1
|
Mianesaz H, Ghalamkari S, Abbasi F, Razzaghy-Azar M, Sayarifard F, Vakili R, Sedghi M, Noroozi Asl S, Hosseini S, Amoli MM, Yaghootkar H. Genetic variant profiling of neonatal diabetes mellitus in Iranian patients: Unveiling 58 distinct variants in 14 genes. J Diabetes Investig 2024; 15:1390-1402. [PMID: 38970407 PMCID: PMC11442839 DOI: 10.1111/jdi.14254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 05/11/2024] [Accepted: 06/04/2024] [Indexed: 07/08/2024] Open
Abstract
INTRODUCTION Neonatal diabetes mellitus (NDM) is a rare non-immunological monogenic disorder characterized by hyperglycemic conditions primarily occurring within the first 6 months of life. The majority of cases are attributed to pathogenic variants in genes affecting beta-cell survival, insulin regulation, and secretion. This study aims to investigate the genetic landscape of NDM in Iran. METHODS We recruited a total of 135 patients who were initially diagnosed with diabetes at <12 months of age in Iran and referred to pediatric endocrinology clinics across the country. These patients underwent genetic diagnostic tests conducted by the Exeter Molecular Genetics Laboratory in the UK. The pathogenic variants identified were sorted and described based on type, pathogenicity (according to ACMG/AMP criteria), novelty, and the affected protein domain. RESULTS Genetic defects were identified in 93 probands, presenting various pathogenic abnormalities associated with NDM and its associated syndromes. 76% of the patients were born as a result of consanguineous marriage, and a familial history of diabetes was found in 43% of the cases. A total of 58 distinct variants in 14 different genes were discovered, including 20 variants reported for the first time. Causative variants were most frequently identified in EIF2AK3, KCNJ11, and ABCC8, respectively. Notably, EIF2AK3 and ABCC8 exhibited the highest number of novel variants. DISCUSSION These findings provide valuable insights into the genetic landscape of NDM in the Iranian population and contribute to the knowledge of novel pathogenic variants within known causative genes.
Collapse
Affiliation(s)
- Hamidreza Mianesaz
- Department of Human Genetics, Medical School, University of Debrecen, Debrecen, Hungary
- Department of Genetics and Molecular Biology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Safoura Ghalamkari
- Department of Genetics and Molecular Biology, Isfahan University of Medical Sciences, Isfahan, Iran
- Division of Clinical Genetics, Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Farzaneh Abbasi
- Growth and Development Research Center, Children's Medical Center Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Razzaghy-Azar
- Metabolic Disorders Research Center, Endocrinology and Metabolism Molecular - Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Sayarifard
- Growth and Development Research Center, Children's Medical Center Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Rahim Vakili
- Department of Pediatric Endocrinology and Metabolism, Faculty of Medicine, Imam Reza Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Sedghi
- Department of Genetics and Molecular Biology, Isfahan University of Medical Sciences, Isfahan, Iran
- Obesity and Eating Habits Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Samaneh Noroozi Asl
- Obesity and Eating Habits Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Sousan Hosseini
- Obesity and Eating Habits Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahsa M Amoli
- Metabolic Disorders Research Center, Endocrinology and Metabolism Molecular - Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
2
|
Amaratunga SA, Tayeb TH, Dusatkova P, Pruhova S, Lebl J. Invaluable Role of Consanguinity in Providing Insight into Paediatric Endocrine Conditions: Lessons Learnt from Congenital Hyperinsulinism, Monogenic Diabetes, and Short Stature. Horm Res Paediatr 2022; 95:1-11. [PMID: 34847552 DOI: 10.1159/000521210] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 11/18/2021] [Indexed: 11/19/2022] Open
Abstract
Consanguineous families have often played a role in the discovery of novel genes, especially in paediatric endocrinology. At this time, it has been estimated that over 8.5% of all children worldwide have consanguineous parents. Consanguinity is linked to demographic, cultural, and religious practises and is more common in some areas around the world than others. In children with endocrine conditions from consanguineous families, there is a greater probability that a single-gene condition with autosomal recessive inheritance is causative. From 1966 and the first description of Laron syndrome, through the discovery of the first KATP channel genes ABCC8 and KCNJ11 causing congenital hyperinsulinism (CHI) in the 1990s, to recent discoveries of mutations in YIPF5 as the first cause of monogenic diabetes due to the disruption of the endoplasmic reticulum (ER)-to-Golgi trafficking in the β-cell and increased ER stress; positive genetic findings in children from consanguinity have been important in elucidating novel genes and mechanisms of disease, thereby expanding knowledge into disease pathophysiology. The aim of this narrative review was to shed light on the lessons learned from consanguineous pedigrees with the help of 3 fundamental endocrine conditions that represent an evolving spectrum of pathophysiological complexity - from CHI, a typically single-cell condition, to monogenic diabetes which presents with uniform biochemical parameters (hyperglycaemia and glycosuria), despite varying aetiologies, up to the genetic regulation of human growth - the most complex developmental phenomenon.
