1
|
Hill C, McKnight AJ, Smyth LJ. Integrated multiomic analyses: An approach to improve understanding of diabetic kidney disease. Diabet Med 2025; 42:e15447. [PMID: 39460977 PMCID: PMC11733670 DOI: 10.1111/dme.15447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/17/2024] [Accepted: 09/20/2024] [Indexed: 10/28/2024]
Abstract
AIM Diabetes is increasing in prevalence worldwide, with a 20% rise in prevalence predicted between 2021 and 2030, bringing an increased burden of complications, such as diabetic kidney disease (DKD). DKD is a leading cause of end-stage kidney disease, with significant impacts on patients, families and healthcare providers. DKD often goes undetected until later stages, due to asymptomatic disease, non-standard presentation or progression, and sub-optimal screening tools and/or provision. Deeper insights are needed to improve DKD diagnosis, facilitating the identification of higher-risk patients. Improved tools to stratify patients based on disease prognosis would facilitate the optimisation of resources and the individualisation of care. This review aimed to identify how multiomic approaches provide an opportunity to understand the complex underlying biology of DKD. METHODS This review explores how multiomic analyses of DKD are improving our understanding of DKD pathology, and aiding in the identification of novel biomarkers to detect disease earlier or predict trajectories. RESULTS Effective multiomic data integration allows novel interactions to be uncovered and empathises the need for harmonised studies and the incorporation of additional data types, such as co-morbidity, environmental and demographic data to understand DKD complexity. This will facilitate a better understanding of kidney health inequalities, such as social-, ethnicity- and sex-related differences in DKD risk, onset and progression. CONCLUSION Multiomics provides opportunities to uncover how lifetime exposures become molecularly embodied to impact kidney health. Such insights would advance DKD diagnosis and treatment, inform preventative strategies and reduce the global impact of this disease.
Collapse
Affiliation(s)
- Claire Hill
- Centre for Public Health, School of Medicine, Dentistry and Biomedical ScienceQueen's University BelfastBelfastUK
| | - Amy Jayne McKnight
- Centre for Public Health, School of Medicine, Dentistry and Biomedical ScienceQueen's University BelfastBelfastUK
| | - Laura J. Smyth
- Centre for Public Health, School of Medicine, Dentistry and Biomedical ScienceQueen's University BelfastBelfastUK
| |
Collapse
|
2
|
Haukka JK, Antikainen AA, Valo E, Syreeni A, Dahlström EH, Lin BM, Franceschini N, Krolewski AS, Harjutsalo V, Groop PH, Sandholm N. Whole-exome and whole-genome sequencing of 1064 individuals with type 1 diabetes reveals novel genes for diabetic kidney disease. Diabetologia 2024; 67:2494-2506. [PMID: 39103720 PMCID: PMC11519100 DOI: 10.1007/s00125-024-06241-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 06/10/2024] [Indexed: 08/07/2024]
Abstract
AIMS/HYPOTHESIS Diabetic kidney disease (DKD) is a severe diabetic complication that affects one third of individuals with type 1 diabetes. Although several genes and common variants have been shown to be associated with DKD, much of the predicted inheritance remains unexplained. Here, we performed next-generation sequencing to assess whether low-frequency variants, extending to a minor allele frequency (MAF) ≤10% (single or aggregated) contribute to the missing heritability in DKD. METHODS We performed whole-exome sequencing (WES) of 498 individuals and whole-genome sequencing (WGS) of 599 individuals with type 1 diabetes. After quality control, next-generation sequencing data were available for a total of 1064 individuals, of whom 541 had developed either severe albuminuria or end-stage kidney disease, and 523 had retained normal albumin excretion despite a long duration of type 1 diabetes. Single-variant and gene-aggregate tests for protein-altering variants (PAV) and protein-truncating variants (PTV) were performed separately for WES and WGS data and combined in a meta-analysis. We also performed genome-wide aggregate analyses on genomic windows (sliding window), promoters and enhancers using the WGS dataset. RESULTS In the single-variant meta-analysis, no variant reached genome-wide significance, but a suggestively associated common THAP7 rs369250 variant (p=1.50 × 10-5, MAF=49%) was replicated in the FinnGen general population genome-wide association study (GWAS) data for chronic kidney disease and DKD phenotypes. The gene-aggregate meta-analysis provided suggestive evidence (p<4.0 × 10-4) at four genes for DKD, of which NAT16 (MAFPAV≤10%) and LTA (also known as TNFβ, MAFPAV≤5%) are replicated in the FinnGen general population GWAS data. The LTA rs2229092 C allele was associated with significantly lower TNFR1, TNFR2 and TNFR3 serum levels in a subset of FinnDiane participants. Of the intergenic regions suggestively associated with DKD, the enhancer on chromosome 18q12.3 (p=3.94 × 10-5, MAFvariants≤5%) showed interaction with the METTL4 gene; the lead variant was replicated, and predicted to alter binding of the MafB transcription factor. CONCLUSIONS/INTERPRETATION Our sequencing-based meta-analysis revealed multiple genes, variants and regulatory regions that were suggestively associated with DKD. However, as no variant or gene reached genome-wide significance, further studies are needed to validate the findings.
