1
|
Morissette A, Mulvihill EE. Cardioprotective benefits of metabolic surgery and GLP-1 receptor agonist-based therapies. Trends Endocrinol Metab 2025; 36:316-329. [PMID: 39127552 DOI: 10.1016/j.tem.2024.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/15/2024] [Accepted: 07/17/2024] [Indexed: 08/12/2024]
Abstract
Individuals with excessive adipose tissue and type 2 diabetes mellitus (T2DM) face a heightened risk of cardiovascular morbidity and mortality. Metabolic surgery is an effective therapy for people with severe obesity to achieve significant weight loss. Additionally, metabolic surgery improves blood glucose levels and can lead to T2DM remission, reducing major adverse cardiovascular outcomes (MACE). Glucagon-like peptide 1 (GLP-1) receptor agonists (GLP-1RAs) are a class of medication that effectively reduce body weight and MACE in patients with T2DM. This review explores the potential mechanisms underlying the cardioprotective benefits of metabolic surgery and GLP-1RA-based therapies and discusses recent evidence and emerging therapies in this dynamic area of research.
Collapse
Affiliation(s)
- Arianne Morissette
- The University of Ottawa Heart Institute, 40 Ruskin Street, H-3229A, Ottawa, Ontario, KIY 4W7, Canada
| | - Erin E Mulvihill
- The University of Ottawa Heart Institute, 40 Ruskin Street, H-3229A, Ottawa, Ontario, KIY 4W7, Canada; Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, The University of Ottawa, 451 Smyth Road, Ottawa, Ontario, K1H 8L1, Canada.
| |
Collapse
|
2
|
Lu C, Xu C, Yang J. The Beneficial Effects of GLP-1 Receptor Agonists Other than Their Anti-Diabetic and Anti-Obesity Properties. MEDICINA (KAUNAS, LITHUANIA) 2024; 61:17. [PMID: 39858999 PMCID: PMC11767243 DOI: 10.3390/medicina61010017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/18/2024] [Accepted: 12/24/2024] [Indexed: 01/27/2025]
Abstract
As an incretin hormone, Glucagon-like peptide-1 (GLP-1) has obvious effects on blood glucose regulation and weight loss. GLP-1 receptor (GLP-1R) agonists are synthetic products that have similar effects to GLP-1 but are less prone to degradation, and they are widely used in the treatment of type 2 diabetes and obesity. In recent years, different beneficial effects of GLP-1R agonists were discovered, such as reducing ischemia-reperfusion injury, improving the function of various organs, alleviating substance use disorder, affecting tumorigenesis, regulating bone metabolism, changing gut microbiota composition, and prolonging graft survival. Therefore, GLP-1R agonists have great potential for clinical application in various diseases. Here, we briefly summarized the beneficial effects of GLP-1R agonists other than the anti-diabetic and anti-obesity effects.
Collapse
Affiliation(s)
- Chenqi Lu
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan 430030, China;
| | - Cong Xu
- Division of Nephrology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China;
| | - Jun Yang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan 430030, China;
| |
Collapse
|
3
|
Hamidi H, Bagheri M, Benzing T, Krishnan S, Kianoush S, Ichikawa K, Ghanem AK, Javier D, Iskander B, Aldana-Bitar J, Budoff MJ. Effect of tirzepatide on the progression of coronary atherosclerosis using MDCT: Rationale and design of the tirzepatide treatment on coronary atherosclerosis progression: The (T-Plaque) randomized-controlled trial design. Am Heart J 2024; 278:24-32. [PMID: 39187147 DOI: 10.1016/j.ahj.2024.08.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 08/28/2024]
Abstract
INTRODUCTION Tirzepatide is a novel once-week dual GIP/GLP-1 RA agonist approved for T2DM and its role to reduce cardiovascular events remains to be elucidated. The goal of this trial is to assess how tirzepatide affects the progression of atherosclerotic plaque as determined by multidetector computed tomography angiography (MDCTA). METHODS This trial is a double blind, randomized, prospective, placebo-controlled multicenter phase IV trial. Participant eligible for the study will be adults with T2DM between 40 and 80 years of age who have HbA1c ≥ 7.0% to ≤ 10.5% and at least 20% stenosis in major epicardial vessel on CCTA. Baseline examination will include the results of their demographics, lab tests, coronary calcium, as well as coronary plaque volume/composition. Following randomization, tirzepatide or placebo will be given at a weekly dose of 2.5 mg, and a fixed dose-escalation strategy will be followed. Patients will undergo quarterly visits for safety assessments and labs, and follow up with repeat CCTA at 1 year. DISCUSSION This study evaluates the antiatherogenic potential of tirzepatide, providing a mechanism of potential CV benefit. This is crucial to our understanding of T2DM treatment and CVD since plaque progression portends worse outcomes in these populations. MDCTA is a noninvasive method that assesses the volume, composition, and degree of coronary vessel stenosis. CONCLUSION This study will be the first study to assess the effects of tirzepatide on atherosclerotic plaque progression measured by MDCTA in participants with T2DM.
