1
|
Blanken CPS, Bayer S, Buchner Carro S, Hauner H, Holzapfel C. Associations Between TCF7L2, PPARγ, and KCNJ11 Genotypes and Insulin Response to an Oral Glucose Tolerance Test: A Systematic Review. Mol Nutr Food Res 2025; 69:e202400561. [PMID: 39828593 PMCID: PMC11791742 DOI: 10.1002/mnfr.202400561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 10/31/2024] [Accepted: 12/06/2024] [Indexed: 01/22/2025]
Abstract
SCOPE Insulin responses to standardized meals differ between individuals. This variability may in part be explained by genotype. This systematic review evaluates associations between genotype and insulin response to an oral glucose tolerance test (OGTT) in terms of insulin area under the curve (AUC). METHODS AND RESULTS Three electronic databases (Web of Science, Embase, PubMed) were searched for studies investigating associations between insulin AUC after an OGTT and single nucleotide polymorphisms (SNPs) belonging to the transcription factor 7 like 2 (TCF7L2) gene, the peroxisome proliferator-activated receptor gamma (PPARγ) gene, or the potassium inwardly rectifying channel subfamily J member 11 (KCNJ11) gene in persons without diabetes. A total of 5199 articles were identified, of which 38 were included. Among them were family-based studies (9), twin studies (2), and studies with unrelated participants (27). Seventeen articles investigated TCF7L2 (7 SNPs), 14 investigated PPARγ (1 SNP), and 8 investigated KCNJ11 (5 SNPs). For all investigated SNPs, at least half of the reports indicated no statistically significant association with postprandial insulin AUC. CONCLUSION No evidence was found for associations between TCF7L2, PPARγ, and KCNJ11 genotypes and insulin AUC after an OGTT. Future studies should investigate the effect of genetic risk scores on postprandial insulin.
Collapse
Affiliation(s)
- Carmen P. S. Blanken
- Institute for Nutritional Medicine, School of Medicine and Health, Technical University of MunichMunichGermany
| | - Sandra Bayer
- Institute for Nutritional Medicine, School of Medicine and Health, Technical University of MunichMunichGermany
| | - Sophie Buchner Carro
- Institute for Nutritional Medicine, School of Medicine and Health, Technical University of MunichMunichGermany
| | - Hans Hauner
- Institute for Nutritional Medicine, School of Medicine and Health, Technical University of MunichMunichGermany
| | - Christina Holzapfel
- Institute for Nutritional Medicine, School of Medicine and Health, Technical University of MunichMunichGermany
- Department of Nutritional, Food and Consumer SciencesFulda University of Applied SciencesFuldaGermany
| |
Collapse
|
2
|
Ahmed A, Elsadek HM, Shalaby SM, Elnahas HM. Association of SLC22A1, SLC47A1, and KCNJ11 polymorphisms with efficacy and safety of metformin and sulfonylurea combination therapy in Egyptian patients with type 2 diabetes. Res Pharm Sci 2023; 18:614-625. [PMID: 39005567 PMCID: PMC11246114 DOI: 10.4103/1735-5362.389949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/08/2023] [Accepted: 09/12/2023] [Indexed: 07/16/2024] Open
Abstract
Background and purpose Multidrug and toxin extrusion transporter 1 (MATE1), encoded by the SLC47A1 gene and single nucleotide polymorphisms of organic cation transport 1, may impact metformin's responsiveness and side effects. Inward-rectifier potassium channel 6.2 (Kir 6.2) subunits encoded by KCNJ11 may affect the response to sulfonylurea. This study aimed to evaluate the association between SLC22A1 rs72552763 and rs628031, SLC47A1 rs2289669 and KCNJ11 rs5219 genetic variations with sulfonylurea and metformin combination therapy efficacy and safety in Egyptian type 2 diabetes mellitus patients. Experimental approach This study was conducted on 100 cases taking at least one year of sulfonylurea and metformin combination therapy. Patients were genotyped via the polymerase chain reaction-restriction fragment length polymorphism technique. Then, according to their glycated hemoglobin level, cases were subdivided into non-responders or responders. Depending on metformin-induced gastrointestinal tract side effects incidence, patients are classified as tolerant or intolerant. Findings/Results KCNJ11 rs5219 heterozygous and homozygous mutant genotypes, SLC47A1 rs2289669 heterozygous and homozygous mutant genotypes (AA and AG), and mutant alleles of both polymorphisms were significantly related with increased response to combined therapy. Individuals with the SLC22A1 (rs72552763) GAT/del genotype and the SLC22A1 (rs628031) AG and AA genotypes were at a higher risk for metformin-induced gastrointestinal tract adverse effects. Conclusion and implications The results implied a role for SLC47A1 rs2289669 and KCNJ11 rs5219 in the responsiveness to combined therapy. SLC22A1 (rs628031) and (rs72552763) polymorphisms may be associated with increased metformin adverse effects in type 2 diabetes mellitus patients.
Collapse
Affiliation(s)
- Aya Ahmed
- Department of Pharmacy Practice, Faculty of Pharmacy, Zagazig University, Egypt
| | - Hany M Elsadek
- Internal Medicine Department, Faculty of Medicine, Zagazig University, Egypt
| | - Sally M Shalaby
- Medical Biochemistry Department, Faculty of Medicine, Zagazig University, Egypt
| | - Hanan M Elnahas
- Department of Pharmaceutical and Industrial Pharmacy, Faculty of Pharmacy, Zagazig University, Egypt
| |
Collapse
|
3
|
Tanveer Y, Sanipini S, Khleif R, Tsenteradze T, Gapizov A, Grezenko H, Affaf M, Abdelaziz AM, Rehman A, Zia U, Jama H, Shehryar A, Mohsin SN, Ekhator C, Khan R. Transforming Medical Paradigms: A Cutting-Edge Review of Genomic and Robotic Medical and Surgical Approaches in the Battle Against Diabetes, Hypertension, and Cardiovascular Issues. Cureus 2023; 15:e46998. [PMID: 37965396 PMCID: PMC10641027 DOI: 10.7759/cureus.46998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/13/2023] [Indexed: 11/16/2023] Open
Abstract
This article provides an in-depth review of the current state of management for diabetes, hypertension, and cardiovascular disease, focusing on advancements from genomics to robotics. It explores the role of genomic markers in personalized medicine, offering tailored treatment options for these chronic conditions. The article also examines the efficacy of various pharmacological and surgical interventions, including bariatric surgery for diabetes and device-based treatments for hypertension. A comparative analysis is presented to evaluate the cost-effectiveness and patient outcomes between medical and surgical approaches. The review concludes that while personalized medicine and minimally invasive surgical techniques show promise, more high-quality comparative research is needed. The ultimate goal is to integrate these emerging technologies within a framework of evidence-based medicine to improve patient outcomes and health equity.
Collapse
Affiliation(s)
| | | | - Rafeef Khleif
- Medical School, Xavier University School of Medicine, Oranjestad, ABW
| | - Tamar Tsenteradze
- General Surgery, Tbilisi State Medical Univerity, Tbilisi, GEO
- Cardiology, Tbilisi State Medical Univerity, Tbilisi, GEO
- Internal Medicine, Tbilisi State Medical Univerity, Tbilisi, GEO
| | - Abubakar Gapizov
- General Surgery, American University of Antigua, Saint George, ATG
| | - Han Grezenko
- Translational Neuroscience, Barrow Neurological Institute, Phoenix, USA
| | - Maryam Affaf
- Internal Medicine, Women's Medical and Dental College, Abbotabad, PAK
| | - Ali M Abdelaziz
- Internal Medicine, Alexandria University Faculty of Medicine, Alexandria, EGY
| | | | - Umar Zia
- Internal Medicine, Khyber Medical University, Peshawar, PAK
| | - Huda Jama
- Internal Medicine, Nishtar Medical University, Multan, PAK
| | | | | | - Chukwuyem Ekhator
- Neuro-Oncology, New York Institute of Technology, College of Osteopathic Medicine, Old Westbury, USA
| | - Rehman Khan
- Internal Medicine, Mayo Hospital, Lahore, PAK
| |
Collapse
|
4
|
Bayer S, Reik A, von Hesler L, Hauner H, Holzapfel C. Association between Genotype and the Glycemic Response to an Oral Glucose Tolerance Test: A Systematic Review. Nutrients 2023; 15:nu15071695. [PMID: 37049537 PMCID: PMC10096950 DOI: 10.3390/nu15071695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 04/03/2023] Open
Abstract
The inter-individual variability of metabolic response to foods may be partly due to genetic variation. This systematic review aims to assess the associations between genetic variants and glucose response to an oral glucose tolerance test (OGTT). Three databases (PubMed, Web of Science, Embase) were searched for keywords in the field of genetics, OGTT, and metabolic response (PROSPERO: CRD42021231203). Inclusion criteria were available data on single nucleotide polymorphisms (SNPs) and glucose area under the curve (gAUC) in a healthy study cohort. In total, 33,219 records were identified, of which 139 reports met the inclusion criteria. This narrative synthesis focused on 49 reports describing gene loci for which several reports were available. An association between SNPs and the gAUC was described for 13 gene loci with 53 different SNPs. Three gene loci were mostly investigated: transcription factor 7 like 2 (TCF7L2), peroxisome proliferator-activated receptor gamma (PPARγ), and potassium inwardly rectifying channel subfamily J member 11 (KCNJ11). In most reports, the associations were not significant or single findings were not replicated. No robust evidence for an association between SNPs and gAUC after an OGTT in healthy persons was found across the identified studies. Future studies should investigate the effect of polygenic risk scores on postprandial glucose levels.
Collapse
Affiliation(s)
- Sandra Bayer
- Institute for Nutritional Medicine, School of Medicine, University Hospital “Klinikum Rechts der Isar”, Technical University of Munich, 80992 Munich, Germany
| | - Anna Reik
- Institute for Nutritional Medicine, School of Medicine, University Hospital “Klinikum Rechts der Isar”, Technical University of Munich, 80992 Munich, Germany
| | - Lena von Hesler
- Institute for Nutritional Medicine, School of Medicine, University Hospital “Klinikum Rechts der Isar”, Technical University of Munich, 80992 Munich, Germany
| | - Hans Hauner
- Institute for Nutritional Medicine, School of Medicine, University Hospital “Klinikum Rechts der Isar”, Technical University of Munich, 80992 Munich, Germany
- Else Kröner-Fresenius-Center for Nutritional Medicine, School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
| | - Christina Holzapfel
- Institute for Nutritional Medicine, School of Medicine, University Hospital “Klinikum Rechts der Isar”, Technical University of Munich, 80992 Munich, Germany
- Department of Nutritional, Food and Consumer Sciences, Fulda University of Applied Sciences, 36037 Fulda, Germany
- Correspondence:
| |
Collapse
|
5
|
Moazzam-Jazi M, Najd-Hassan-Bonab L, Masjoudi S, Tohidi M, Hedayati M, Azizi F, Daneshpour MS. Risk of type 2 diabetes and KCNJ11 gene polymorphisms: a nested case-control study and meta-analysis. Sci Rep 2022; 12:20709. [PMID: 36456687 PMCID: PMC9715540 DOI: 10.1038/s41598-022-24931-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 11/22/2022] [Indexed: 12/05/2022] Open
Abstract
Due to the central role in insulin secretion, the potassium inwardly-rectifying channel subfamily J member 11 (KCNJ11) gene is one of the essential genes for type 2 diabetes (T2D) predisposition. However, the relevance of this gene to T2D development is not consistent among diverse populations. In the current study, we aim to capture the possible association of common KCNJ11 variants across Iranian adults, followed by a meta-analysis. We found that the tested variants of KCNJ11 have not contributed to T2D incidence in Iranian adults, consistent with similar insulin secretion levels among individuals with different genotypes. The integration of our results with 72 eligible published case-control studies (41,372 cases and 47,570 controls) as a meta-analysis demonstrated rs5219 and rs5215 are significantly associated with the increased T2D susceptibility under different genetic models. Nevertheless, the stratified analysis according to ethnicity showed rs5219 is involved in the T2D risk among disparate populations, including American, East Asian, European, and Greater Middle Eastern, but not South Asian. Additionally, the meta-regression analysis demonstrated that the sample size of both case and control groups was significantly associated with the magnitude of pooled genetic effect size. The present study can expand our knowledge about the KCNJ11 common variant's contributions to T2D incidence, which is valuable for designing SNP-based panels for potential clinical applications in precision medicine. It also highlights the importance of similar sample sizes for avoiding high heterogeneity and conducting a more precise meta-analysis.