Collapse
Affiliation(s)
- Shenali Anne Amaratunga
- Department of Paediatrics, 2nd Faculty of Medicine, Charles University in Prague, Prague, Czechia
| | - Tara Hussein Tayeb
- Department of Paediatrics, Sulaymani University, College of Medicine, Sulaymani, Iraq
| | - Petra Dusatkova
- Department of Paediatrics, 2nd Faculty of Medicine, Charles University in Prague, Prague, Czechia
| | - Stepanka Pruhova
- Department of Paediatrics, 2nd Faculty of Medicine, Charles University in Prague, Prague, Czechia
| | - Jan Lebl
- Department of Paediatrics, 2nd Faculty of Medicine, Charles University in Prague, Prague, Czechia
| |
Collapse
|
3
|
Yahaya TO, Anyebe DA. Genes predisposing to neonatal diabetes mellitus and pathophysiology: Current findings. J Neonatal Perinatal Med 2020; 13:543-553. [PMID: 32333556 DOI: 10.3233/npm-190353] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Precision medicine, described as a therapeutic procedure in which complex diseases are treated based on the causal gene and pathophysiology, is being considered for diabetes mellitus (DM). To this end, several monogenetic mutations in the beta cells have been linked with neonatal diabetes mellitus (NDM), however, the list of suspect genes is expansive, necessitating an update. This study, therefore, provides an update on NDM candidate genes and pathophysiology. RESULTS Reputable online academic databases were searched for relevant information, which led to the identification of 43 genes whose mutations are linked to the condition. Of the linked genes, mutations in the KCNJ11, ABCC8, and INS genes as well as the genes on 6q24 chromosomal region are the most frequently implicated. Mutations in these genes can cause pancreatic agenesis and developmental errors, resulting in NDM in the first six to twelve months of birth. The clinical presentations of NDM include frequent urination, rapid breathing, and dehydration, among others. CONCLUSIONS Monogenetic mutations in the beta cells may cause NDM with distinct pathophysiology from other DM. Treatment options that target NDM candidate genes and pathophysiology may lead to an improved treatment compared with the present generalized treatment for all forms of DM.
Collapse
Affiliation(s)
- T O Yahaya
- Department of Biology, Federal University Birnin Kebbi, Nigeria
| | - D A Anyebe
- Department of Biochemistry and Molecular Biology, Federal University Birnin Kebbi, Nigeria
| |
Collapse
|
4
|
Motsinger AA, Ritchie MD, Dobrin SE. Clinical applications of whole-genome association studies: future applications at the bedside. Expert Rev Mol Diagn 2014; 6:551-65. [PMID: 16824029 DOI: 10.1586/14737159.6.4.551] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Until now, performing whole-genome association studies has been an unattainable, but highly desirable, goal for geneticists. With the recent advent of high-throughput genotyping platforms, this goal is now a reality for geneticists today and for clinicians in the not-so-distant future. This review will cover a broad range of topics to provide an overview of this emerging branch of genetics, and will provide references to more specific sources. Specifically, this review will cover the technologies available today and in the near future, the specific types of whole-genome association studies, the benefits and limitations of these studies, the applications to complex disease-gene interactions, diagnostic devices, therapeutics, and finally, we will describe the 5-year perspective and key issues.
Collapse
Affiliation(s)
- Alison A Motsinger
- Vanderbilt University, Center for Human Genetics Research Department of Molecular Physiology & Biophysics, 519 Light Hall, Nashville, TN 37232, USA.
| | | | | |
Collapse
|
5
|
RNA profiling and chromatin immunoprecipitation-sequencing reveal that PTF1a stabilizes pancreas progenitor identity via the control of MNX1/HLXB9 and a network of other transcription factors. Mol Cell Biol 2012; 32:1189-99. [PMID: 22232429 DOI: 10.1128/mcb.06318-11] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pancreas development is initiated by the specification and expansion of a small group of endodermal cells. Several transcription factors are crucial for progenitor maintenance and expansion, but their interactions and the downstream targets mediating their activity are poorly understood. Among those factors, PTF1a, a basic helix-loop-helix (bHLH) transcription factor which controls pancreas exocrine cell differentiation, maintenance, and functionality, is also needed for the early specification of pancreas progenitors. We used RNA profiling and chromatin immunoprecipitation (ChIP) sequencing to identify a set of targets in pancreas progenitors. We demonstrate that Mnx1, a gene that is absolutely required in pancreas progenitors, is a major direct target of PTF1a and is regulated by a distant enhancer element. Pdx1, Nkx6.1, and Onecut1 are also direct PTF1a targets whose expression is promoted by PTF1a. These proteins, most of which were previously shown to be necessary for pancreas bud maintenance or formation, form a transcription factor network that allows the maintenance of pancreas progenitors. In addition, we identify Bmp7, Nr5a2, RhoV, and P2rx1 as new targets of PTF1a in pancreas progenitors.