Collapse
Affiliation(s)
- Hossein Hamidi
- Division of Cardiology, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA
| | - Marziyeh Bagheri
- Division of Cardiology, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA
| | - Travis Benzing
- Division of Cardiology, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA
| | - Srikanth Krishnan
- Division of Cardiology, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA
| | - Sina Kianoush
- Division of Cardiology, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA
| | - Keishi Ichikawa
- Division of Cardiology, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA
| | - Ahmed K Ghanem
- Division of Cardiology, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA
| | - Denise Javier
- Division of Cardiology, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA
| | - Beshoy Iskander
- Division of Cardiology, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA
| | - Jairo Aldana-Bitar
- Division of Cardiology, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA
| | - Matthew J Budoff
- Division of Cardiology, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA.
| |
Collapse
|
4
|
Chavda VP, Balar PC, Vaghela DA, Dodiya P. Unlocking longevity with GLP-1: A key to turn back the clock? Maturitas 2024; 186:108028. [PMID: 38815535 DOI: 10.1016/j.maturitas.2024.108028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/05/2024] [Accepted: 05/11/2024] [Indexed: 06/01/2024]
Abstract
Traditionally known for managing blood sugar, GLP-1, a gut hormone, is emerging as a potential key to both lengthening lifespan and combating age-related ailments. While widely recognized for its role in blood sugar control, GLP-1 is increasingly recognized for its diverse effects on various biological pathways beyond glucose metabolism. Research across organisms and humans suggests that activating GLP-1 receptors significantly impacts cellular processes linked to aging. Its ability to boost mitochondrial function, enhance cellular stress resistance, and quell inflammation hints at its wider influence on aging mechanisms. This intricate interplay between GLP-1 and longevity appears to act through multiple pathways. One key effect is its ability to modulate insulin sensitivity, potentially curbing age-related metabolic issues like type 2 diabetes. Its neuroprotective properties also make it a promising candidate for addressing age-related cognitive decline and neurodegenerative diseases. Furthermore, preclinical studies using GLP-1 analogs or agonists have shown promising results in extending lifespan and improving healthspan in various model organisms. These findings provide a compelling rationale for exploring GLP-1-based interventions in humans to extend healthy aging. However, despite the exciting therapeutic prospects of GLP-1 in promoting longevity, challenges remain. Determining optimal dosages, establishing long-term safety profiles, and investigating potential adverse effects require comprehensive clinical investigations before we can confidently translate these findings to humans. This article emphasises the wide applicability of GLP-1.
Collapse
Affiliation(s)
- Vivek P Chavda
- Department of Pharmaceutics and Pharmaceutical Technology, L M College of Pharmacy, Ahmedabad 380008, Gujarat, India.
| | - Pankti C Balar
- Pharmacy Section, L M College of Pharmacy, Ahmedabad 380008, Gujarat, India
| | - Dixa A Vaghela
- Pharmacy Section, L M College of Pharmacy, Ahmedabad 380008, Gujarat, India
| | - Payal Dodiya
- Pharmacy Section, L M College of Pharmacy, Ahmedabad 380008, Gujarat, India
| |
Collapse
|
5
|
Chae Y, Kwon SH, Nam JH, Kang E, Im J, Kim HJ, Lee EK. Lipid profile changes induced by glucagon-like peptide-1 receptor agonists in patients with type 2 diabetes: a systematic review and network meta-analysis. Expert Rev Clin Pharmacol 2024; 17:721-729. [PMID: 38832475 DOI: 10.1080/17512433.2024.2363838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/31/2024] [Indexed: 06/05/2024]
Abstract
OBJECTIVE This study was conducted to investigate the effects of glucagon-like peptide-1 receptor (GLP-1) agonists on the lipid profiles of patients with type 2 diabetes. METHODS We retrieved the data of phase 3 randomized controlled trials on GLP-1 agonists in patients with type 2 diabetes from the PubMed, Embase, and Cochrane library up to 11 February 2024. We extracted % changes in low-density lipoprotein cholesterol (LDL-C)/high-density lipoprotein cholesterol/total cholesterol (T-CHO) and triglycerides levels from baseline. Using Bayesian network meta-analysis, mean differences and 95% credible intervals for lipid changes were estimated as a unit of percentage points (%p) by class. RESULTS Twenty-six studies covering 22,290 participants were included. The glucose-dependent insulinotropic polypeptide (GIP)/GLP-1 dual agonist showed significant differences in LDL-C (range of mean differences: -11.61 to -6.77%p), triglycerides (-19.94 to -13.31%p), and T-CHO (-7.94 to -5.09%p) levels compared to placebo, insulin, and sodium-glucose co-transporter 2 (SGLT2) inhibitors. The GLP-1 agonist significantly reduced T-CHO (-5.20%p; -6.39%p) and LDL-C (-4.32%p; -8.17%p) levels compared to placebo and SGLT2 inhibitors, respectively. CONCLUSIONS The GIP/GLP-1 dual agonist positively affects the lipid profiles of patients with type 2 diabetes. This may contribute to a lower risk of cardiovascular disease in patients with type 2 diabetes. PROTOCOL REGISTRATION PROSPERO (CRD42021282668).
Collapse
Affiliation(s)
- Yuna Chae
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Sun-Hong Kwon
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
- Sheffield Centre for Health and Related Research (SCHARR), School of Medicine and Population Health, University of Sheffield, Sheffield, UK
| | - Jin Hyun Nam
- Division of Big Data Science, Korea University Sejong Campus, Sejong, Republic of Korea
| | - Eunsung Kang
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Jiae Im
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Hyo-Jin Kim
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Eui-Kyung Lee
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| |
Collapse
|
6
|
Bu T, Sun Z, Pan Y, Deng X, Yuan G. Glucagon-Like Peptide-1: New Regulator in Lipid Metabolism. Diabetes Metab J 2024; 48:354-372. [PMID: 38650100 PMCID: PMC11140404 DOI: 10.4093/dmj.2023.0277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 01/01/2024] [Indexed: 04/25/2024] Open
Abstract
Glucagon-like peptide-1 (GLP-1) is a 30-amino acid peptide hormone that is mainly expressed in the intestine and hypothalamus. In recent years, basic and clinical studies have shown that GLP-1 is closely related to lipid metabolism, and it can participate in lipid metabolism by inhibiting fat synthesis, promoting fat differentiation, enhancing cholesterol metabolism, and promoting adipose browning. GLP-1 plays a key role in the occurrence and development of metabolic diseases such as obesity, nonalcoholic fatty liver disease, and atherosclerosis by regulating lipid metabolism. It is expected to become a new target for the treatment of metabolic disorders. The effects of GLP-1 and dual agonists on lipid metabolism also provide a more complete treatment plan for metabolic diseases. This article reviews the recent research progress of GLP-1 in lipid metabolism.