Collapse
Affiliation(s)
- Maryam Moazzam-Jazi
- Cellular, and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Leila Najd-Hassan-Bonab
- Cellular, and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sajedeh Masjoudi
- Cellular, and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Tohidi
- Prevention of Metabolic Disorder Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Hedayati
- Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fereidoun Azizi
- Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam S Daneshpour
- Cellular, and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Yan Z, Fortunato M, Shyr ZA, Clark AL, Fuess M, Nichols CG, Remedi MS. Genetic Reduction of Glucose Metabolism Preserves Functional β-Cell Mass in KATP-Induced Neonatal Diabetes. Diabetes 2022; 71:1233-1245. [PMID: 35294000 PMCID: PMC9163553 DOI: 10.2337/db21-0992] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 03/09/2022] [Indexed: 11/13/2022]
Abstract
β-Cell failure and loss of β-cell mass are key events in diabetes progression. Although insulin hypersecretion in early stages has been implicated in β-cell exhaustion/failure, loss of β-cell mass still occurs in KATP gain-of-function (GOF) mouse models of human neonatal diabetes in the absence of insulin secretion. Thus, we hypothesize that hyperglycemia-induced increased β-cell metabolism is responsible for β-cell failure and that reducing glucose metabolism will prevent loss of β-cell mass. To test this, KATP-GOF mice were crossed with mice carrying β-cell-specific glucokinase haploinsufficiency (GCK+/-), to genetically reduce glucose metabolism. As expected, both KATP-GOF and KATP-GOF/GCK+/- mice showed lack of glucose-stimulated insulin secretion. However, KATP-GOF/GCK+/- mice demonstrated markedly reduced blood glucose, delayed diabetes progression, and improved glucose tolerance compared with KATP-GOF mice. In addition, decreased plasma insulin and content, increased proinsulin, and augmented plasma glucagon observed in KATP-GOF mice were normalized to control levels in KATP-GOF/GCK+/- mice. Strikingly, KATP-GOF/GCK+/- mice demonstrated preserved β-cell mass and identity compared with the marked decrease in β-cell identity and increased dedifferentiation observed in KATP-GOF mice. Moreover KATP-GOF/GCK+/- mice demonstrated restoration of body weight and liver and brown/white adipose tissue mass and function and normalization of physical activity and metabolic efficiency compared with KATP-GOF mice. These results demonstrate that decreasing β-cell glucose signaling can prevent glucotoxicity-induced loss of insulin content and β-cell failure independently of compensatory insulin hypersecretion and β-cell exhaustion.
Collapse
Affiliation(s)
- Zihan Yan
- Division of Endocrinology, Metabolism and Lipid Research, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Manuela Fortunato
- Division of Endocrinology, Metabolism and Lipid Research, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Zeenat A. Shyr
- Division of Endocrinology, Metabolism and Lipid Research, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Amy L. Clark
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO
| | - Matt Fuess
- Division of Endocrinology, Metabolism and Lipid Research, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Colin G. Nichols
- Deparment of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO
- Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, St. Louis, MO
| | - Maria S. Remedi
- Division of Endocrinology, Metabolism and Lipid Research, Department of Medicine, Washington University School of Medicine, St. Louis, MO
- Deparment of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO
- Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, St. Louis, MO
- Corresponding author: Maria S. Remedi,
| |
Collapse
|
7
|
Ren Y, Zhu W, Shi J, Shao A, Cheng Y, Liu Y. Association between KCNJ11 E23K polymorphism and the risk of type 2 diabetes mellitus: A global meta-analysis. J Diabetes Complications 2022; 36:108170. [PMID: 35305868 DOI: 10.1016/j.jdiacomp.2022.108170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/22/2022] [Accepted: 03/08/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND Potassium inwardly rectifying channel, subfamily J member 11(KCNJ11) is considered to be a potential susceptible gene of type 2 diabetes mellitus (T2DM), and the association between KCNJ11 E23K polymorphism and T2DM risk is still controversial worldwide. This meta-analysis was performed to assess the association more accurately between KCNJ11 E23K polymorphism and T2DM risk. METHODS The up-to-data meta-analysis was conducted based on studies selected from eight databases (PubMed, Web of Science, Medline, Scopus, Embase, CNKI, WanFang, and Vip). Five gene models were included in our study: allele model (K-allele vs. E-allele), heterozygous model (EK vs. EE), homozygous model (KK vs. EE), dominant genetic model (EK + KK vs. EE), and recessive genetic model (EK + EE vs. KK). Association strength was evaluated by odds ratio (OR) and 95% confidence interval (CI), publication bias was evaluated by Begg's funnel plot and Egger's test, sensitivity analysis and trial sequential analysis (TSA) were used to evaluate the stability of the results. RESULTS According to the inclusion and exclusion criteria, 31 eligible articles were finally selected in our meta-analysis, including 8754 T2DM cases and 7587 controls. We found that allelic model (OR = 1.25, 95%CI: 1.15-1.35, P < 0.01), heterozygous model (OR = 1.31, 95% CI: 1.18-1.44, P < 0.01), homozygous model (OR = 1.48, 95% CI: 1.24-1.76, P < 0.01), and dominant genetic model (OR = 1.35, 95% CI: 1.22-1.50, P < 0.01) were significantly associated with increased risk of T2DM, but recessive genetic model (OR = 0.78, 95% CI: 0.67-0.91, P < 0.01) was considered as a protective factor for T2DM. No significant evidence of publication bias was found. CONCLUSION Our meta-analysis confirms the association between KCNJ11 E23K polymorphism and the risk of T2DM, highlighting that gene-gene interaction and gene-environment interaction should be investigated in future.
Collapse
Affiliation(s)
- Yaxuan Ren
- Department of Epidemiology and Biostatistics, School of Public Health of Jilin University, Changchun 130021, China
| | - Wenfei Zhu
- Department of Epidemiology and Biostatistics, School of Public Health of Jilin University, Changchun 130021, China
| | - Jikang Shi
- Department of Epidemiology and Biostatistics, School of Public Health of Jilin University, Changchun 130021, China
| | - Aiyu Shao
- Department of Epidemiology and Biostatistics, School of Public Health of Jilin University, Changchun 130021, China
| | - Yi Cheng
- The Cardiovascular Center, the First Hospital of Jilin University, Changchun 130021, China.
| | - Yawen Liu
- Department of Epidemiology and Biostatistics, School of Public Health of Jilin University, Changchun 130021, China.
| |
Collapse
|
8
|
Thomas S, Ouhtit A, Al Khatib HA, Eid AH, Mathew S, Nasrallah GK, Emara MM, Al Maslamani MA, Yassine HM. Burden and Disease Pathogenesis of Influenza and Other Respiratory Viruses in Diabetic Patients. J Infect Public Health 2022; 15:412-424. [DOI: 10.1016/j.jiph.2022.03.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 02/24/2022] [Accepted: 03/07/2022] [Indexed: 02/07/2023] Open
|
9
|
Shah AS, Nadeau KJ, Dabelea D, Redondo MJ. Spectrum of Phenotypes and Causes of Type 2 Diabetes in Children. Annu Rev Med 2022; 73:501-515. [PMID: 35084995 PMCID: PMC9022328 DOI: 10.1146/annurev-med-042120-012033] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Several factors, including genetics, family history, diet, physical activity, obesity, and insulin resistance in puberty, appear to increase the risk of type 2 diabetes in youth. Youth-onset type 2 diabetes is often thought of as a single entity but rather exists as a spectrum of disease with differences in presentation, metabolic characteristics, clinical progression, and complication rates. We review what is currently known regarding the risks associated with developing type 2 diabetes in youth. Additionally, we focus on the spectrum of phenotypes of pediatric type 2 diabetes, discuss the pathogenic underpinnings and potential therapeutic relevance of this heterogeneity, and compare youth-onset type 2 diabetes with type 1 diabetes and adult-onset type 2 diabetes. Finally, we highlight knowledge gaps in prediction and prevention of youth-onset type 2 diabetes.
Collapse
Affiliation(s)
- Amy S. Shah
- Cincinnati Children’s Hospital Medical Center and University of Cincinnati, Cincinnati, Ohio 45229, USA
| | - Kristen J. Nadeau
- Children’s Hospital Colorado and University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA
| | - Dana Dabelea
- Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, Department of Epidemiology, and Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA
| | - Maria J. Redondo
- Texas Children’s Hospital, Baylor College of Medicine, Houston, Texas 77030, USA
| |
Collapse
|
10
|
Bonetti S, Zusi C, Rinaldi E, Boselli ML, Csermely A, Malerba G, Trabetti E, Bonora E, Bonadonna R, Trombetta M. Role of monogenic diabetes genes on beta cell function in Italian patients with newly diagnosed type 2 diabetes. The Verona Newly Diagnosed Type 2 Diabetes Study (VNDS) 13. DIABETES & METABOLISM 2022; 48:101323. [DOI: 10.1016/j.diabet.2022.101323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/27/2021] [Accepted: 11/25/2021] [Indexed: 10/19/2022]
|
11
|
Sachse G, Haythorne E, Hill T, Proks P, Joynson R, Terrón-Expósito R, Bentley L, Tucker SJ, Cox RD, Ashcroft FM. The KCNJ11-E23K Gene Variant Hastens Diabetes Progression by Impairing Glucose-Induced Insulin Secretion. Diabetes 2021; 70:1145-1156. [PMID: 33568422 DOI: 10.2337/db20-0691] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 02/05/2021] [Indexed: 11/13/2022]
Abstract
The ATP-sensitive K+ (KATP) channel controls blood glucose levels by coupling glucose metabolism to insulin secretion in pancreatic β-cells. E23K, a common polymorphism in the pore-forming KATP channel subunit (KCNJ11) gene, has been linked to increased risk of type 2 diabetes. Understanding the risk-allele-specific pathogenesis has the potential to improve personalized diabetes treatment, but the underlying mechanism has remained elusive. Using a genetically engineered mouse model, we now show that the K23 variant impairs glucose-induced insulin secretion and increases diabetes risk when combined with a high-fat diet (HFD) and obesity. KATP-channels in β-cells with two K23 risk alleles (KK) showed decreased ATP inhibition, and the threshold for glucose-stimulated insulin secretion from KK islets was increased. Consequently, the insulin response to glucose and glycemic control was impaired in KK mice fed a standard diet. On an HFD, the effects of the KK genotype were exacerbated, accelerating diet-induced diabetes progression and causing β-cell failure. We conclude that the K23 variant increases diabetes risk by impairing insulin secretion at threshold glucose levels, thus accelerating loss of β-cell function in the early stages of diabetes progression.
