1
|
Kabir F, Yung DBY, da Cruz Nizer WS, Allison KN, Zigic S, Russell E, DeZeeuw KG, Marek JE, Cassol E, Pletzer D, Overhage J. Pressure injuries and biofilms: Microbiome, model systems and therapies. Wound Repair Regen 2025; 33:e70005. [PMID: 39949184 PMCID: PMC11826131 DOI: 10.1111/wrr.70005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 10/07/2024] [Accepted: 01/22/2025] [Indexed: 02/16/2025]
Abstract
Chronic wounds have emerged as significant clinical problems owing to their increasing incidence and greater recognition of associated morbidity and socio-economic burden. They are defined as wounds that do not progress normally through the stages of healing in a timely and/or orderly manner. Pressure injuries, in particular, represent a serious problem for patients who are elderly or have limited mobility, such as wheelchair users or those who spend most of the day in bed. These injuries often result from prolonged pressure exerted on the skin over the bone. Treatment of pressure injuries is complex and costly. Emerging evidence suggests that the pressure injury microbiome plays a vital role in chronic wound formation and delaying wound healing. Additionally, antibiotics often fail due to the formation of resistant biofilms and the emergence of antimicrobial-resistant bacteria. In this review, we will summarise the current knowledge on: (a) biofilms and microbiomes in pressure injuries; (b) in vitro and in vivo model systems to study pressure injuries, and (c) current therapies and novel treatment approaches. Understanding the complex interactions between microbes and the host immune system in pressure injuries will provide valuable insights to improve patient outcomes.
Collapse
Affiliation(s)
- Fahad Kabir
- Department of Health SciencesCarleton UniversityOttawaOntarioCanada
| | | | | | | | - Sandra Zigic
- Department of Health SciencesCarleton UniversityOttawaOntarioCanada
| | - Emily Russell
- Department of Health SciencesCarleton UniversityOttawaOntarioCanada
| | - Katrina G. DeZeeuw
- Department of Complex Continuing CareSaint Vincent HospitalOttawaOntarioCanada
| | - Jonah E. Marek
- Department of Complex Continuing CareSaint Vincent HospitalOttawaOntarioCanada
| | - Edana Cassol
- Department of Health SciencesCarleton UniversityOttawaOntarioCanada
| | - Daniel Pletzer
- Department of Microbiology and ImmunologyUniversity of OtagoDunedinNew Zealand
| | - Joerg Overhage
- Department of Health SciencesCarleton UniversityOttawaOntarioCanada
| |
Collapse
|
2
|
Huang Y, Xing H, Naud S, Kyriakides TR. Targeting hypoxia and thrombospondin-2 in diabetic wound healing. FASEB J 2024; 38:e70091. [PMID: 39383062 PMCID: PMC11486302 DOI: 10.1096/fj.202302429rrr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 08/19/2024] [Accepted: 09/23/2024] [Indexed: 10/11/2024]
Abstract
Impaired wound healing in diabetic patients is the leading cause of diabetes-associated hospitalizations and approximately 50% of lower limb amputations. This is due to multiple factors, including elevated glucose, sustained hypoxia, and cell dysfunction. Previously, diabetic wounds were found to contain excessive levels of the matricellular protein thrombospondin-2 (TSP2) and genetic ablation of TSP2 in diabetic mice or treatment of wounds with a hydrogel derived from TSP2-null mouse skin improved healing. Previously, TSP2 has been shown to be repressed by hypoxia, but in the present study we observed sustained hypoxia and overlapping TSP2 deposition in diabetic wounds. We determined this observation was due to the insufficient HIF-1α activation verified by western blot and immunofluorescent analysis of wound tissues and in vitro hypoxia experiments. Application of Dimethyloxalylglycine (DMOG), which can stabilize HIF-1α, inhibited TSP2 expression in diabetic fibroblasts in hypoxic conditions. Therefore, we prepared DMOG-containing TSP2KO hydrogel and applied it to the wounds of diabetic mice. In comparison to empty TSP2KO hydrogel or DMOG treatment, we observed improved wound healing associated with a reduction of TSP2, reduced hypoxia, and increased neovascularization. Overall, our findings shed light on the intricate interplay between hyperglycemia, hypoxia, and TSP2 in the complex environment of diabetic wounds.
Collapse
Affiliation(s)
- Yaqing Huang
- Department of Pathology, Yale University, New Haven, CT 06520, USA
- Vascular Biology and Therapeutics Program, Yale University, New Haven, CT 06520, USA
| | - Hao Xing
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA
- Vascular Biology and Therapeutics Program, Yale University, New Haven, CT 06520, USA
| | - Sophie Naud
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA
- Vascular Biology and Therapeutics Program, Yale University, New Haven, CT 06520, USA
| | - Themis R. Kyriakides
- Department of Pathology, Yale University, New Haven, CT 06520, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA
- Vascular Biology and Therapeutics Program, Yale University, New Haven, CT 06520, USA
| |
Collapse
|
3
|
Saleem M, Syed Khaja AS, Moursi S, Altamimi TA, Alharbi MS, Usman K, Khan MS, Alaskar A, Alam MJ. Narrative review on nanoparticles based on current evidence: therapeutic agents for diabetic foot infection. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:6275-6297. [PMID: 38639898 DOI: 10.1007/s00210-024-03094-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 04/11/2024] [Indexed: 04/20/2024]
Abstract
Diabetes's effects on wound healing present a major treatment challenge and increase the risk of amputation. When traditional therapies fail, new approaches must be investigated. With their submicron size and improved cellular internalisation, nanoparticles present a viable way to improve diabetic wound healing. They are attractive options because of their innate antibacterial qualities, biocompatibility, and biodegradability. Nanoparticles loaded with organic or inorganic compounds, or embedded in biomimetic matrices such as hydrogels, chitosan, and hyaluronic acid, exhibit excellent anti-inflammatory, antibacterial, and antioxidant properties. Drug delivery systems (DDSs)-more precisely, nanodrug delivery systems (NDDSs)-use the advantages of nanotechnology to get around some of the drawbacks of traditional DDSs. Recent developments show how expertly designed nanocarriers can carry a variety of chemicals, transforming the treatment of diabetic wounds. Biomaterials that deliver customised medications to the wound microenvironment demonstrate potential. Delivery techniques for nanomedicines become more potent than ever, overcoming conventional constraints. Therapeutics for diabetes-induced non-healing wounds are entering a revolutionary era thanks to precisely calibrated nanocarriers that effectively distribute chemicals. This review highlights the therapeutic potential of nanoparticles and outlines the multifunctional nanoparticles of the future that will be used for complete wound healing in diabetics. The investigation of novel nanodrug delivery systems has the potential to revolutionise diabetic wound therapy and provide hope for more efficient and focused therapeutic approaches.
Collapse
Affiliation(s)
- Mohd Saleem
- Department of Pathology, College of Medicine, University of Hail, 55211, Hail, Saudi Arabia.
| | | | - Soha Moursi
- Department of Pathology, College of Medicine, University of Hail, 55211, Hail, Saudi Arabia
| | - Tahani Almofeed Altamimi
- Department of Family Medicine, College of Medicine, University of Hail, 55211, Hail, Saudi Arabia
| | - Mohammed Salem Alharbi
- Department of Internal Medicine, College of Medicine, University of Hail, 55211, Hail, Saudi Arabia
| | - Kauser Usman
- Department of Internal Medicine, King George's Medical University, Lucknow, India
| | - Mohd Shahid Khan
- Department of Microbiology, Integral Institute of Medical Sciences and Research, Lucknow, India
| | - Alwaleed Alaskar
- Department of Diabetes and Endocrinology, King Salman Specialist Hospital, 55211, Hail, Saudi Arabia
| | - Mohammad Jahoor Alam
- Department of Biology, College of Science, University of Hail, 55211, Hail, Saudi Arabia
| |
Collapse
|
4
|
Chauhan S, Gulia M, Singh RP, Jhawat V. Diabetic Wound: Pathophysiology, Complications and Treatment Strategies. Curr Protein Pept Sci 2024; 25:200-205. [PMID: 37909438 DOI: 10.2174/0113892037276171231016103320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/26/2023] [Accepted: 10/03/2023] [Indexed: 11/03/2023]
Abstract
Diabetic wound healing is expected to affect 25% of all diabetics, resulting in less severe external factors, economic costs, and less trauma. Topical formulations have been continually improved to achieve a range of amazing properties and have had a significant impact on the management of diabetic wounds. Topical insulin has become one of the most attractive and convenient wound healing techniques due to its excellent biocompatibility, water retention, and therapeutic properties. Multiple versatile topical insulins have been identified and have shown promise over the past few years as they greatly facilitate the management of diabetic wounds as we understand their etiology. The physiological wound healing process repairs damaged tissue and restores skin integrity. For about a century, insulin, a powerful healing agent, and it has been utilized in several clinical and experimental researches research studies to accelerate the healing of various injuries.
Collapse
Affiliation(s)
- Sunita Chauhan
- Department of Pharmaceutical Science, School of Medical and Allied Science, GD Goenka University, Gurugram, Haryana, India
| | - Monika Gulia
- Department of Pharmaceutical Science, School of Medical and Allied Science, GD Goenka University, Gurugram, Haryana, India
| | - Rahul Pratap Singh
- Department of Pharmaceutical Science, School of Medical and Allied Science, GD Goenka University, Gurugram, Haryana, India
| | - Vikas Jhawat
- Department of Pharmaceutical Science, School of Medical and Allied Science, GD Goenka University, Gurugram, Haryana, India
| |
Collapse
|
5
|
Huang H, Xin R, Li X, Zhang X, Chen Z, Zhu Q, Tai Z, Bao L. Physical therapy in diabetic foot ulcer: Research progress and clinical application. Int Wound J 2023; 20:3417-3434. [PMID: 37095726 PMCID: PMC10502280 DOI: 10.1111/iwj.14196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/03/2023] [Accepted: 04/05/2023] [Indexed: 04/26/2023] Open
Abstract
Diabetes foot ulcer (DFU) is one of the most intractable complications of diabetes and is related to a number of risk factors. DFU therapy is difficult and involves long-term interdisciplinary collaboration, causing patients physical and emotional pain and increasing medical costs. With a rising number of diabetes patients, it is vital to figure out the causes and treatment techniques of DFU in a precise and complete manner, which will assist alleviate patients' suffering and decrease excessive medical expenditure. Here, we summarised the characteristics and progress of the physical therapy methods for the DFU, emphasised the important role of appropriate exercise and nutritional supplementation in the treatment of DFU, and discussed the application prospects of non-traditional physical therapy such as electrical stimulation (ES), and photobiomodulation therapy (PBMT) in the treatment of DFU based on clinical experimental records in ClinicalTrials.gov.
Collapse
Affiliation(s)
- Hao Huang
- School of PharmacyBengbu Medical CollegeBengbuAnhuiChina
- Shanghai Skin Disease Hospital, School of MedicineTongji UniversityShanghaiChina
- Department of PharmacyThird Affiliated Hospital of Naval Medical UniversityShanghaiChina
| | - Rujuan Xin
- Shanghai Skin Disease Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Xiaolong Li
- School of PharmacyBengbu Medical CollegeBengbuAnhuiChina
- Shanghai Skin Disease Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Xinyue Zhang
- Shanghai Skin Disease Hospital, School of MedicineTongji UniversityShanghaiChina
- Department of PharmacyThird Affiliated Hospital of Naval Medical UniversityShanghaiChina
| | - Zhongjian Chen
- School of PharmacyBengbu Medical CollegeBengbuAnhuiChina
- Shanghai Skin Disease Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Quangang Zhu
- School of PharmacyBengbu Medical CollegeBengbuAnhuiChina
- Shanghai Skin Disease Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Zongguang Tai
- Shanghai Skin Disease Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Leilei Bao
- School of PharmacyBengbu Medical CollegeBengbuAnhuiChina
- Department of PharmacyThird Affiliated Hospital of Naval Medical UniversityShanghaiChina
| |
Collapse
|
6
|
McNeil S, Waller K, Poy Lorenzo YS, Mateevici OC, Telianidis S, Qi S, Churilov I, MacIsaac RJ, Galligan A. Detection, management, and prevention of diabetes-related foot disease in the Australian context. World J Diabetes 2023; 14:942-957. [PMID: 37547594 PMCID: PMC10401446 DOI: 10.4239/wjd.v14.i7.942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 04/06/2023] [Accepted: 05/23/2023] [Indexed: 07/12/2023] Open
Abstract
Diabetes-related foot disease (DFD) is a widely feared complication among people who live with diabetes. In Australia and globally, rates of disability, cardio-vascular disease, lower extremity amputation, and mortality are significantly increased in patients with DFD. In order to understand and prevent these outcomes, we analyse the common pathogenetic processes of neuropathy, arterial disease, and infection. The review then summarises important management considerations through the interdisciplinary lens. Using Australian and international guidelines, we offer a stepwise, evidence-based practical approach to the care of patients with DFD.