Collapse
Affiliation(s)
- Jani K Haukka
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland
- Department of Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Anni A Antikainen
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland
- Department of Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Erkka Valo
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland
- Department of Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Anna Syreeni
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland
- Department of Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Emma H Dahlström
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland
- Department of Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Bridget M Lin
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA
| | - Nora Franceschini
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA
| | - Andrzej S Krolewski
- Section on Genetics and Epidemiology, Research Division, Joslin Diabetes Center, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Valma Harjutsalo
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland
- Department of Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Per-Henrik Groop
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland.
- Department of Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, Victoria, Australia.
| | - Niina Sandholm
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland.
- Department of Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
3
|
Chen J, Wang T, Zhu J, Gong Y, Song J. SB-525334 ameliorates renal injury in diabetic kidney disease mouse model via suppressing inflammation. Am J Med Sci 2024; 368:369-381. [PMID: 38906377 DOI: 10.1016/j.amjms.2024.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 04/29/2024] [Accepted: 06/12/2024] [Indexed: 06/23/2024]
Abstract
BACKGROUND Diabetic kidney disease (DKD; also known as diabetic nephropathy) is a typical complication of diabetes mellitus characterised by renal injury due to disturbances in glucose metabolism, in which renal tubular damage caused by chronic inflammation has been shown to be closely associated with the development of end-stage renal disease (ESRD). However, there are insufficient effective therapeutic agents to halt the progression of DKD. METHODS In the present study, we screened differential gene expression profiles associated with DKD by mining the GEO database through differential and enrichment analyses. Furthermore, systemic in vivo and in vitro experiments were designed to explore the mechanism through which the potential therapeutic agent SB-525334 improves DKD. RESULTS SB-525334 ameliorated DKD-induced kidney injury by regulating inflammatory cytokines (TGF-β1, IL-6, IL-10) as well as promoting the translation of M1 (iNOS) macrophage to M2 (CD206) macrophage. In addition, SB-525334 ameliorates kidney injury caused by DKD through inhibiting inflammation through regulating the expression of key proteins in the TGF-β1 /JNK and TGF-β1 /Smad signaling pathways. For studies in vitro, inflammation induced by LPS in vitro was inhibited significantly after the administration of SB-525334 through down-regulating pro-inflammatory cytokines, promoting macrophage conversion from M1 to M2, and inhibiting the activation of TGF-β1 /JNK and TGF-β1 /Smad pathways. CONCLUSIONS These results highlight that the target compound SB-525334 could serve as a novel potential therapeutic agent and ameliorate DKD in an inflammation-inhibiting manner.
Collapse
Affiliation(s)
- Jianheng Chen
- Department of Anesthesiology, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Tao Wang
- Department of Nephrology, Jiangning Clinical Medical College, Kangda College of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jiang Zhu
- Department of Nephrology, Jiangning Clinical Medical College, Kangda College of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yuhang Gong
- Academy of Chinese Medical Science, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Jie Song
- Department of Nephrology, Jiangning Clinical Medical College, Kangda College of Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
4
|
Sandholm N, Dahlström EH, Groop PH. Genetic and epigenetic background of diabetic kidney disease. Front Endocrinol (Lausanne) 2023; 14:1163001. [PMID: 37324271 PMCID: PMC10262849 DOI: 10.3389/fendo.2023.1163001] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 05/10/2023] [Indexed: 06/17/2023] Open
Abstract
Diabetic kidney disease (DKD) is a severe diabetic complication that affects up to half of the individuals with diabetes. Elevated blood glucose levels are a key underlying cause of DKD, but DKD is a complex multifactorial disease, which takes years to develop. Family studies have shown that inherited factors also contribute to the risk of the disease. During the last decade, genome-wide association studies (GWASs) have emerged as a powerful tool to identify genetic risk factors for DKD. In recent years, the GWASs have acquired larger number of participants, leading to increased statistical power to detect more genetic risk factors. In addition, whole-exome and whole-genome sequencing studies are emerging, aiming to identify rare genetic risk factors for DKD, as well as epigenome-wide association studies, investigating DNA methylation in relation to DKD. This article aims to review the identified genetic and epigenetic risk factors for DKD.