Collapse
Affiliation(s)
- Tong Bu
- Department of Endocrinology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Ziyan Sun
- Department of Endocrinology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Yi Pan
- Department of Endocrinology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Xia Deng
- Department of Endocrinology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Guoyue Yuan
- Department of Endocrinology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| |
Collapse
|
7
|
Yang Y, He L, Liu P, Wang J, Yang N, Li Z, Ping F, Xu L, Li W, Zhang H, Li Y. Impact of a dual glucose-dependent insulinotropic peptide/glucagon-like peptide-1 receptor agonist tirzepatide on heart rate among patients with type 2 diabetes: A systematic review and pairwise and network meta-analysis. Diabetes Obes Metab 2024; 26:548-556. [PMID: 37860884 DOI: 10.1111/dom.15342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 10/07/2023] [Accepted: 10/07/2023] [Indexed: 10/21/2023]
Abstract
AIMS To evaluate the impact of a dual glucose-dependent insulinotropic peptide (GIP) and glucagon-like peptide-1 (GLP-1) receptor agonist tirzepatide (TZP), and its potential dose-response effect, on heart rate. METHODS Articles were searched from PubMed, Web of Science, Embase, Cochrane Library, and clinical trials registries (ClinicalTrials.gov) databases. Randomized controlled trials (RCTs) comparing TZP at doses of 5, 10 and 15 mg in adults with type 2 diabetes were included. Six study arms were summarized from original research (TZP 5, 10 and 15 mg, GLP-1 receptor agonists [GLP-1RAs], insulin, placebo). The GLP-1RA and non-GLP-1RA groups were combined to form a control group. Two reviewers independently extracted data and assessed the quality of each study. Mean differences (MDs) were calculated as effect estimates for continuous outcomes. Pairwise meta-analyses and network meta-analyses were conducted. The study protocol was prospectively registered (PROSPERO ID: CRD42023418551). RESULTS Eight articles were included in this systematic review and meta-analysis. The mean baseline heart rate ranged from 65.2 to 75.7 beats per minute. Pairwise meta-analysis showed that, compared with combined the control group, there were significantly greater increases in heart rates in the TZP group (MD 1.82, 95% confidence interval [CI] 0.75, 2.89). Similar significant rises were identified when comparing TZP with GLP-1RAs and non-GLP-1RAs (GLP-1 RAs: MD 2.29, 95% CI 1.00, 3.59; non-GLP-1RAs: MD 1.58, 95% CI 0.26, 2.91). TZP 5 mg was associated with smaller increases in heart rates compared to TZP 10 mg and TZP 15 mg (TZP 10 mg: MD -0.97, 95% CI -1.79, -0.14; TZP 15 mg: MD -2.57, 95% CI -3.79, -1.35). TZP 10 mg increased heart rate less than TZP 15 mg (MD -1.5, 95% CI -2.38, -0.82). Network meta-analysis indicated that TZP 15 mg was associated with significant increases in heart rate compared with TZP 5 mg (MD 2.53, 95% CI 1.43, 3.62), TZP 10 mg (MD 1.44, 95% CI 0.35, 2.53), GLP-1RAs (MD 3.46, 95% CI 1.67, 5.25), insulin (MD 2.86, 95% CI 1.32, 4.41) and placebo (MD 2.96, 95% CI 1.36, 4.57). CONCLUSIONS Our study showed not only that there was a greater increase in heart rate in the TZP group than in the control, GLP-1RA and non-GLP-1RA groups, but also that the 15-mg dose of TZP had the strongest impact on increasing heart rates compared with the other five inventions, with a TZP dose-response impact on heart rate. Further research on the effects of TZP treatment-related increases in heart rate is required.
