1
|
Lei WS, Chen X, Zhao L, Daley T, Phillips B, Rickels MR, Kelly A, Kindler JM. Effect of GIP and GLP-1 infusion on bone resorption in glucose intolerant, pancreatic insufficient cystic fibrosis. J Clin Transl Endocrinol 2025; 40:100392. [PMID: 40275940 PMCID: PMC12019020 DOI: 10.1016/j.jcte.2025.100392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 03/22/2025] [Accepted: 04/04/2025] [Indexed: 04/26/2025] Open
Abstract
Context Diabetes and bone disease are common in cystic fibrosis (CF) and primarily occur alongside exocrine pancreatic insufficiency (PI). "Incretins," glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide 1 (GLP-1), augment insulin secretion and regulate bone metabolism. In CF, PI dampens the incretin response. Loss of the insulinotropic effect of GIP in CF was recently identified, but effects on bone are unknown. Objective Determine effects of incretins on bone resorption markers in adults with PI-CF. Design Secondary analysis of a mechanistic double-blinded randomized placebo-controlled crossover trial including adults ages 18-40 years with PI-CF (n = 25). Intervention Adults with PI-CF received either GIP (4 pmol/kg/min) or GLP-1 (1.5 pmol/kg/min) infusion, followed by double-blind randomization to either incretin or placebo infusion. Non-CF healthy controls received double-blind GIP (4 pmol/kg/min) or placebo. Serum C-terminal telopeptide (CTX), a bone resorption marker, was assessed during the infusion over 80 (GIP) or 60 (GLP-1) minutes. Main Outcome Measures CTX (mg/dL) concentrations. Results In PI-CF, CTX decreased during GIP infusion, but not during placebo (time-by-treatment interaction P < 0.01). GLP-1 did not affect CTX. In non-CF healthy controls, time-by-treatment interaction was not significant (P = 0.23), but CTX decreased during GIP (P = 0.02) but not placebo (P = 0.47). Conclusions GIP evokes a bone anti-resorptive effect in people with PI-CF. Since the incretin response is perturbed in PI-CF, and an infusion of GIP lowers bone resorption, the "gut-bone axis" in CF-related bone disease requires attention.
Collapse
Affiliation(s)
- Wang Shin Lei
- Department of Nutritional Sciences, The University of Georgia, Athens, GA, USA
| | - XianYan Chen
- Department of Epidemiology & Biostatistics, The University of Georgia, Athens, GA, USA
| | - Lingyu Zhao
- Department of Statistics, The University of Georgia, Athens, GA, USA
| | - Tanicia Daley
- Department of Pediatrics, Division of Endocrinology and Metabolism, Emory University School of Medicine, Atlanta, GA, USA
| | - Bradley Phillips
- College of Pharmacy and Biomedical & Translational Sciences Institute, The University of Georgia, Athens, GA, USA
| | - Michael R. Rickels
- Department of Medicine, Division of Endocrinology, Diabetes & Metabolism, and Institute for Diabetes, Obesity & Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Andrea Kelly
- Division of Endocrinology and Diabetes, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Joseph M. Kindler
- Department of Nutritional Sciences, The University of Georgia, Athens, GA, USA
| |
Collapse
|
2
|
Müller TD, Adriaenssens A, Ahrén B, Blüher M, Birkenfeld AL, Campbell JE, Coghlan MP, D'Alessio D, Deacon CF, DelPrato S, Douros JD, Drucker DJ, Figueredo Burgos NS, Flatt PR, Finan B, Gimeno RE, Gribble FM, Hayes MR, Hölscher C, Holst JJ, Knerr PJ, Knop FK, Kusminski CM, Liskiewicz A, Mabilleau G, Mowery SA, Nauck MA, Novikoff A, Reimann F, Roberts AG, Rosenkilde MM, Samms RJ, Scherer PE, Seeley RJ, Sloop KW, Wolfrum C, Wootten D, DiMarchi RD, Tschöp MH. Glucose-dependent insulinotropic polypeptide (GIP). Mol Metab 2025; 95:102118. [PMID: 40024571 PMCID: PMC11931254 DOI: 10.1016/j.molmet.2025.102118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 02/06/2025] [Accepted: 02/24/2025] [Indexed: 03/04/2025] Open
Abstract
BACKGROUND Glucose-dependent insulinotropic polypeptide (GIP) was the first incretin identified and plays an essential role in the maintenance of glucose tolerance in healthy humans. Until recently GIP had not been developed as a therapeutic and thus has been overshadowed by the other incretin, glucagon-like peptide 1 (GLP-1), which is the basis for several successful drugs to treat diabetes and obesity. However, there has been a rekindling of interest in GIP biology in recent years, in great part due to pharmacology demonstrating that both GIPR agonism and antagonism may be beneficial in treating obesity and diabetes. This apparent paradox has reinvigorated the field, led to new lines of investigation, and deeper understanding of GIP. SCOPE OF REVIEW In this review, we provide a detailed overview on the multifaceted nature of GIP biology and discuss the therapeutic implications of GIPR signal modification on various diseases. MAJOR CONCLUSIONS Following its classification as an incretin hormone, GIP has emerged as a pleiotropic hormone with a variety of metabolic effects outside the endocrine pancreas. The numerous beneficial effects of GIPR signal modification render the peptide an interesting candidate for the development of pharmacotherapies to treat obesity, diabetes, drug-induced nausea and both bone and neurodegenerative disorders.