Collapse
Affiliation(s)
- Gregor Sachse
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, U.K.
| | - Elizabeth Haythorne
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, U.K
| | - Thomas Hill
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, U.K
| | - Peter Proks
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, U.K
- Department of Physics, University of Oxford, Oxford, U.K
| | - Russell Joynson
- Mammalian Genetics Unit and Mary Lyon Centre, MRC Harwell Institute, Oxfordshire, U.K
| | - Raul Terrón-Expósito
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, U.K
| | - Liz Bentley
- Mammalian Genetics Unit and Mary Lyon Centre, MRC Harwell Institute, Oxfordshire, U.K
| | | | - Roger D Cox
- Mammalian Genetics Unit and Mary Lyon Centre, MRC Harwell Institute, Oxfordshire, U.K
| | - Frances M Ashcroft
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, U.K
| |
Collapse
|
12
|
Sayed S, Nabi AHMN. Diabetes and Genetics: A Relationship Between Genetic Risk Alleles, Clinical Phenotypes and Therapeutic Approaches. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1307:457-498. [PMID: 32314317 DOI: 10.1007/5584_2020_518] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Unveiling human genome through successful completion of Human Genome Project and International HapMap Projects with the advent of state of art technologies has shed light on diseases associated genetic determinants. Identification of mutational landscapes such as copy number variation, single nucleotide polymorphisms or variants in different genes and loci have revealed not only genetic risk factors responsible for diseases but also region(s) playing protective roles. Diabetes is a global health concern with two major types - type 1 diabetes (T1D) and type 2 diabetes (T2D). Great progress in understanding the underlying genetic predisposition to T1D and T2D have been made by candidate gene studies, genetic linkage studies, genome wide association studies with substantial number of samples. Genetic information has importance in predicting clinical outcomes. In this review, we focus on recent advancement regarding candidate gene(s) associated with these two traits along with their clinical parameters as well as therapeutic approaches perceived. Understanding genetic architecture of these disease traits relating clinical phenotypes would certainly facilitate population stratification in diagnosing and treating T1D/T2D considering the doses and toxicity of specific drugs.
Collapse
Affiliation(s)
- Shomoita Sayed
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, Bangladesh
| | - A H M Nurun Nabi
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, Bangladesh.
| |
Collapse
|
13
|
De Franco E, Saint-Martin C, Brusgaard K, Knight Johnson AE, Aguilar-Bryan L, Bowman P, Arnoux JB, Larsen AR, Sanyoura M, Greeley SAW, Calzada-León R, Harman B, Houghton JAL, Nishimura-Meguro E, Laver TW, Ellard S, Del Gaudio D, Christesen HT, Bellanné-Chantelot C, Flanagan SE. Update of variants identified in the pancreatic β-cell K ATP channel genes KCNJ11 and ABCC8 in individuals with congenital hyperinsulinism and diabetes. Hum Mutat 2020; 41:884-905. [PMID: 32027066 PMCID: PMC7187370 DOI: 10.1002/humu.23995] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 01/08/2020] [Accepted: 02/04/2020] [Indexed: 01/03/2023]
Abstract
The most common genetic cause of neonatal diabetes and hyperinsulinism is pathogenic variants in ABCC8 and KCNJ11. These genes encode the subunits of the β-cell ATP-sensitive potassium channel, a key component of the glucose-stimulated insulin secretion pathway. Mutations in the two genes cause dysregulated insulin secretion; inactivating mutations cause an oversecretion of insulin, leading to congenital hyperinsulinism, whereas activating mutations cause the opposing phenotype, diabetes. This review focuses on variants identified in ABCC8 and KCNJ11, the phenotypic spectrum and the treatment implications for individuals with pathogenic variants.
Collapse
Affiliation(s)
- Elisa De Franco
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| | - Cécile Saint-Martin
- Department of Genetics, Pitié-Salpêtrière Hospital, AP-HP, Sorbonne University, Paris, France
| | - Klaus Brusgaard
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
| | - Amy E Knight Johnson
- Department of Human Genetics, University of Chicago Genetic Services Laboratory, The University of Chicago, Chicago, Illinois
| | | | - Pamela Bowman
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| | - Jean-Baptiste Arnoux
- Reference Center for Inherited Metabolic Diseases, Necker-Enfants Malades Hospital, Paris, France
| | - Annette Rønholt Larsen
- Hans Christian Andersen Children's Hospital, Odense University Hospital, Odense, Denmark
| | - May Sanyoura
- Section of Adult and Pediatric Endocrinology, Diabetes, and Metabolism, Kovler Diabetes Center, University of Chicago, Chicago, Illinois
| | - Siri Atma W Greeley
- Section of Adult and Pediatric Endocrinology, Diabetes, and Metabolism, Kovler Diabetes Center, University of Chicago, Chicago, Illinois
| | - Raúl Calzada-León
- Pediatric Endocrinology, Endocrine Service, National Institute for Pediatrics, Mexico City, Mexico
| | - Bradley Harman
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| | - Jayne A L Houghton
- Department of Molecular Genetics, Royal Devon and Exeter NHS Foundation Trust, Exeter, UK
| | - Elisa Nishimura-Meguro
- Department of Pediatric Endocrinology, Children's Hospital, National Medical Center XXI Century, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Thomas W Laver
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| | - Sian Ellard
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK.,Department of Molecular Genetics, Royal Devon and Exeter NHS Foundation Trust, Exeter, UK
| | - Daniela Del Gaudio
- Department of Human Genetics, University of Chicago Genetic Services Laboratory, The University of Chicago, Chicago, Illinois
| | - Henrik Thybo Christesen
- Hans Christian Andersen Children's Hospital, Odense University Hospital, Odense, Denmark.,Odense Pancreas Center, Odense University Hospital, Odense, Denmark
| | | | - Sarah E Flanagan
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| |
Collapse
|
14
|
Khatami F, Mohajeri-Tehrani MR, Tavangar SM. The Importance of Precision Medicine in Type 2 Diabetes Mellitus (T2DM): From Pharmacogenetic and Pharmacoepigenetic Aspects. Endocr Metab Immune Disord Drug Targets 2020; 19:719-731. [PMID: 31122183 DOI: 10.2174/1871530319666190228102212] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 10/18/2018] [Accepted: 11/21/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND Type 2 Diabetes Mellitus (T2DM) is a worldwide disorder as the most important challenges of health-care systems. Controlling the normal glycaemia greatly profit long-term prognosis and gives explanation for early, effective, constant, and safe intervention. MATERIAL AND METHODS Finding the main genetic and epigenetic profile of T2DM and the exact molecular targets of T2DM medications can shed light on its personalized management. The comprehensive information of T2DM was earned through the genome-wide association study (GWAS) studies. In the current review, we represent the most important candidate genes of T2DM like CAPN10, TCF7L2, PPAR-γ, IRSs, KCNJ11, WFS1, and HNF homeoboxes. Different genetic variations of a candidate gene can predict the efficacy of T2DM personalized strategy medication. RESULTS SLCs and AMPK variations are considered for metformin, CYP2C9, KATP channel, CDKAL1, CDKN2A/2B and KCNQ1 for sulphonylureas, OATP1B, and KCNQ1 for repaglinide and the last but not the least ADIPOQ, PPAR-γ, SLC, CYP2C8, and SLCO1B1 for thiazolidinediones response prediction. CONCLUSION Taken everything into consideration, there is an extreme need to determine the genetic status of T2DM patients in some known genetic region before planning the medication strategies.
Collapse
Affiliation(s)
- Fatemeh Khatami
- Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad R Mohajeri-Tehrani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed M Tavangar
- Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.,Department of Pathology, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
15
|
Li Y, Shen K, Li C, Yang Y, Yang M, Tao W, He S, Shi L, Yao Y. Identifying the association between single nucleotide polymorphisms in KCNQ1, ARAP1, and KCNJ11 and type 2 diabetes mellitus in a Chinese population. Int J Med Sci 2020; 17:2379-2386. [PMID: 32922204 PMCID: PMC7484634 DOI: 10.7150/ijms.48072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 08/21/2020] [Indexed: 12/27/2022] Open
Abstract
Background: Type 2 diabetes mellitus (T2DM) has a high global prevalence, and insufficient insulin secretion is one of the major reasons for its development. Therefore, investigating the association between T2DM and the single nucleotide polymorphisms (SNPs) in genes associated with insulin secretion is necessary. Methods: T2DM (1,194) and nondiabetic (NDM) (1,292) subjects were enrolled and the ten single nucleotide polymorphisms (SNPs) in KCNQ1, ARAP1, and KCNJ11 associated with insulin secretion were genotyped in a Chinese population. Results: Our data revealed that the rs2237897T allele in KCNQ1 is the protective allele for T2DM (P<0.001, OR=0.793; 95%CI: 0.705-0.893). However, the A allele of rs1552224 in ARAP1 may be a risk factor for T2DM (P=0.002, OR=12.070; 95% CI: 1.578-92.337). The haplotype analysis revealed that rs151290-rs2237892CC and rs2237895-rs2237897CC in KCNQ1 constitute the risk haplotype in T2DM development (P=0.010, OR=1.160; 95% CI: 1.037-1.299 and P=0.004, OR=1.192; 95% CI: 1.057-1.344). Moreover, rs2237895-rs2237897AT in KCNQ1 constitutes the protective haplotype in T2DM (P=0.001, OR=0.819; 95% CI: 0.727-0.923). In the inheritance models analysis, the rs2283228 (C/A-C/C) genotype is the protective factor compared to the A/A genotype (P=0.005, OR=0.79; 95% CI: 0.68-0.93). For rs2237897, the C/T-T/T genotype is the protective factor compared to the C/C genotype (P<0.001, OR=0.74; 95% CI: 0.63-0.87). Furthermore, when compared with the rs2237897 (C/T-T/T) genotype, rs2237897C/C genotype showed higher HbA1C levels (8.731±2.697 vs 9.282±2.921, P=0.001). Conclusion: Our results revealed that genetic variations in KCNQ1 and ARAP1 were associated with T2DM susceptibility in a Chinese population.
Collapse
Affiliation(s)
- Yiping Li
- Department of Endocrinology and Metabolism, The Second People's Hospital of Yunnan Province & The Fourth Affiliated Hospital of Kunming Medical University, Kunming 650021, Yunnan, China
| | - Keyu Shen
- Department of Medicine, Dentistry and Healthy Science, The University of Melbourne, Melbourne VIC3010, Australia
| | - Chuanyin Li
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, Yunnan, China
| | - Ying Yang
- Department of Endocrinology and Metabolism, The Second People's Hospital of Yunnan Province & The Fourth Affiliated Hospital of Kunming Medical University, Kunming 650021, Yunnan, China
| | - Man Yang
- Department of Endocrinology and Metabolism, The Second People's Hospital of Yunnan Province & The Fourth Affiliated Hospital of Kunming Medical University, Kunming 650021, Yunnan, China
| | - Wenyu Tao
- Department of Endocrinology and Metabolism, The Second People's Hospital of Yunnan Province & The Fourth Affiliated Hospital of Kunming Medical University, Kunming 650021, Yunnan, China
| | - Siqi He
- School of Clinical Medicine, Dali University, Dali 671000, Yunnan, China
| | - Li Shi
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, Yunnan, China
| | - Yufeng Yao
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, Yunnan, China
| |
Collapse
|
16
|
Jacobson DA, Shyng SL. Ion Channels of the Islets in Type 2 Diabetes. J Mol Biol 2019; 432:1326-1346. [PMID: 31473158 DOI: 10.1016/j.jmb.2019.08.014] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 08/19/2019] [Accepted: 08/21/2019] [Indexed: 02/06/2023]
Abstract
Ca2+ is an essential signal for pancreatic β-cell function. Ca2+ plays critical roles in numerous β-cell pathways such as insulin secretion, transcription, metabolism, endoplasmic reticulum function, and the stress response. Therefore, β-cell Ca2+ handling is tightly controlled. At the plasma membrane, Ca2+ entry primarily occurs through voltage-dependent Ca2+ channels. Voltage-dependent Ca2+ channel activity is dependent on orchestrated fluctuations in the plasma membrane potential or voltage, which are mediated via the activity of many ion channels. During the pathogenesis of type 2 diabetes the β-cell is exposed to stressful conditions, which result in alterations of Ca2+ handling. Some of the changes in β-cell Ca2+ handling that occur under stress result from perturbations in ion channel activity, expression or localization. Defective Ca2+ signaling in the diabetic β-cell alters function, limits insulin secretion and exacerbates hyperglycemia. In this review, we focus on the β-cell ion channels that control Ca2+ handling and how they impact β-cell dysfunction in type 2 diabetes.