Collapse
|
6
|
Vetere A, Wagner BK. Chemical methods to induce Beta-cell proliferation. Int J Endocrinol 2012; 2012:925143. [PMID: 22811709 PMCID: PMC3395230 DOI: 10.1155/2012/925143] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Accepted: 05/21/2012] [Indexed: 01/09/2023] Open
Abstract
Pancreatic beta-cell regeneration, for example, by inducing proliferation, remains an important goal in developing effective treatments for diabetes. However, beta cells have mainly been considered quiescent. This "static" view has recently been challenged by observations of relevant physiological conditions in which metabolic stress is compensated by an increase in beta-cell mass. Understanding the molecular mechanisms underlining these process could open the possibility of developing novel small molecules to increase beta-cell mass. Several cellular cell-cycle and signaling proteins provide attractive targets for high throughput screening, and recent advances in cell culture have enabled phenotypic screening for small molecule-induced beta-cell proliferation. We present here an overview of the current trends involving small-molecule approaches to induce beta-cell regeneration by proliferation.
Collapse
Affiliation(s)
- Amedeo Vetere
- Chemical Biology Program, Broad Institute of MIT and Harvard, 7 Cambridge Center, Cambridge, MA 02142, USA
| | - Bridget K. Wagner
- Chemical Biology Program, Broad Institute of MIT and Harvard, 7 Cambridge Center, Cambridge, MA 02142, USA
- *Bridget K. Wagner:
| |
Collapse
|
7
|
Hyman SJ, Novoa Y, Holzman I. Perinatal endocrinology: common endocrine disorders in the sick and premature newborn. Pediatr Clin North Am 2011; 58:1083-98, ix. [PMID: 21981950 DOI: 10.1016/j.pcl.2011.07.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Endocrine disorders are common in infants in the neonatal ICU. They often are associated with prematurity, low birth weight or very low birth weight, and small size for gestational age. They also frequently occur in infants who are critically ill or stressed. This article describes the most common conditions and current knowledge regarding management.
Collapse
Affiliation(s)
- Sharon J Hyman
- Division of Pediatric Endocrinology and Diabetes, Mount Sinai School of Medicine, One Gustave L. Levy Place, Box 1616, New York, NY 10029, USA.
| | | | | |
Collapse
|
8
|
van Eijk R, Middeldorp A, Lips EH, van Puijenbroek M, Morreau H, Oosting J, van Wezel T. Genotyping and LOH Analysis on Archival Tissue using SNP Arrays. Genomics 2010. [DOI: 10.1002/9780470711675.ch3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
9
|
Kersbergen P, van Duijn K, Kloosterman AD, den Dunnen JT, Kayser M, de Knijff P. Developing a set of ancestry-sensitive DNA markers reflecting continental origins of humans. BMC Genet 2009; 10:69. [PMID: 19860882 PMCID: PMC2775748 DOI: 10.1186/1471-2156-10-69] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2009] [Accepted: 10/27/2009] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The identification and use of Ancestry-Sensitive Markers (ASMs), i.e. genetic polymorphisms facilitating the genetic reconstruction of geographical origins of individuals, is far from straightforward. RESULTS Here we describe the ascertainment and application of five different sets of 47 single nucleotide polymorphisms (SNPs) allowing the inference of major human groups of different continental origin. For this, we first used 74 cell lines, representing human males from six different geographical areas and screened them with the Affymetrix Mapping 10K assay. In addition to using summary statistics estimating the genetic diversity among multiple groups of individuals defined by geography or language, we also used the program STRUCTURE to detect genetically distinct subgroups. Subsequently, we used a pairwise F(ST) ranking procedure among all pairs of genetic subgroups in order to identify a single best performing set of ASMs. Our initial results were independently confirmed by genotyping this set of ASMs in 22 individuals from Somalia, Afghanistan and Sudan and in 919 samples from the CEPH Human Genome Diversity Panel (HGDP-CEPH) CONCLUSION: By means of our pairwise population F(ST) ranking approach we identified a set of 47 SNPs that could serve as a panel of ASMs at a continental level.
Collapse
Affiliation(s)
- Paula Kersbergen
- Department of Human Biological Traces (R&D), Netherlands Forensic Institute, PO Box 24044, 2490 AA The Hague, The Netherlands.
| | | | | | | | | | | |
Collapse
|
10
|
Hyman SJ, Novoa Y, Holzman I. Perinatal endocrinology: common endocrine disorders in the sick and premature newborn. Endocrinol Metab Clin North Am 2009; 38:509-24. [PMID: 19717002 DOI: 10.1016/j.ecl.2009.06.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Endocrine disorders are common in infants in the neonatal ICU. They often are associated with prematurity, low birth weight or very low birth weight, and small size for gestational age. They also frequently occur in infants who are critically ill or stressed. This article describes the most common conditions and current knowledge regarding management.