Collapse
Affiliation(s)
- Yucheng Yang
- Department of Endocrinology, Key Laboratory of Endocrinology of National Health Commission, Translation Medicine Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Diabetes Research Center of Chinese Academy of Medical Sciences, Beijing, China
| | - Liyun He
- Department of Endocrinology, Key Laboratory of Endocrinology of National Health Commission, Translation Medicine Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Diabetes Research Center of Chinese Academy of Medical Sciences, Beijing, China
| | - Peng Liu
- Department of Endocrinology, Key Laboratory of Endocrinology of National Health Commission, Translation Medicine Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Jialu Wang
- Department of Endocrinology, Key Laboratory of Endocrinology of National Health Commission, Translation Medicine Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Diabetes Research Center of Chinese Academy of Medical Sciences, Beijing, China
| | - Na Yang
- Department of Endocrinology, Key Laboratory of Endocrinology of National Health Commission, Translation Medicine Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Diabetes Research Center of Chinese Academy of Medical Sciences, Beijing, China
| | - Ziyi Li
- Department of Endocrinology, Key Laboratory of Endocrinology of National Health Commission, Translation Medicine Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Diabetes Research Center of Chinese Academy of Medical Sciences, Beijing, China
| | - Fan Ping
- Department of Endocrinology, Key Laboratory of Endocrinology of National Health Commission, Translation Medicine Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Diabetes Research Center of Chinese Academy of Medical Sciences, Beijing, China
| | - Lingling Xu
- Department of Endocrinology, Key Laboratory of Endocrinology of National Health Commission, Translation Medicine Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Diabetes Research Center of Chinese Academy of Medical Sciences, Beijing, China
| | - Wei Li
- Department of Endocrinology, Key Laboratory of Endocrinology of National Health Commission, Translation Medicine Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Diabetes Research Center of Chinese Academy of Medical Sciences, Beijing, China
| | - Huabing Zhang
- Department of Endocrinology, Key Laboratory of Endocrinology of National Health Commission, Translation Medicine Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Diabetes Research Center of Chinese Academy of Medical Sciences, Beijing, China
| | - Yuxiu Li
- Department of Endocrinology, Key Laboratory of Endocrinology of National Health Commission, Translation Medicine Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Diabetes Research Center of Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
8
|
Luna-Marco C, de Marañon AM, Hermo-Argibay A, Rodriguez-Hernandez Y, Hermenejildo J, Fernandez-Reyes M, Apostolova N, Vila J, Sola E, Morillas C, Rovira-Llopis S, Rocha M, Victor VM. Effects of GLP-1 receptor agonists on mitochondrial function, inflammatory markers and leukocyte-endothelium interactions in type 2 diabetes. Redox Biol 2023; 66:102849. [PMID: 37591012 PMCID: PMC10457591 DOI: 10.1016/j.redox.2023.102849] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/08/2023] [Accepted: 08/11/2023] [Indexed: 08/19/2023] Open
Abstract
OBJECTIVE Type 2 diabetes (T2D) is linked to metabolic, mitochondrial and inflammatory alterations, atherosclerosis development and cardiovascular diseases (CVDs). The aim was to investigate the potential therapeutic benefits of GLP-1 receptor agonists (GLP-1 RA) on oxidative stress, mitochondrial respiration, leukocyte-endothelial interactions, inflammation and carotid intima-media thickness (CIMT) in T2D patients. RESEARCH DESIGN AND METHODS Type 2 diabetic patients (255) and control subjects (175) were recruited, paired by age and sex, and separated into two groups: without GLP-1 RA treatment (196) and treated with GLP-1 RA (59). Peripheral blood polymorphonuclear leukocytes (PMNs) were isolated to measure reactive oxygen species (ROS) production by flow cytometry and oxygen consumption with a Clark electrode. PMNs were also used to assess leukocyte-endothelial interactions. Circulating levels of adhesion molecules and inflammatory markers were quantified by Luminex's technology, and CIMT was measured as surrogate marker of atherosclerosis. RESULTS Treatment with GLP-1 RA reduced ROS production and recovered mitochondrial membrane potential, oxygen consumption and MPO levels. The velocity of leukocytes rolling over endothelial cells increased in PMNs from GLP-1 RA-treated patients, whereas rolling and adhesion were diminished. ICAM-1, VCAM-1, IL-6, TNFα and IL-12 protein levels also decreased in the GLP-1 RA-treated group, while IL-10 increased. CIMT was lower in GLP-1 RA-treated T2D patients than in T2D patients without GLP-1 RA treatment. CONCLUSIONS GLP-1 RA treatment improves the redox state and mitochondrial respiration, and reduces leukocyte-endothelial interactions, inflammation and CIMT in T2D patients, thereby potentially diminishing the risk of atherosclerosis and CVDs.
Collapse
Affiliation(s)
- Clara Luna-Marco
- Service of Endocrinology and Nutrition, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), University Hospital Doctor Peset, Valencia, Spain.
| | - Arantxa M de Marañon
- Service of Endocrinology and Nutrition, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), University Hospital Doctor Peset, Valencia, Spain; Cancer Research @UCC, College of Medicine and Health, University College Cork, Ireland.
| | - Alberto Hermo-Argibay
- Service of Endocrinology and Nutrition, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), University Hospital Doctor Peset, Valencia, Spain.
| | - Yohaly Rodriguez-Hernandez
- Service of Endocrinology and Nutrition, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), University Hospital Doctor Peset, Valencia, Spain.
| | - Jonathan Hermenejildo
- Service of Endocrinology and Nutrition, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), University Hospital Doctor Peset, Valencia, Spain.
| | - Meylin Fernandez-Reyes
- Service of Endocrinology and Nutrition, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), University Hospital Doctor Peset, Valencia, Spain.
| | - Nadezda Apostolova
- Department of Pharmacology, University of Valencia, Valencia, Spain; National Network of Biomedical Research on Hepatic and Digestive Diseases (CIBERehd), Valencia, Spain.
| | - Jose Vila
- Department of Physiology, University of Valencia, INCLIVA (Biomedical Research Institute Valencia), Valencia, Spain.
| | - Eva Sola
- Service of Endocrinology and Nutrition, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), University Hospital Doctor Peset, Valencia, Spain.
| | - Carlos Morillas
- Service of Endocrinology and Nutrition, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), University Hospital Doctor Peset, Valencia, Spain.
| | - Susana Rovira-Llopis
- Service of Endocrinology and Nutrition, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), University Hospital Doctor Peset, Valencia, Spain; Department of Physiology, University of Valencia, INCLIVA (Biomedical Research Institute Valencia), Valencia, Spain.
| | - Milagros Rocha
- Service of Endocrinology and Nutrition, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), University Hospital Doctor Peset, Valencia, Spain.