Collapse
Affiliation(s)
- David A Jacobson
- Department of Molecular Physiology and Biophysics, Vanderbilt University, 7415 MRB4 (Langford), 2213 Garland Avenue, Nashville, TN 37232, USA.
| | - Show-Ling Shyng
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, L224, MRB 624, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA.
| |
Collapse
|
17
|
Khan RMM, Chua ZJY, Tan JC, Yang Y, Liao Z, Zhao Y. From Pre-Diabetes to Diabetes: Diagnosis, Treatments and Translational Research. MEDICINA (KAUNAS, LITHUANIA) 2019; 55:E546. [PMID: 31470636 PMCID: PMC6780236 DOI: 10.3390/medicina55090546] [Citation(s) in RCA: 191] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 08/16/2019] [Accepted: 08/23/2019] [Indexed: 12/14/2022]
Abstract
Diabetes, a silent killer, is one of the most widely prevalent conditions of the present time. According to the 2017 International Diabetes Federation (IDF) statistics, the global prevalence of diabetes among the age group of 20-79 years is 8.8%. In addition, 1 in every 2 persons is unaware of the condition. This unawareness and ignorance lead to further complications. Pre-diabetes is the preceding condition of diabetes, and in most of the cases, this ultimately leads to the development of diabetes. Diabetes can be classified into three types, namely type 1 diabetes, type 2 diabetes mellitus (T2DM) and gestational diabetes. The diagnosis of both pre-diabetes and diabetes is based on glucose criteria; the common modalities used are fasting plasma glucose (FPG) test and oral glucose tolerance test (OGTT). A glucometer is commonly used by diabetic patients to measure blood glucose levels with fast and rather accurate measurements. A few of the more advanced and minimally invasive modalities include the glucose-sensing patch, SwEatch, eyeglass biosensor, breath analysis, etc. Despite a considerable amount of data being collected and analyzed regarding diabetes, the actual molecular mechanism of developing type 2 diabetes mellitus (T2DM) is still unknown. Both genetic and epigenetic factors are associated with T2DM. The complications of diabetes can predominantly be classified into two categories: microvascular and macrovascular. Retinopathy, nephropathy, and neuropathy are grouped under microvascular complications, whereas stroke, cardiovascular disease, and peripheral artery disease (PAD) belong to macrovascular complications. Unfortunately, until now, no complete cure for diabetes has been found. However, the treatment of pre-diabetes has shown significant success in preventing the further progression of diabetes. To prevent pre-diabetes from developing into T2DM, lifestyle intervention has been found to be very promising. Various aspects of diabetes, including the aforementioned topics, have been reviewed in this paper.
Collapse
Affiliation(s)
- Radia Marium Modhumi Khan
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore
| | - Zoey Jia Yu Chua
- School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Jia Chi Tan
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Yingying Yang
- Tongji University School of Medicine, Shanghai 201204, China
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, 171 65 Solna, Sweden
| | - Zehuan Liao
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore.
- Department of Microbiology, Tumor, and Cell Biology (MTC), Karolinska Institutet, Biomedicum, Solnavägen 9, SE-17177 Stockholm, Sweden.
| | - Yan Zhao
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore.
| |
Collapse
|
18
|
Association of KCNJ11 rs5219 gene polymorphism with type 2 diabetes mellitus in a population of Syria: a case-control study. BMC MEDICAL GENETICS 2019; 20:107. [PMID: 31195986 PMCID: PMC6567472 DOI: 10.1186/s12881-019-0846-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 06/07/2019] [Indexed: 01/23/2023]
Abstract
Background Type 2 diabetes mellitus is believed to be a polygenic disorder that develops as a result of a complex interaction between multiple genes and environmental factors. KCNJ11 gene encodes a Kir6.2 protein which forms the inner section of the potassium channels in pancreatic beta cells. Several studies found that KCNJ11 polymorphism increases T2DM risk. Our study aimed to investigate the association between rs5219 polymorphism of the KCNJ11 gene and T2DM in Syrian patients. Methods This case-control study involved 75 T2DM patients and 63 healthy controls. The KCNJ11 rs5219 polymorphism was genotyped by Restriction Fragment Length Polymorphism (RFLP). Results The frequency of the risk allele K was similar between the two groups (38.7% vs. 38.1%, P = 0.132). The frequency of the KK genotype was higher among the patients’ group (16% vs. 4.8%), and the frequency of the EK genotype was higher among the control group (45.3% vs. 66.6%); however, the differences were statistically insignificant. The KK genotype was significantly associated with T2DM in the recessive model with an OR of 3.81 (95% CI 1.024–14.17, P = 0.035). Conclusions This study showed that rs5219 polymorphism of the KCNJ11 gene is an important risk factor for type 2 diabetes mellitus in a sample of the Syrian population.
Collapse
|
19
|
Shalimova A, Fadieienko G, Kolesnikova O, Isayeva A, Zlatkina V, Nemtsova V, Prosolenko K, Psarova V, Kyrychenko N, Kochuieva M. The Role of Genetic Polymorphism in the Formation of Arterial Hypertension, Type 2 Diabetes and their Comorbidity. Curr Pharm Des 2019; 25:218-227. [PMID: 30868946 DOI: 10.2174/1381612825666190314124049] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 03/09/2019] [Indexed: 12/18/2022]
Abstract
BACKGROUND Hereditary component plays a significant role in the formation of insulin resistance (IR) - one of the pathogenetic links of arterial hypertension (AH) and type 2 diabetes mellitus (DM2). However, the genetic predisposition to IR can not be realized and does not manifest itself clinically in the absence of appropriate factors of the environment (excessive nutrition, low physical activity, etc.). OBJECTIVE The review summarizes the results of studies which describe the contribution of genetic polymorphism to the formation and progression of AH, DM2 and their comorbidity in various populations. RESULTS In many studies, it has been established that genetic polymorphism of candidate genes is influenced by the formation, course and complication of AH and DM2. According to research data, the modulating effect of polymorphism of some genetic markers of AH and DM2 on metabolism and hemodynamics has been established. The results of numerous studies have shown a higher frequency of occurrence of AH and DM2, as well as their more severe course with adverse genetic polymorphisms. At the same time, the role of genetic polymorphism in the formation of AH and DM2 differs in different populations. CONCLUSION Contradictory data on the influence of gene polymorphisms on the formation of AH and DM2 in different populations, as well as a small number of studies on the combined effects of several polymorphisms on the formation of comorbidity, determine the continuation of research in this direction.
Collapse
Affiliation(s)
- Anna Shalimova
- The Government Institution 'L.T. Malaya Therapy National Institute of the National Academy of Medical Sciences of Ukraine', Kharkiv, Ukraine.,Kharkiv National Medical University, Kharkiv, Ukraine
| | - Galyna Fadieienko
- The Government Institution 'L.T. Malaya Therapy National Institute of the National Academy of Medical Sciences of Ukraine', Kharkiv, Ukraine
| | - Olena Kolesnikova
- The Government Institution 'L.T. Malaya Therapy National Institute of the National Academy of Medical Sciences of Ukraine', Kharkiv, Ukraine
| | - Anna Isayeva
- The Government Institution 'L.T. Malaya Therapy National Institute of the National Academy of Medical Sciences of Ukraine', Kharkiv, Ukraine
| | - Vira Zlatkina
- Kharkiv National Medical University, Kharkiv, Ukraine
| | | | | | | | | | - Maryna Kochuieva
- Kharkiv Medical Academy of Postgraduate Education, Kharkiv, Ukraine
| |
Collapse
|
20
|
Mannino GC, Andreozzi F, Sesti G. Pharmacogenetics of type 2 diabetes mellitus, the route toward tailored medicine. Diabetes Metab Res Rev 2019; 35:e3109. [PMID: 30515958 PMCID: PMC6590177 DOI: 10.1002/dmrr.3109] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 11/27/2018] [Accepted: 11/30/2018] [Indexed: 12/11/2022]
Abstract
Type 2 diabetes mellitus (T2DM) is a chronic disease that has reached the levels of a global epidemic. In order to achieve optimal glucose control, it is often necessary to rely on combination therapy of multiple drugs or insulin because uncontrolled glucose levels result in T2DM progression and enhanced risk of complications and mortality. Several antihyperglycemic agents have been developed over time, and T2DM pharmacotherapy should be prescribed based on suitability for the individual patient's characteristics. Pharmacogenetics is the branch of genetics that investigates how our genome influences individual responses to drugs, therapeutic outcomes, and incidence of adverse effects. In this review, we evaluated the pharmacogenetic evidences currently available in the literature, and we identified the top informative genetic variants associated with response to the most common anti-diabetic drugs: metformin, DPP-4 inhibitors/GLP1R agonists, thiazolidinediones, and sulfonylureas/meglitinides. Overall, we found 40 polymorphisms for each drug class in a total of 71 loci, and we examined the possibility of encouraging genetic screening of these variants/loci in order to critically implement decision-making about the therapeutic approach through precision medicine strategies. It is possible then to anticipate that when the clinical practice will take advantage of the genetic information of the diabetic patients, this will provide a useful resource for the prevention of T2DM progression, enabling the identification of the precise drug that is most likely to be effective and safe for each patient and the reduction of the economic impact on a global scale.
Collapse
Affiliation(s)
- Gaia Chiara Mannino
- Department of Medical and Surgical SciencesUniversity Magna Graecia of CatanzaroCatanzaroItaly
| | - Francesco Andreozzi
- Department of Medical and Surgical SciencesUniversity Magna Graecia of CatanzaroCatanzaroItaly
| | - Giorgio Sesti
- Department of Medical and Surgical SciencesUniversity Magna Graecia of CatanzaroCatanzaroItaly
| |
Collapse
|
21
|
Yahaya TO, Salisu TF. A Review of Type 2 Diabetes Mellitus Predisposing Genes. Curr Diabetes Rev 2019; 16:52-61. [PMID: 30514191 DOI: 10.2174/1573399815666181204145806] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 11/22/2018] [Accepted: 11/28/2018] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Scientists are considering the possibility of treating diabetes mellitus (DM) using a personalized approach in which various forms of the diseases will be treated based on the causal gene and its pathogenesis. To this end, scientists have identified mutations in certain genes as probable causes of Type 2 diabetes mellitus (T2DM) with diverse mechanisms. AIM This review was aimed at articulating already identified T2DM genes with their mechanisms of action and phenotypic presentations for the awareness of all stakeholders. METHOD The Google search engine was used to retrieve relevant information on the subject from reliable academic databases such as PubMed, Medline, and Google Scholar, among others. RESULTS At least seventy (70) genes are currently being suspected in the biogenesis of T2DM. However, mutations in, or variants of KCNJ11, PPARG, HNF1B and WFS1 genes, are the most suspected and reported in the pathogenesis of the disease. Mutations in these genes can cause disruption of insulin biosynthesis through the destruction of pancreatic beta cells, change of beta cell morphology, destruction of insulin receptors, among others. These cellular events may lead to insulin resistance and hyperglycemia and, along with environmental triggers such as obesity and overweight, culminate in T2DM. It was observed that each identified gene has its distinct mechanism by which it interacts with other genes and environmental factors to cause T2DM. CONCLUSION Healthcare providers are advised to formulate T2DM drugs or treatment by targeting the causal genes along with their mechanisms.