Collapse
Affiliation(s)
- Sharon J Hyman
- Division of Pediatric Endocrinology and Diabetes, Mount Sinai School of Medicine, One Gustave L. Levy Place, Box 1616, New York, NY 10029, USA.
| | | | | |
Collapse
|
11
|
High-throughput mutation screening using a single amplification condition. Methods Mol Biol 2009. [PMID: 19381956 DOI: 10.1007/978-1-60327-811-9_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Numerous innovative and high-throughput techniques have been established to identify human disease genes. However, DNA sequencing of candidate genes still remains as a major limitation in the identification of causative mutations. Much of this limitation is due to the time and labor needed for the polymerase chain reaction (PCR) optimization and reaction setup. Toward this end, we have established a simplified protocol that utilizes a single PCR amplification condition. PCR purification is accomplished via enzymatic digestion and all products can be sequenced using universal primers. This combination of a single amplification condition, single-step purification, and sequencing setup using universal primers all contribute to a simple and high-throughput mutation screen.
Collapse
|
12
|
Identification of small-molecule inducers of pancreatic beta-cell expansion. Proc Natl Acad Sci U S A 2009; 106:1427-32. [PMID: 19164755 DOI: 10.1073/pnas.0811848106] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
To identify small molecules that can induce beta-cell replication, a large chemical library was screened for proliferation of growth-arrested, reversibly immortalized mouse beta cells by using an automated high-throughput screening platform. A number of structurally diverse, active compounds were identified, including phorbol esters, which likely act through protein kinase C, and a group of thiophene-pyrimidines that stimulate beta-cell proliferation by activating the Wnt signaling pathway. A group of dihydropyridine (DHP) derivatives was also shown to reversibly induce beta-cell replication in vitro by activating L-type calcium channels (LTCCs). Our data suggest that the LTCC agonist 2a affects the expression of genes involved in cell cycle progression and cellular proliferation. Furthermore, treatment of beta cells with both LTCC agonist 2a and the Glp-1 receptor agonist Exendin-4 showed an additive effect on beta-cell replication. The identification of small molecules that induce beta-cell proliferation suggests that it may be possible to reversibly expand other quiescent cells to overcome deficits associated with degenerative and/or autoimmune diseases.
Collapse
|
13
|
Phan-Hug F, Guimiot F, Lelièvre V, Delezoide AL, Czernichow P, Breant B, Blondeau B. Potential role of glucocorticoid signaling in the formation of pancreatic islets in the human fetus. Pediatr Res 2008; 64:346-51. [PMID: 18535489 DOI: 10.1203/pdr.0b013e318180a38f] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Glucocorticoids have been suggested to play a role in programming late adult disorders like diabetes during fetal life. Recent work in rodents showed their role in pancreas development by modulating the expression of transcription factors. The aim of this work was to investigate their possible implication in human pancreas development. The ontogenesis of glucocorticoid receptor (GR) and several pancreatic transcription factors was studied by immunohistochemistry and RT-PCR on human fetal pancreatic specimens. At 6 wk of development (wd) insulin promoting factor 1 (IPF1) was expressed in the majority of epithelial cells forming tubular structures while GR was present in the mesenchyme, suggesting an early role of glucocorticoids, before endocrine and exocrine differentiation. Only GR alpha (active form) mRNA was expressed from 6 wk onwards while GR beta (inactive form) was never observed. The first insulin cells did not express IPF1 or GR. Islet formation occurred from 10 wd as IPF1-positive cells started to express simultaneously insulin and GR. This coexpression in beta cells persisted until adulthood. The mRNA expression profiles confirmed immunohistochemistry and showed the early expression of crucial transcription factors. In conclusion, the presence of the active GR isoform around islet formation supports the novel idea that glucocorticoids could modulate human pancreas development.
Collapse
Affiliation(s)
- Franziska Phan-Hug
- INSERM, [Fetopathology Department, Université Denis Diderot-Paris 7, 75019 Paris, France
| | | | | | | | | | | | | |
Collapse
|
14
|
Yang SN, Berggren PO. The role of voltage-gated calcium channels in pancreatic beta-cell physiology and pathophysiology. Endocr Rev 2006; 27:621-76. [PMID: 16868246 DOI: 10.1210/er.2005-0888] [Citation(s) in RCA: 188] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Voltage-gated calcium (CaV) channels are ubiquitously expressed in various cell types throughout the body. In principle, the molecular identity, biophysical profile, and pharmacological property of CaV channels are independent of the cell type where they reside, whereas these channels execute unique functions in different cell types, such as muscle contraction, neurotransmitter release, and hormone secretion. At least six CaValpha1 subunits, including CaV1.2, CaV1.3, CaV2.1, CaV2.2, CaV2.3, and CaV3.1, have been identified in pancreatic beta-cells. These pore-forming subunits complex with certain auxiliary subunits to conduct L-, P/Q-, N-, R-, and T-type CaV currents, respectively. beta-Cell CaV channels take center stage in insulin secretion and play an important role in beta-cell physiology and pathophysiology. CaV3 channels become expressed in diabetes-prone mouse beta-cells. Point mutation in the human CaV1.2 gene results in excessive insulin secretion. Trinucleotide expansion in the human CaV1.3 and CaV2.1 gene is revealed in a subgroup of patients with type 2 diabetes. beta-Cell CaV channels are regulated by a wide range of mechanisms, either shared by other cell types or specific to beta-cells, to always guarantee a satisfactory concentration of Ca2+. Inappropriate regulation of beta-cell CaV channels causes beta-cell dysfunction and even death manifested in both type 1 and type 2 diabetes. This review summarizes current knowledge of CaV channels in beta-cell physiology and pathophysiology.