Collapse
Affiliation(s)
- Scott McNeil
- High Risk Foot Service, St Vincent’s Hospital Melbourne, Fitzroy 3065, Victoria, Australia
- Department of Endocrinology and Diabetes, St Vincent’s Hospital Melbourne, Fitzroy 3065, Victoria, Australia
| | - Kate Waller
- High Risk Foot Service, St Vincent’s Hospital Melbourne, Fitzroy 3065, Victoria, Australia
- Department of Podiatry, St Vincent’s Hospital Melbourne, Fitzroy 3065, Victoria, Australia
| | - Yves S Poy Lorenzo
- High Risk Foot Service, St Vincent’s Hospital Melbourne, Fitzroy 3065, Victoria, Australia
- Infectious Diseases Unit, Department of Medicine, St Vincent’s Hospital Melbourne, Fitzroy 3065, Victoria, Australia
- Department of Pharmacy, St Vincent’s Hospital Melbourne, Fitzroy 3065, Australia
- Department of Medicine, St Vincent’s Hospital Melbourne, University of Melbourne, Fitzroy 3065, Victoria, Australia
| | - Olimpia C Mateevici
- High Risk Foot Service, St Vincent’s Hospital Melbourne, Fitzroy 3065, Victoria, Australia
- Infectious Diseases Unit, Department of Medicine, St Vincent’s Hospital Melbourne, Fitzroy 3065, Victoria, Australia
| | - Stacey Telianidis
- High Risk Foot Service, St Vincent’s Hospital Melbourne, Fitzroy 3065, Victoria, Australia
- Department of Vascular Surgery, St Vincent’s Hospital Melbourne, Fitzroy 3065, Victoria, Australia
| | - Sara Qi
- High Risk Foot Service, St Vincent’s Hospital Melbourne, Fitzroy 3065, Victoria, Australia
- Department of Vascular Surgery, St Vincent’s Hospital Melbourne, Fitzroy 3065, Victoria, Australia
| | - Irina Churilov
- High Risk Foot Service, St Vincent’s Hospital Melbourne, Fitzroy 3065, Victoria, Australia
- Department of Medicine, St Vincent’s Hospital Melbourne, University of Melbourne, Fitzroy 3065, Victoria, Australia
- Department of Rehabilitation Medicine, St Vincent’s Hospital Melbourne, Fitzroy 3065, Victoria, Australia
| | - Richard J MacIsaac
- High Risk Foot Service, St Vincent’s Hospital Melbourne, Fitzroy 3065, Victoria, Australia
- Department of Endocrinology and Diabetes, St Vincent’s Hospital Melbourne, Fitzroy 3065, Victoria, Australia
- Department of Medicine, St Vincent’s Hospital Melbourne, University of Melbourne, Fitzroy 3065, Victoria, Australia
- the Australian Centre for Accelerating Diabetes Innovations, School of Medicine, University of Melbourne, Parkville 3010, Victoria, Australia
| | - Anna Galligan
- High Risk Foot Service, St Vincent’s Hospital Melbourne, Fitzroy 3065, Victoria, Australia
- Department of Endocrinology and Diabetes, St Vincent’s Hospital Melbourne, Fitzroy 3065, Victoria, Australia
| |
Collapse
|
7
|
Sheokand B, Vats M, Kumar A, Srivastava CM, Bahadur I, Pathak SR. Natural polymers used in the dressing materials for wound healing: Past, present and future. JOURNAL OF POLYMER SCIENCE 2023. [DOI: 10.1002/pol.20220734] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
8
|
Jeong D, Lee JH, Lee GB, Shin KH, Hwang J, Jang SY, Yoo J, Jang WY. Application of extracorporeal shockwave therapy to improve microcirculation in diabetic foot ulcers: A prospective study. Medicine (Baltimore) 2023; 102:e33310. [PMID: 36930075 PMCID: PMC10019234 DOI: 10.1097/md.0000000000033310] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 02/27/2023] [Indexed: 03/18/2023] Open
Abstract
Extracorporeal shockwave therapy (ESWT) can induce wound healing by increasing tissue microcirculation. However, studies on the effect of ESWT on enhancing tissue microcirculation in diabetic foot ulcer (DFU), particularly on when the microcirculation increases after ESWT application, are still lacking. Therefore, we aimed to examine the effectiveness of ESWT in promoting microcirculation in DFU patients in a time-dependent manner. We included 50 feet of 25 patients with type 2 diabetes mellitus and Wagner grade I to II DFU in this study. The affected feet were used as the ESWT group and the unaffected contralateral feet were used as the control group. ESWT was performed in 3 sessions per week for a total of 3 weeks. Transcutaneous partial oxygen pressure (TcPO2) was used to evaluate the tissue microcirculation. The TcPO2 level (>43 mm Hg) in the ESWT group was recovered by the 2nd week of treatment, and statistical significance (P < .05) was demonstrated at the same time. From the 2nd week of ESWT, a significant increase in TcPO2 was observed in Wagner grade I and II DFU. These findings imply that the ESWT may improve microcirculation in patients with Wagner grades I to II DFU. However, this impact requires at least 2 weeks or more than 6 sessions. For better comparison, further studies with larger clinical groups and extended period are needed.
Collapse
Affiliation(s)
- Daun Jeong
- Department of Orthopedic Surgery, Korea University College of Medicine, Seoul, Korea
- Institute of Nano, Regeneration, Reconstruction, Korea University, Seoul, Korea
| | - Jin Hyuck Lee
- Institute of Nano, Regeneration, Reconstruction, Korea University, Seoul, Korea
- Department of Sports Medical Center, Korea University College of Medicine, Seoul, Korea
| | - Gyu Bin Lee
- Department of Sports Medical Center, Korea University College of Medicine, Seoul, Korea
| | - Ki Hun Shin
- Department of Sports Medical Center, Korea University College of Medicine, Seoul, Korea
| | - Jangsun Hwang
- Department of Orthopedic Surgery, Korea University College of Medicine, Seoul, Korea
- Institute of Nano, Regeneration, Reconstruction, Korea University, Seoul, Korea
| | - Se Youn Jang
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, Korea
| | - Jin Yoo
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, Korea
| | - Woo Young Jang
- Department of Orthopedic Surgery, Korea University College of Medicine, Seoul, Korea
- Institute of Nano, Regeneration, Reconstruction, Korea University, Seoul, Korea
- Department of Sports Medical Center, Korea University College of Medicine, Seoul, Korea
| |
Collapse
|
9
|
Oyebode OA, Jere SW, Houreld NN. Current Therapeutic Modalities for the Management of Chronic Diabetic Wounds of the Foot. J Diabetes Res 2023; 2023:1359537. [PMID: 36818748 PMCID: PMC9937766 DOI: 10.1155/2023/1359537] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 02/12/2023] Open
Abstract
Impaired wound healing is common in patients with diabetes mellitus (DM). Different therapeutic modalities including wound debridement and dressing, transcutaneous electrical nerve stimulation (TENS), nanomedicine, shockwave therapy, hyperbaric (HBOT) and topical (TOT) oxygen therapy, and photobiomodulation (PBM) have been used in the management of chronic diabetic foot ulcers (DFUs). The selection of a suitable treatment method for DFUs depends on the hosts' physiological status including the intricacy and wound type. Effective wound care is considered a critical component of chronic diabetic wound management. This review discusses the causes of diabetic wounds and current therapeutic modalities for the management of DFUs, specifically wound debridement and dressing, TENS, nanomedicine, shockwave therapy, HBOT, TOT, and PBM.
Collapse
Affiliation(s)
- Olajumoke Arinola Oyebode
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein, South Africa 2028
| | - Sandy Winfield Jere
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein, South Africa 2028
| | - Nicolette Nadene Houreld
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein, South Africa 2028
| |
Collapse
|
10
|
Ramsey DJ, Kwan JT, Sharma A. Keeping an eye on the diabetic foot: The connection between diabetic eye disease and wound healing in the lower extremity. World J Diabetes 2022; 13:1035-1048. [PMID: 36578874 PMCID: PMC9791566 DOI: 10.4239/wjd.v13.i12.1035] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 10/27/2022] [Accepted: 11/18/2022] [Indexed: 12/15/2022] Open
Abstract
Diabetic eye disease is strongly associated with the development of diabetic foot ulcers (DFUs). DFUs are a common and significant complication of diabetes mellitus (DM) that arise from a combination of micro- and macrovascular compromise. Hyperglycemia and associated metabolic dysfunction in DM lead to impaired wound healing, immune dysregulation, peripheral vascular disease, and diabetic neuropathy that predisposes the lower extremities to repetitive injury and progressive tissue damage that may ultimately necessitate amputation. Diabetic retinopathy (DR) is caused by cumulative damage to the retinal mic-rovasculature from hyperglycemia and other diabetes-associated factors. The severity of DR is closely associated with the development of DFUs and the need for lower extremity revascularization procedures and/or amputation. Like the lower extremity, the eye may also suffer end-organ damage from macrovascular compromise in the form of cranial neuropathies that impair its motility, cause optic neuropathy, or result in partial or complete blindness. Additionally, poor perfusion of the eye can cause ischemic retinopathy leading to the development of proliferative diabetic retinopathy or neovascular glaucoma, both serious, vision-threatening conditions. Finally, diabetic corneal ulcers and DFUs share many aspects of impaired wound healing resulting from neurovascular, sensory, and immunologic compromise. Notably, alterations in serum biomarkers, such as hemoglobin A1c, ceruloplasmin, creatinine, low-density lipoprotein, and high-density lipoprotein, are associated with both DR and DFUs. Monitoring these parameters can aid in prognosticating long-term outcomes and shed light on shared pathogenic mechanisms that lead to end-organ damage. The frequent co-occurrence of diabetic eye and foot problems mandate that patients affected by either condition undergo reciprocal comprehensive eye and foot evaluations in addition to optimizing diabetes management.
Collapse
Affiliation(s)
- David J Ramsey
- Department of Ophthalmology, Lahey Hospital and Medical Center, Burlington, MA 01805, United States
- Department of Ophthalmology, Tufts University School of Medicine, Boston, MA 02111, United States
| | - James T Kwan
- Department of Ophthalmology, Lahey Hospital and Medical Center, Burlington, MA 01805, United States
- Department of Ophthalmology, Tufts University School of Medicine, Boston, MA 02111, United States
| | - Arjun Sharma
- Department of Ophthalmology, Lahey Hospital and Medical Center, Burlington, MA 01805, United States
- Department of Ophthalmology, Tufts University School of Medicine, Boston, MA 02111, United States
| |
Collapse
|
11
|
Eriksson E, Liu PY, Schultz GS, Martins‐Green MM, Tanaka R, Weir D, Gould LJ, Armstrong DG, Gibbons GW, Wolcott R, Olutoye OO, Kirsner RS, Gurtner GC. Chronic wounds: Treatment consensus. Wound Repair Regen 2022; 30:156-171. [PMID: 35130362 PMCID: PMC9305950 DOI: 10.1111/wrr.12994] [Citation(s) in RCA: 154] [Impact Index Per Article: 51.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 12/23/2021] [Accepted: 01/09/2022] [Indexed: 12/17/2022]
Abstract
The Wound Healing Foundation (WHF) recognised a need for an unbiased consensus on the best treatment of chronic wounds. A panel of 13 experts were invited to a virtual meeting which took place on 27 March 2021. The proceedings were organised in the sub-sections diagnosis, debridement, infection control, dressings, grafting, pain management, oxygen treatment, outcomes and future needs. Eighty percent or better concurrence among the panellists was considered a consensus. A large number of critical questions were discussed and agreed upon. Important takeaways included that wound care needs to be simplified to a point that it can be delivered by the patient or the patient's family. Another one was that telemonitoring, which has proved very useful during the COVID-19 pandemic, can help reduce the frequency of interventions by a visiting nurse or a wound care center. Defining patient expectations is critical to designing a successful treatment. Patient outcomes might include wound specific outcomes such as time to heal, wound size reduction, as well as improvement in quality of life. For those patients with expectations of healing, an aggressive approach to achieve that goal is recommended. When healing is not an expectation, such as in patients receiving palliative wound care, outcomes might include pain reduction, exudate management, odour management and/or other quality of life benefits to wound care.