Collapse
Affiliation(s)
- Tajudeen O Yahaya
- Department of Biology, Federal University Birnin Kebbi, Kebbi State, Nigeria
| | - Titilola F Salisu
- Department of Cell Biology and Genetics, University of Lagos, Lagos, Nigeria
| |
Collapse
|
22
|
Lam YWF, Duggirala R, Jenkinson CP, Arya R. The Role of Pharmacogenomics in Diabetes. Pharmacogenomics 2019. [DOI: 10.1016/b978-0-12-812626-4.00009-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
23
|
Wang DD, Chen X, Yang Y, Liu CX. Association of K ir6.2 gene rs5219 variation with type 2 diabetes: A meta-analysis of 21,464 individuals. Prim Care Diabetes 2018; 12:345-353. [PMID: 29685723 DOI: 10.1016/j.pcd.2018.03.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 03/01/2018] [Accepted: 03/24/2018] [Indexed: 12/16/2022]
Abstract
AIMS rs5219 is in Potassium inwardly-rectifying channel, subfamily J, member 11 (KCNJ11) E23K gene, located at 11p15.1. Researches on the association between rs5219 gene polymorphism with type 2 diabetes mellitus (T2DM) were performed extensively, but the results remain controversial. To investigate the relationship, a meta-analysis involving 21,464 individuals was conducted. METHODS Odds ratios (OR) and 95% confidence intervals (CI) were used to assess the strength of this association. Publication bias was evaluated with Begg's test. Our research includes three gene models: allelic genetic model (K-allele vs. E-allele), recessive genetic model (KK vs. EK+EE) and dominant genetic model (EE vs. EK+KK). RESULTS In allelic genetic model, subgroup analysis demonstrated rs5219 K-allele was relevant to T2DM risk in Caucasian (OR: 1.16, 95% CI: 1.09-1.24, P=0.000) and East Asian (OR: 1.19, 95% CI: 1.13-1.26, P=0.000), recessive genetic model indicated rs5219 KK genotype was related to T2DM risk in Caucasian, East Asian, South Asian, and North African (OR: 1.27, 95% CI: 1.17-1.38, P=0.000), dominant genetic model pointed out rs5219 EE genotype was an opposite association with T2DM risk in Caucasian (OR: 0.86, 95% CI: 0.78-0.94, P=0.001). No obvious evidence of publication bias was found. CONCLUSIONS There was a believable evidence to verify that rs5219 variation was associated with T2DM.
Collapse
Affiliation(s)
- Dong-Dong Wang
- Department of Pharmacy, Children's Hospital of Fudan University, Shanghai, 201102, PR China
| | - Xiao Chen
- Department of Pharmacy, The People's Hospital of Jiangyin, Jiangyin, Jiangsu 214400, PR China.
| | - Yang Yang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, PR China
| | - Chen-Xu Liu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, PR China
| |
Collapse
|
24
|
Xu M, Hu H, Deng D, Chen M, Xu Z, Wang Y. Prediabetes is associated with genetic variations in the gene encoding the Kir6.2 subunit of the pancreatic ATP-sensitive potassium channel (KCNJ11): A case-control study in a Han Chinese youth population. J Diabetes 2018; 10:121-129. [PMID: 28449408 DOI: 10.1111/1753-0407.12565] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 04/06/2017] [Accepted: 04/24/2017] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND The E23K variant of the potassium voltage-gated channel subfamily J member 11 (KCNJ11) gene has been reported to be associated with type 2 diabetes (T2D) in many populations. However, little is known about the role of E23K in the development of prediabetes in Chinese youth. METHODS To investigate the role of E23K in the development of prediabetes, 279 subjects with prediabetes and 240 normal controls (mean [± SD] age 18.1 ± 3.2 and 17.8 ± 4.3 years, respectively) were recruited to the study. Height, weight, and hip and waist circumferences were measured by trained physicians. Genotyping of KCNJ11 polymorphisms and clinical laboratory tests to determine cholesterol, triglyceride (TG), blood glucose, and insulin levels were performed. RESULTS The carrier rate of K23 allele-containing genotypes was higher for prediabetic than control subjects (P = 0.005). Logistic regression analyses revealed that higher body mass index percentiles (P = 0.013), lower insulin levels at 30 min during an oral glucose tolerance test (P = 0.001), a higher ratio of total cholesterol: high-density lipoprotein cholesterol (P = 0.001), and a K allele-containing genotype (P = 0.019) are independent risk factors for prediabetes in Chinese Han youth. Furthermore, K23 allele-containing genotypes were associated with impaired indices of insulin secretion and β-cell function in female youth with prediabetes. These effects were not seen in male youth with prediabetes. CONCLUSIONS The results confirm that the common E23K polymorphism of KCNJ11 carries a higher susceptibility to the development of prediabetes in the Chinese Han population. The results suggest that E23K may have a greater effect on the development of T2D in female Chinese youth.
Collapse
Affiliation(s)
- Min Xu
- Department of Endocrinology, The First Hospital of An Hui Medical University, Hefei, China
| | - Honglin Hu
- Department of Endocrinology, The First Hospital of An Hui Medical University, Hefei, China
| | - Datong Deng
- Department of Endocrinology, The First Hospital of An Hui Medical University, Hefei, China
| | - Mingwei Chen
- Department of Endocrinology, The First Hospital of An Hui Medical University, Hefei, China
| | - Zhenshan Xu
- AnHui AnKe Biotechnology Group, Hefei, China
| | - Youmin Wang
- Department of Endocrinology, The First Hospital of An Hui Medical University, Hefei, China
| |
Collapse
|
25
|
Sharma A, Vella A. Obstacles to Translating Genotype-Phenotype Correlates in Metabolic Disease. Physiology (Bethesda) 2017; 32:42-50. [PMID: 27927804 DOI: 10.1152/physiol.00009.2016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Type 2 diabetes mellitus is a polygenic disease with a variable phenotype. Many genetic associations have been described; however, understanding their underlying pathophysiological role in Type 2 diabetes mellitus is important for development of future therapeutic targets. Here, we review the physiological mechanisms of diabetes-associated variants that affect glycemia.
Collapse
Affiliation(s)
- Anu Sharma
- Department of Endocrinology, Diabetes and Nutrition, Mayo Clinic, Rochester, Minnesota
| | - Adrian Vella
- Department of Endocrinology, Diabetes and Nutrition, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
26
|
Nikitin AG, Potapov VY, Brovkina OI, Koksharova EO, Khodyrev DS, Philippov YI, Michurova MS, Shamkhalova MS, Vikulova OK, Smetanina SA, Suplotova LA, Kononenko IV, Kalashnikov VY, Smirnova OM, Mayorov AY, Nosikov VV, Averyanov AV, Shestakova MV. Association of polymorphic markers of genes FTO, KCNJ11, CDKAL1, SLC30A8, and CDKN2B with type 2 diabetes mellitus in the Russian population. PeerJ 2017; 5:e3414. [PMID: 28717589 PMCID: PMC5511504 DOI: 10.7717/peerj.3414] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 05/14/2017] [Indexed: 01/11/2023] Open
Abstract
Background The association of type 2 diabetes mellitus (T2DM) with the KCNJ11, CDKAL1, SLC30A8, CDKN2B, and FTO genes in the Russian population has not been well studied. In this study, we analysed the population frequencies of polymorphic markers of these genes. Methods The study included 862 patients with T2DM and 443 control subjects of Russian origin. All subjects were genotyped for 10 single nucleotide polymorphisms (SNPs) of the genes using real-time PCR (TaqMan assays). HOMA-IR and HOMA-β were used to measure insulin resistance and β-cell secretory function, respectively. Results The analysis of the frequency distribution of polymorphic markers for genes KCNJ11, CDKAL1, SLC30A8 and CDKN2B showed statistically significant associations with T2DM in the Russian population. The association between the FTO gene and T2DM was not statistically significant. The polymorphic markers rs5219 of the KCNJ11 gene, rs13266634 of the SLC30A8 gene, rs10811661 of the CDKN2B gene and rs9465871, rs7756992 and rs10946398 of the CDKAL1 gene showed a significant association with impaired glucose metabolism or impaired β-cell function. Conclusion In the Russian population, genes, which affect insulin synthesis and secretion in the β-cells of the pancreas, play a central role in the development of T2DM.
Collapse
Affiliation(s)
- Aleksey G Nikitin
- Federal Research Clinical Center for Specialized Types of Health Care and Medical Technologies of Federal Medical and Biology Agency, Moscow, Russian Federation
| | - Viktor Y Potapov
- Clinic of New Medical Technologies "Archimedes", Moscow, Russian Federation
| | - Olga I Brovkina
- Federal Research Clinical Center for Specialized Types of Health Care and Medical Technologies of Federal Medical and Biology Agency, Moscow, Russian Federation
| | | | - Dmitry S Khodyrev
- Federal Research Clinical Center for Specialized Types of Health Care and Medical Technologies of Federal Medical and Biology Agency, Moscow, Russian Federation
| | | | | | | | - Olga K Vikulova
- Endocrinology Research Centre, Moscow, Russian Federation.,I.M. Sechenov First Moscow State Medical University, Moscow, Russian Federation
| | | | | | - Irina V Kononenko
- Endocrinology Research Centre, Moscow, Russian Federation.,I.M. Sechenov First Moscow State Medical University, Moscow, Russian Federation
| | | | - Olga M Smirnova
- Endocrinology Research Centre, Moscow, Russian Federation.,I.M. Sechenov First Moscow State Medical University, Moscow, Russian Federation
| | - Alexander Y Mayorov
- Endocrinology Research Centre, Moscow, Russian Federation.,I.M. Sechenov First Moscow State Medical University, Moscow, Russian Federation
| | - Valery V Nosikov
- State Research Institute of Genetics and Selection of Industrial Microorganisms, Moscow, Russian Federation
| | - Alexander V Averyanov
- Federal Research Clinical Center for Specialized Types of Health Care and Medical Technologies of Federal Medical and Biology Agency, Moscow, Russian Federation
| | - Marina V Shestakova
- Endocrinology Research Centre, Moscow, Russian Federation.,I.M. Sechenov First Moscow State Medical University, Moscow, Russian Federation
| |
Collapse
|
27
|
Anderson de la Llana S, Klee P, Santoni F, Stekelenburg C, Blouin JL, Schwitzgebel VM. Gene Variants Associated with Transient Neonatal Diabetes Mellitus in the Very Low Birth Weight Infant. Horm Res Paediatr 2016; 84:283-8. [PMID: 26315042 DOI: 10.1159/000437378] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 07/01/2015] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Transient and permanent neonatal diabetes mellitus (NDM), usually defined as diabetes diagnosed within the first 6 months of life, are rare conditions occurring in 1:90,000-260,000 live births. The origin of NDM is rarely related to type 1 diabetes, but rather to single gene defects. METHODS Genetic analysis was performed using targeted parallel sequencing including 323 diabetes genes. Data were filtered by a locally developed program. RESULTS A very low birth weight neonate born at 28 weeks postmenstrual age developed diabetes 13 days after birth. The patient was treated with continuous subcutaneous insulin infusion. After 1 month, insulin treatment could be stopped. At 18 months of age, the child was normoglycemic and developing normally. Genetic analysis revealed a novel variant (p.Pro190Leu) in HNF4A, which is located in the ligand binding domain of the transcription factor, and the p.Glu23Lys variant in KCNJ11, which is associated with type 2 diabetes. CONCLUSION Here, we describe a novel HNF4A variant associated with transient NDM in a premature infant. We hypothesize that the neonatal phenotype previously described in carriers of HNF4A mutations was modified by the additional variant in KCNJ11 and prematurity.