| | - Victor M Victor
- Service of Endocrinology and Nutrition, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), University Hospital Doctor Peset, Valencia, Spain; National Network of Biomedical Research on Hepatic and Digestive Diseases (CIBERehd), Valencia, Spain; Department of Physiology, University of Valencia, INCLIVA (Biomedical Research Institute Valencia), Valencia, Spain.
| |
Collapse
|
9
|
Solini A, Tricò D, Del Prato S. Incretins and cardiovascular disease: to the heart of type 2 diabetes? Diabetologia 2023; 66:1820-1831. [PMID: 37542009 PMCID: PMC10473999 DOI: 10.1007/s00125-023-05973-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 06/22/2023] [Indexed: 08/06/2023]
Abstract
Major cardiovascular outcome trials and real-life observations have proven that glucagon-like peptide-1 (GLP-1) receptor agonists (GLP-1RAs), regardless of structural GLP-1 homology, exert clinically relevant cardiovascular protection. GLP-1RAs provide cardioprotective benefits through glycaemic and non-glycaemic effects, including improved insulin secretion and action, body-weight loss, blood-pressure lowering and improved lipid profile, as well as via direct effects on the heart and vasculature. These actions are likely combined with anti-inflammatory and antioxidant properties that translate into robust and consistent reductions in atherothrombotic events, particularly in people with type 2 diabetes and established atherosclerotic CVD. GLP-1RAs may also have an impact on obesity and chronic kidney disease, conditions for which cardiovascular risk-reducing options are limited. The available evidence has prompted professional and medical societies to recommend GLP-1RAs for mitigation of the cardiovascular risk in people with type 2 diabetes. This review summarises the clinical evidence for cardiovascular protection with use of GLP-1RAs and the main mechanisms underlying this effect. Moreover, it looks into how the availability of upcoming dual and triple incretin receptor agonists might expand the possibility for cardiovascular protection in people with type 2 diabetes.
Collapse
Affiliation(s)
- Anna Solini
- Department of Surgical, Medical, Molecular and Critical Area Pathology, University of Pisa, Pisa, Italy
| | - Domenico Tricò
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Stefano Del Prato
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy.
- Interdisciplinary Research Center "Health Science", Sant'Anna School of Advanced Studies, Pisa, Italy.
| |
Collapse
|
10
|
Ussher JR, Drucker DJ. Glucagon-like peptide 1 receptor agonists: cardiovascular benefits and mechanisms of action. Nat Rev Cardiol 2023; 20:463-474. [PMID: 36977782 DOI: 10.1038/s41569-023-00849-3] [Citation(s) in RCA: 190] [Impact Index Per Article: 95.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/17/2023] [Indexed: 03/30/2023]
Abstract
Type 2 diabetes mellitus (T2DM) and obesity are metabolic disorders characterized by excess cardiovascular risk. Glucagon-like peptide 1 (GLP1) receptor (GLP1R) agonists reduce body weight, glycaemia, blood pressure, postprandial lipaemia and inflammation - actions that could contribute to the reduction of cardiovascular events. Cardiovascular outcome trials (CVOTs) have demonstrated that GLP1R agonists reduce the rates of major adverse cardiovascular events in patients with T2DM. Separate phase III CVOTs of GLP1R agonists are currently being conducted in people living with heart failure with preserved ejection fraction and in those with obesity. Mechanistically, GLP1R is expressed at low levels in the heart and vasculature, raising the possibility that GLP1 might have both direct and indirect actions on the cardiovascular system. In this Review, we summarize the data from CVOTs of GLP1R agonists in patients with T2DM and describe the actions of GLP1R agonists on the heart and blood vessels. We also assess the potential mechanisms that contribute to the reduction in major adverse cardiovascular events in individuals treated with GLP1R agonists and highlight the emerging cardiovascular biology of novel GLP1-based multi-agonists currently in development. Understanding how GLP1R signalling protects the heart and blood vessels will optimize the therapeutic use and development of next-generation GLP1-based therapies with improved cardiovascular safety.
Collapse
Affiliation(s)
- John R Ussher
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Daniel J Drucker
- Department of Medicine, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada.
| |
Collapse
|
11
|
Hammoud R, Drucker DJ. Beyond the pancreas: contrasting cardiometabolic actions of GIP and GLP1. Nat Rev Endocrinol 2023; 19:201-216. [PMID: 36509857 DOI: 10.1038/s41574-022-00783-3] [Citation(s) in RCA: 92] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/17/2022] [Indexed: 12/14/2022]
Abstract
Glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide 1 (GLP1) exhibit incretin activity, meaning that they potentiate glucose-dependent insulin secretion. The emergence of GIP receptor (GIPR)-GLP1 receptor (GLP1R) co-agonists has fostered growing interest in the actions of GIP and GLP1 in metabolically relevant tissues. Here, we update concepts of how these hormones act beyond the pancreas. The actions of GIP and GLP1 on liver, muscle and adipose tissue, in the control of glucose and lipid homeostasis, are discussed in the context of plausible mechanisms of action. Both the GIPR and GLP1R are expressed in the central nervous system, wherein receptor activation produces anorectic effects enabling weight loss. In preclinical studies, GIP and GLP1 reduce atherosclerosis. Furthermore, GIPR and GLP1R are expressed within the heart and immune system, and GLP1R within the kidney, revealing putative mechanisms linking GIP and GLP1R agonism to cardiorenal protection. We interpret the clinical and mechanistic data obtained for different agents that enable weight loss and glucose control for the treatment of obesity and type 2 diabetes mellitus, respectively, by activating or blocking GIPR signalling, including the GIPR-GLP1R co-agonist tirzepatide, as well as the GIPR antagonist-GLP1R agonist AMG-133. Collectively, we update translational concepts of GIP and GLP1 action, while highlighting gaps, areas of uncertainty and controversies meriting ongoing investigation.