Collapse
Affiliation(s)
| | - Paul Y. Liu
- Department of Plastic Surgery, Rhode Island HospitalAlpert Medical School of Brown UniversityProvidenceRIUSA
| | - Gregory S. Schultz
- Department of Obstetrics and Gynecology and Institute for Wound ResearchUniversity of FloridaGainesvilleFAUSA
| | - Manuela M. Martins‐Green
- Department of Molecular, Cell and Systems BiologyLaboratory of Wound Healing Biology, University of CaliforniaRiversideCAUSA
| | - Rica Tanaka
- Juntendo University School of MedicineTokyoJapan
| | - Dot Weir
- Saratoga Hospital Center for Wound Healing and Hyperbaric MedicineSaratoga SpringsNew YorkUSA
| | - Lisa J. Gould
- Department of SurgerySouth Shore HospitalSouth WeymouthMassachusettsUSA
| | - David G. Armstrong
- Keck School of Medicine of University of Southern CaliforniaLos AngelesCAUSA
| | - Gary W. Gibbons
- Boston University School of Medicine, Center for Wound Healing South Shore HealthWeymouthMAUSA
| | | | - Oluyinka O. Olutoye
- Center for Regenerative MedicineAbigail Wexner Research Institute, Nationwide Children's HospitalColumbusOHUSA
- Department of SurgeryThe Ohio State UniversityColumbusOHUSA
| | - Robert S. Kirsner
- Dr Philip Frost Department of Dermatology and Cutaneous SurgeryUniversity of Miami Miller School of MedicineMiamiFAUSA
| | | |
Collapse
|
12
|
DeFrates KG, Franco D, Heber-Katz E, Messersmith PB. Unlocking mammalian regeneration through hypoxia inducible factor one alpha signaling. Biomaterials 2021; 269:120646. [PMID: 33493769 PMCID: PMC8279430 DOI: 10.1016/j.biomaterials.2020.120646] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 12/19/2020] [Accepted: 12/29/2020] [Indexed: 02/08/2023]
Abstract
Historically, the field of regenerative medicine has aimed to heal damaged tissue through the use of biomaterials scaffolds or delivery of foreign progenitor cells. Despite 30 years of research, however, translation and commercialization of these techniques has been limited. To enable mammalian regeneration, a more practical approach may instead be to develop therapies that evoke endogenous processes reminiscent of those seen in innate regenerators. Recently, investigations into tadpole tail regrowth, zebrafish limb restoration, and the super-healing Murphy Roths Large (MRL) mouse strain, have identified ancient oxygen-sensing pathways as a possible target to achieve this goal. Specifically, upregulation of the transcription factor, hypoxia-inducible factor one alpha (HIF-1α) has been shown to modulate cell metabolism and plasticity, as well as inflammation and tissue remodeling, possibly priming injuries for regeneration. Since HIF-1α signaling is conserved across species, environmental or pharmacological manipulation of oxygen-dependent pathways may elicit a regenerative response in non-healing mammals. In this review, we will explore the emerging role of HIF-1α in mammalian healing and regeneration, as well as attempts to modulate protein stability through hyperbaric oxygen treatment, intermittent hypoxia therapy, and pharmacological targeting. We believe that these therapies could breathe new life into the field of regenerative medicine.
Collapse
Affiliation(s)
- Kelsey G DeFrates
- Department of Bioengineering and Materials Science and Engineering, University of California, Berkeley, CA, USA.
| | - Daniela Franco
- Department of Bioengineering and Materials Science and Engineering, University of California, Berkeley, CA, USA.
| | - Ellen Heber-Katz
- Laboratory of Regenerative Medicine, Lankenau Institute for Medical Research, Wynnewood, PA, USA.
| | - Phillip B Messersmith
- Department of Bioengineering and Materials Science and Engineering, University of California, Berkeley, CA, USA; Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| |
Collapse
|
13
|
Wadee AN, Fahmy SM, Bahey El-Deen HA. Low-level laser therapy (photobiomodulation) versus hyperbaric oxygen therapy on healing of chronic diabetic foot ulcers: a controlled randomized trial. PHYSICAL THERAPY REVIEWS 2021. [DOI: 10.1080/10833196.2021.1876380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Amir N. Wadee
- Department of Physical Therapy for Basic Science, Faculty of Physical Therapy, Cairo University, Cairo, Egypt
- Department of Physical Therapy for Basic Science, Faculty of Physical Therapy, Modern University for Technology and Information, Cairo, Egypt
| | - Siham M. Fahmy
- Faculty of Physical Therapy, Egyptian Chinese University, Cairo, Egypt
- Teacher at Military Medical Academy, Cairo, Egypt
- HBOT and Foot Care Center at Kobri El Koba Military Hospital, Egypt
| | - Heba A. Bahey El-Deen
- Department of Physical Therapy and Health Rehabilitation, College of Applied Medical Sciences, Jouf University, Al-Jawf, Kingdom of Saudi Arabia
- Department of Physical Therapy for Surgery, Faculty of Physical Therapy, Misr University for Science and Technology, Giza, Egypt
| |
Collapse
|
14
|
Tarricone A, De La Mata K, Rothstein M, Soave RL. The Effect of Wound pH on Healing Rates in Chronic Wounds: A Literature Review. J Am Podiatr Med Assoc 2020; 110:449521. [PMID: 33301576 DOI: 10.7547/19-056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
This literature review sought to evaluate the current state of knowledge and guidelines surrounding the role of pH in the recovery of chronic nonhealing wounds. A systematic review of PubMed examining the relationship between pH and wound healing was completed. Seven sources were retrieved for review. The development of a highly structured and reproducible system of pH-driven therapy may add to the treatment algorithm for chronic nonhealing wounds.
Collapse
|
15
|
Huang X, Liang P, Jiang B, Zhang P, Yu W, Duan M, Guo L, Cui X, Huang M, Huang X. Hyperbaric oxygen potentiates diabetic wound healing by promoting fibroblast cell proliferation and endothelial cell angiogenesis. Life Sci 2020; 259:118246. [DOI: 10.1016/j.lfs.2020.118246] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 07/31/2020] [Accepted: 08/06/2020] [Indexed: 12/31/2022]
|
16
|
Hajhosseini B, Kuehlmann BA, Bonham CA, Kamperman KJ, Gurtner GC. Hyperbaric Oxygen Therapy: Descriptive Review of the Technology and Current Application in Chronic Wounds. PLASTIC AND RECONSTRUCTIVE SURGERY-GLOBAL OPEN 2020; 8:e3136. [PMID: 33133975 PMCID: PMC7544320 DOI: 10.1097/gox.0000000000003136] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 07/31/2020] [Indexed: 12/11/2022]
Abstract
Hyperbaric oxygen therapy (HBOT) serves as "primary" or "adjunctive" therapy in a wide range of pathologies. It is considered the mainstay of management for potentially life-threatening conditions such as carbon monoxide poisoning, decompression illness, and gas embolisms. Moreover, HBOT has been utilized for decades as an adjunctive therapy in a variety of medical disciplines, including chronic wounds, which affect approximately 6.5 million Americans annually. In general, chronic wounds are characterized by hypoxia, impaired angiogenesis, and prolonged inflammation, all of which may theoretically be ameliorated by HBOT. Nonetheless, the cellular, biochemical, and physiological mechanisms by which HBOT achieves beneficial results in chronic wounds are not fully understood, and there remains significant skepticism regarding its efficacy. This review article provides a comprehensive overview of HBOT, and discusses its history, mechanisms of action, and its implications in management of chronic wounds. In particular, we discuss the current evidence regarding the use of HBOT in diabetic foot ulcers, while digging deeply into the roots of controversy surrounding its efficacy. We discuss how the paucity of high-quality research is a tremendous challenge, and offer future direction to address existing obstacles.
Collapse
Affiliation(s)
- Babak Hajhosseini
- From the Division of Plastic & Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, Calif
- Advanced Wound Care Center, Stanford University Medical Center, Redwood City, Calif
| | - Britta A. Kuehlmann
- From the Division of Plastic & Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, Calif
- University Center for Plastic, Reconstructive, Aesthetic and Hand Surgery, University Hospital Regensburg and Caritas Hospital St. Josef, Regensburg, Germany
| | - Clark A. Bonham
- From the Division of Plastic & Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, Calif
| | - Kathryn J. Kamperman
- From the Division of Plastic & Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, Calif
| | - Geoffrey C. Gurtner
- From the Division of Plastic & Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, Calif
- Advanced Wound Care Center, Stanford University Medical Center, Redwood City, Calif
| |
Collapse
|
17
|
Löndahl M, Boulton AJM. Hyperbaric oxygen therapy in diabetic foot ulceration: Useless or useful? A battle. Diabetes Metab Res Rev 2020; 36 Suppl 1:e3233. [PMID: 31927787 DOI: 10.1002/dmrr.3233] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 10/16/2019] [Indexed: 12/18/2022]
Abstract
The use of hyperbaric oxygen therapy (HBO) in the treatment of certain types of diabetic foot ulcers (DFU) has been the topic of much debate and disagreement over the last several decades. In this review, the evidence for its use is presented and discussed by two experts in DFU management. Whereas some randomized controlled trials suggest that HBO may speed the healing of certain ischaemic or neuroischaemic ulcers after the failure of standard of care, most recent trials have been negative. No RCT is perfect, and the weaknesses of RCTs in this therapeutic area are discussed. It can be concluded that the indications for the use of HBO remain unclear, and that large, rigorously designed and executed RCTs are required to clarify the use of HBO in DFU treatment.
Collapse
Affiliation(s)
- Magnus Löndahl
- Department of Clinical Sciences in Lund, Lund University, Lund, Sweden
- Department of Endocrinology, Skåne University Hospital, Lund, Sweden
| | - Andrew J M Boulton
- Division of Diabetes, Endocrinology, and Gastroenterology, School of Medical Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester, UK
- Manchester Diabetes Centre, Manchester Royal Infirmary, Manchester, UK
| |
Collapse
|
18
|
Oley MH, Oley MC, Tjandra DE, Sedu SW, Sumarauw ER, Aling DMR, Kalangi JA, Islam AA, Hatta M, Faruk M. Hyperbaric oxygen therapy in the healing process of foot ulcers in diabetic type 2 patients marked by interleukin 6, vascular endothelial growth factor, and PEDIS score: A randomized controlled trial study. INTERNATIONAL JOURNAL OF SURGERY OPEN 2020; 27:154-161. [DOI: 10.1016/j.ijso.2020.11.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
ABSTRACT
Introduction:
Diabetic foot ulcers (DFU) is a major social issue in terms of treatment cost. DFU has a high risk of infection with morbidity and an increased risk of lower-extremity amputations. Currently, there are no satisfactory treatments for DFU. This motivates a search for methods that can stimulate the acceleration of wound healing; one of these methods is the use of hyperbaric oxygen therapy (HBOT). This study attempts to prove the ability of HBOT to accelerate the healing process of DFU by increasing levels of both serum Interleukin 6 (IL-6) and Vascular Endothelial Growth Factor (VEFG), assessed by the perfusion, extent, depth, infection and sensation (PEDIS) score.
Methods:
Twenty DFU patients were divided into two groups. The control group underwent a holistic DFU treatment without HBOT and was tested twice for serum IL-6 and VEGF levels, 1 day apart. The HBOT group underwent a holistic DFU treatment with HBOT and was also tested twice for serum IL-6 and VEGF levels: one day before HBOT and 2 h after the first day of HBOT.
Results:
The changes in serum IL-6 and VEGF levels were greater in patients with HBOT than in control patients (p = 0.025 and p = 0.004). As for PEDIS score assessment, the HBOT group had significantly lower PEDIS scores than the control group (p < 0.001).
Conclusion:
HBOT can help accelerate the wound healing process, which was proven by increased serum IL-6 and VEGF levels and a lower PEDIS score.
Highlights:
Collapse
|
19
|
Nguyen TT, Jones JI, Wolter WR, Pérez RL, Schroeder VA, Champion MM, Hesek D, Lee M, Suckow MA, Mobashery S, Chang M. Hyperbaric oxygen therapy accelerates wound healing in diabetic mice by decreasing active matrix metalloproteinase‐9. Wound Repair Regen 2019; 28:194-201. [DOI: 10.1111/wrr.12782] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 11/07/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Trung T. Nguyen
- Department of Chemistry and BiochemistryUniversity of Notre Dame Notre Dame Indiana
| | - Jeffrey I. Jones
- Department of Chemistry and BiochemistryUniversity of Notre Dame Notre Dame Indiana
| | - William R. Wolter
- Freimann Life Sciences Center and Department of Biological SciencesUniversity of Notre Dame Notre Dame Indiana
| | - Rocio L. Pérez
- Department of Chemistry and BiochemistryUniversity of Notre Dame Notre Dame Indiana
| | - Valerie A. Schroeder
- Freimann Life Sciences Center and Department of Biological SciencesUniversity of Notre Dame Notre Dame Indiana
| | - Matthew M. Champion
- Department of Chemistry and BiochemistryUniversity of Notre Dame Notre Dame Indiana
| | - Dusan Hesek
- Department of Chemistry and BiochemistryUniversity of Notre Dame Notre Dame Indiana
| | - Mijoon Lee
- Department of Chemistry and BiochemistryUniversity of Notre Dame Notre Dame Indiana
| | - Mark A. Suckow
- Freimann Life Sciences Center and Department of Biological SciencesUniversity of Notre Dame Notre Dame Indiana
- Department of Biomedical EngineeringUniversity of Kentucky Lexington Kentucky
| | - Shahriar Mobashery
- Department of Chemistry and BiochemistryUniversity of Notre Dame Notre Dame Indiana
| | - Mayland Chang
- Department of Chemistry and BiochemistryUniversity of Notre Dame Notre Dame Indiana
| |
Collapse
|
20
|
Marston WA, Lantis JC, Wu SC, Nouvong A, Lee TD, McCoy ND, Slade HB, Tseng SC. An open-label trial of cryopreserved human umbilical cord in the treatment of complex diabetic foot ulcers complicated by osteomyelitis. Wound Repair Regen 2019; 27:680-686. [PMID: 31376297 PMCID: PMC6900178 DOI: 10.1111/wrr.12754] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 07/17/2019] [Accepted: 07/25/2019] [Indexed: 02/06/2023]
Abstract
Clinical trials of potential new therapies for diabetic foot ulcers rarely enroll patients whose wounds extend to muscle, fascia, or bone with clinical and radiographic evidence of underlying osteomyelitis. An open‐label, multicenter trial of cryopreserved human umbilical cord (TTAX01) was undertaken in 32 subjects presenting with such complex wounds with a mean duration of 6.1 ± 9.0 (range: 0.2–47.1) months and wound area at screening of 3.8 ± 2.9 (range: 1.0–9.6) cm2. Aggressive surgical debridement at baseline resulted in 17 minor amputations and an increase in mean wound area to 7.4 ± 5.8 (range: 1.1–28.6) cm2. All subjects were placed on systemic antibiotics for at least 6 weeks in conjunction with baseline application of TTAX01. Repeat applications were made at no less than 4‐week intervals over the 16‐week trial. Initial closure occurred in 18 of 32 (56%) wounds, with 16 (50%) of these having confirmed closure in 16 weeks with a median of one‐product application. Cases with biopsy confirmed osteomyelitis (n = 20) showed initial closure in 12 (60%) wounds and confirmed closure in 10 (50%) wounds. Four of the five ulcers presenting as recurrences experienced confirmed closure. Mean overall time to healing was 12.8 ± 4.3 weeks. Mean wound area reduction from baseline was 91% for all wounds. Of the 16 wounds without confirmed closure during the 16‐week treatment period, five (31.3%) achieved 99–100% wound area reduction by their final visit. The product was well tolerated. Two minor amputations occurred during the study period due to recurrent or persistent osteomyelitis; however, there were no major amputations.