Collapse
|
28
|
Velasco M, Díaz-García CM, Larqué C, Hiriart M. Modulation of Ionic Channels and Insulin Secretion by Drugs and Hormones in Pancreatic Beta Cells. Mol Pharmacol 2016; 90:341-57. [PMID: 27436126 DOI: 10.1124/mol.116.103861] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 07/18/2016] [Indexed: 12/11/2022] Open
Abstract
Pancreatic beta cells, unique cells that secrete insulin in response to an increase in glucose levels, play a significant role in glucose homeostasis. Glucose-stimulated insulin secretion (GSIS) in pancreatic beta cells has been extensively explored. In this mechanism, glucose enters the cells and subsequently the metabolic cycle. During this process, the ATP/ADP ratio increases, leading to ATP-sensitive potassium (KATP) channel closure, which initiates depolarization that is also dependent on the activity of TRP nonselective ion channels. Depolarization leads to the opening of voltage-gated Na(+) channels (Nav) and subsequently voltage-dependent Ca(2+) channels (Cav). The increase in intracellular Ca(2+) triggers the exocytosis of insulin-containing vesicles. Thus, electrical activity of pancreatic beta cells plays a central role in GSIS. Moreover, many growth factors, incretins, neurotransmitters, and hormones can modulate GSIS, and the channels that participate in GSIS are highly regulated. In this review, we focus on the principal ionic channels (KATP, Nav, and Cav channels) involved in GSIS and how classic and new proteins, hormones, and drugs regulate it. Moreover, we also discuss advances on how metabolic disorders such as metabolic syndrome and diabetes mellitus change channel activity leading to changes in insulin secretion.
Collapse
Affiliation(s)
- Myrian Velasco
- Department of Neurodevelopment and Physiology, Neuroscience Division, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Carlos Manlio Díaz-García
- Department of Neurodevelopment and Physiology, Neuroscience Division, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Carlos Larqué
- Department of Neurodevelopment and Physiology, Neuroscience Division, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Marcia Hiriart
- Department of Neurodevelopment and Physiology, Neuroscience Division, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
29
|
Zeng H, Guo M, Zhou T, Tan L, Chong CN, Zhang T, Dong X, Xiang JZ, Yu AS, Yue L, Qi Q, Evans T, Graumann J, Chen S. An Isogenic Human ESC Platform for Functional Evaluation of Genome-wide-Association-Study-Identified Diabetes Genes and Drug Discovery. Cell Stem Cell 2016; 19:326-40. [PMID: 27524441 PMCID: PMC5924691 DOI: 10.1016/j.stem.2016.07.002] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 04/08/2016] [Accepted: 07/01/2016] [Indexed: 12/28/2022]
Abstract
Genome-wide association studies (GWASs) have increased our knowledge of loci associated with a range of human diseases. However, applying such findings to elucidate pathophysiology and promote drug discovery remains challenging. Here, we created isogenic human ESCs (hESCs) with mutations in GWAS-identified susceptibility genes for type 2 diabetes. In pancreatic beta-like cells differentiated from these lines, we found that mutations in CDKAL1, KCNQ1, and KCNJ11 led to impaired glucose secretion in vitro and in vivo, coinciding with defective glucose homeostasis. CDKAL1 mutant insulin+ cells were also hypersensitive to glucolipotoxicity. A high-content chemical screen identified a candidate drug that rescued CDKAL1-specific defects in vitro and in vivo by inhibiting the FOS/JUN pathway. Our approach of a proof-of-principle platform, which uses isogenic hESCs for functional evaluation of GWAS-identified loci and identification of a drug candidate that rescues gene-specific defects, paves the way for precision therapy of metabolic diseases.
Collapse
Affiliation(s)
- Hui Zeng
- Department of Hematology in Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, China; Department of Surgery, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA
| | - Min Guo
- Department of Endocrinology in Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, China; Department of Surgery, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA
| | - Ting Zhou
- Department of Surgery, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA
| | - Lei Tan
- Department of Surgery, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA
| | - Chi Nok Chong
- Department of Surgery, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA
| | - Tuo Zhang
- Genomic Core, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA
| | - Xue Dong
- Department of Surgery, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA
| | - Jenny Zhaoying Xiang
- Genomic Core, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA
| | - Albert S Yu
- Calhoun Cardiology Center and Department of Cell Biology, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT 06030, USA
| | - Lixia Yue
- Calhoun Cardiology Center and Department of Cell Biology, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT 06030, USA
| | - Qibin Qi
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Todd Evans
- Department of Surgery, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA
| | - Johannes Graumann
- Department of Biochemistry, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA; Research Division, Weill Cornell Medical College in Qatar, Doha, State of Qatar
| | - Shuibing Chen
- Department of Surgery, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA; Department of Biochemistry, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
30
|
Andersen MK, Pedersen CET, Moltke I, Hansen T, Albrechtsen A, Grarup N. Genetics of Type 2 Diabetes: the Power of Isolated Populations. Curr Diab Rep 2016; 16:65. [PMID: 27189761 DOI: 10.1007/s11892-016-0757-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Type 2 diabetes (T2D) affects millions of people worldwide. Improving the understanding of the underlying mechanisms and ultimately improving the treatment strategies are, thus, of great interest. To achieve this, identification of genetic variation predisposing to T2D is important. A large number of variants have been identified in large outbred populations, mainly from Europe and Asia. However, to elucidate additional variation, isolated populations have a number of advantageous properties, including increased amounts of linkage disequilibrium, and increased probability for presence of high frequency disease-associated variants due to genetic drift. Collectively, this increases the statistical power to detect association signals in isolated populations compared to large outbred populations. In this review, we elaborate on why isolated populations are a powerful resource for the identification of complex disease variants and describe their contributions to the understanding of the genetics of T2D.
Collapse
Affiliation(s)
- Mette Korre Andersen
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Section of Metabolic Genetics, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 1, 2100, Copenhagen, Denmark
| | - Casper-Emil Tingskov Pedersen
- The Bioinformatics Centre, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen, Denmark
| | - Ida Moltke
- The Bioinformatics Centre, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen, Denmark
| | - Torben Hansen
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Section of Metabolic Genetics, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 1, 2100, Copenhagen, Denmark
- Faculty of Health Sciences, University of Southern Denmark, J.B. Winsløws Vej 19, 3, 5000, Odense, Denmark
| | - Anders Albrechtsen
- The Bioinformatics Centre, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen, Denmark
| | - Niels Grarup
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Section of Metabolic Genetics, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 1, 2100, Copenhagen, Denmark.
| |
Collapse
|
31
|
Yang Y, Chan L. Monogenic Diabetes: What It Teaches Us on the Common Forms of Type 1 and Type 2 Diabetes. Endocr Rev 2016; 37:190-222. [PMID: 27035557 PMCID: PMC4890265 DOI: 10.1210/er.2015-1116] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
To date, more than 30 genes have been linked to monogenic diabetes. Candidate gene and genome-wide association studies have identified > 50 susceptibility loci for common type 1 diabetes (T1D) and approximately 100 susceptibility loci for type 2 diabetes (T2D). About 1-5% of all cases of diabetes result from single-gene mutations and are called monogenic diabetes. Here, we review the pathophysiological basis of the role of monogenic diabetes genes that have also been found to be associated with common T1D and/or T2D. Variants of approximately one-third of monogenic diabetes genes are associated with T2D, but not T1D. Two of the T2D-associated monogenic diabetes genes-potassium inward-rectifying channel, subfamily J, member 11 (KCNJ11), which controls glucose-stimulated insulin secretion in the β-cell; and peroxisome proliferator-activated receptor γ (PPARG), which impacts multiple tissue targets in relation to inflammation and insulin sensitivity-have been developed as major antidiabetic drug targets. Another monogenic diabetes gene, the preproinsulin gene (INS), is unique in that INS mutations can cause hyperinsulinemia, hyperproinsulinemia, neonatal diabetes mellitus, one type of maturity-onset diabetes of the young (MODY10), and autoantibody-negative T1D. Dominant heterozygous INS mutations are the second most common cause of permanent neonatal diabetes. Moreover, INS gene variants are strongly associated with common T1D (type 1a), but inconsistently with T2D. Variants of the monogenic diabetes gene Gli-similar 3 (GLIS3) are associated with both T1D and T2D. GLIS3 is a key transcription factor in insulin production and β-cell differentiation during embryonic development, which perturbation forms the basis of monogenic diabetes as well as its association with T1D. GLIS3 is also required for compensatory β-cell proliferation in adults; impairment of this function predisposes to T2D. Thus, monogenic forms of diabetes are invaluable "human models" that have contributed to our understanding of the pathophysiological basis of common T1D and T2D.
Collapse
Affiliation(s)
- Yisheng Yang
- Division of Endocrinology (Y.Y.), Department of Medicine, MetroHealth Medical Center, Case Western Reserve University, Cleveland, Ohio 44109; and Diabetes and Endocrinology Research Center (L.C.), Division of Diabetes, Endocrinology and Metabolism, Departments of Medicine, Molecular and Cellular Biology, Biochemistry and Molecular Biology, and Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030
| | - Lawrence Chan
- Division of Endocrinology (Y.Y.), Department of Medicine, MetroHealth Medical Center, Case Western Reserve University, Cleveland, Ohio 44109; and Diabetes and Endocrinology Research Center (L.C.), Division of Diabetes, Endocrinology and Metabolism, Departments of Medicine, Molecular and Cellular Biology, Biochemistry and Molecular Biology, and Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030
| |
Collapse
|
32
|
Baier LJ, Muller YL, Remedi MS, Traurig M, Piaggi P, Wiessner G, Huang K, Stacy A, Kobes S, Krakoff J, Bennett PH, Nelson RG, Knowler WC, Hanson RL, Nichols CG, Bogardus C. ABCC8 R1420H Loss-of-Function Variant in a Southwest American Indian Community: Association With Increased Birth Weight and Doubled Risk of Type 2 Diabetes. Diabetes 2015; 64:4322-32. [PMID: 26246406 PMCID: PMC4657583 DOI: 10.2337/db15-0459] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 08/03/2015] [Indexed: 12/21/2022]
Abstract
Missense variants in KCNJ11 and ABCC8, which encode the KIR6.2 and SUR1 subunits of the β-cell KATP channel, have previously been implicated in type 2 diabetes, neonatal diabetes, and hyperinsulinemic hypoglycemia of infancy (HHI). To determine whether variation in these genes affects risk for type 2 diabetes or increased birth weight as a consequence of fetal hyperinsulinemia in Pima Indians, missense and common noncoding variants were analyzed in individuals living in the Gila River Indian Community. A R1420H variant in SUR1 (ABCC8) was identified in 3.3% of the population (N = 7,710). R1420H carriers had higher mean birth weights and a twofold increased risk for type 2 diabetes with a 7-year earlier onset age despite being leaner than noncarriers. One individual homozygous for R1420H was identified; retrospective review of his medical records was consistent with HHI and a diagnosis of diabetes at age 3.5 years. In vitro studies showed that the R1420H substitution decreases KATP channel activity. Identification of this loss-of-function variant in ABCC8 with a carrier frequency of 3.3% affects clinical care as homozygous inheritance and potential HHI will occur in 1/3,600 births in this American Indian population.