Collapse
Affiliation(s)
- Shao-Nian Yang
- The Rolf Luft Research Center for Diabetes and Endocrinology L1:03, Karolinska University Hospital Solna, SE-171 76 Stockholm, Sweden.
| | | |
Collapse
|
15
|
Abstract
The scope of single nucleotide polymorphism genotyping for genetic association studies has expanded recently from the use of relatively small numbers of candidate genes and markers, to include hypothesis-free, whole-genome approaches using hundreds of thousands of polymorphisms. The ability to perform such large-scale association studies has been dependant on the development of highly parallel and cost-effective genotyping platforms, of which those based on oligonucleotide arrays have proved to be the most scalable and widely adopted. It is to be expected that the new array-based genotyping methods will not only greatly expand the scope of genetic studies, but, as further content is added to arrays, will also form part of an integrated set of DNA, RNA and proteomic analyses enabling the detailed, multilayered study of complex disease-linked phenotypes.
Collapse
Affiliation(s)
- Neil J Gibson
- AstraZeneca Pharmaceuticals, 19G9, Mereside, Alderley Park, Macclesfield, SK10 4TG, UK.
| |
Collapse
|
16
|
Abstract
1. Microarrays, a recent development, provide a revolutionary platform to analyse thousands of genes at once. They have enormous potential in the study of biological processes in health and disease and, perhaps, microarrays have become crucial tools in diagnostic applications and drug discovery. 2. Microarray based studies have provided the essential impetus for biomedical experiments, such as identification of disease-causing genes in malignancies and regulatory genes in the cell cycle mechanism. Microarrays can identify genes for new and unique potential drug targets, predict drug responsiveness for individual patients and, finally, initiate gene therapy and prevention strategies. 3. The present article reviews the principles and technological concerns, as well as the steps involved in obtaining and analysing of data. Furthermore, applications of microarray based experiments in drug target identifications and validation strategies are discussed. 4. To exemplify how this tool can be useful, in the present review we provide an overview of some of the past and potential future aspects of microarray technology and present a broad overview of this rapidly growing field.
Collapse
Affiliation(s)
- Manikandan Jayapal
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | | |
Collapse
|
17
|
Abstract
Identifying genes involved in the development of cancer is crucial to fully understanding cancer biology, for developing novel therapeutics for cancer treatment and for providing methods for cancer prevention and early diagnosis. The use of polymorphic markers, in particular single nucleotide polymorphisms (SNPs), promises to provide a comprehensive tool for analysing the human genome and identifying those genes and genomic regions contributing to the cancer phenotype. This review summarizes the various analytical methodologies in which SNPs are used and presents examples of how each of these methodologies have been used to locate genes and genomic regions of interest for various cancer types. Additionally many of the current SNP-analysing technologies will be reviewed with particular attention paid to the advantages and disadvantages of each and how each technology can be applied to the analysis of the genome for identifying cancer-related genes.
Collapse
Affiliation(s)
- L J Engle
- Cetek Corporation, Marlborough, MA, USA
| | | | | |
Collapse
|
18
|
Lao O, Duijn KV, Kersbergen P, Knijff PD, Kayser M. Proportioning whole-genome single-nucleotide-polymorphism diversity for the identification of geographic population structure and genetic ancestry. Am J Hum Genet 2006; 78:680-90. [PMID: 16532397 PMCID: PMC1424693 DOI: 10.1086/501531] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2005] [Accepted: 01/12/2006] [Indexed: 12/13/2022] Open
Abstract
The identification of geographic population structure and genetic ancestry on the basis of a minimal set of genetic markers is desirable for a wide range of applications in medical and forensic sciences. However, the absence of sharp discontinuities in the neutral genetic diversity among human populations implies that, in practice, a large number of neutral markers will be required to identify the genetic ancestry of one individual. We showed that it is possible to reduce the amount of markers required for detecting continental population structure to only 10 single-nucleotide polymorphisms (SNPs), by applying a newly developed ascertainment algorithm to Affymetrix GeneChip Mapping 10K SNP array data that we obtained from samples of globally dispersed human individuals (the Y Chromosome Consortium panel). Furthermore, this set of SNPs was able to recover the genetic ancestry of individuals from all four continents represented in the original data set when applied to an independent, much larger, worldwide population data set (Centre d'Etude du Polymorphisme Humain-Human Genome Diversity Project Cell Line Panel). Finally, we provide evidence that the unusual patterns of genetic variation we observed at the respective genomic regions surrounding the five most informative SNPs is in agreement with local positive selection being the explanation for the striking SNP allele-frequency differences we found between continental groups of human populations.