Collapse
Affiliation(s)
- William A Marston
- Division of Vascular Surgery, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - John C Lantis
- Department of Surgery, Mt Sinai West and St Luke's Hospitals, New York, New York
| | - Stephanie C Wu
- Department of Podiatric Surgery & Applied Biomechanics, Rosalind Franklin University, North Chicago, Illinois
| | | | - Tommy D Lee
- Research & Development, TissueTech, Inc., Miami, Florida
| | | | - Herbert B Slade
- Research & Development, TissueTech, Inc., Miami, Florida.,Department of Pediatrics, University of North Texas Health Sciences Center, Fort Worth, Texas
| | | |
Collapse
|
21
|
Salama SE, Eldeeb AE, Elbarbary AH, Abdelghany SE. Adjuvant Hyperbaric Oxygen Therapy Enhances Healing of Nonischemic Diabetic Foot Ulcers Compared With Standard Wound Care Alone. INT J LOW EXTR WOUND 2019; 18:75-80. [DOI: 10.1177/1534734619829939] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Recent systematic reviews and meta-analyses have produced conflicting results about the efficacy of hyperbaric oxygen therapy (HBOT) in improving the healing rate for chronic diabetic foot wounds. This study aimed to assess the efficacy of systemic HBOT in healing of chronic nonischemic diabetic foot ulcer. Thirty adult patients having Wagner’s grade 2 or 3 chronic diabetic foot ulcers, in whom the response to 30 days of standard wound care was not favorable, were prospectively randomized to have either HBOT (20-40 sessions) plus conventional treatment (n = 15) or conventional treatment alone (n = 15). Ischemic wounds and patients with contraindications to systemic HBOT were excluded. The primary end point was complete healing of the target ulcer. Secondary endpoints included the following: rate of ulcer healing at the end of treatment period and at 4 and 8 weeks thereafter as well as rate of amputation. A significantly greater percentage of HBOT-treated wounds (33.3%, 5/15) achieved complete closure than conventional therapy–treated wounds (0%, 0/15; P = .014) at the end of treatment. This significant difference was maintained throughout the 8 weeks of follow-up. Complications frequency was nonsignificantly different between both groups. Our study showed that HBOT plus conventional therapy appears as safe as and probably more effective than conventional therapy alone for the healing of chronic nonischemic diabetic foot wounds. Larger studies are required to confirm its specific indications.
Collapse
Affiliation(s)
- Shimaa Elhossieny Salama
- Physical Medicine, Rheumatology and Rehabilitation Department, Tanta University Hospitals, Tanta, Egypt
| | - Ali Eid Eldeeb
- Physical Medicine, Rheumatology and Rehabilitation Department, Tanta University Hospitals, Tanta, Egypt
| | | | - Salwa Elmorsy Abdelghany
- Physical Medicine, Rheumatology and Rehabilitation Department, Tanta University Hospitals, Tanta, Egypt
| |
Collapse
|
22
|
Thangavel P, Kannan R, Ramachandran B, Moorthy G, Suguna L, Muthuvijayan V. Development of reduced graphene oxide (rGO)-isabgol nanocomposite dressings for enhanced vascularization and accelerated wound healing in normal and diabetic rats. J Colloid Interface Sci 2018; 517:251-264. [PMID: 29428812 DOI: 10.1016/j.jcis.2018.01.110] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 01/30/2018] [Accepted: 01/31/2018] [Indexed: 01/24/2023]
Abstract
Treatment of chronic non-healing wounds in diabetes is still a major clinical challenge. Here, we have developed reduced graphene oxide (rGO) loaded isabgol nanocomposite scaffolds (Isab + rGO) to treat normal and diabetic wounds. rGO was synthesized by rapid reduction of graphene oxide (GO) under focused solar radiation. Then, rGO was uniformly dispersed into isabgol solution to prepare Isab + rGO nanocomposite scaffolds. These scaffolds were characterized using various physiochemical techniques. Isab + rGO nanocomposite scaffolds showed suitable cell viability, proliferation, and attachment. In vivo experiments were performed using Wistar rats to study the wound healing efficacy of these scaffolds in normal and diabetic rats. Results revealed that rGO stimulated collagen synthesis, collagen crosslinking, wound contraction, and reduced the wound re-epithelialization time significantly compared to control. Histology and immunohistochemistry analyses showed that Isab + rGO scaffold treatment enhanced angiogenesis, collagen synthesis, and deposition in treated wounds. Isab + rGO scaffold treatment also played a major role in shortening the inflammation phase and recruiting macrophages to enhance the early phase of wound healing. Overall, this investigation showed that Isab + rGO scaffold dressing could significantly accelerate the healing of normal and diabetic wounds.
Collapse
Affiliation(s)
- Ponrasu Thangavel
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Ramya Kannan
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India; Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
| | - Balaji Ramachandran
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Ganeshkumar Moorthy
- The School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Ein Karem, P.O.Box 12065, Jerusalem 9112102, Israel
| | - Lonchin Suguna
- Department of Biochemistry and Biotechnology, CSIR-Central Leather Research Institute, Adyar, Chennai 600020, India
| | - Vignesh Muthuvijayan
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India.
| |
Collapse
|
23
|
Pereira SG, Moura J, Carvalho E, Empadinhas N. Microbiota of Chronic Diabetic Wounds: Ecology, Impact, and Potential for Innovative Treatment Strategies. Front Microbiol 2017; 8:1791. [PMID: 28983285 PMCID: PMC5613173 DOI: 10.3389/fmicb.2017.01791] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 09/05/2017] [Indexed: 12/24/2022] Open
Abstract
World Health Organization considered diabetes as one of the 20th century epidemics, estimating that over 10% of the world population is diabetic or at high risk. Self-assessment studies indicate that diabetic patients consider chronic wounds to affect their quality of life more dramatically than vision loss or renal failure. In addition to being the main reason for diabetic patients' hospitalization, the economic burden of diabetic chronic wounds is close to 1% of United Kingdom and United States health systems budgets, which exceeds the funds allocated to the treatment of some types of cancer in both countries. Among the factors preceding the emergence of chronic diabetic wounds, also designated diabetic foot ulcers (DFUs), hygiene and pressure in specific areas are under patient control, while others are still far from being understood. A triple impairment in the innervation, immune responses, and vascularization associated to DFU has been extensively studied by the scientific community. However, the skin natural microbiota has only recently emerged as having a tremendous impact on DFU emergence and evolution to chronicity. Despite the great inter- and intra-variability of microbial colonizers, ongoing efforts are now focused on deciphering the impact of commensal and pathogenic microbiota on DFU etiology, as well as the mechanisms of interkingdom microbial-host communication. This review summarizes recent work in this context and offers new microbiological perspectives that may hold potential in the prevention and treatment of chronic diabetic wounds.
Collapse
Affiliation(s)
- Sónia G. Pereira
- Center for Neuroscience and Cell Biology, University of CoimbraCoimbra, Portugal
- Polytechnic Institute of LeiriaLeiria, Portugal
| | - João Moura
- Center for Neuroscience and Cell Biology, University of CoimbraCoimbra, Portugal
| | - Eugénia Carvalho
- Center for Neuroscience and Cell Biology, University of CoimbraCoimbra, Portugal
- Department of Geriatrics, University of Arkansas for Medical Sciences, Little RockAR, United States
- Arkansas Children’s Hospital Research Institute, Little RockAR, United States
| | - Nuno Empadinhas
- Center for Neuroscience and Cell Biology, University of CoimbraCoimbra, Portugal
| |
Collapse
|
24
|
A New Approach for Reconstruction of Diabetic Foot Wounds Using the Angiosome and Supermicrosurgery Concept. Plast Reconstr Surg 2017; 138:702e-709e. [PMID: 27673541 DOI: 10.1097/prs.0000000000002401] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
BACKGROUND Major vessels in the diabetic foot are often calcified and inadequate for use as recipient vessels. Thus, a supermicrosurgery technique using small branches or perforators from other collateral vessels with an adequate pulse may be an alternative method. This study evaluated outcome using the supermicrosurgery concept and the risk factors involved. METHODS Ninety-five cases of diabetic foot reconstruction were reviewed; the average patient age was 57 years; average follow-up was 43.5 months. Débridement was performed according to the angiosome concept, and reconstruction was performed with perforator flaps using the supermicrosurgery approach. Correlation between total flap loss and 16 preoperative risk factors (age, sex, diabetes mellitus type, smoking, immunosuppression, flap size, hemoglobin A1c, ankle-brachial index, preoperative transcutaneous partial pressure of oxygen, C-reactive protein, computed tomographic angiography, amputation history, peripheral artery disease, American Society of Anesthesiologists physical status, osteomyelitis, and chronic renal failure) were analyzed. RESULTS Of 95 cases, nine cases of total loss and 12 of minor complication were noted. Among the risk factors, the odds for failure after peripheral artery disease was 10.99 (p = 0.035), and that associated with a history of amputation was 9.44 (0.0006). Other factors had no correlation with flap loss, including cases with no or one major vessel. Flap survival rate was 90.5 percent, and the overall limb salvage rate was 93.7 percent. CONCLUSIONS Despite the high risk of failure related to peripheral artery disease and history of amputation, the supermicrosurgery approach using a recipient vessel with good pulsation regardless of the source can achieve limb salvage. This approach extends the possibility for reconstruction in patients with severe ischemic diabetic foot. CLINICAL QUESTION/LEVEL OF EVIDENCE Therapeutic, IV.
Collapse
|
25
|
Trignano E, Fallico N, Zingone G, Rubino C, Di Pompeo FS, Campus GV. Combined Treatment of Diabetic Foot Ulcer with Tarsal Tunnel Release and Perilesional Injections of Peripheral Blood Mononuclear Cells. J Am Podiatr Med Assoc 2017; 107:171-174. [PMID: 28394682 DOI: 10.7547/15-098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Emilio Trignano
- Department of Surgery and Microsurgery, University of Sassari, Sassari, Italy
| | - Nefer Fallico
- Department of Plastic Surgery, Sapienza University of Rome, Rome, Italy
| | - Gino Zingone
- Department of Surgery and Microsurgery, University of Sassari, Sassari, Italy
| | - Corrado Rubino
- Department of Plastic Surgery, University of Salerno, Fisciano, Italy
| | | | | |
Collapse
|
26
|
Foley TR, Waldo SW, Armstrong EJ. Medical Therapy in Peripheral Artery Disease and Critical Limb Ischemia. CURRENT TREATMENT OPTIONS IN CARDIOVASCULAR MEDICINE 2016; 18:42. [PMID: 27181397 DOI: 10.1007/s11936-016-0464-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
OPINION STATEMENT Peripheral artery disease (PAD) comprises atherosclerosis of the aorta and lower extremities. Many patients with PAD are asymptomatic, while others present with intermittent claudication (IC) or critical limb ischemia (CLI). Defined as rest pain or tissue loss that persists for >2 weeks, CLI represents the most severe clinical manifestation of PAD and is associated with an increased risk of limb loss and death. Patients with PAD, including those with CLI, are underdiagnosed and undertreated. In addition to smoking cessation, medical therapy with an antiplatelet agent and statin is recommended for all patients with PAD. Regular exercise has been shown to improve walking distance and quality of life in patients with symptomatic PAD and should be incorporated into each patient's treatment plan. In patients who have CLI and in those with persistent lifestyle-limiting claudication despite optimal medical therapy and an exercise program, revascularization is indicated for limb salvage and symptom relief, respectively. Consensus guidelines currently support an endovascular first approach to revascularization in the majority of cases. Surgical procedures provide an alternative to endovascular therapy in select cases.