Collapse
Affiliation(s)
- Leslie J Baier
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, AZ
| | - Yunhua Li Muller
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, AZ
| | - Maria Sara Remedi
- Department of Cell Biology and Physiology, Washington University in St. Louis, St. Louis, MO
| | - Michael Traurig
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, AZ
| | - Paolo Piaggi
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, AZ
| | - Gregory Wiessner
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, AZ
| | - Ke Huang
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, AZ
| | - Alyssa Stacy
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, AZ
| | - Sayuko Kobes
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, AZ
| | - Jonathan Krakoff
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, AZ
| | - Peter H Bennett
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, AZ
| | - Robert G Nelson
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, AZ
| | - William C Knowler
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, AZ
| | - Robert L Hanson
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, AZ
| | - Colin G Nichols
- Department of Cell Biology and Physiology, Washington University in St. Louis, St. Louis, MO
| | - Clifton Bogardus
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, AZ
| |
Collapse
|
33
|
Nelson PT, Jicha GA, Wang WX, Ighodaro E, Artiushin S, Nichols CG, Fardo DW. ABCC9/SUR2 in the brain: Implications for hippocampal sclerosis of aging and a potential therapeutic target. Ageing Res Rev 2015; 24:111-25. [PMID: 26226329 PMCID: PMC4661124 DOI: 10.1016/j.arr.2015.07.007] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 07/24/2015] [Indexed: 01/06/2023]
Abstract
The ABCC9 gene and its polypeptide product, SUR2, are increasingly implicated in human neurologic disease, including prevalent diseases of the aged brain. SUR2 proteins are a component of the ATP-sensitive potassium ("KATP") channel, a metabolic sensor for stress and/or hypoxia that has been shown to change in aging. The KATP channel also helps regulate the neurovascular unit. Most brain cell types express SUR2, including neurons, astrocytes, oligodendrocytes, microglia, vascular smooth muscle, pericytes, and endothelial cells. Thus it is not surprising that ABCC9 gene variants are associated with risk for human brain diseases. For example, Cantu syndrome is a result of ABCC9 mutations; we discuss neurologic manifestations of this genetic syndrome. More common brain disorders linked to ABCC9 gene variants include hippocampal sclerosis of aging (HS-Aging), sleep disorders, and depression. HS-Aging is a prevalent neurological disease with pathologic features of both neurodegenerative (aberrant TDP-43) and cerebrovascular (arteriolosclerosis) disease. As to potential therapeutic intervention, the human pharmacopeia features both SUR2 agonists and antagonists, so ABCC9/SUR2 may provide a "druggable target", relevant perhaps to both HS-Aging and Alzheimer's disease. We conclude that more work is required to better understand the roles of ABCC9/SUR2 in the human brain during health and disease conditions.
Collapse
Affiliation(s)
- Peter T Nelson
- University of Kentucky, Sanders-Brown Center on Aging, Lexington, KY 40536, USA; University of Kentucky, Department of Pathology, Lexington, KY 40536, USA.
| | - Gregory A Jicha
- University of Kentucky, Sanders-Brown Center on Aging, Lexington, KY 40536, USA; University of Kentucky, Department of Neurology, Lexington, KY, 40536, USA
| | - Wang-Xia Wang
- University of Kentucky, Sanders-Brown Center on Aging, Lexington, KY 40536, USA
| | - Eseosa Ighodaro
- University of Kentucky, Sanders-Brown Center on Aging, Lexington, KY 40536, USA
| | - Sergey Artiushin
- University of Kentucky, Sanders-Brown Center on Aging, Lexington, KY 40536, USA
| | - Colin G Nichols
- Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - David W Fardo
- University of Kentucky, Sanders-Brown Center on Aging, Lexington, KY 40536, USA; Department of Biostatistics, Lexington, KY, 40536, USA
| |
Collapse
|
34
|
Pharmacogenetics and individual responses to treatment of hyperglycemia in type 2 diabetes. Pharmacogenet Genomics 2015; 25:475-84. [DOI: 10.1097/fpc.0000000000000160] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
35
|
Duoqi Z, Qing H, Yang H, Yanchun L, Yi X, Li W. Association Between KCNJ11 Gene E23K Polymorphism and Body Composition Together with its Response to Endurance Training. Open Biomed Eng J 2015; 9:121-5. [PMID: 26089990 PMCID: PMC4468587 DOI: 10.2174/1874120701509010121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 02/20/2015] [Accepted: 03/02/2015] [Indexed: 11/22/2022] Open
Abstract
Objective: To explore the Association between KCNJ11 gene E23K polymorphism of Chinese and body composition together with its response to endurance training. Method: 102 biologically unrelated Han nationality male new recruits from northern China volunteered to execute a 5000-m running programme, and the intensity is 95–105% individual lactate threshold. The protocol was lasted for 18 weeks, three times per week. The body composition index, including body weight (WT)、lean body weight (LBW), body mass index (BMI) and body fat percentage (Fat%), was measured before and after training. PCR-RFLP was used to detect the KCNJ11 gene E23K polymorphism. Results: Hardy-Weinberg equilibrium was observed for the frequency of genotypes in these subjects. Before training, WT, BMI and Fat% in KK group were significantly higher than those in EE and KK group (p<0.05 or p<0.01). There was no significant difference in LBW among groups (P>0.05). After training, the changes of all body composition index in KK group were bigger significantly greater than those in EE and EK groups (p<0.01). Conclusion: KCNJ11 gene E23K polymorphism might contribute to individual body composition together with its response to endurance training. The body fat content at baseline in KK was more than those in EE and EK groups, and it may hinder that individual to eliminate their body fat during endurance training.
Collapse
Affiliation(s)
- Zhou Duoqi
- Department of Physical Education, Anqing Normal University, Anqing, Anhui, 246011, P.R. China
| | - He Qing
- Department of Physical Education, Anqing Normal University, Anqing, Anhui, 246011, P.R. China
| | - Hu Yang
- Sport Science Research Center, Beijing Sport University, Beijing 100084, P.R. China
| | - Li Yanchun
- Sport Science Research Center, Beijing Sport University, Beijing 100084, P.R. China
| | - Xi Yi
- Sport Science Department, Tianjin Institute of Physical Education, Tianjin 300381, P.R. China
| | - Wen Li
- Sport Science Department, Tianjin Institute of Physical Education, Tianjin 300381, P.R. China
| |
Collapse
|
36
|
Sokolova EA, Bondar IA, Shabelnikova OY, Pyankova OV, Filipenko ML. Replication of KCNJ11 (p.E23K) and ABCC8 (p.S1369A) Association in Russian Diabetes Mellitus 2 Type Cohort and Meta-Analysis. PLoS One 2015; 10:e0124662. [PMID: 25955821 PMCID: PMC4425644 DOI: 10.1371/journal.pone.0124662] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 03/17/2015] [Indexed: 12/26/2022] Open
Abstract
The genes ABCC8 and KCNJ11 have received intense focus in type 2 diabetes mellitus (T2DM) research over the past two decades. It has been hypothesized that the p.E23K (KCNJ11) mutation in the 11p15.1 region may play an important role in the development of T2DM. In 2009, Hamming et al. found that the p.1369A (ABCC8) variant may be a causal factor in the disease; therefore, in this study we performed a meta-analysis to evaluate the association between these single nucleotide polymorphisms (SNPs), including our original data on the Siberian population (1384 T2DM and 414 controls). We found rs5219 and rs757110 were not associated with T2DM in this population, and that there was linkage disequilibrium in Siberians (D’=0.766, r2= 0.5633). In addition, the haplotype rs757110[T]-rs5219[C] (p.23K/p.S1369) was associated with T2DM (OR = 1.52, 95% CI: 1.04-2.24). We included 44 original studies published by June 2014 in a meta-analysis of the p.E23K association with T2DM. The total OR was 1.14 (95% CI: 1.11-1.17) for p.E23K for a total sample size of 137,298. For p.S1369A, a meta-analysis was conducted on a total of 10 studies with a total sample size of 14,136 and pooled OR of 1.14 [95% CI (1.08-1.19); p = 2 x 10-6]. Our calculations identified causal genetic variation within the ABCC8/KCNJ11 region for T2DM with an OR of approximately 1.15 in Caucasians and Asians. Moreover, the OR value was not dependent on the frequency of p.E23K or p.S1369A in the populations.
Collapse
Affiliation(s)
- Ekaterina Alekseevna Sokolova
- Laboratory of Pharmacogenomics, Institute of Chemical Biology and Fundamental Medicine, Siberian Division, Russian Academy of Sciences, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| | - Irina Arkadievna Bondar
- Novosibirsk State Regional Hospital, Regional Diabetes center, Novosibirsk, Russia
- Novosibirsk State Medical University, Novosibirsk, Russia
| | - Olesya Yurievna Shabelnikova
- Novosibirsk State Regional Hospital, Regional Diabetes center, Novosibirsk, Russia
- Novosibirsk State Medical University, Novosibirsk, Russia
| | - Olga Vladimirovna Pyankova
- Laboratory of Pharmacogenomics, Institute of Chemical Biology and Fundamental Medicine, Siberian Division, Russian Academy of Sciences, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| | - Maxim Leonidovich Filipenko
- Laboratory of Pharmacogenomics, Institute of Chemical Biology and Fundamental Medicine, Siberian Division, Russian Academy of Sciences, Novosibirsk, Russia
- Kazan Federal University, Kazan, Russia
- * E-mail:
| |
Collapse
|
37
|
Lee JK, Kim K, Ahn Y, Yang M, Lee JE. Habitual coffee intake, genetic polymorphisms, and type 2 diabetes. Eur J Endocrinol 2015; 172:595-601. [PMID: 25755232 DOI: 10.1530/eje-14-0805] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND The association between coffee intake and type 2 diabetes may be modulated by common genetic variation. OBJECTIVE The purpose of this study was to examine the association between habitual coffee intake and the risk of type 2 diabetes and to determine whether this association varied by genetic polymorphisms related to type 2 diabetes in Korean adults. DESIGN AND METHODS A population-based cohort study over a follow-up of 4 years was conducted. A total of 4077 Korean men and women aged 40-69 years with a normal glucose level at baseline were included. Coffee intake was assessed using a validated food frequency questionnaire, and incident type 2 diabetes or prediabetes was defined by oral glucose tolerance test or fasting blood glucose test. The genomic DNA samples were genotyped with the Affymetrix Genome-Wide Human SNP Array 5.0, and nine single-nucleotide polymorphisms related to type 2 diabetes in East Asian populations were extracted. RESULTS A total of 120 cases of type 2 diabetes and 1128 cases of prediabetes were identified. After adjustment for potential confounding factors, we observed an inverse association, but without any clear linear trend, between coffee intake and the combined risk of type 2 diabetes and prediabetes. We found that inverse associations between habitual coffee intake and the combined risk of type 2 diabetes and prediabetes were limited to those with the T-allele (GT/TT) of rs4402960 in IGF2BP2, those with the G-allele (GG/GC) of rs7754840 in CDKAL1, or those with CC of rs5215 in KCNJ11. CONCLUSION We found a lower risk of prediabetes and type 2 diabetes combined with coffee intake among individuals with the GT/TT of IGF2BP2 rs4402960, GG/GC of CDKAL1 rs7754840, or CC of KCNJ11 rs5215, which are known to be related to type 2 diabetes in East Asians.