Collapse
Affiliation(s)
- Timo D Müller
- Institute for Diabetes and Obesity, Helmholtz Munich, Germany; German Center for Diabetes Research, DZD, Germany; Walther-Straub Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University Munich (LMU), Germany.
| | - Alice Adriaenssens
- Centre for Cardiovascular and Metabolic Neuroscience, Department of Neuroscience, Physiology, and Pharmacology, University College London, London, UK
| | - Bo Ahrén
- Department of Clinical Sciences, Lund, Lund University, Lund, Sweden
| | - Matthias Blüher
- Medical Department III-Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany; Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Leipzig, Germany
| | - Andreas L Birkenfeld
- Department of Internal Medicine IV, University Hospital Tübingen, Tübingen 72076, Germany; Institute of Diabetes Research and Metabolic Diseases of the Helmholtz Centre Munich, Tübingen, Germany; German Center for Diabetes Research, Neuherberg, Germany
| | - Jonathan E Campbell
- Duke Molecular Physiology Institute, Duke University, Durham, NC, USA; Department of Medicine, Division of Endocrinology, Duke University, Durham, NC, USA; Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | - Matthew P Coghlan
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - David D'Alessio
- Department of Medicine, Division of Endocrinology, Duke University, Durham, NC, USA; Duke Molecular Physiology Institute, Duke University, Durham, NC, USA
| | - Carolyn F Deacon
- School of Biomedical Sciences, Ulster University, Coleraine, UK; Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Stefano DelPrato
- Interdisciplinary Research Center "Health Science", Sant'Anna School of Advanced Studies, Pisa, Italy
| | | | - Daniel J Drucker
- The Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, and the Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Natalie S Figueredo Burgos
- Centre for Cardiovascular and Metabolic Neuroscience, Department of Neuroscience, Physiology, and Pharmacology, University College London, London, UK
| | - Peter R Flatt
- Diabetes Research Centre, School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland BT52 1SA, UK
| | - Brian Finan
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - Ruth E Gimeno
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - Fiona M Gribble
- Institute of Metabolic Science-Metabolic Research Laboratories & MRC-Metabolic Diseases Unit, University of Cambridge, Cambridge, UK
| | - Matthew R Hayes
- Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, PA, USA; Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Christian Hölscher
- Neurodegeneration Research Group, Henan Academy of Innovations in Medical Science, Xinzheng, China
| | - Jens J Holst
- Department of Biomedical Sciences and the Novo Nordisk Foundation Centre for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Patrick J Knerr
- Indianapolis Biosciences Research Institute, Indianapolis, IN, USA
| | - Filip K Knop
- Center for Clinical Metabolic Research, Herlev and Gentofte Hospital, University of Copenhagen, Hellerup, Denmark; Clinical Research, Steno Diabetes Center Copenhagen, Herlev, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Christine M Kusminski
- Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Arkadiusz Liskiewicz
- Institute for Diabetes and Obesity, Helmholtz Munich, Germany; German Center for Diabetes Research, DZD, Germany; Department of Physiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Guillaume Mabilleau
- Univ Angers, Nantes Université, ONIRIS, Inserm, RMeS UMR 1229, Angers, France; CHU Angers, Departement de Pathologie Cellulaire et Tissulaire, Angers, France
| | | | - Michael A Nauck
- Diabetes, Endocrinology and Metabolism Section, Department of Internal Medicine I, St. Josef-Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Aaron Novikoff
- Institute for Diabetes and Obesity, Helmholtz Munich, Germany; German Center for Diabetes Research, DZD, Germany
| | - Frank Reimann
- Institute of Metabolic Science-Metabolic Research Laboratories & MRC-Metabolic Diseases Unit, University of Cambridge, Cambridge, UK
| | - Anna G Roberts
- Centre for Cardiovascular and Metabolic Neuroscience, Department of Neuroscience, Physiology, and Pharmacology, University College London, London, UK