Collapse
Affiliation(s)
- T Raymond Foley
- VA Eastern Colorado Healthcare System and Division of Cardiology, University of Colorado School of Medicine, Denver, CO, USA
| | - Stephen W Waldo
- VA Eastern Colorado Healthcare System and Division of Cardiology, University of Colorado School of Medicine, Denver, CO, USA
| | - Ehrin J Armstrong
- VA Eastern Colorado Healthcare System and Division of Cardiology, University of Colorado School of Medicine, Denver, CO, USA.
| |
Collapse
|
27
|
Abstract
Management of chronic wounds remains unsatisfactory in terms of treatment cost and time required for complete wound closure (CWC).This study aimed to calculate the healing rates, estimated cost, and time required for CWC in wounds; compare estimated wound care costs between healing and nonhealing wounds; and compare cost effectiveness between venous leg ulcer (VLU) and non-VLU.This was a retrospective cohort study performed at a physical therapy (PT) wound care clinic. Deidentified patient data in the electronic medical database from September 10, 2012 to January 23, 2015 were extracted.Among 159 included patients with wounds, 119 (74.84%) patients were healed with CWC. The included patients were treated for 109.70 ± 95.70 days, 29.71 ± 25.66 visits, and at the costs per treatment episode of $1629.65 ± 1378.82 per reimbursement rate and $2711.42 ± 2356.81 per breakeven rate. For patients with CWC (healing group), the treatment duration was 98.01 ± 76.12 days with the time for CWC as 72.45 ± 64.21 days; the cost per treatment episode was $1327.24 ± 1143.53 for reimbursement rate and $2492.58 ± 2106.88 for breakeven cost. For patients with nonhealing wounds, treatment duration was found to be longer with costs significantly higher (P < 0.01 for all). In the healing group, no differences were found between VLU and non-VLU in treatment duration (95.46 days vs. 100.88 days, P = 0.698), time for CWC (68.06 days vs. 77.38 days, P = 0.431), and cost ($2756.78 vs. 2397.84 for breakeven rate, P = 0.640) with the exception of wound dressing costs ($329.19 vs. 146.47, P = 0.001).Healing rates may be affected with patient exclusions. Costs at physicians' offices were not included.Incorporation of PT in wound care appeared to be cost effective. PT may thus be a good referral option for patients with wounds. However, the results should be interpreted cautiously and further studies are warranted.
Collapse
Affiliation(s)
- Kehua Zhou
- From the Daemen College Physical Therapy Wound Care Clinic, Daemen College, Amherst, New York, USA (KK, KZ); Department of Health Care Studies, Daemen College, Amherst, New York, USA (KZ); and Department of Physical Therapy, Daemen College, Amherst, New York, USA (MSB)
| | | | | |
Collapse
|
28
|
Gorman D. Does Hyperbaric Oxygen Improve Survival in Necrotising Soft Tissue Infections? Anaesth Intensive Care 2015; 43:683-4. [DOI: 10.1177/0310057x1504300603] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- D. Gorman
- The University of Auckland, Auckland, New Zealand
| |
Collapse
|
29
|
Marsch E, Theelen TL, Demandt JAF, Jeurissen M, van Gink M, Verjans R, Janssen A, Cleutjens JP, Meex SJR, Donners MM, Haenen GR, Schalkwijk CG, Dubois LJ, Lambin P, Mallat Z, Gijbels MJ, Heemskerk JWM, Fisher EA, Biessen EAL, Janssen BJ, Daemen MJAP, Sluimer JC. Reversal of hypoxia in murine atherosclerosis prevents necrotic core expansion by enhancing efferocytosis. Arterioscler Thromb Vasc Biol 2014; 34:2545-53. [PMID: 25256233 DOI: 10.1161/atvbaha.114.304023] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
OBJECTIVE Advanced murine and human plaques are hypoxic, but it remains unclear whether plaque hypoxia is causally related to atherogenesis. Here, we test the hypothesis that reversal of hypoxia in atherosclerotic plaques by breathing hyperoxic carbogen gas will prevent atherosclerosis. APPROACH AND RESULTS Low-density lipoprotein receptor-deficient mice (LDLR(-/-)) were fed a Western-type diet, exposed to carbogen (95% O2, 5% CO2) or air, and the effect on plaque hypoxia, size, and phenotype was studied. First, the hypoxic marker pimonidazole was detected in murine LDLR(-/-) plaque macrophages from plaque initiation onwards. Second, the efficacy of breathing carbogen (90 minutes, single exposure) was studied. Compared with air, carbogen increased arterial blood pO2 5-fold in LDLR(-/-) mice and reduced plaque hypoxia in advanced plaques of the aortic root (-32%) and arch (-84%). Finally, the effect of repeated carbogen exposure on progression of atherosclerosis was studied in LDLR(-/-) mice fed a Western-type diet for an initial 4 weeks, followed by 4 weeks of diet and carbogen or air (both 90 min/d). Carbogen reduced plaque hypoxia (-40%), necrotic core size (-37%), and TUNEL(+) (terminal uridine nick-end labeling positive) apoptotic cell content (-50%) and increased efferocytosis of apoptotic cells by cluster of differentiation 107b(+) (CD107b, MAC3) macrophages (+36%) in advanced plaques of the aortic root. Plaque size, plasma cholesterol, hematopoiesis, and systemic inflammation were unchanged. In vitro, hypoxia hampered efferocytosis by bone marrow-derived macrophages, which was dependent on the receptor Mer tyrosine kinase. CONCLUSIONS Carbogen restored murine plaque oxygenation and prevented necrotic core expansion by enhancing efferocytosis, likely via Mer tyrosine kinase. Thus, plaque hypoxia is causally related to necrotic core expansion.
Collapse
Affiliation(s)
- Elke Marsch
- From the Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM) (E.M., T.L.T., J.A.F.D., M.J., M.v.G., R.V., A.J., J.P.C., M.M.D., M.J.G., E.A.L.B., J.C.S.), Department of Clinical Chemistry (S.J.R.M.), Department of Toxicology (G.R.H.), Department of Internal Medicine, CARIM (C.G.S.), Department of Radiation Oncology (Maastro Lab), GROW (L.J.D., P.L.), Department of Molecular Genetics, CARIM (M.J.G.), Department of Biochemistry, CARIM (J.W.M.H.), Department of Pharmacology, CARIM (B.J.J.), Maastricht University Medical Centre, Maastricht, The Netherlands; Paris Centre de Recherche Cardiovasculaire (PARCC) Inserm-UMR 970, Paris, France (Z.M.); Department of Medicine, University of Cambridge, Cambridge, United Kingdom (Z.M.); Department of Medical Biochemistry (M.J.G.) and Department of Pathology (M.J.A.P.D.), AMC, Amsterdam, The Netherlands; and Department of Medicine (Cardiology), New York University School of Medicine, New York (E.A.F.)
| | - Thomas L Theelen
- From the Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM) (E.M., T.L.T., J.A.F.D., M.J., M.v.G., R.V., A.J., J.P.C., M.M.D., M.J.G., E.A.L.B., J.C.S.), Department of Clinical Chemistry (S.J.R.M.), Department of Toxicology (G.R.H.), Department of Internal Medicine, CARIM (C.G.S.), Department of Radiation Oncology (Maastro Lab), GROW (L.J.D., P.L.), Department of Molecular Genetics, CARIM (M.J.G.), Department of Biochemistry, CARIM (J.W.M.H.), Department of Pharmacology, CARIM (B.J.J.), Maastricht University Medical Centre, Maastricht, The Netherlands; Paris Centre de Recherche Cardiovasculaire (PARCC) Inserm-UMR 970, Paris, France (Z.M.); Department of Medicine, University of Cambridge, Cambridge, United Kingdom (Z.M.); Department of Medical Biochemistry (M.J.G.) and Department of Pathology (M.J.A.P.D.), AMC, Amsterdam, The Netherlands; and Department of Medicine (Cardiology), New York University School of Medicine, New York (E.A.F.)
| | - Jasper A F Demandt
- From the Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM) (E.M., T.L.T., J.A.F.D., M.J., M.v.G., R.V., A.J., J.P.C., M.M.D., M.J.G., E.A.L.B., J.C.S.), Department of Clinical Chemistry (S.J.R.M.), Department of Toxicology (G.R.H.), Department of Internal Medicine, CARIM (C.G.S.), Department of Radiation Oncology (Maastro Lab), GROW (L.J.D., P.L.), Department of Molecular Genetics, CARIM (M.J.G.), Department of Biochemistry, CARIM (J.W.M.H.), Department of Pharmacology, CARIM (B.J.J.), Maastricht University Medical Centre, Maastricht, The Netherlands; Paris Centre de Recherche Cardiovasculaire (PARCC) Inserm-UMR 970, Paris, France (Z.M.); Department of Medicine, University of Cambridge, Cambridge, United Kingdom (Z.M.); Department of Medical Biochemistry (M.J.G.) and Department of Pathology (M.J.A.P.D.), AMC, Amsterdam, The Netherlands; and Department of Medicine (Cardiology), New York University School of Medicine, New York (E.A.F.)
| | - Mike Jeurissen
- From the Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM) (E.M., T.L.T., J.A.F.D., M.J., M.v.G., R.V., A.J., J.P.C., M.M.D., M.J.G., E.A.L.B., J.C.S.), Department of Clinical Chemistry (S.J.R.M.), Department of Toxicology (G.R.H.), Department of Internal Medicine, CARIM (C.G.S.), Department of Radiation Oncology (Maastro Lab), GROW (L.J.D., P.L.), Department of Molecular Genetics, CARIM (M.J.G.), Department of Biochemistry, CARIM (J.W.M.H.), Department of Pharmacology, CARIM (B.J.J.), Maastricht University Medical Centre, Maastricht, The Netherlands; Paris Centre de Recherche Cardiovasculaire (PARCC) Inserm-UMR 970, Paris, France (Z.M.); Department of Medicine, University of Cambridge, Cambridge, United Kingdom (Z.M.); Department of Medical Biochemistry (M.J.G.) and Department of Pathology (M.J.A.P.D.), AMC, Amsterdam, The Netherlands; and Department of Medicine (Cardiology), New York University School of Medicine, New York (E.A.F.)
| | - Mathijs van Gink
- From the Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM) (E.M., T.L.T., J.A.F.D., M.J., M.v.G., R.V., A.J., J.P.C., M.M.D., M.J.G., E.A.L.B., J.C.S.), Department of Clinical Chemistry (S.J.R.M.), Department of Toxicology (G.R.H.), Department of Internal Medicine, CARIM (C.G.S.), Department of Radiation Oncology (Maastro Lab), GROW (L.J.D., P.L.), Department of Molecular Genetics, CARIM (M.J.G.), Department of Biochemistry, CARIM (J.W.M.H.), Department of Pharmacology, CARIM (B.J.J.), Maastricht University Medical Centre, Maastricht, The Netherlands; Paris Centre de Recherche Cardiovasculaire (PARCC) Inserm-UMR 970, Paris, France (Z.M.); Department of Medicine, University of Cambridge, Cambridge, United Kingdom (Z.M.); Department of Medical Biochemistry (M.J.G.) and Department of Pathology (M.J.A.P.D.), AMC, Amsterdam, The Netherlands; and Department of Medicine (Cardiology), New York University School of Medicine, New York (E.A.F.)
| | - Robin Verjans
- From the Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM) (E.M., T.L.T., J.A.F.D., M.J., M.v.G., R.V., A.J., J.P.C., M.M.D., M.J.G., E.A.L.B., J.C.S.), Department of Clinical Chemistry (S.J.R.M.), Department of Toxicology (G.R.H.), Department of Internal Medicine, CARIM (C.G.S.), Department of Radiation Oncology (Maastro Lab), GROW (L.J.D., P.L.), Department of Molecular Genetics, CARIM (M.J.G.), Department of Biochemistry, CARIM (J.W.M.H.), Department of Pharmacology, CARIM (B.J.J.), Maastricht University Medical Centre, Maastricht, The Netherlands; Paris Centre de Recherche Cardiovasculaire (PARCC) Inserm-UMR 970, Paris, France (Z.M.); Department of Medicine, University of Cambridge, Cambridge, United Kingdom (Z.M.); Department of Medical Biochemistry (M.J.G.) and Department of Pathology (M.J.A.P.D.), AMC, Amsterdam, The Netherlands; and Department of Medicine (Cardiology), New York University School of Medicine, New York (E.A.F.)
| | - Anique Janssen
- From the Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM) (E.M., T.L.T., J.A.F.D., M.J., M.v.G., R.V., A.J., J.P.C., M.M.D., M.J.G., E.A.L.B., J.C.S.), Department of Clinical Chemistry (S.J.R.M.), Department of Toxicology (G.R.H.), Department of Internal Medicine, CARIM (C.G.S.), Department of Radiation Oncology (Maastro Lab), GROW (L.J.D., P.L.), Department of Molecular Genetics, CARIM (M.J.G.), Department of Biochemistry, CARIM (J.W.M.H.), Department of Pharmacology, CARIM (B.J.J.), Maastricht University Medical Centre, Maastricht, The Netherlands; Paris Centre de Recherche Cardiovasculaire (PARCC) Inserm-UMR 970, Paris, France (Z.M.); Department of Medicine, University of Cambridge, Cambridge, United Kingdom (Z.M.); Department of Medical Biochemistry (M.J.G.) and Department of Pathology (M.J.A.P.D.), AMC, Amsterdam, The Netherlands; and Department of Medicine (Cardiology), New York University School of Medicine, New York (E.A.F.)