Collapse
Affiliation(s)
- Niina Sandholm
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland
- Department of Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Emma H. Dahlström
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland
- Department of Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Per-Henrik Groop
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland
- Department of Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
5
|
Sun Y, Cheng Z, Guo Z, Dai G, Li Y, Chen Y, Xie R, Wang X, Cui M, Lu G, Wang A, Gao C. Preliminary Study of Genome-Wide Association Identified Novel Susceptibility Genes for Hemorheological Indexes in a Chinese Population. Transfus Med Hemother 2022; 49:346-357. [PMID: 36654975 PMCID: PMC9768296 DOI: 10.1159/000524849] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 05/01/2022] [Indexed: 01/21/2023] Open
Abstract
Background Genome-wide association studies for various hemorheological characteristics have not been reported. We aimed to identify genetic loci associated with hemorheological indexes in a cohort of healthy Chinese Han individuals. Methods Genotyping was performed using Applied Biosystems Axiom™ Precision Medicine Diversity Array in 838 individuals, and 6,423,076 single nucleotide polymorphisms were available for genotyping. The relations were examined in an additive genetic model using mixed linear regression and combined with identical by descent matrix. Results We identified 38 genetic loci (p < 5 × 10-6) related to hemorheological traits. In which, LOC102724502-OLIG2 rs28371438 was related to the levels of nd30 (p = 8.58 × 10-07), nd300 (p = 1.89 × 10-06), erythrocyte rigidity (p = 1.29 × 10-06), assigned viscosity (p = 6.20 × 10-08) and whole blood high cut relative (p = 7.30 × 10-08). The association of STK32B rs4689231 for nd30 (p = 3.85 × 10-06) and nd300 (p = 2.94 × 10-06) and GTSCR1-LINC01541 rs11661911 for erythrocyte rigidity (p = 9.93 × 10-09) and whole blood high cut relative (p = 2.09 × 10-07) was found. USP25-MIR99AHG rs1297329 was associated with erythrocyte rigidity (p = 1.81 × 10-06) and erythrocyte deformation (p = 1.14 × 10-06). Moreover, the association of TMEM232-SLC25A46 rs3985087 and LINC00470-METTL4 rs9966987 for fibrinogen (p = 1.31 × 10-06 and p = 4.29 × 10-07) and plasma viscosity (p = 1.01 × 10-06 and p = 4.59 × 10-07) was found. Conclusion These findings may represent biological candidates for hemorheological indexes and contribute to hemorheological study.
Collapse
Affiliation(s)
- Yuxiao Sun
- Department of Cardiology, Henan Provincial People's Hospital, Zhengzhou, China,FuWai Central China Cardiovascular Hospital, Zhengzhou, China,People's Hospital of Zhengzhou University, Zhengzhou, China,Henan Provincial Key Lab for Control of Coronary Heart Disease, Zhengzhou, China
| | - Zhaoyun Cheng
- Department of Cardiology, Henan Provincial People's Hospital, Zhengzhou, China,FuWai Central China Cardiovascular Hospital, Zhengzhou, China,People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhiping Guo
- Department of Cardiology, Henan Provincial People's Hospital, Zhengzhou, China,FuWai Central China Cardiovascular Hospital, Zhengzhou, China,People's Hospital of Zhengzhou University, Zhengzhou, China,Henan Provincial Key Lab for Control of Coronary Heart Disease, Zhengzhou, China
| | - Guoyou Dai
- Department of Cardiology, Henan Provincial People's Hospital, Zhengzhou, China,FuWai Central China Cardiovascular Hospital, Zhengzhou, China,People's Hospital of Zhengzhou University, Zhengzhou, China,Henan Provincial Key Lab for Control of Coronary Heart Disease, Zhengzhou, China
| | - Yongqiang Li
- Department of Cardiology, Henan Provincial People's Hospital, Zhengzhou, China,FuWai Central China Cardiovascular Hospital, Zhengzhou, China,People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Yan Chen
- Department of Cardiology, Henan Provincial People's Hospital, Zhengzhou, China,FuWai Central China Cardiovascular Hospital, Zhengzhou, China,People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Ruigang Xie
- Department of Cardiology, Henan Provincial People's Hospital, Zhengzhou, China,FuWai Central China Cardiovascular Hospital, Zhengzhou, China,People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Xianqing Wang
- Department of Cardiology, Henan Provincial People's Hospital, Zhengzhou, China,FuWai Central China Cardiovascular Hospital, Zhengzhou, China,People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Mingxia Cui
- FuWai Central China Cardiovascular Hospital, Zhengzhou, China,People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Guoqing Lu
- Department of Cardiology, Henan Provincial People's Hospital, Zhengzhou, China,FuWai Central China Cardiovascular Hospital, Zhengzhou, China,People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Aifeng Wang
- FuWai Central China Cardiovascular Hospital, Zhengzhou, China,People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Chuanyu Gao
- Department of Cardiology, Henan Provincial People's Hospital, Zhengzhou, China,FuWai Central China Cardiovascular Hospital, Zhengzhou, China,People's Hospital of Zhengzhou University, Zhengzhou, China,Henan Provincial Key Lab for Control of Coronary Heart Disease, Zhengzhou, China,*Chuanyu Gao,