Collapse
Affiliation(s)
- Oscar Lao
- Department of Forensic Molecular Biology, Erasmus University Medical Centre Rotterdam, Rotterdam; Department of Biology, Netherlands Forensic Institute, The Hague; and Forensic Laboratory for DNA Research, Department of Human and Clinical Genetics, Leiden University Medical Centre, Leiden, The Netherlands
| | - Kate van Duijn
- Department of Forensic Molecular Biology, Erasmus University Medical Centre Rotterdam, Rotterdam; Department of Biology, Netherlands Forensic Institute, The Hague; and Forensic Laboratory for DNA Research, Department of Human and Clinical Genetics, Leiden University Medical Centre, Leiden, The Netherlands
| | - Paula Kersbergen
- Department of Forensic Molecular Biology, Erasmus University Medical Centre Rotterdam, Rotterdam; Department of Biology, Netherlands Forensic Institute, The Hague; and Forensic Laboratory for DNA Research, Department of Human and Clinical Genetics, Leiden University Medical Centre, Leiden, The Netherlands
| | - Peter de Knijff
- Department of Forensic Molecular Biology, Erasmus University Medical Centre Rotterdam, Rotterdam; Department of Biology, Netherlands Forensic Institute, The Hague; and Forensic Laboratory for DNA Research, Department of Human and Clinical Genetics, Leiden University Medical Centre, Leiden, The Netherlands
| | - Manfred Kayser
- Department of Forensic Molecular Biology, Erasmus University Medical Centre Rotterdam, Rotterdam; Department of Biology, Netherlands Forensic Institute, The Hague; and Forensic Laboratory for DNA Research, Department of Human and Clinical Genetics, Leiden University Medical Centre, Leiden, The Netherlands
| |
Collapse
|
19
|
Dalma-Weiszhausz DD, Warrington J, Tanimoto EY, Miyada CG. The affymetrix GeneChip platform: an overview. Methods Enzymol 2006; 410:3-28. [PMID: 16938544 DOI: 10.1016/s0076-6879(06)10001-4] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The intent of this chapter is to provide the reader with a review of GeneChip technology and the complete system it represents, including its versatility, components, and the exciting applications that are enabled by this platform. The following aspects of the technology are reviewed: array design and manufacturing, target preparation, instrumentation, data analysis, and both current and future applications. There are key differentiators between Affymetrix' GeneChip technology and other microarray-based methods. The most distinguishing feature of GeneChip microarrays is that their manufacture is directed by photochemical synthesis. Because of this manufacturing technology, more than a million different probes can be synthesized on an array roughly the size of a thumbnail. These numbers allow the inclusion of multiple probes to interrogate the same target sequence, providing statistical rigor to data interpretation. Over the years the GeneChip platform has proven to be a reliable and robust system, enabling many new discoveries and breakthroughs to be made by the scientific community.
Collapse
|
20
|
Hoshino M, Nakamura S, Mori K, Kawauchi T, Terao M, Nishimura YV, Fukuda A, Fuse T, Matsuo N, Sone M, Watanabe M, Bito H, Terashima T, Wright CVE, Kawaguchi Y, Nakao K, Nabeshima YI. Ptf1a, a bHLH transcriptional gene, defines GABAergic neuronal fates in cerebellum. Neuron 2005; 47:201-13. [PMID: 16039563 DOI: 10.1016/j.neuron.2005.06.007] [Citation(s) in RCA: 375] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2004] [Revised: 03/30/2005] [Accepted: 06/02/2005] [Indexed: 11/21/2022]
Abstract
The molecular machinery governing glutamatergic-GABAergic neuronal subtype specification is unclear. Here we describe a cerebellar mutant, cerebelless, which lacks the entire cerebellar cortex in adults. The primary defect of the mutant brains was a specific inhibition of GABAergic neuron production from the cerebellar ventricular zone (VZ), resulting in secondary and complete loss of external germinal layer, pontine, and olivary nuclei during development. We identified the responsible gene, Ptf1a, whose expression was lost in the cerebellar VZ but was maintained in the pancreas in cerebelless. Lineage tracing revealed that two types of neural precursors exist in the cerebellar VZ: Ptf1a-expressing and -nonexpressing precursors, which generate GABAergic and glutamatergic neurons, respectively. Introduction of Ptf1a into glutamatergic neuron precursors in the dorsal telencephalon generated GABAergic neurons with representative morphological and migratory features. Our results suggest that Ptf1a is involved in driving neural precursors to differentiate into GABAergic neurons in the cerebellum.