| | - Mette M Rosenkilde
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences University of Copenhagen, Copenhagen, Denmark
| | - Ricardo J Samms
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - Philip E Scherer
- Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Randy J Seeley
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Kyle W Sloop
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - Christian Wolfrum
- Institute of Food, Nutrition and Health, ETH Zurich, 8092, Schwerzenbach, Switzerland
| | - Denise Wootten
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia; ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | | | - Matthias H Tschöp
- Helmholtz Munich, Neuherberg, Germany; Division of Metabolic Diseases, Department of Medicine, Technical University of Munich, Munich, Germany
| |
Collapse
|
3
|
Ayada G, Zolotov S, Cohen R, Lavi T, Abdul-Ghani M, Shehadeh N, Nakhleh A. GLP-1 Receptor Agonist Therapy in Cystic Fibrosis-Related Diabetes: A Case Report. Diabetes Technol Ther 2025; 27:144-146. [PMID: 39360432 DOI: 10.1089/dia.2024.0367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Affiliation(s)
- Gida Ayada
- Institute of Endocrinology, Diabetes and Metabolism, Rambam Health Care Campus, Haifa, Israel
| | - Sagit Zolotov
- Institute of Endocrinology, Diabetes and Metabolism, Rambam Health Care Campus, Haifa, Israel
- Diabetes and Endocrinology Clinic, Maccabi Healthcare Services, Haifa, Israel
| | - Raya Cohen
- Pulmonary institute and CF center, Lady Davis Carmel Medical Center, Haifa, Israel
| | - Tal Lavi
- Pulmonary institute and CF center, Lady Davis Carmel Medical Center, Haifa, Israel
| | - Muhammad Abdul-Ghani
- Diabetes and Endocrinology Clinic, Maccabi Healthcare Services, Haifa, Israel
- Division of Diabetes, University of Texas Health Science Centre, San Antonio, Texas, USA
| | - Naim Shehadeh
- Institute of Endocrinology, Diabetes and Metabolism, Rambam Health Care Campus, Haifa, Israel
- Diabetes and Endocrinology Clinic, Maccabi Healthcare Services, Haifa, Israel
- The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Afif Nakhleh
- Institute of Endocrinology, Diabetes and Metabolism, Rambam Health Care Campus, Haifa, Israel
- Diabetes and Endocrinology Clinic, Maccabi Healthcare Services, Haifa, Israel
- The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| |
Collapse
|
4
|
Gharib SA, Vemireddy R, Castillo JJ, Fountaine BS, Bammler TK, MacDonald JW, Hull-Meichle RL, Zraika S. Cystic fibrosis-related diabetes is associated with reduced islet protein expression of GLP-1 receptor and perturbation of cell-specific transcriptional programs. Sci Rep 2024; 14:25689. [PMID: 39463434 PMCID: PMC11514218 DOI: 10.1038/s41598-024-76722-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 10/16/2024] [Indexed: 10/29/2024] Open
Abstract
Insulin secretion is impaired in individuals with cystic fibrosis (CF), contributing to high rates of CF-related diabetes (CFRD) and substantially increasing disease burden. To develop improved therapies for CFRD, better knowledge of pancreatic pathology in CF is needed. Glucagon like peptide-1 (GLP-1) from islet α cells potentiates insulin secretion by binding GLP-1 receptors (GLP-1Rs) on β cells. We determined whether expression of GLP-1 and/or its signaling components are reduced in CFRD, thereby contributing to impaired insulin secretion. Immunohistochemistry of pancreas from humans with CFRD versus no-CF/no-diabetes revealed no difference in GLP-1 immunoreactivity per islet area, whereas GLP-1R immunoreactivity per islet area or per insulin-positive islet area was reduced in CFRD. Using spatial transcriptomics, we observed several differentially expressed α- and/or β-cell genes between CFRD and control pancreas. In CFRD, we found upregulation of α-cell PCSK1 which encodes the enzyme (PC1/3) that generates GLP-1, and downregulation of α-cell PCSK1N which inhibits PC1/3. Gene set enrichment analysis also revealed α and β cell-specific pathway dysregulation in CFRD. Together, our data suggest intra-islet GLP-1 is not limiting in CFRD, but its action may be restricted due to reduced GLP-1R protein levels. Thus, restoring β-cell GLP-1R protein expression may improve β-cell function in CFRD.