| | - Jack P Cleutjens
- From the Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM) (E.M., T.L.T., J.A.F.D., M.J., M.v.G., R.V., A.J., J.P.C., M.M.D., M.J.G., E.A.L.B., J.C.S.), Department of Clinical Chemistry (S.J.R.M.), Department of Toxicology (G.R.H.), Department of Internal Medicine, CARIM (C.G.S.), Department of Radiation Oncology (Maastro Lab), GROW (L.J.D., P.L.), Department of Molecular Genetics, CARIM (M.J.G.), Department of Biochemistry, CARIM (J.W.M.H.), Department of Pharmacology, CARIM (B.J.J.), Maastricht University Medical Centre, Maastricht, The Netherlands; Paris Centre de Recherche Cardiovasculaire (PARCC) Inserm-UMR 970, Paris, France (Z.M.); Department of Medicine, University of Cambridge, Cambridge, United Kingdom (Z.M.); Department of Medical Biochemistry (M.J.G.) and Department of Pathology (M.J.A.P.D.), AMC, Amsterdam, The Netherlands; and Department of Medicine (Cardiology), New York University School of Medicine, New York (E.A.F.)
| | - Steven J R Meex
- From the Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM) (E.M., T.L.T., J.A.F.D., M.J., M.v.G., R.V., A.J., J.P.C., M.M.D., M.J.G., E.A.L.B., J.C.S.), Department of Clinical Chemistry (S.J.R.M.), Department of Toxicology (G.R.H.), Department of Internal Medicine, CARIM (C.G.S.), Department of Radiation Oncology (Maastro Lab), GROW (L.J.D., P.L.), Department of Molecular Genetics, CARIM (M.J.G.), Department of Biochemistry, CARIM (J.W.M.H.), Department of Pharmacology, CARIM (B.J.J.), Maastricht University Medical Centre, Maastricht, The Netherlands; Paris Centre de Recherche Cardiovasculaire (PARCC) Inserm-UMR 970, Paris, France (Z.M.); Department of Medicine, University of Cambridge, Cambridge, United Kingdom (Z.M.); Department of Medical Biochemistry (M.J.G.) and Department of Pathology (M.J.A.P.D.), AMC, Amsterdam, The Netherlands; and Department of Medicine (Cardiology), New York University School of Medicine, New York (E.A.F.)
| | - Marjo M Donners
- From the Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM) (E.M., T.L.T., J.A.F.D., M.J., M.v.G., R.V., A.J., J.P.C., M.M.D., M.J.G., E.A.L.B., J.C.S.), Department of Clinical Chemistry (S.J.R.M.), Department of Toxicology (G.R.H.), Department of Internal Medicine, CARIM (C.G.S.), Department of Radiation Oncology (Maastro Lab), GROW (L.J.D., P.L.), Department of Molecular Genetics, CARIM (M.J.G.), Department of Biochemistry, CARIM (J.W.M.H.), Department of Pharmacology, CARIM (B.J.J.), Maastricht University Medical Centre, Maastricht, The Netherlands; Paris Centre de Recherche Cardiovasculaire (PARCC) Inserm-UMR 970, Paris, France (Z.M.); Department of Medicine, University of Cambridge, Cambridge, United Kingdom (Z.M.); Department of Medical Biochemistry (M.J.G.) and Department of Pathology (M.J.A.P.D.), AMC, Amsterdam, The Netherlands; and Department of Medicine (Cardiology), New York University School of Medicine, New York (E.A.F.)
| | - Guido R Haenen
- From the Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM) (E.M., T.L.T., J.A.F.D., M.J., M.v.G., R.V., A.J., J.P.C., M.M.D., M.J.G., E.A.L.B., J.C.S.), Department of Clinical Chemistry (S.J.R.M.), Department of Toxicology (G.R.H.), Department of Internal Medicine, CARIM (C.G.S.), Department of Radiation Oncology (Maastro Lab), GROW (L.J.D., P.L.), Department of Molecular Genetics, CARIM (M.J.G.), Department of Biochemistry, CARIM (J.W.M.H.), Department of Pharmacology, CARIM (B.J.J.), Maastricht University Medical Centre, Maastricht, The Netherlands; Paris Centre de Recherche Cardiovasculaire (PARCC) Inserm-UMR 970, Paris, France (Z.M.); Department of Medicine, University of Cambridge, Cambridge, United Kingdom (Z.M.); Department of Medical Biochemistry (M.J.G.) and Department of Pathology (M.J.A.P.D.), AMC, Amsterdam, The Netherlands; and Department of Medicine (Cardiology), New York University School of Medicine, New York (E.A.F.)
| | - Casper G Schalkwijk
- From the Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM) (E.M., T.L.T., J.A.F.D., M.J., M.v.G., R.V., A.J., J.P.C., M.M.D., M.J.G., E.A.L.B., J.C.S.), Department of Clinical Chemistry (S.J.R.M.), Department of Toxicology (G.R.H.), Department of Internal Medicine, CARIM (C.G.S.), Department of Radiation Oncology (Maastro Lab), GROW (L.J.D., P.L.), Department of Molecular Genetics, CARIM (M.J.G.), Department of Biochemistry, CARIM (J.W.M.H.), Department of Pharmacology, CARIM (B.J.J.), Maastricht University Medical Centre, Maastricht, The Netherlands; Paris Centre de Recherche Cardiovasculaire (PARCC) Inserm-UMR 970, Paris, France (Z.M.); Department of Medicine, University of Cambridge, Cambridge, United Kingdom (Z.M.); Department of Medical Biochemistry (M.J.G.) and Department of Pathology (M.J.A.P.D.), AMC, Amsterdam, The Netherlands; and Department of Medicine (Cardiology), New York University School of Medicine, New York (E.A.F.)
| | - Ludwig J Dubois
- From the Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM) (E.M., T.L.T., J.A.F.D., M.J., M.v.G., R.V., A.J., J.P.C., M.M.D., M.J.G., E.A.L.B., J.C.S.), Department of Clinical Chemistry (S.J.R.M.), Department of Toxicology (G.R.H.), Department of Internal Medicine, CARIM (C.G.S.), Department of Radiation Oncology (Maastro Lab), GROW (L.J.D., P.L.), Department of Molecular Genetics, CARIM (M.J.G.), Department of Biochemistry, CARIM (J.W.M.H.), Department of Pharmacology, CARIM (B.J.J.), Maastricht University Medical Centre, Maastricht, The Netherlands; Paris Centre de Recherche Cardiovasculaire (PARCC) Inserm-UMR 970, Paris, France (Z.M.); Department of Medicine, University of Cambridge, Cambridge, United Kingdom (Z.M.); Department of Medical Biochemistry (M.J.G.) and Department of Pathology (M.J.A.P.D.), AMC, Amsterdam, The Netherlands; and Department of Medicine (Cardiology), New York University School of Medicine, New York (E.A.F.)
| | - Philippe Lambin
- From the Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM) (E.M., T.L.T., J.A.F.D., M.J., M.v.G., R.V., A.J., J.P.C., M.M.D., M.J.G., E.A.L.B., J.C.S.), Department of Clinical Chemistry (S.J.R.M.), Department of Toxicology (G.R.H.), Department of Internal Medicine, CARIM (C.G.S.), Department of Radiation Oncology (Maastro Lab), GROW (L.J.D., P.L.), Department of Molecular Genetics, CARIM (M.J.G.), Department of Biochemistry, CARIM (J.W.M.H.), Department of Pharmacology, CARIM (B.J.J.), Maastricht University Medical Centre, Maastricht, The Netherlands; Paris Centre de Recherche Cardiovasculaire (PARCC) Inserm-UMR 970, Paris, France (Z.M.); Department of Medicine, University of Cambridge, Cambridge, United Kingdom (Z.M.); Department of Medical Biochemistry (M.J.G.) and Department of Pathology (M.J.A.P.D.), AMC, Amsterdam, The Netherlands; and Department of Medicine (Cardiology), New York University School of Medicine, New York (E.A.F.)
| | - Ziad Mallat
- From the Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM) (E.M., T.L.T., J.A.F.D., M.J., M.v.G., R.V., A.J., J.P.C., M.M.D., M.J.G., E.A.L.B., J.C.S.), Department of Clinical Chemistry (S.J.R.M.), Department of Toxicology (G.R.H.), Department of Internal Medicine, CARIM (C.G.S.), Department of Radiation Oncology (Maastro Lab), GROW (L.J.D., P.L.), Department of Molecular Genetics, CARIM (M.J.G.), Department of Biochemistry, CARIM (J.W.M.H.), Department of Pharmacology, CARIM (B.J.J.), Maastricht University Medical Centre, Maastricht, The Netherlands; Paris Centre de Recherche Cardiovasculaire (PARCC) Inserm-UMR 970, Paris, France (Z.M.); Department of Medicine, University of Cambridge, Cambridge, United Kingdom (Z.M.); Department of Medical Biochemistry (M.J.G.) and Department of Pathology (M.J.A.P.D.), AMC, Amsterdam, The Netherlands; and Department of Medicine (Cardiology), New York University School of Medicine, New York (E.A.F.)
| | - Marion J Gijbels
- From the Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM) (E.M., T.L.T., J.A.F.D., M.J., M.v.G., R.V., A.J., J.P.C., M.M.D., M.J.G., E.A.L.B., J.C.S.), Department of Clinical Chemistry (S.J.R.M.), Department of Toxicology (G.R.H.), Department of Internal Medicine, CARIM (C.G.S.), Department of Radiation Oncology (Maastro Lab), GROW (L.J.D., P.L.), Department of Molecular Genetics, CARIM (M.J.G.), Department of Biochemistry, CARIM (J.W.M.H.), Department of Pharmacology, CARIM (B.J.J.), Maastricht University Medical Centre, Maastricht, The Netherlands; Paris Centre de Recherche Cardiovasculaire (PARCC) Inserm-UMR 970, Paris, France (Z.M.); Department of Medicine, University of Cambridge, Cambridge, United Kingdom (Z.M.); Department of Medical Biochemistry (M.J.G.) and Department of Pathology (M.J.A.P.D.), AMC, Amsterdam, The Netherlands; and Department of Medicine (Cardiology), New York University School of Medicine, New York (E.A.F.)
| | - Johan W M Heemskerk
- From the Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM) (E.M., T.L.T., J.A.F.D., M.J., M.v.G., R.V., A.J., J.P.C., M.M.D., M.J.G., E.A.L.B., J.C.S.), Department of Clinical Chemistry (S.J.R.M.), Department of Toxicology (G.R.H.), Department of Internal Medicine, CARIM (C.G.S.), Department of Radiation Oncology (Maastro Lab), GROW (L.J.D., P.L.), Department of Molecular Genetics, CARIM (M.J.G.), Department of Biochemistry, CARIM (J.W.M.H.), Department of Pharmacology, CARIM (B.J.J.), Maastricht University Medical Centre, Maastricht, The Netherlands; Paris Centre de Recherche Cardiovasculaire (PARCC) Inserm-UMR 970, Paris, France (Z.M.); Department of Medicine, University of Cambridge, Cambridge, United Kingdom (Z.M.); Department of Medical Biochemistry (M.J.G.) and Department of Pathology (M.J.A.P.D.), AMC, Amsterdam, The Netherlands; and Department of Medicine (Cardiology), New York University School of Medicine, New York (E.A.F.)
| | - Edward A Fisher
- From the Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM) (E.M., T.L.T., J.A.F.D., M.J., M.v.G., R.V., A.J., J.P.C., M.M.D., M.J.G., E.A.L.B., J.C.S.), Department of Clinical Chemistry (S.J.R.M.), Department of Toxicology (G.R.H.), Department of Internal Medicine, CARIM (C.G.S.), Department of Radiation Oncology (Maastro Lab), GROW (L.J.D., P.L.), Department of Molecular Genetics, CARIM (M.J.G.), Department of Biochemistry, CARIM (J.W.M.H.), Department of Pharmacology, CARIM (B.J.J.), Maastricht University Medical Centre, Maastricht, The Netherlands; Paris Centre de Recherche Cardiovasculaire (PARCC) Inserm-UMR 970, Paris, France (Z.M.); Department of Medicine, University of Cambridge, Cambridge, United Kingdom (Z.M.); Department of Medical Biochemistry (M.J.G.) and Department of Pathology (M.J.A.P.D.), AMC, Amsterdam, The Netherlands; and Department of Medicine (Cardiology), New York University School of Medicine, New York (E.A.F.)
| | - Erik A L Biessen
- From the Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM) (E.M., T.L.T., J.A.F.D., M.J., M.v.G., R.V., A.J., J.P.C., M.M.D., M.J.G., E.A.L.B., J.C.S.), Department of Clinical Chemistry (S.J.R.M.), Department of Toxicology (G.R.H.), Department of Internal Medicine, CARIM (C.G.S.), Department of Radiation Oncology (Maastro Lab), GROW (L.J.D., P.L.), Department of Molecular Genetics, CARIM (M.J.G.), Department of Biochemistry, CARIM (J.W.M.H.), Department of Pharmacology, CARIM (B.J.J.), Maastricht University Medical Centre, Maastricht, The Netherlands; Paris Centre de Recherche Cardiovasculaire (PARCC) Inserm-UMR 970, Paris, France (Z.M.); Department of Medicine, University of Cambridge, Cambridge, United Kingdom (Z.M.); Department of Medical Biochemistry (M.J.G.) and Department of Pathology (M.J.A.P.D.), AMC, Amsterdam, The Netherlands; and Department of Medicine (Cardiology), New York University School of Medicine, New York (E.A.F.)