Collapse
Affiliation(s)
- Mikio Hoshino
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
In recent years microarray technology has been increasingly used in both basic and clinical research, providing substantial information for a better understanding of genome-environment interactions responsible for diseases, as well as for their diagnosis and treatment. However, in genomic research using microarray technology there are several unresolved issues, including scientific, ethical and legal issues. Networks of excellence like GA(2)LEN may represent the best approach for teaching, cost reduction, data repositories, and functional studies implementation.
Collapse
Affiliation(s)
- C D'Ambrosio
- IRCCS San Raffaele, Research Center, Rome, Italy
| | | | | |
Collapse
|
22
|
Hu N, Wang C, Hu Y, Yang HH, Giffen C, Tang ZZ, Han XY, Goldstein AM, Emmert-Buck MR, Buetow KH, Taylor PR, Lee MP. Genome-wide association study in esophageal cancer using GeneChip mapping 10K array. Cancer Res 2005; 65:2542-6. [PMID: 15805246 DOI: 10.1158/0008-5472.can-04-3247] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Whole genome association studies of complex human diseases represent a new paradigm in the postgenomic era. In this study, we report application of the Affymetrix, Inc. (Santa Clara, CA) high-density single nucleotide polymorphism (SNP) array containing 11,555 SNPs in a pilot case-control study of esophageal squamous cell carcinoma (ESCC) that included the analysis of germ line samples from 50 ESCC patients and 50 matched controls. The average genotyping call rate for the 100 samples analyzed was 96%. Using the generalized linear model (GLM) with adjustment for potential confounders and multiple comparisons, we identified 37 SNPs associated with disease, assuming a recessive mode of transmission; similarly, 48 SNPs were identified assuming a dominant mode and 53 SNPs in a continuous mode. When the 37 SNPs identified from the GLM recessive mode were used in a principal components analysis, the first principal component correctly predicted 46 of 50 cases and 47 of 50 controls. Among all the SNPs selected from GLMs for the three modes of transmission, 39 could be mapped to 1 of 33 genes. Many of these genes are involved in various cancers, including GASC1, shown previously to be amplified in ESCCs, and EPHB1 and PIK3C3. In conclusion, we have shown the feasibility of the Affymetrix 10K SNP array in genome-wide association studies of common cancers and identified new candidate loci to study in ESCC.
Collapse
Affiliation(s)
- Nan Hu
- Cancer Prevention Studies Branch, Laboratory of Population Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
Newborn screening (NBS) is a public-health genetic screening programme aimed at early detection and treatment of pre-symptomatic children affected by specific disorders. It currently involves protein-based assays and PCR to confirm abnormal results. We propose that DNA microarray technology might be an improvement over protein assays in the first stage of NBS. This approach has important advantages, such as multiplex analysis, but also has disadvantages, which include a high initial cost and the analysis/storage of large data sets. Determining the optimal technology for NBS will require that technical, public health and ethical considerations are made for the collection and extent of analysis of paediatric genomic data, for privacy and for parental consent.
Collapse
Affiliation(s)
- Nancy S Green
- March of Dimes Birth Defect Foundation, 1275 Mamaroneck Avenue, White Plains, New York, 10605, USA.
| | | |
Collapse
|
24
|
Di X, Matsuzaki H, Webster TA, Hubbell E, Liu G, Dong S, Bartell D, Huang J, Chiles R, Yang G, Shen MM, Kulp D, Kennedy GC, Mei R, Jones KW, Cawley S. Dynamic model based algorithms for screening and genotyping over 100K SNPs on oligonucleotide microarrays. Bioinformatics 2005; 21:1958-63. [PMID: 15657097 DOI: 10.1093/bioinformatics/bti275] [Citation(s) in RCA: 155] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
MOTIVATION A high density of single nucleotide polymorphism (SNP) coverage on the genome is desirable and often an essential requirement for population genetics studies. Region-specific or chromosome-specific linkage studies also benefit from the availability of as many high quality SNPs as possible. The availability of millions of SNPs from both Perlegen and the public domain and the development of an efficient microarray-based assay for genotyping SNPs has brought up some interesting analytical challenges. Effective methods for the selection of optimal subsets of SNPs spanning the genome and methods for accurately calling genotypes from probe hybridization patterns have enabled the development of a new microarray-based system for robustly genotyping over 100,000 SNPs per sample. RESULTS We introduce a new dynamic model-based algorithm (DM) for screening over 3 million SNPs and genotyping over 100,000 SNPs. The model is based on four possible underlying states: Null, A, AB and B for each probe quartet. We calculate a probe-level log likelihood for each model and then select between the four competing models with an SNP-level statistical aggregation across multiple probe quartets to provide a high-quality genotype call along with a quality measure of the call. We assess performance with HapMap reference genotypes, informative Mendelian inheritance relationship in families, and consistency between DM and another genotype classification method. At a call rate of 95.91% the concordance with reference genotypes from the HapMap Project is 99.81% based on over 1.5 million genotypes, the Mendelian error rate is 0.018% based on 10 trios, and the consistency between DM and MPAM is 99.90% at a comparable rate of 97.18%. We also develop methods for SNP selection and optimal probe selection. AVAILABILITY The DM algorithm is available in Affymetrix's Genotyping Tools software package and in Affymetrix's GDAS software package. See http://www.affymetrix.com for further information. 10 K and 100 K mapping array data are available on the Affymetrix website.