Collapse
Affiliation(s)
- Sina A Gharib
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Washington, Seattle, WA, USA
- Computational Medicine Core at Center for Lung Biology, University of Washington, Seattle, Washington, USA
| | - Rachna Vemireddy
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Joseph J Castillo
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington, Seattle, WA, USA
- Research and Development Service, Veterans Affairs Puget Sound Health Care System, Seattle, Washington, USA
| | - Brendy S Fountaine
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Theo K Bammler
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, USA
| | - James W MacDonald
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, USA
| | - Rebecca L Hull-Meichle
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington, Seattle, WA, USA
- Research and Development Service, Veterans Affairs Puget Sound Health Care System, Seattle, Washington, USA
- Alberta Diabetes Institute, Department of Cell Biology, University of Alberta, Edmonton, AB, Canada
| | - Sakeneh Zraika
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington, Seattle, WA, USA.
- Research and Development Service, Veterans Affairs Puget Sound Health Care System, Seattle, Washington, USA.
- Veterans Affairs Puget Sound Health Care System, 1660 South Columbian Way (151), Seattle, WA, 98108, USA.
| |
Collapse
|
5
|
Bass R, Alvarez JA. Nutritional status in the era of highly effective CFTR modulators. Pediatr Pulmonol 2024; 59 Suppl 1:S6-S16. [PMID: 39105341 DOI: 10.1002/ppul.26806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 11/07/2023] [Accepted: 11/29/2023] [Indexed: 08/07/2024]
Abstract
Advances in cystic fibrosis (CF) diagnostics and therapeutics have led to improved health and longevity, including increased body weight and decreased malnutrition in people with CF. Highly effective CFTR modulator therapies (HEMT) are associated with increased weight through a variety of mechanisms, accelerating trends of overweight and obesity in the CF population. Higher body mass index (BMI) is associated with improved pulmonary function in CF, yet the incremental improvement at overweight and obese BMIs is not clear. Improvements in pulmonary health with increasing BMI are largely driven by increases in fat-free mass (FFM), and impact of HEMT on FFM is uncertain. While trends toward higher weight and BMI are generally seen as favorable in CF, the increased prevalence of overweight and obesity has raised concern for potential risk of traditional age- and obesity-related comorbidities. Such comorbidities, including impaired glucose tolerance, hypertension, cardiac disease, hyperlipidemia, fatty liver, colon cancer, and obstructive sleep apnea, may occur on top of pre-existing CF-related comorbidities. CF nutrition recommendations are evolving in the post-modulator era to more individualized approaches, in contrast to prior blanket high-fat, high-calorie prescriptions for all. Ultimately, it will be essential to redefine goals for optimal weight and nutritional status to allow for holistic health and aging in people with CF.
