit K Deshmukh
- Department of Applied Biology, Council of Scientific and Industrial Research-Indian Institute of Chemical Technology (CSIR-IICT), Uppal Road, Tarnaka, Hyderabad 500 007, TS, India
| | - Amitava Das
- Department of Applied Biology, Council of Scientific and Industrial Research-Indian Institute of Chemical Technology (CSIR-IICT), Uppal Road, Tarnaka, Hyderabad 500 007, TS, India; Academy of Science and Innovative Research (AcSIR), Ghaziabad, UP 201 002, India.
| |
Collapse
|
23
|
Choudhury S, Surendran N, Das A. Recent advances in the induced pluripotent stem cell-based skin regeneration. Wound Repair Regen 2021; 29:697-710. [PMID: 33970525 DOI: 10.1111/wrr.12925] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 03/30/2021] [Accepted: 04/27/2021] [Indexed: 01/05/2023]
Abstract
Skin regeneration has been a challenging clinical problem especially in cases of chronic wounds such as diabetic foot ulcers, and epidermolysis bullosa-related skin blisters. Prolonged non-healing wounds often lead to bacterial infections increasing the severity of wounds. Current treatment strategies for chronic wounds include debridement of wounds along with antibiotics, growth factors, and stem cell transplantation therapies. However, the compromised nature of autologous stem cells in patients with comorbidities such as diabetes limits the efficacy of the therapy. The discovery of induced pluripotent stem cell (iPSC) technology has immensely influenced the field of regenerative therapy. Enormous efforts have been made to develop integration-free iPSCs suitable for clinical therapies. This review focuses on recent advances in the methods and reprogramming factors for generating iPSCs along with the existing challenges such as genetic alterations, tumorigenicity, immune rejection, and regulatory hurdles for the clinical application of iPSCs. Furthermore, this review also highlights the benefits of using iPSCs for the generation of skin cells and skin disease modeling over the existing clinical therapies for skin regeneration in chronic wounds and skin diseases.
Collapse
Affiliation(s)
- Subholakshmi Choudhury
- Department of Applied Biology, Council of Scientific & Industrial Research-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, India
- Academy of Science and Innovative Research (AcSIR), Ghaziabad, India
| | - Nidhi Surendran
- Department of Applied Biology, Council of Scientific & Industrial Research-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, India
| | - Amitava Das
- Department of Applied Biology, Council of Scientific & Industrial Research-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, India
- Academy of Science and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
24
|
Manupati K, Yeeravalli R, Kaushik K, Singh D, Mehra B, Gangane N, Gupta A, Goswami K, Das A. Activation of CD44-Lipoprotein lipase axis in breast cancer stem cells promotes tumorigenesis. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166228. [PMID: 34311079 DOI: 10.1016/j.bbadis.2021.166228] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/25/2021] [Accepted: 07/20/2021] [Indexed: 01/16/2023]
Abstract
Breast cancer stem cells (CSCs) are distinct CD44+-subpopulations that are involved in metastasis and chemoresistance. However, the underlying molecular mechanism of CD44 in breast CSCs-mediated tumorigenesis remains elusive. We observed high CD44 expression in advanced-stage clinical breast tumor samples. CD44 activation in breast CSCs sorted from various triple negative breast cancer (TNBC) cell lines induced proliferation, migration, invasion, mammosphere formation that were reversed in presence of inhibitor, 4-methyl umbelliferone or CD44 silencing. CD44 activation in breast CSCs induced Src, Akt, and nuclear translocation of pSTAT3. PCR arrays revealed differential expression of a metabolic gene, Lipoprotein lipase (LPL), and transcription factor, SNAI3. Differential transcriptional regulation of LPL by pSTAT3 and SNAI3 was confirmed by promoter-reporter and chromatin immunoprecipitation analysis. Orthotopic xenograft murine breast tumor model revealed high tumorigenicity of CD24-/CD44+-breast CSCs as compared with CD24+-breast cancer cells. Furthermore, stable breast CSCs-CD44 shRNA and/or intratumoral administration of Tetrahydrolipstatin (LPL inhibitor) abrogated tumor progression and neoangiogenesis. Thus, LPL serves as a potential target for an efficacious therapeutics against aggressive breast cancer.
Collapse
Affiliation(s)
- Kanakaraju Manupati
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad, TS 500 007, India; Academy of Science and Innovative Research (AcSIR), Ghaziabad, UP 201 002, India
| | - Ragini Yeeravalli
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad, TS 500 007, India; Academy of Science and Innovative Research (AcSIR), Ghaziabad, UP 201 002, India
| | - Komal Kaushik
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad, TS 500 007, India; Academy of Science and Innovative Research (AcSIR), Ghaziabad, UP 201 002, India
| | - Digvijay Singh
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad, TS 500 007, India; Academy of Science and Innovative Research (AcSIR), Ghaziabad, UP 201 002, India
| | - Bhupendra Mehra
- Department of Surgery, Mahatma Gandhi Institute of Medical Sciences, Sewagram, Wardha, Maharashtra 442 102, India
| | - Nitin Gangane
- Department of Pathology, Mahatma Gandhi Institute of Medical Sciences, Sewagram, Wardha, Maharashtra 442 102, India
| | - Anupama Gupta
- Department of Pathology, Mahatma Gandhi Institute of Medical Sciences, Sewagram, Wardha, Maharashtra 442 102, India
| | - Kalyan Goswami
- Department of Biochemistry, Mahatma Gandhi Institute of Medical Sciences, Sewagram, Wardha, Maharashtra 442 102, India
| | - Amitava Das
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad, TS 500 007, India; Academy of Science and Innovative Research (AcSIR), Ghaziabad, UP 201 002, India.