Collapse
Affiliation(s)
- Rola Hammoud
- Department of Medicine, Lunenfeld-Tanenbaum Research Institute, Mt Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Daniel J Drucker
- Department of Medicine, Lunenfeld-Tanenbaum Research Institute, Mt Sinai Hospital, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
12
|
Madsbad S, Holst JJ. Cardiovascular effects of incretins - focus on GLP-1 receptor agonists. Cardiovasc Res 2022; 119:886-904. [PMID: 35925683 DOI: 10.1093/cvr/cvac112] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 03/29/2022] [Accepted: 04/04/2022] [Indexed: 11/13/2022] Open
Abstract
GLP-1 receptor agonists (GLP-1 RAs) have been used to treat patients with type 2 diabetes since 2005 and have become popular because of the efficacy and durability in relation to glycaemic control in combination with weight loss in most patients. Today in 2022, seven GLP-1 RAs, including oral semaglutide are available for treatment of type 2 diabetes. Since the efficacy in relation to reduction of HbA1c and body weight as well as tolerability and dosing frequency vary between agents, the GLP-1 RAs cannot be considered equal. The short acting lixisenatide showed no cardiovascular benefits, while once daily liraglutide and the weekly agonists, subcutaneous semaglutide, dulaglutide, and efpeglenatide, all lowered the incidence of cardiovascular events. Liraglutide, oral semaglutide and exenatide once weekly also reduced mortality. GLP-1 RAs reduce the progression of diabetic kidney disease. In the 2019 consensus report from EASD/ADA, GLP-1 RAs with demonstrated cardio-renal benefits (liraglutide, semaglutide and dulaglutide) are recommended after metformin to patients with established cardiovascular diseases or multiple cardiovascular risk factors. European Society of Cardiology (ESC) suggests starting with a SGLT-2 inhibitor or a GLP-1 RA in drug naïve patients with type 2 diabetes and atherosclerotic CVD or high CV Risk. However, the results from cardiovascular outcome trials (CVOT) are very heterogeneous suggesting that some GLP-1RA are more suitable to prevent CVD than others. The CVOTs provide a basis upon which individual treatment decisions for patients with T2D and CVD can be made.
Collapse
Affiliation(s)
- Sten Madsbad
- Department of Endocrinology, Hvidovre Hospital, University of Copenhagen, Denmark
| | - Jens J Holst
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark. Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
13
|
Janić M, Rizzo M, Cosentino F, Pantea Stoian A, Lunder M, Šabović M, Janež A. Effect of Oral Semaglutide on Cardiovascular Parameters and Their Mechanisms in Patients with Type 2 Diabetes: Rationale and Design of the Semaglutide Anti-Atherosclerotic Mechanisms of Action Study (SAMAS). Diabetes Ther 2022; 13:795-810. [PMID: 35258841 PMCID: PMC8989913 DOI: 10.1007/s13300-022-01226-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 02/04/2022] [Indexed: 12/14/2022] Open
Abstract
INTRODUCTION Type 2 diabetes (T2D) management has reached a point where not only optimal glycaemic control is necessary, but also additional interventions with proven cardiovascular risk reduction benefit. Subcutaneous semaglutide has been shown to provide cardiovascular protection, but its use may be limited by its injection formulation. To overcome this limitation, an oral semaglutide tablet has been developed, which could potentially be of the same value as its injection counterpart, but in a much wider group of patients with T2D, thereby allowing for broader cardiovascular risk reduction in this vulnerable patient population. METHODS A total of 100 consecutive patients with T2D and a disease duration of up to 10 years, without manifest cardiovascular disease, who are treated with metformin (± sulphonylurea) and optimal cardioprotective therapy, will be recruited in a single-blinded, randomized trial named "Semaglutide Anti-atherosclerotic Mechanisms of Action Study (SAMAS)." After 1:1 randomization, patients will receive either oral semaglutide 14 mg daily or placebo for 1 year. The primary outcome comprises changes in atherosclerosis-related structural and functional characteristics of the arterial wall, namely: reduction of the carotid intima-media thickness, improvement of endothelial function and decrease in arterial stiffness. Secondary outcomes are changes in atherogenic small dense low-density lipoproteins, glucose control (HbA1c) and inflammatory markers (hsCRP). Possible correlations between primary endpoints and changes in lipids, HbA1c and high-sensitivity C-reactive protein will be sought. DISCUSSION This is the first study to investigate the direct and indirect anti-atherosclerotic mechanisms of oral semaglutide. The results are expected to confirm the position of oral semaglutide in the multifactorial management of T2D with an emphasis on cardiovascular disease prevention. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT05147896.
Collapse
Affiliation(s)
- Miodrag Janić
- Clinical Department of Endocrinology, Diabetes and Metabolic Diseases, University Medical Centre Ljubljana, Zaloška 7, 1000, Ljubljana, Slovenia.