Collapse
Affiliation(s)
- Rosara Bass
- Division of Pediatric Gastroenterology Hepatology and Nutrition, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Jessica A Alvarez
- Division of Endocrinology, Lipids, and Metabolism, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
6
|
Helsted MM, Schaltz NL, Gasbjerg LS, Christensen MB, Vilsbøll T, Knop FK. Safety of native glucose-dependent insulinotropic polypeptide in humans. Peptides 2024; 177:171214. [PMID: 38615716 DOI: 10.1016/j.peptides.2024.171214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/04/2024] [Accepted: 04/09/2024] [Indexed: 04/16/2024]
Abstract
In this systematic review, we assessed the safety and possible safety events of native glucose-dependent insulinotropic polypeptide (GIP)(1-42) in human studies with administration of synthetic human GIP. We searched the PubMed database for all trials investigating synthetic human GIP(1-42) administration. A total of 67 studies were included. Study duration ranged from 30 min to 6 days. In addition to healthy individuals, the studies included individuals with impaired glucose tolerance, type 2 diabetes, type 1 diabetes, chronic pancreatitis and secondary diabetes, latent autoimmune diabetes in adults, diabetes caused by a mutation in the hepatocyte nuclear factor 1-alpha gene, end-stage renal disease, chronic renal insufficiency, critical illness, hypoparathyroidism, or cystic fibrosis-related diabetes. Of the included studies, 78% did not mention safety events, 10% of the studies reported that no safety events were observed in relation to GIP administration, and 15% of the studies reported safety events in relation to GIP administration with most frequently reported event being a moderate and transient increased heart rate. Gastrointestinal safety events, and changes in blood pressure were also reported. Plasma concentration of active GIP(1-42) increased linearly with dose independent of participant phenotype. There was no significant correlation between achieved maximal concentration of GIP(1-42) and reported safety events. Clearance rates of GIP(1-42) were similar between participant groups. In conclusion, the available data indicate that GIP(1-42) in short-term (up to 6 days) infusion studies is generally well-tolerated. The long-term safety of continuous GIP(1-42) administration is unknown.
Collapse
Affiliation(s)
- Mads M Helsted
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | - Nina L Schaltz
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | - Lærke S Gasbjerg
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark; Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mikkel B Christensen
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Clinical Pharmacology, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark; Copenhagen Center for Translational Research, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Tina Vilsbøll
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Steno Diabetes Center Copenhagen, Herlev, Denmark
| | - Filip K Knop
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Steno Diabetes Center Copenhagen, Herlev, Denmark.
| |
Collapse
|
7
|
Sheikh S, Stefanovski D, Kilberg MJ, Hadjiliadis D, Rubenstein RC, Rickels MR, Kelly A. Early-phase insulin secretion during mixed-meal tolerance testing predicts β-cell function and secretory capacity in cystic fibrosis. Front Endocrinol (Lausanne) 2024; 15:1340346. [PMID: 38444582 PMCID: PMC10912512 DOI: 10.3389/fendo.2024.1340346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 02/05/2024] [Indexed: 03/07/2024] Open
Abstract
Insulin secretion within 30 minutes of nutrient ingestion is reduced in people with cystic fibrosis (PwCF) and pancreatic insufficiency and declines with worsening glucose tolerance. The glucose potentiated arginine (GPA) test is validated for quantifying β-cell secretory capacity as an estimate of functional β-cell mass but requires technical expertise and is burdensome. This study sought to compare insulin secretion during mixed-meal tolerance testing (MMTT) to GPA-derived parameters in PwCF. Methods Secondary data analysis of CF-focused prospective studies was performed in PwCF categorized as 1) pancreatic insufficient [PI-CF] or 2) pancreatic sufficient [PS-CF] and in 3) non-CF controls. MMTT: insulin secretory rates (ISR) were derived by parametric deconvolution using 2-compartment model of C-peptide kinetics, and incremental area under the curve (AUC) was calculated for 30, 60 and 180-minutes. GPA: acute insulin (AIR) and C-peptide responses (ACR) were calculated as average post-arginine insulin or C-peptide response minus pre-arginine insulin or C-peptide under fasting (AIRarg and ACRarg), ~230 mg/dL (AIRpot and ACRpot), and ~340 mg/dL (AIRmax and ACRmax) hyperglycemic clamp conditions. Relationships of MMTT to GPA parameters were derived using Pearson's correlation coefficient. Predicted values were generated for MMTT ISR and compared to GPA parameters using Bland Altman analysis to assess degree of concordance. Results 85 PwCF (45 female; 75 PI-CF and 10 PS-CF) median (range) age 23 (6-56) years with BMI 23 (13-34) kg/m2, HbA1c 5.5 (3.8-10.2)%, and FEV1%-predicted 88 (26-125) and 4 non-CF controls of similar age and BMI were included. ISR AUC30min positively correlated with AIRarg (r=0.55), AIRpot (r=0.62), and AIRmax (r=0.46) and with ACRarg (r=0.59), ACRpot (r=0.60), and ACRmax (r=0.51) (all P<0.001). ISR AUC30min strongly predicted AIRarg (concordance=0.86), AIRpot (concordance=0.89), and AIRmax (concordance=0.76) at lower mean GPA values, but underestimated AIRarg, AIRpot, and AIRmax at higher GPA-defined β-cell secretory capacity. Between test agreement was unaltered by adjustment for study group, OGTT glucose category, and BMI. Conclusion Early-phase insulin secretion during MMTT can accurately predict GPA-derived measures of β-cell function and secretory capacity when functional β-cell mass is reduced. These data can inform future multicenter studies requiring reliable, standardized, and technically feasible testing mechanisms to quantify β-cell function and secretory capacity.