Collapse
Affiliation(s)
- Xiaojun Di
- Affymetrix, Inc., Santa Clara, CA 95051, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Sellick GS, Longman C, Tolmie J, Newbury-Ecob R, Geenhalgh L, Hughes S, Whiteford M, Garrett C, Houlston RS. Genomewide linkage searches for Mendelian disease loci can be efficiently conducted using high-density SNP genotyping arrays. Nucleic Acids Res 2004; 32:e164. [PMID: 15561999 PMCID: PMC534642 DOI: 10.1093/nar/gnh163] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Genomewide linkage searches aimed at identifying disease susceptibility loci are generally conducted using 300-400 microsatellite markers. Genotyping bi-allelic single nucleotide polymorphisms (SNPs) provides an alternative strategy. The availability of dense SNP maps coupled with recent technological developments in highly paralleled SNP genotyping makes it practical to now consider the use of these markers for whole-genome genetic linkage analyses. Here, we report the findings from three successful genomewide linkage analyses of families segregating autosomal recessively inherited neonatal diabetes, craniosynostosis and dominantly inherited renal dysplasia using the Affymetrix 10K SNP array. A single locus was identified for each disease state, two of which are novel. The performance of the SNP array, both in terms of efficiency and precision, indicates that such platforms will become the dominant technology for performing genomewide linkage searches.
Collapse
Affiliation(s)
- Gabrielle S Sellick
- Section of Cancer Genetics, Institute of Cancer Research, Sutton, SM2 5NG, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Sellick GS, Barker KT, Stolte-Dijkstra I, Fleischmann C, Coleman RJ, Garrett C, Gloyn AL, Edghill EL, Hattersley AT, Wellauer PK, Goodwin G, Houlston RS. Mutations in PTF1A cause pancreatic and cerebellar agenesis. Nat Genet 2004; 36:1301-5. [PMID: 15543146 DOI: 10.1038/ng1475] [Citation(s) in RCA: 290] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2004] [Accepted: 10/21/2004] [Indexed: 11/09/2022]
Abstract
Individuals with permanent neonatal diabetes mellitus usually present within the first three months of life and require insulin treatment. We recently identified a locus on chromosome 10p13-p12.1 involved in permanent neonatal diabetes mellitus associated with pancreatic and cerebellar agenesis in a genome-wide linkage search of a consanguineous Pakistani family. Here we report the further linkage analysis of this family and a second family of Northern European descent segregating an identical phenotype. Positional cloning identified the mutations 705insG and C886T in the gene PTF1A, encoding pancreas transcription factor 1alpha, as disease-causing sequence changes. Both mutations cause truncation of the expressed PTF1A protein C-terminal to the basic-helix-loop-helix domain. Reporter-gene studies using a minimal PTF1A deletion mutant indicate that the deleted region defines a new domain that is crucial for the function of this protein. PTF1A is known to have a role in mammalian pancreatic development, and the clinical phenotype of the affected individuals implicated the protein as a key regulator of cerebellar neurogenesis. The essential role of PTF1A in normal cerebellar development was confirmed by detailed neuropathological analysis of Ptf1a(-/-) mice.
Collapse
Affiliation(s)
- Gabrielle S Sellick
- Section of Cancer Genetics, Institute of Cancer Research, Surrey SM2 5NG, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Liu Z, Sun HX, Zhang YW, Li YF, Zuo J, Meng Y, Fang FD. Effect of SNPs in protein kinase Cz gene on gene expression in the reporter gene detection system. World J Gastroenterol 2004; 10:2357-60. [PMID: 15285019 PMCID: PMC4576288 DOI: 10.3748/wjg.v10.i16.2357] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
AIM: To investigated the effects of the SNPs (rs411021, rs436045, rs427811, rs385039 and rs809912) on gene expression and further identify the susceptibility genes of type 2 diabetes.
METHODS: Ten allele fragments (49 bp each) were synthesized according to the 5 SNPs mentioned above. These fragments were cloned into luciferase reporter gene vector and then transfected into HepG2 cells. The activity of the luciferase was assayed. Effects of the SNPs on RNA splicing were analyzed by bioinformatics.
RESULTS: rs427811T allele and rs809912G allele enhanced the activity of the reporter gene expression. None of the 5 SNPs affected RNA splicing.
CONCLUSION: SNPs in protein kinase Cz (PKCZ) gene probably play a role in the susceptibility to type 2 diabetes by affecting the expression level of the relevant genes.
Collapse
Affiliation(s)
- Zhuo Liu
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | | | | | | | | | | | | |
Collapse
|