- Medical Faculty, University of Ljubljana, 1000, Ljubljana, Slovenia.
| | - Manfredi Rizzo
- Department of Health Promotion Sciences Maternal and Infantile Care, Internal Medicine and Medical Specialties (Promise), School of Medicine, University of Palermo, 90100, Palermo, Italy
| | - Francesco Cosentino
- Unit of Cardiology, Karolinska Institute and Karolinska University Hospital, University of Stockholm, Stockholm, Sweden
| | - Anca Pantea Stoian
- Faculty of Medicine, Diabetes, Nutrition and Metabolic Diseases, Carol Davila University, Bucharest, Romania
| | - Mojca Lunder
- Clinical Department of Endocrinology, Diabetes and Metabolic Diseases, University Medical Centre Ljubljana, Zaloška 7, 1000, Ljubljana, Slovenia
- Medical Faculty, University of Ljubljana, 1000, Ljubljana, Slovenia
| | - Mišo Šabović
- Medical Faculty, University of Ljubljana, 1000, Ljubljana, Slovenia
- Clinical Department of Vascular Diseases, University Medical Centre Ljubljana, 1000, Ljubljana, Slovenia
| | - Andrej Janež
- Clinical Department of Endocrinology, Diabetes and Metabolic Diseases, University Medical Centre Ljubljana, Zaloška 7, 1000, Ljubljana, Slovenia
- Medical Faculty, University of Ljubljana, 1000, Ljubljana, Slovenia
| |
Collapse
|
14
|
Inaishi J, Saisho Y. Exenatide Once Weekly for Management of Type 2 Diabetes: A Review. Clin Pharmacol 2022; 14:19-26. [PMID: 35422660 PMCID: PMC9004502 DOI: 10.2147/cpaa.s288846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 02/11/2022] [Indexed: 12/02/2022] Open
Abstract
Exenatide is one of the exendin-based glucagon-like peptide 1 receptor agonists (GLP-1RAs) and is currently available in two formulations, ie, exenatide twice daily (BID), a short-acting GLP-1RA, and exenatide once weekly (QW), a long-acting GLP-1RA. Clinical efficacy and safety of exenatide 2 mg QW in patients with type 2 diabetes (T2DM) has been demonstrated in the DURATION study program. Exenatide QW has been shown to achieve greater HbA1c reduction compared with exenatide BID, with less injection frequency and greater treatment satisfaction. However, exenatide QW failed to show a significant cardiovascular risk reduction in a cardiovascular outcome trial (CVOT), the EXSCEL trial, while other GLP-1RAs have shown positive CV outcomes. Furthermore, exenatide QW has been shown to be inferior to liraglutide and semaglutide with respect to HbA1c or body weight reduction in the head-to-head trials. Thus, although the long-term efficacy and safety of exenatide QW have been demonstrated, exenatide QW might be selected with lower priority within the class of GLP1-RAs for the management of T2DM, especially for patients at high CV risk. On the other hand, exenatide QW is now expected to be a treatment option for children with T2DM or patients with Parkinson’s disease. This review provides an overview of the current evidence regarding the clinical efficacy and safety of exenatide QW and discusses the current perspectives on exenatide QW for treatment of T2DM.
Collapse
Affiliation(s)
- Jun Inaishi
- Division of Endocrinology, Metabolism and Nephrology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
- Center for Preventive Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Yoshifumi Saisho
- Division of Endocrinology, Metabolism and Nephrology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
- Correspondence: Yoshifumi Saisho, Division of Endocrinology, Metabolism and Nephrology, Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan, Tel +81-3-3353-1211 (x62383), Fax +81-3-3359-2745, Email
| |
Collapse
|
15
|
Ussher JR, Greenwell AA, Nguyen MA, Mulvihill EE. Cardiovascular Effects of Incretin-Based Therapies: Integrating Mechanisms With Cardiovascular Outcome Trials. Diabetes 2022; 71:173-183. [PMID: 35050311 PMCID: PMC8914293 DOI: 10.2337/dbi20-0049] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 11/09/2021] [Indexed: 02/06/2023]
Abstract
As the worldwide prevalence of diabetes and obesity continues to rise, so does the risk of debilitating cardiovascular complications. Given the significant association between diabetes and cardiovascular risk, the actions of glucose-lowering therapies within the cardiovascular system must be clearly defined. Incretin hormones, including GLP-1 (glucagon-like peptide 1) and GIP (glucose-dependent insulinotropic polypeptide), are gut hormones secreted in response to nutrient intake that maintain glycemic control by regulating insulin and glucagon release. GLP-1 receptor agonists (GLP-1Ras) and dipeptidyl peptidase 4 inhibitors (DPP-4is) represent two drug classes used for the treatment of type 2 diabetes mellitus (T2DM) that improve glucose regulation through stimulating the actions of gut-derived incretin hormones or inhibiting their degradation, respectively. Despite both classes acting to potentiate the incretin response, the potential cardioprotective benefits afforded by GLP-1Ras have not been recapitulated in cardiovascular outcome trials (CVOTs) evaluating DPP-4is. This review provides insights through discussion of clinical and preclinical studies to illuminate the physiological mechanisms that may underlie and reconcile observations from GLP-1Ra and DPP-4i CVOTs. Furthermore, critical knowledge gaps and areas for further investigation will be emphasized to guide future studies and, ultimately, facilitate improved clinical management of cardiovascular disease in T2DM.