Collapse
Affiliation(s)
- Saba Sheikh
- Division of Pulmonary and Sleep Medicine, Children’s Hospital of Philadelphia and Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| | - Darko Stefanovski
- Department of Clinical Studies-New Bolton Center, University of Pennsylvania School of Veterinary Medicine, Kennett Square, PA, United States
| | - Marissa J. Kilberg
- Division of Endocrinology and Diabetes, Children’s Hospital of Philadelphia and Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| | - Denis Hadjiliadis
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| | - Ronald C. Rubenstein
- Division of Allergy and Pulmonary Medicine, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, United States
| | - Michael R. Rickels
- Division of Endocrinology, Diabetes & Metabolism, Department of Medicine and Institute for Diabetes, Obesity & Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| | - Andrea Kelly
- Division of Endocrinology and Diabetes, Children’s Hospital of Philadelphia and Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| |
Collapse
|
8
|
Flatt AJ, Sheikh S, Peleckis AJ, Alvarado P, Hadjiliadis D, Stefanovski D, Gallop RJ, Rubenstein RC, Kelly A, Rickels MR. Preservation of β-cell Function in Pancreatic Insufficient Cystic Fibrosis With Highly Effective CFTR Modulator Therapy. J Clin Endocrinol Metab 2023; 109:151-160. [PMID: 37503734 PMCID: PMC10735317 DOI: 10.1210/clinem/dgad443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/16/2023] [Accepted: 07/26/2023] [Indexed: 07/29/2023]
Abstract
CONTEXT Elexacaftor/tezacaftor/ivacaftor (ETI; Trikafta) enhances aberrant cystic fibrosis transmembrane conductance regulator function and may improve the insulin secretory defects associated with a deterioration in clinical outcomes in pancreatic insufficient cystic fibrosis (PI-CF). OBJECTIVE This longitudinal case-control study assessed changes in β-cell function and secretory capacity measures over 2 visits in individuals with PI-CF who were initiated on ETI after the baseline visit (2012-2018) and (1) restudied between 2019 and 2021 (ETI group) vs (2) those restudied between 2015 and 2018 and not yet treated with cystic fibrosis transmembrane conductance regulator modulator therapy (controls). METHODS Nine ETI participants (mean ± SD age, 25 ± 5 years) and 8 matched controls were followed up after a median (interquartile range) 5 (4-7) and 3 (2-3) years, respectively (P < .01), with ETI initiation a median of 1 year before follow-up. Clinical outcomes, glucose-potentiated arginine, and mixed-meal tolerance test measures were assessed with comparisons of within- and between-group change by nonparametric testing. RESULTS Glucose-potentiated insulin and C-peptide responses to glucose-potentiated arginine deteriorated in controls but not in the ETI group, with C-peptide changes different between groups (P < .05). Deterioration in basal proinsulin secretory ratio was observed in controls but improved, as did the maximal arginine-induced proinsulin secretory ratio, in the ETI group (P < .05 for all comparisons). During mixed-meal tolerance testing, early insulin secretion improved as evidenced by more rapid insulin secretory rate kinetics. CONCLUSION ETI preserves β-cell function in CF through effects on glucose-dependent insulin secretion, proinsulin processing, and meal-related insulin secretion. Further work should determine whether early intervention with ETI can prevent deterioration of glucose tolerance in PI-CF.