| |
Collapse
|
6
|
Li Q, Liao J, Chen W, Zhang K, Li H, Ma F, Zhang H, Han Q, Guo J, Li Y, Hu L, Pan J, Tang Z. NAC alleviative ferroptosis in diabetic nephropathy via maintaining mitochondrial redox homeostasis through activating SIRT3-SOD2/Gpx4 pathway. Free Radic Biol Med 2022; 187:158-170. [PMID: 35660452 DOI: 10.1016/j.freeradbiomed.2022.05.024] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/14/2022] [Accepted: 05/29/2022] [Indexed: 12/16/2022]
Abstract
Diabetic nephropathy (DN) is known as a major microvascular complication in type 1 diabetes. The effect of insulin treatment alone on controlling blood glucose is unsatisfactory. N-acetylcysteine (NAC), a chemical agent with thiol group, is found to confer a protective effect in renal injury. However, whether NAC combined with insulin treatment can further enhance the therapeutic effect in DN remains unclear. Here, we firstly used large mammal beagle as DN model to explore the effect of NAC combined with insulin treatment on DN during 120 d. Our results showed that NAC further alleviated mitochondrial oxidative damage and ferroptosis by enhancing activity of mitochondria GSH and maintaining mitochondrial redox homeostasis in DN. Additionally, the upregulated acetylation level of SOD2 was further abrogated by NAC treatment. In MDCK cells, NAC reduced high glucose (HG)-caused ferroptosis via activating Gpx4 expression. Of note, inhibition of Gpx4 by FIN56 abolished the protective effects of NAC on HG-induced ferroptosis. More importantly, 3-TYP reversed the effect of NAC on the mitochondria ROS under HG treatment, as well as eliminated its following beneficial effects for ferroptosis against HG-stimulated cells. These results reveal that NAC attenuated ferroptosis in DN via maintaining mitochondrial redox homeostasis through activating SIRT3-SOD2-Gpx4 signaling pathway.
Collapse
Affiliation(s)
- Quanwei Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China
| | - Jianzhao Liao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China
| | - Weijin Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China
| | - Kai Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China
| | - Hongji Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China
| | - Feiyang Ma
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China
| | - Hui Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China
| | - Qingyue Han
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China
| | - Jianying Guo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China
| | - Ying Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China
| | - Lianmei Hu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China
| | - Jiaqiang Pan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China
| | - Zhaoxin Tang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China.
| |
Collapse
|
7
|
Bibliometric Study of Trends in the Diabetic Nephropathy Research Space from 2016 to 2020. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:8050137. [PMID: 35450407 PMCID: PMC9018194 DOI: 10.1155/2022/8050137] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 03/02/2022] [Accepted: 03/17/2022] [Indexed: 12/15/2022]
Abstract
Background Diabetic nephropathy (DN) is one of the most common microvascular complications of diabetes mellitus (DM), but no bibliometric studies pertaining to DN have been published within the last 5 years. Objectives Most prior studies have focused on specific problems in the DN field. This study attempts to sort out and visualize the knowledge framework in this research space from a holistic and highly generalized perspective. Readers can quickly understand and master the knowledge regarding DN research conducted from 2016 to 2020, in addition to predicting future research hotspots and possible directions for development in this field in a comprehensive and scientifically valid manner. Methods Literature information, discourse matrices, and co-occurrence matrices were generated using BICOMB. gCLUTO was used for biclustering analyses and visualization. Strategic diagrams were generated using GraphPad Prism 5. The social network analysis (SNA) was analyzed and plotted using Ucinet 6.0 and Netdraw. Results In total, 55 high-frequency MeSH terms/MeSH subheadings were selected and grouped into 5 clusters in a biclustering analysis. These analyses revealed that extensive studies of the etiology, diagnosis, and treatment of DN have been conducted over the last 5 years, while further research regarding DN-related single nucleotide polymorphisms, miRNAs, and signal transduction are warranted as these research areas remain relatively immature. Conclusion Together, these results outline a robust knowledge structure pertaining to the field of DN-related research over the last 5 years, providing a valuable resource for readers by enabling the easy comprehension of relevant information. In addition, this analysis highlights predicted DN-related research directions and hotspots.
Collapse
|