Collapse
Affiliation(s)
- John R. Ussher
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Amanda A. Greenwell
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada
| | - My-Anh Nguyen
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
- University of Ottawa Heart Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - Erin E. Mulvihill
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
- University of Ottawa Heart Institute, University of Ottawa, Ottawa, Ontario, Canada
- Corresponding author: Erin E. Mulvihill,
| |
Collapse
|
16
|
McLean BA, Wong CK, Kaur KD, Seeley RJ, Drucker DJ. Differential importance of endothelial and hematopoietic cell GLP-1Rs for cardiometabolic versus hepatic actions of semaglutide. JCI Insight 2021; 6:153732. [PMID: 34673572 PMCID: PMC8663785 DOI: 10.1172/jci.insight.153732] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 09/30/2021] [Indexed: 01/24/2023] Open
Abstract
Glucagon-like peptide-1 receptor agonists (GLP-1RAs) are used to treat diabetes and obesity and reduce rates of major cardiovascular events, such as stroke and myocardial infarction. Nevertheless, the identity of GLP-1R–expressing cell types mediating the cardiovascular benefits of GLP-1RA remains incompletely characterized. Herein, we investigated the importance of murine Glp1r expression within endothelial and hematopoietic cells. Mice with targeted inactivation of Glp1r in Tie2+ cells exhibited reduced levels of Glp1r mRNA transcripts in aorta, liver, spleen, blood, and gut. Glp1r expression in bone marrow cells was very low and not further reduced in Glp1rTie2–/– mice. The GLP-1RA semaglutide reduced the development of atherosclerosis induced by viral PCSK9 expression in both Glp1rTie2+/+ and Glp1rTie2–/– mice. Hepatic Glp1r mRNA transcripts were reduced in Glp1rTie2–/– mice, and liver Glp1r expression was localized to γδ T cells. Moreover, semaglutide reduced hepatic Tnf, Abcg1, Tgfb1, Cd3g, Ccl2, and Il2 expression; triglyceride content; and collagen accumulation in high-fat, high-cholesterol diet–fed Glp1rTie2+/+ mice but not Glp1rTie2–/– mice. Collectively, these findings demonstrate that Tie2+ endothelial or hematopoietic cell GLP-1Rs are dispensable for the antiatherogenic actions of GLP-1RA, whereas Tie2-targeted GLP-1R+ cells are required for a subset of the antiinflammatory actions of semaglutide in the liver.
Collapse
Affiliation(s)
- Brent A McLean
- Department of Medicine, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Chi Kin Wong
- Department of Medicine, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Kiran Deep Kaur
- Department of Medicine, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Randy J Seeley
- Department of Surgery, University of Michigan, Ann Arbor, Michigan
| | - Daniel J Drucker
- Department of Medicine, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| |
Collapse
|
17
|
Marquis-Gravel G, Tardif JC. Glucagon-Like Peptide 1 Receptor Agonists, Carotid Atherosclerosis, and Cardiovascular Outcomes. Diabetes Care 2021; 44:1252-1253. [PMID: 34016611 PMCID: PMC8247522 DOI: 10.2337/dci20-0076] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
| | - Jean-Claude Tardif
- Montreal Heart Institute, Université de Montréal, Montréal, Quebec, Canada
| |
Collapse
|
18
|
Ma X, Liu Z, Ilyas I, Little PJ, Kamato D, Sahebka A, Chen Z, Luo S, Zheng X, Weng J, Xu S. GLP-1 receptor agonists (GLP-1RAs): cardiovascular actions and therapeutic potential. Int J Biol Sci 2021; 17:2050-2068. [PMID: 34131405 PMCID: PMC8193264 DOI: 10.7150/ijbs.59965] [Citation(s) in RCA: 132] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 04/28/2021] [Indexed: 12/11/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is closely associated with cardiovascular diseases (CVD), including atherosclerosis, hypertension and heart failure. Some anti-diabetic medications are linked with an increased risk of weight gain or hypoglycemia which may reduce the efficacy of the intended anti-hyperglycemic effects of these therapies. The recently developed receptor agonists for glucagon-like peptide-1 (GLP-1RAs), stimulate insulin secretion and reduce glycated hemoglobin levels without having side effects such as weight gain and hypoglycemia. In addition, GLP1-RAs demonstrate numerous cardiovascular protective effects in subjects with or without diabetes. There have been several cardiovascular outcomes trials (CVOTs) involving GLP-1RAs, which have supported the overall cardiovascular benefits of these drugs. GLP1-RAs lower plasma lipid levels and lower blood pressure (BP), both of which contribute to a reduction of atherosclerosis and reduced CVD. GLP-1R is expressed in multiple cardiovascular cell types such as monocyte/macrophages, smooth muscle cells, endothelial cells, and cardiomyocytes. Recent studies have indicated that the protective properties against endothelial dysfunction, anti-inflammatory effects on macrophages and the anti-proliferative action on smooth muscle cells may contribute to atheroprotection through GLP-1R signaling. In the present review, we describe the cardiovascular effects and underlying molecular mechanisms of action of GLP-1RAs in CVOTs, animal models and cultured cells, and address how these findings have transformed our understanding of the pharmacotherapy of T2DM and the prevention of CVD.
Collapse
Affiliation(s)
- Xiaoxuan Ma
- Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Zhenghong Liu
- Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Iqra Ilyas
- Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Peter J Little
- Sunshine Coast Health Institute, University of the Sunshine Coast, Birtinya, QLD 4575, Australia.,School of Pharmacy, Pharmacy Australia Centre of Excellence, the University of Queensland, Woolloongabba, Queensland 4102, Australia
| | - Danielle Kamato
- School of Pharmacy, Pharmacy Australia Centre of Excellence, the University of Queensland, Woolloongabba, Queensland 4102, Australia
| | - Amirhossein Sahebka
- Halal Research Center of IRI, FDA, Tehran, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad, Iran
| | - Zhengfang Chen
- Changshu Hospital Affiliated to Soochow University, Changshu No.1 People's Hospital, Changshu 215500, Jiangsu Province, China
| | - Sihui Luo
- Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Xueying Zheng
- Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Jianping Weng
- Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Suowen Xu
- Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| |
Collapse
|