Collapse
Affiliation(s)
- Anneliese J Flatt
- Division of Endocrinology, Diabetes & Metabolism, Department of Medicine and Institute for Diabetes, Obesity & Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Saba Sheikh
- Division of Pulmonary and Sleep Medicine, Children's Hospital of Philadelphia and Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Amy J Peleckis
- Division of Endocrinology, Diabetes & Metabolism, Department of Medicine and Institute for Diabetes, Obesity & Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Paola Alvarado
- Division of Endocrinology, Diabetes & Metabolism, Department of Medicine and Institute for Diabetes, Obesity & Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Denis Hadjiliadis
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Darko Stefanovski
- New Bolton Center, University of Pennsylvania School of Veterinary Medicine, Kennett Square, PA 19348, USA
| | - Robert J Gallop
- Department of Biostatistics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Ronald C Rubenstein
- Division of Allergy and Pulmonary Medicine, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Andrea Kelly
- Division of Endocrinology and Diabetes, Children's Hospital of Philadelphia and Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Michael R Rickels
- Division of Endocrinology, Diabetes & Metabolism, Department of Medicine and Institute for Diabetes, Obesity & Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| |
Collapse
|
9
|
Malik SS, Padmanabhan D, Hull-Meichle RL. Pancreas and islet morphology in cystic fibrosis: clues to the etiology of cystic fibrosis-related diabetes. Front Endocrinol (Lausanne) 2023; 14:1269139. [PMID: 38075070 PMCID: PMC10704027 DOI: 10.3389/fendo.2023.1269139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 10/03/2023] [Indexed: 12/18/2023] Open
Abstract
Cystic fibrosis (CF) is a multi-organ disease caused by loss-of-function mutations in CFTR (which encodes the CF transmembrane conductance regulator ion channel). Cystic fibrosis related diabetes (CFRD) occurs in 40-50% of adults with CF and is associated with significantly increased morbidity and mortality. CFRD arises from insufficient insulin release from β cells in the pancreatic islet, but the mechanisms underlying the loss of β cell function remain understudied. Widespread pathological changes in the CF pancreas provide clues to these mechanisms. The exocrine pancreas is the epicenter of pancreas pathology in CF, with ductal pathology being the initiating event. Loss of CFTR function results in ductal plugging and subsequent obliteration. This in turn leads to destruction of acinar cells, fibrosis and fatty replacement. Despite this adverse environment, islets remain relatively well preserved. However, islet composition and arrangement are abnormal, including a modest decrease in β cells and an increase in α, δ and γ cell abundance. The small amount of available data suggest that substantial loss of pancreatic/islet microvasculature, autonomic nerve fibers and intra-islet macrophages occur. Conversely, T-cell infiltration is increased and, in CFRD, islet amyloid deposition is a frequent occurrence. Together, these pathological changes clearly demonstrate that CF is a disease of the pancreas/islet microenvironment. Any or all of these changes are likely to have a dramatic effect on the β cell, which relies on positive signals from all of these neighboring cell types for its normal function and survival. A thorough characterization of the CF pancreas microenvironment is needed to develop better therapies to treat, and ultimately prevent CFRD.
Collapse
Affiliation(s)
- Sarah S. Malik
- Department of Pharmacology, University of Washington, Seattle, WA, United States
- Research Service, Veterans Affairs Puget Sound Health Care System, Seattle, WA, United States
| | - Diksha Padmanabhan
- Research Service, Veterans Affairs Puget Sound Health Care System, Seattle, WA, United States
- Seattle Institute for Biomedical and Clinical Research, Seattle, WA, United States
| | - Rebecca L. Hull-Meichle
- Department of Pharmacology, University of Washington, Seattle, WA, United States
- Research Service, Veterans Affairs Puget Sound Health Care System, Seattle, WA, United States
- Seattle Institute for Biomedical and Clinical Research, Seattle, WA, United States
- Division of Metabolism, Endocrinology, and Nutrition, Department of Medicine, University of Washington, Seattle, WA, United States
| |
Collapse
|