| | - Ben J Janssen
- From the Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM) (E.M., T.L.T., J.A.F.D., M.J., M.v.G., R.V., A.J., J.P.C., M.M.D., M.J.G., E.A.L.B., J.C.S.), Department of Clinical Chemistry (S.J.R.M.), Department of Toxicology (G.R.H.), Department of Internal Medicine, CARIM (C.G.S.), Department of Radiation Oncology (Maastro Lab), GROW (L.J.D., P.L.), Department of Molecular Genetics, CARIM (M.J.G.), Department of Biochemistry, CARIM (J.W.M.H.), Department of Pharmacology, CARIM (B.J.J.), Maastricht University Medical Centre, Maastricht, The Netherlands; Paris Centre de Recherche Cardiovasculaire (PARCC) Inserm-UMR 970, Paris, France (Z.M.); Department of Medicine, University of Cambridge, Cambridge, United Kingdom (Z.M.); Department of Medical Biochemistry (M.J.G.) and Department of Pathology (M.J.A.P.D.), AMC, Amsterdam, The Netherlands; and Department of Medicine (Cardiology), New York University School of Medicine, New York (E.A.F.)
| | - Mat J A P Daemen
- From the Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM) (E.M., T.L.T., J.A.F.D., M.J., M.v.G., R.V., A.J., J.P.C., M.M.D., M.J.G., E.A.L.B., J.C.S.), Department of Clinical Chemistry (S.J.R.M.), Department of Toxicology (G.R.H.), Department of Internal Medicine, CARIM (C.G.S.), Department of Radiation Oncology (Maastro Lab), GROW (L.J.D., P.L.), Department of Molecular Genetics, CARIM (M.J.G.), Department of Biochemistry, CARIM (J.W.M.H.), Department of Pharmacology, CARIM (B.J.J.), Maastricht University Medical Centre, Maastricht, The Netherlands; Paris Centre de Recherche Cardiovasculaire (PARCC) Inserm-UMR 970, Paris, France (Z.M.); Department of Medicine, University of Cambridge, Cambridge, United Kingdom (Z.M.); Department of Medical Biochemistry (M.J.G.) and Department of Pathology (M.J.A.P.D.), AMC, Amsterdam, The Netherlands; and Department of Medicine (Cardiology), New York University School of Medicine, New York (E.A.F.)
| | - Judith C Sluimer
- From the Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM) (E.M., T.L.T., J.A.F.D., M.J., M.v.G., R.V., A.J., J.P.C., M.M.D., M.J.G., E.A.L.B., J.C.S.), Department of Clinical Chemistry (S.J.R.M.), Department of Toxicology (G.R.H.), Department of Internal Medicine, CARIM (C.G.S.), Department of Radiation Oncology (Maastro Lab), GROW (L.J.D., P.L.), Department of Molecular Genetics, CARIM (M.J.G.), Department of Biochemistry, CARIM (J.W.M.H.), Department of Pharmacology, CARIM (B.J.J.), Maastricht University Medical Centre, Maastricht, The Netherlands; Paris Centre de Recherche Cardiovasculaire (PARCC) Inserm-UMR 970, Paris, France (Z.M.); Department of Medicine, University of Cambridge, Cambridge, United Kingdom (Z.M.); Department of Medical Biochemistry (M.J.G.) and Department of Pathology (M.J.A.P.D.), AMC, Amsterdam, The Netherlands; and Department of Medicine (Cardiology), New York University School of Medicine, New York (E.A.F.).
| |
Collapse
|
30
|
Norman ZI, Cracchiolo JR, Allen SH, Soliman AM. Auricular Reconstruction After Human Bite Amputation Using the Baudet Technique. Ann Otol Rhinol Laryngol 2014; 124:45-8. [DOI: 10.1177/0003489414542090] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Objective: This study aimed to present a case of a successful re-implantation of an amputated auricle following a human bite using the Baudet technique. Methods: Case report and review of the literature. Results: The patient had a very satisfactory postoperative result in terms of appearance and function of the reattached auricle. Cartilage loss was minimal. Conclusion: Reattachment of an amputated auricle as a composite graft following a traumatic human bite is feasible. The Baudet technique is a simple alternative that avoids the complexity of microsurgical anastomosis while improving upon the high failure rate associated with simple reattachment.
Collapse
Affiliation(s)
- Zachary I. Norman
- Department of Otolaryngology–Head & Neck Surgery, Temple University School of Medicine, Philadelphia, Pennsylvania, USA
| | - Jennifer R. Cracchiolo
- Department of Otolaryngology–Head & Neck Surgery, Temple University School of Medicine, Philadelphia, Pennsylvania, USA
| | - Shannon H. Allen
- Department of Otolaryngology–Head & Neck Surgery, Temple University School of Medicine, Philadelphia, Pennsylvania, USA
| | - Ahmed M.S. Soliman
- Department of Otolaryngology–Head & Neck Surgery, Temple University School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
31
|
Soh CR, Kim SJ, Chong SJ. Hyperbaric oxygen therapy for chronic diabetic wounds. TRENDS IN ANAESTHESIA AND CRITICAL CARE 2013. [DOI: 10.1016/j.tacc.2013.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
32
|
Wukich DK, Armstrong DG, Attinger CE, Boulton AJM, Burns PR, Frykberg RG, Hellman R, Kim PJ, Lipsky BA, Pile JC, Pinzur MS, Siminerio L. Inpatient management of diabetic foot disorders: a clinical guide. Diabetes Care 2013; 36:2862-71. [PMID: 23970716 PMCID: PMC3747877 DOI: 10.2337/dc12-2712] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The implementation of an inpatient diabetic foot service should be the goal of all institutions that care for patients with diabetes. The objectives of this team are to prevent problems in patients while hospitalized, provide curative measures for patients admitted with diabetic foot disorders, and optimize the transition from inpatient to outpatient care. Essential skills that are required for an inpatient team include the ability to stage a foot wound, assess for peripheral vascular disease, neuropathy, wound infection, and the need for debridement; appropriately culture a wound and select antibiotic therapy; provide, directly or indirectly, for optimal metabolic control; and implement effective discharge planning to prevent a recurrence. Diabetic foot ulcers may be present in patients who are admitted for nonfoot problems, and these ulcers should be evaluated by the diabetic foot team during the hospitalization. Pathways should be in place for urgent or emergent treatment of diabetic foot infections and neuropathic fractures/dislocations. Surgeons involved with these patients should have knowledge and interest in limb preservation techniques. Prevention of iatrogenic foot complications, such as pressure sores of the heel, should be a priority in patients with diabetes who are admitted for any reason: all hospitalized diabetic patients require a clinical foot exam on admission to identify risk factors such as loss of sensation or ischemia. Appropriate posthospitalization monitoring to reduce the risk of reulceration and infection should be available, which should include optimal glycemic control and correction of any fluid and electrolyte disturbances.
Collapse
Affiliation(s)
- Dane K Wukich
- University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
The widespread use of HBO as an adjunctive treatment of diabetic foot ulcers has been founded on weak scientific evidence, but the consistency in positive outcomes in trials evaluating HBO on ulcer healing is noteworthy, not least as these results are in concert with data from in vitro and physiologic studies supporting the theoretical framework of HBO reversing hypoxia-induced abnormality. The long-term ulcer-healing rates of the nonrandomized controlled studies before the recent study by Margolis and colleagues, 77% with HBO versus 25% with standard treatment, are in concert with 1-year follow-up data from the 2 double-blind RCTs, 54% versus 25%. These 2 trials have put the use of HBO on firmer ground, but several issues, including health economics, developing robust selection criteria for treatment, optimizing treatment protocols, and identifying standards for when to start and stop treatment, remain to be elucidated. Not least, outcomes from further high-quality studies are needed. At present, HBO may be used as an adjunctive therapy in a select group of patients with diabetic foot ulcers that are difficult to heal.
Collapse
Affiliation(s)
- Magnus Löndahl
- Department of Clinical Sciences, Lund University, Lund S-221 85, Sweden.
| |
Collapse
|
34
|
|
35
|
Current trends in the development of wound dressings, biomaterials and devices. Pharm Pat Anal 2013; 2:341-59. [DOI: 10.4155/ppa.13.18] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Wound management covers all aspects of patient care from initial injury, treatment of infection, fluid loss, tissue regeneration, wound closure to final scar formation and remodeling. There are many wound-care products available including simple protective layers, hydrogels, metal ion-impregnated dressings and artificial skin substitutes, which facilitate surface closure. This review examines recent developments in wound dressings, biomaterials and devices. Particular attention is focused on the design and manufacture of hydrogel-based dressings, their polymeric constituents and chemical modification. Finally, topical negative pressure and hyperbaric oxygen therapy are considered. Current wound-management strategies can be expensive, time consuming and labor intensive. Progress in the multidisciplinary arena of wound care will address these issues and be of immense benefit to patients, by improving both clinical outcomes and their quality of life.
Collapse
|
36
|
Lipsky BA, Berendt AR, Cornia PB, Pile JC, Peters EJG, Armstrong DG, Deery HG, Embil JM, Joseph WS, Karchmer AW, Pinzur MS, Senneville E. 2012 Infectious Diseases Society of America clinical practice guideline for the diagnosis and treatment of diabetic foot infections. Clin Infect Dis 2012; 54:e132-73. [PMID: 22619242 DOI: 10.1093/cid/cis346] [Citation(s) in RCA: 1151] [Impact Index Per Article: 88.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Foot infections are a common and serious problem in persons with diabetes. Diabetic foot infections (DFIs) typically begin in a wound, most often a neuropathic ulceration. While all wounds are colonized with microorganisms, the presence of infection is defined by ≥2 classic findings of inflammation or purulence. Infections are then classified into mild (superficial and limited in size and depth), moderate (deeper or more extensive), or severe (accompanied by systemic signs or metabolic perturbations). This classification system, along with a vascular assessment, helps determine which patients should be hospitalized, which may require special imaging procedures or surgical interventions, and which will require amputation. Most DFIs are polymicrobial, with aerobic gram-positive cocci (GPC), and especially staphylococci, the most common causative organisms. Aerobic gram-negative bacilli are frequently copathogens in infections that are chronic or follow antibiotic treatment, and obligate anaerobes may be copathogens in ischemic or necrotic wounds. Wounds without evidence of soft tissue or bone infection do not require antibiotic therapy. For infected wounds, obtain a post-debridement specimen (preferably of tissue) for aerobic and anaerobic culture. Empiric antibiotic therapy can be narrowly targeted at GPC in many acutely infected patients, but those at risk for infection with antibiotic-resistant organisms or with chronic, previously treated, or severe infections usually require broader spectrum regimens. Imaging is helpful in most DFIs; plain radiographs may be sufficient, but magnetic resonance imaging is far more sensitive and specific. Osteomyelitis occurs in many diabetic patients with a foot wound and can be difficult to diagnose (optimally defined by bone culture and histology) and treat (often requiring surgical debridement or resection, and/or prolonged antibiotic therapy). Most DFIs require some surgical intervention, ranging from minor (debridement) to major (resection, amputation). Wounds must also be properly dressed and off-loaded of pressure, and patients need regular follow-up. An ischemic foot may require revascularization, and some nonresponding patients may benefit from selected adjunctive measures. Employing multidisciplinary foot teams improves outcomes. Clinicians and healthcare organizations should attempt to monitor, and thereby improve, their outcomes and processes in caring for DFIs.
Collapse
Affiliation(s)
- Benjamin A Lipsky
- Department of Medicine, University of Washington, Veterans Affairs Puget Sound Health Care System, Seattle, WA, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Nseir W, Mograbi J, Ghali M. Lipid-lowering agents in nonalcoholic fatty liver disease and steatohepatitis: human studies. Dig Dis Sci 2012; 57:1773-1781. [PMID: 22419057 DOI: 10.1007/s10620-012-2118-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2011] [Accepted: 02/22/2012] [Indexed: 02/07/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a chronic liver disease which refers to the presence of hepatic steatosis without significant intake of alcohol. NAFLD is an asymptomatic disease that can progress to nonalcoholic steatohepatitis (NASH), fibrosis, cirrhosis, and hepatocellular carcinoma. NAFLD is currently the most common cause of incidental abnormal liver tests and elevated serum liver enzyme activities in the developed world. Obesity, diabetes, and other components of the metabolic syndrome are frequently associated with the NAFLD. The treatment of NAFLD focuses on life-style modifications. Statins, fibrates, and other lipid-lowering agents have been proposed as effective lipid-lowering treatments in patients with NAFLD/NASH. However, clinicians are concerned that hyperlipidemic patients with NAFLD/NASH who are treated with statins could develop transaminitis. We assessed the efficacy and safety of lipid-lowering agents for NAFLD/NASH by reviewing reports of human studies including pilot, prospective, preliminary, and post hoc analysis studies on online databases during the period of 1980 to December 2012. The results of studies provide compelling evidence that lipid-lowering agents are safe and efficacious in patients with NAFLD/NASH and that some of these agents can induce a reduction in the extent of the hepatic steatosis. Well-designed randomized controlled studies of adequate size and duration with histological endpoints are needed in order to establish a suitable lipid-lowering treatment for hyperlipidemic patients with NAFLD/NASH, and for nonhyperlipidemic patients with NAFLD/NASH with a high risk for cardiovascular disease.