| |
Collapse
|
25
|
Yeeravalli R, Kaushik K, Das A. TWIST1-mediated transcriptional activation of PDGFRβ in breast cancer stem cells promotes tumorigenesis and metastasis. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166141. [PMID: 33845139 DOI: 10.1016/j.bbadis.2021.166141] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 03/05/2021] [Accepted: 03/30/2021] [Indexed: 12/26/2022]
Abstract
Triple-negative breast cancer (TNBC) patients often exhibit poor prognosis and breast cancer relapse due to metastasis. This results in secondary tumor generation at distant-unrelated organs that account for the majority of breast cancer-related deaths. Although breast cancer stem cells (CSCs) have been attributed to metastasis, a mechanistic understanding is essential for developing therapeutic interventions to combat breast cancer relapse. Breast CSCs are generated due to Epithelial-to-mesenchymal transition (EMT), regulated by transcription factors (EMT-TF) that are implicated in tumorigenesis and metastasis. However, the underlying mechanisms mediating these processes remain elusive. In the present study, we have reported that TWIST1, an EMT-TF, exhibits positive transcriptional regulation on PDGFRβ promoter, thus identifying PDGFRβ as one of the downstream targets of EMT regulation in breast CSCs. Breast cancer cells overexpressing PDGFRβ exhibited a significant increase in physiological and molecular properties comparable to that of breast CSCs, while molecular silencing of PDGFRβ in breast CSCs perturbed these phenomena. Mechanistically, PDGFRβ overexpression induced the activation of FAK and Src leading to cell migration and invasion. Orthotopic xenograft transplantation of stable breast cancer cells and CSCs with PDGFRβ overexpression in nude mice led to a significant increase in tumorigenesis, and metastasis to lung and liver as depicted by the significant increase in human gene-specific PDGFRβ and CD44 expression, and colocalization along with an expression of human-specific Alu sequences which were perturbed with stable silencing of PDGFRβ in breast CSCs. Thus, PDGFRβ plays a crucial role in inducing breast cancer tumorigenesis and metastasis that can be a plausible therapeutic target to treat TNBC patients.
Collapse
Affiliation(s)
- Ragini Yeeravalli
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500 007, TS, India; Academy of Science and Innovative Research (AcSIR), Ghaziabad, UP 201 002, India
| | - Komal Kaushik
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500 007, TS, India; Academy of Science and Innovative Research (AcSIR), Ghaziabad, UP 201 002, India
| | - Amitava Das
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500 007, TS, India; Academy of Science and Innovative Research (AcSIR), Ghaziabad, UP 201 002, India.
| |
Collapse
|
26
|
Yeeravalli R, Das A. Molecular mediators of breast cancer metastasis. Hematol Oncol Stem Cell Ther 2021; 14:275-289. [PMID: 33744312 DOI: 10.1016/j.hemonc.2021.02.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 02/17/2021] [Accepted: 02/20/2021] [Indexed: 12/09/2022] Open
Abstract
Breast cancer has the highest incidence rate of malignancy in women worldwide. A major clinical challenge faced by patients with breast cancer treated by conventional therapies is frequent relapse. This relapse has been attributed to the cancer stem cell (CSC) population that resides within the tumor and possess stemness properties. Breast CSCs are generated when breast cancer cells undergo epithelial-mesenchymal transition resulting in aggressive, highly metastatic, and invasive phenotypes that exhibit resistance towards chemotherapeutics. Metastasis, a phenomenon that aids in the migration of breast CSCs, occurs through any of three different routes: hematogenous, lymphatic, and transcoelomic. Hematogenous dissemination of breast CSCs leads to metastasis towards distant unrelated organs like lungs, liver, bone, and brain causing secondary tumor generation. Activation of metastasis genes or silencing of metastasis suppressor genes often leads to the advancement of metastasis. This review focuses on various genes and molecular factors that have been implicated to regulate organ-specific breast cancer metastasis by defying the available therapeutic interventions.
Collapse
Affiliation(s)
- Ragini Yeeravalli
- Department of Applied Biology, Council of Scientific & Industrial Research-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, India; Academy of Scientific and Innovative Research, Ghaziabad, India
| | - Amitava Das
- Department of Applied Biology, Council of Scientific & Industrial Research-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, India; Academy of Scientific and Innovative Research, Ghaziabad, India.
| |
Collapse
|
27
|
Advances in generation of three-dimensional skin equivalents: pre-clinical studies to clinical therapies. Cytotherapy 2020; 23:1-9. [PMID: 33189572 DOI: 10.1016/j.jcyt.2020.10.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/30/2020] [Accepted: 10/09/2020] [Indexed: 12/12/2022]
Abstract
The inability of two-dimensional cell culture systems to adequately map the structure and function of complex organs like skin necessitates the development of three-dimensional (3D) skin models. A diverse range of 3D skin equivalents have been developed over the last few decades for studying complex properties of skin as well as for drug discovery and clinical applications for skin regeneration in chronic wounds, such as diabetic foot ulcers, where the normal mechanism of wound healing is compromised. These 3D skin substitutes also serve as a suitable alternative to animal models in industrial applications and fundamental research. With the emergence of tissue engineering, new scaffolds and matrices have been integrated into 3D cell culture systems, along with gene therapy approaches, to increase the efficacy of transplanted cells in skin regeneration. This review summarizes recent approaches to the development of skin equivalents as well as different models for studying skin diseases and properties and current therapeutic applications of skin substitutes.
Collapse
|