Collapse
Affiliation(s)
- William Nseir
- Department of Internal Medicine, Holy Family Hospital, Nazareth, Israel.
| | | | | |
Collapse
|
38
|
Gottrup F, Apelqvist J. Present and new techniques and devices in the treatment of DFU: a critical review of evidence. Diabetes Metab Res Rev 2012; 28 Suppl 1:64-71. [PMID: 22271726 DOI: 10.1002/dmrr.2242] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Management of foot ulcer in individuals with diabetes remains a major therapeutic challenge throughout the world. We performed a critical review of evidence of present and new techniques and devices in the treatment of diabetic foot ulcer. The golden standard for optimal evidence in the Cochrane system is level I - randomized controlled trials, and meta-analyses of several randomized controlled trials. Available evidence on different types of wound debridement; use of antimicrobials; use of dressings in wounds; topical negative pressure, hyperbaric oxygen treatment; electrical, electromagnetic, laser, shockwave, and ultrasound therapies; growth and cell biology factors; cell products and tissue engineering; bioengineered skin and skin grafts; and adjuvant therapies were evaluated. The results of this review show that there is limited evidence on the highest level to justify a change in routine clinical practice. There is a paucity of high-quality evidence, because the studies are often based on inadequate sample size, short follow-up, nonrandom allocation to treatment arms, nonblinded assessment of outcomes, poor description of control, and concurrent intervention. The heterogeneity of the population (of both people and ulcers), with multiple factors contributing to both ulcer onset and failure to heal, makes the trial design difficult in this field. Another fundamental reason for the lack of evidence is the general use of the outcome measure 'complete healing'. In conclusion, when the results of this updated review are taken together with those of the earlier reports, they provide limited evidence to justify a change in routine clinical practice. For this reason, there is an urgent need to increase the quality of clinical studies. A re-evaluation of which type of research is acceptable for producing evidence in the wound area may be important in the future.
Collapse
Affiliation(s)
- Finn Gottrup
- Department of Dermatology, D42, Copenhagen Wound Healing Center, Bispebjerg University Hospital, Copenhagen NV, Denmark.
| | | |
Collapse
|
39
|
Game FL, Hinchliffe RJ, Apelqvist J, Armstrong DG, Bakker K, Hartemann A, Löndahl M, Price PE, Jeffcoate WJ. A systematic review of interventions to enhance the healing of chronic ulcers of the foot in diabetes. Diabetes Metab Res Rev 2012; 28 Suppl 1:119-41. [PMID: 22271737 DOI: 10.1002/dmrr.2246] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The outcome of management of diabetic foot ulcers is poor, and there is continuing uncertainty concerning optimal approaches to management. It was for these reasons that in 2006 the International Working Group of the Diabetic Foot (IWGDF) working group on wound healing undertook a systematic review of the evidence to inform protocols for routine care and to highlight areas which should be considered for further study. The same working group has now updated this review by considering papers on the interventions to improve the healing of chronic ulcers published between December 2006 and June 2010. Methodological quality of selected studies was independently assessed by two reviewers using Scottish Intercollegiate Guidelines Network criteria. Selected studies fell into the following ten categories: sharp debridement and wound bed preparation with larvae and hydrotherapy; wound bed preparation using antiseptics, applications and dressing products; resection of the chronic wound; hyperbaric oxygen therapy (HBOT); compression or negative pressure therapy; products designed to correct aspects of wound biochemistry and cell biology associated with impaired wound healing; application of cells, including platelets and stem cells; bioengineered skin and skin grafts; electrical, electromagnetic, lasers, shockwaves and ultrasound; other systemic therapies which did not fit in the above categories. Heterogeneity of studies prevented pooled analysis of results. Of the 1322 papers identified, 43 were selected for grading following full text review. The present report is an update of the earlier IWGDF systematic review, but the conclusion is similar: that with the exception of HBOT and, possibly, negative pressure wound therapy, there is little published evidence to justify the use of newer therapies. This echoes the conclusion of a recent Cochrane review and the systematic review undertaken by the National Institute for Health and Clinical Excellence Guidelines Committee in the UK. Analysis of evidence presents considerable difficulties in this field particularly as controlled studies are few and the majority are of poor methodological quality.
Collapse
Affiliation(s)
- F L Game
- Foot Ulcer Trials Unit, Nottingham University Hospitals Trust, Nottingham, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
Hyperbaric oxygen therapy (HBO) could be described as a short-term, high-dose oxygen inhalation and diffusion therapy, delivered systemically through airways and blood, achieved by having the patient breathing concentrated oxygen at a pressure higher than 1 absolute atmosphere. In clinical practice, monoplace or multiplace hyperbaric chambers are used to achieve this. Treatment is usually given as daily 90- to 120-min-long HBO sessions at pressures between 2.0 and 2.5 absolute atmosphere, aiming for 30-40 treatment sessions. The use of HBO as treatment of diabetic foot ulcers has been founded on weak scientific ground, although the outcomes from previous studies are in concert with the conclusions from preclinical studies and supports the theoretical framework of HBO reversing hypoxia-induced pathology. Two well-designed randomized double-blind trials have put HBO on firmer ground and may justify adjunctive HBO treatment to a selected group of patients with nonhealing diabetic foot ulcers. Some health economic studies suggest potential cost effectiveness, but these studies are limited by deficient primary clinical data and should be interpreted with caution. Several issues remain to be addressed, such as developing robust criteria to improve treatment protocols, determining which patients are likely to benefit, and when to start and stop treatment.
Collapse
Affiliation(s)
- Magnus Löndahl
- Department of Clinical Sciences in Lund, Lund University, Lund, Sweden.
| |
Collapse
|
41
|
Kaur S, Pawar M, Banerjee N, Garg R. Evaluation of the efficacy of hyperbaric oxygen therapy in the management of chronic nonhealing ulcer and role of periwound transcutaneous oximetry as a predictor of wound healing response: A randomized prospective controlled trial. J Anaesthesiol Clin Pharmacol 2012; 28:70-75. [PMID: 22345950 PMCID: PMC3275977 DOI: 10.4103/0970-9185.92444] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Hyperbaric oxygen therapy (HBOT) is a treatment option for chronic nonhealing wounds. Transcutaneous oximetry (TCOM) is used for wound assessment. We undertook a randomized prospective controlled trial to evaluate the role of HBOT in healing of chronic nonhealing wounds and to determine whether TCOM predicts healing. MATERIALS AND METHODS This study was conducted in 30 consenting patients with nonhealing ulcer. The patients were randomized into group HT (receiving HBOT in addition to conventional treatment) and group CT (receiving only conventional treatment). Duration of treatment in both the groups was 30 days. Wound ulcer was analyzed based on size of the wound, exudates, presence of granulation tissue, and wound tissue scoring. Tissue oxygenation (TcPO(2)) was measured on 0, 10(th), 20(th), and 30(th) day. RESULTS There was 59% reduction in wound area in group HT and 26% increase in wound area in group CT. Ten patients in group HT showed improvement in wound score as compared to five patients in group CT. Complete healing was seen in three patients in group HT as compared to none in group CT. Surgical debridement was required in 6 patients in group HT and 10 patients in group CT. One patient in group HT required amputation as compared to five patients in group CT. A positive correlation was found between TcPO(2) value and various markers of wound healing. CONCLUSION HBOT has a definitive adjunctive role in the management of chronic nonhealing ulcers. It decreases the amputation rate and improves patient outcome. Periwound TcPO(2) may be used as a predictor of response to HBOT and has a positive correlation with wound healing.
Collapse
Affiliation(s)
- Sarbjot Kaur
- Department of Anaesthesiology and Intensive Care, Postgraduate Institute of Medical Education and Research and Dr. Ram Manohar Lohia Hospital, New Delhi, India
| | - Mridula Pawar
- Department of Anaesthesiology and Intensive Care, Postgraduate Institute of Medical Education and Research and Dr. Ram Manohar Lohia Hospital, New Delhi, India
| | - Neerja Banerjee
- Department of Anaesthesiology and Intensive Care, Postgraduate Institute of Medical Education and Research and Dr. Ram Manohar Lohia Hospital, New Delhi, India
| | - Rakesh Garg
- Department of Anaesthesiology and Intensive Care, Postgraduate Institute of Medical Education and Research and Dr. Ram Manohar Lohia Hospital, New Delhi, India
| |
Collapse
|
42
|
Tiaka EK, Papanas N, Manolakis AC, Maltezos E. The role of hyperbaric oxygen in the treatment of diabetic foot ulcers. Angiology 2011; 63:302-14. [PMID: 21873346 DOI: 10.1177/0003319711416804] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Diabetic foot ulcers are still extremely difficult to heal. Therefore, therapeutic options to improve healing rates are continuously being explored. Hyperbaric oxygen (HBO) has been used in addition to standard treatment of the diabetic foot for more than 20 years. Evidence suggests that HBO reduces amputation rates and increases the likelihood of healing in infected diabetic foot ulcers, in association with improved tissue oxygenation, resulting in better quality of life. Nonetheless, HBO represents an expensive modality, which is only available in few centers. Moreover, adverse events necessitate a closer investigation of its safety. Finally, it is not entirely clear which patients stand to benefit from HBO and how these should be selected. In conclusion, HBO appears promising, but more experience is needed before its broad implementation in the routine care of the diabetic foot.
Collapse
Affiliation(s)
- Elisavet K Tiaka
- Outpatient Clinic of the Diabetic Foot, Second Department of Internal Medicine, Democritus University of Thrace, Greece
| | | | | | | |
Collapse
|
43
|
Löndahl M, Fagher K, Katzman P. What is the role of hyperbaric oxygen in the management of diabetic foot disease? Curr Diab Rep 2011; 11:285-93. [PMID: 21534014 DOI: 10.1007/s11892-011-0194-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Systemic hyperbaric oxygen (HBO) is accomplished when a patient is breathing 100% oxygen in an environment with increased barometric pressure. A typical HBO treatment protocol of diabetic foot ulcer involves 20 to 40 sessions. Treatment is usually given as daily 90- to 120-minute HBO sessions at pressures between 2.0 and 2.5 absolute atmospheres. The wide use of HBO as treatment of diabetic foot ulcers over the past decades has been founded on weak scientific ground (ie, few and small prospective studies with methodologic limitations on top of case series). However, the consistency in positive outcome in these trials evaluating HBO on ulcer healing is noteworthy because these findings are in concert with data from in vitro and physiologic studies supporting the theoretic framework of HBO reversing hypoxia-induced pathology. Two well-designed randomized double-blinded placebo-controlled studies have in recent years put HBO on firmer ground as treatment of a selection of diabetic patients with chronic foot. Some evidence indicates that microvascular parameters such as transcutaneous (partial) oxygen pressure (TcPO(2)) could be useful in predicting which patients will benefit from therapy. Health economic studies suggest potential cost-effectiveness of HBO. But because these analyses are limited by their deficient primary clinical data, they should be interpreted with caution. Thus, HBO is only indicated in a selected group of patients with chronic diabetic foot ulcers. Several key issues remain to be addressed such as developing robust criteria to determine which patients are likely to benefit and when to start and stop treatment.
Collapse
Affiliation(s)
- Magnus Löndahl
- Institution of Clinical Sciences in Lund, Lund University, Lund, Sweden.
| | | | | |
Collapse
|
44
|
Löndahl M, Katzman P, Nilsson A, Hammarlund C. Response to comment on Londahl et al: hyperbaric oxygen therapy facilitates healing of chronic foot ulcers in patients with diabetes. Diabetes Care 2010;33:998-1003. Diabetes Care 2011; 34:e112. [PMID: 21617105 PMCID: PMC3114333 DOI: 10.2337/dc11-0403] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Magnus Löndahl
- From the Institution of Clinical Sciences in Lund, Lund University, Lund, Sweden; the
- Department of Endocrinology, Skåne University Hospital, Lund, Sweden; the
| | - Per Katzman
- From the Institution of Clinical Sciences in Lund, Lund University, Lund, Sweden; the
- Department of Endocrinology, Skåne University Hospital, Lund, Sweden; the
| | - Anders Nilsson
- Department of Internal Medicine, Ängelholm Hospital, Ängelholm, Sweden; and the
| | | |
Collapse
|
45
|
van der Staal SR, Ubbink DT, Lubbers MJ. Comment on: Lipsky and Berendt. Hyperbaric oxygen therapy for diabetic foot wounds: has hope hurdled hype? Diabetes Care 2010;33:1143-1145. Diabetes Care 2011; 34:e110; author reply e111. [PMID: 21617103 PMCID: PMC3114327 DOI: 10.2337/dc11-0019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Sebastiaan R. van der Staal
- From the Department of Surgery, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands; and the
| | - Dirk T. Ubbink
- Department of Quality Assurance and Process Innovation, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Maarten J. Lubbers
- From the Department of Surgery, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands; and the
| |
Collapse
|
46
|
Affiliation(s)
- Andrew J M Boulton
- Manchester Diabetes Centre, 193 Hathersage Road, Manchester, M13 0JE, UK.
| |
Collapse
|