Collapse
Affiliation(s)
- Jae Kyung Lee
- Department of Food and NutritionSookmyung Women's University, Cheongpa-ro 47-gil 100, Yongsan-gu, Seoul 140-742, Republic of KoreaBiostatistics and Clinical Epidemiology CenterSamsung Medical center, 50 Ilwon-dong, Gangnam-gu, Seoul 135-170, Republic of KoreaDivision of Cardiovascular and Rare DiseaseNational Institute of Health, Centers of Biomedical Sciences, Center for Disease Control and Prevention, Chungcheongbuk-do, Republic of KoreaResearch Center for Cell Fate controlCollege of Pharmacy, Sookmyung Women's University, Cheongpa-ro 47-gil 100, Yongsan-gu, Seoul 140-742, Republic of Korea
| | - Kyunga Kim
- Department of Food and NutritionSookmyung Women's University, Cheongpa-ro 47-gil 100, Yongsan-gu, Seoul 140-742, Republic of KoreaBiostatistics and Clinical Epidemiology CenterSamsung Medical center, 50 Ilwon-dong, Gangnam-gu, Seoul 135-170, Republic of KoreaDivision of Cardiovascular and Rare DiseaseNational Institute of Health, Centers of Biomedical Sciences, Center for Disease Control and Prevention, Chungcheongbuk-do, Republic of KoreaResearch Center for Cell Fate controlCollege of Pharmacy, Sookmyung Women's University, Cheongpa-ro 47-gil 100, Yongsan-gu, Seoul 140-742, Republic of Korea
| | - Younjhin Ahn
- Department of Food and NutritionSookmyung Women's University, Cheongpa-ro 47-gil 100, Yongsan-gu, Seoul 140-742, Republic of KoreaBiostatistics and Clinical Epidemiology CenterSamsung Medical center, 50 Ilwon-dong, Gangnam-gu, Seoul 135-170, Republic of KoreaDivision of Cardiovascular and Rare DiseaseNational Institute of Health, Centers of Biomedical Sciences, Center for Disease Control and Prevention, Chungcheongbuk-do, Republic of KoreaResearch Center for Cell Fate controlCollege of Pharmacy, Sookmyung Women's University, Cheongpa-ro 47-gil 100, Yongsan-gu, Seoul 140-742, Republic of Korea
| | - Mihi Yang
- Department of Food and NutritionSookmyung Women's University, Cheongpa-ro 47-gil 100, Yongsan-gu, Seoul 140-742, Republic of KoreaBiostatistics and Clinical Epidemiology CenterSamsung Medical center, 50 Ilwon-dong, Gangnam-gu, Seoul 135-170, Republic of KoreaDivision of Cardiovascular and Rare DiseaseNational Institute of Health, Centers of Biomedical Sciences, Center for Disease Control and Prevention, Chungcheongbuk-do, Republic of KoreaResearch Center for Cell Fate controlCollege of Pharmacy, Sookmyung Women's University, Cheongpa-ro 47-gil 100, Yongsan-gu, Seoul 140-742, Republic of Korea
| | - Jung Eun Lee
- Department of Food and NutritionSookmyung Women's University, Cheongpa-ro 47-gil 100, Yongsan-gu, Seoul 140-742, Republic of KoreaBiostatistics and Clinical Epidemiology CenterSamsung Medical center, 50 Ilwon-dong, Gangnam-gu, Seoul 135-170, Republic of KoreaDivision of Cardiovascular and Rare DiseaseNational Institute of Health, Centers of Biomedical Sciences, Center for Disease Control and Prevention, Chungcheongbuk-do, Republic of KoreaResearch Center for Cell Fate controlCollege of Pharmacy, Sookmyung Women's University, Cheongpa-ro 47-gil 100, Yongsan-gu, Seoul 140-742, Republic of Korea
| |
Collapse
|
38
|
Nikitin AG, Potapov VA, Brovkin AN, Lavrikova EY, Khodyrev DS, Shamhalova MS, Smetanina SA, Suplotova LN, Shestakova MV, Nosikov VV, Averyanov AV. Association of FTO, KCNJ11, SLC30A8, and CDKN2B polymorphisms with type 2 diabetes mellitus. Mol Biol 2015. [DOI: 10.1134/s0026893315010112] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
39
|
Bonfanti DH, Alcazar LP, Arakaki PA, Martins LT, Agustini BC, de Moraes Rego FG, Frigeri HR. ATP-dependent potassium channels and type 2 diabetes mellitus. Clin Biochem 2015; 48:476-82. [PMID: 25583094 DOI: 10.1016/j.clinbiochem.2014.12.026] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 12/29/2014] [Accepted: 12/30/2014] [Indexed: 12/24/2022]
Abstract
Diabetes mellitus is a public health problem, which affects a millions worldwide. Most diabetes cases are classified as type 2 diabetes mellitus, which is highly associated with obesity. Type 2 diabetes is considered a multifactorial disorder, with both environmental and genetic factors contributing to its development. An important issue linked with diabetes development is the failure of the insulin releasing mechanism involving abnormal activity of the ATP-dependent potassium channel, KATP. This channel is a transmembrane protein encoded by the KCNJ11 and ABCC8 genes. Furthermore, polymorphisms in these genes have been linked to type 2 diabetes because of the role of KATP in insulin release. While several genetic variations have been reported to be associated with this disease, the E23K polymorphism is most commonly associated with this pathology, as well as to obesity. Here, we review the molecular genetics of the potassium channel and discusses its most described polymorphisms and their associations with type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Dianne Heloisa Bonfanti
- Health and Biosciences School, Pontifical Catholic University of Parana, Curitiba, Parana, Brazil
| | - Larissa Pontes Alcazar
- Health and Biosciences School, Pontifical Catholic University of Parana, Curitiba, Parana, Brazil
| | - Priscila Akemi Arakaki
- Health and Biosciences School, Pontifical Catholic University of Parana, Curitiba, Parana, Brazil
| | - Laysa Toschi Martins
- Health and Biosciences School, Pontifical Catholic University of Parana, Curitiba, Parana, Brazil
| | - Bruna Carla Agustini
- Health and Biosciences School, Pontifical Catholic University of Parana, Curitiba, Parana, Brazil
| | | | | |
Collapse
|
40
|
Liu NJ, Wu HH, Li YL, Yang Z, Tao XM, Du YP, Wang XC, Lu B, Zhang ZY, Hu RM, Wen J. An analysis of the association between a polymorphism of KCNJ11 and diabetic retinopathy in a Chinese Han population. Eur J Med Res 2015; 20:3. [PMID: 25573672 PMCID: PMC4301311 DOI: 10.1186/s40001-014-0075-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 12/08/2014] [Indexed: 12/26/2022] Open
Abstract
Background Genome-wide association studies (GWAS) have reported that the polymorphism rs5219 of the potassium inwardly rectifying channel, subfamily J, member 11 (KCNJ11) is associated with type 2 diabetes mellitus (T2DM). Given that diabetic retinopathy (DR) is one of the most common microvascular complications of T2DM, GWAS have identified a number of potential susceptibility genes for DR. However, only a fraction of them have been replicated in different studies and show consistent genetic associations with the occurrence of DR. The aim of the present study was to investigate whether common variants of KCNJ11 confer DR in a cohort of the Chinese Han population. Methods A case–control study of 580 T2DM patients, including 105 T2DM with DR and 475 T2DM without DR was performed. A single nucleotide polymorphism (SNP) of KCNJ11 (rs5219) was genotyped, and its association with DR was explored using a dominant genetic model. Genotyping was performed by iPLEX technology. Univariate and multivariate logistic regression (MLR) analysis controlling for confounders was conducted to evaluate the association between rs5219 and DR. Results The A allele frequency of rs5219 was significantly higher in DR patients than that in the patients without DR (49.01% versus 38.68%, P <0.05). We found the minor A allele could increase the risk to develop DR (ORint = 1.58, 95% CI: 1.139 to 2.192 for allele and P = 0.006, ORint = 1.607, 95% CI: 1.267 to 2.038 for genotype and P <0.001) in the Chinese Han population. Conclusions Our findings provided evidence that KCNJ11 was associated with DR in Chinese Han patients with T2DM.
Collapse
Affiliation(s)
- Nai-Jia Liu
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, NO. 12 Wulumuqi Mid Road, Building 0#, Jing'an District, Shanghai, 200040, China.
| | - Hui-Hui Wu
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, NO. 12 Wulumuqi Mid Road, Building 0#, Jing'an District, Shanghai, 200040, China.
| | - Yan-Liang Li
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, NO. 12 Wulumuqi Mid Road, Building 0#, Jing'an District, Shanghai, 200040, China.
| | - Zhen Yang
- Department of Endocrinology and Metabolism, Xin Hua Hospital, Shanghai Jiao Tong University, NO. 1665 Kongjiang Road, Yangpu District, Shanghai, 200020, China.
| | - Xiao-Ming Tao
- Department of Endocrinology and Metabolism, Hua Dong Hospital, Fudan University, NO. 221 Yan'an West Road, Jing'an District, Shanghai, 200040, China.
| | - Yan-Ping Du
- Department of Endocrinology and Metabolism, Hua Dong Hospital, Fudan University, NO. 221 Yan'an West Road, Jing'an District, Shanghai, 200040, China.
| | - Xuan-Chun Wang
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, NO. 12 Wulumuqi Mid Road, Building 0#, Jing'an District, Shanghai, 200040, China.
| | - Bin Lu
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, NO. 12 Wulumuqi Mid Road, Building 0#, Jing'an District, Shanghai, 200040, China.
| | - Zhao-Yun Zhang
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, NO. 12 Wulumuqi Mid Road, Building 0#, Jing'an District, Shanghai, 200040, China.
| | - Ren-Ming Hu
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, NO. 12 Wulumuqi Mid Road, Building 0#, Jing'an District, Shanghai, 200040, China.
| | - Jie Wen
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, NO. 12 Wulumuqi Mid Road, Building 0#, Jing'an District, Shanghai, 200040, China.
| |
Collapse
|
41
|
Haghvirdizadeh P, Mohamed Z, Abdullah NA, Haghvirdizadeh P, Haerian MS, Haerian BS. KCNJ11: Genetic Polymorphisms and Risk of Diabetes Mellitus. J Diabetes Res 2015; 2015:908152. [PMID: 26448950 PMCID: PMC4584059 DOI: 10.1155/2015/908152] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2014] [Revised: 11/18/2014] [Accepted: 11/27/2014] [Indexed: 01/12/2023] Open
Abstract
Diabetes mellitus (DM) is a major worldwide health problem and its prevalence has been rapidly increasing in the last century. It is caused by defects in insulin secretion or insulin action or both, leading to hyperglycemia. Of the various types of DM, type 2 occurs most frequently. Multiple genes and their interactions are involved in the insulin secretion pathway. Insulin secretion is mediated through the ATP-sensitive potassium (KATP) channel in pancreatic beta cells. This channel is a heteromeric protein, composed of four inward-rectifier potassium ion channel (Kir6.2) tetramers, which form the pore of the KATP channel, as well as sulfonylurea receptor 1 subunits surrounding the pore. Kir6.2 is encoded by the potassium inwardly rectifying channel, subfamily J, member 11 (KCNJ11) gene, a member of the potassium channel genes. Numerous studies have reported the involvement of single nucleotide polymorphisms of the KCNJ11 gene and their interactions in the susceptibility to DM. This review discusses the current evidence for the contribution of common KCNJ11 genetic variants to the development of DM. Future studies should concentrate on understanding the exact role played by these risk variants in the development of DM.
Collapse
Affiliation(s)
- Polin Haghvirdizadeh
- Pharmacogenomics Lab, Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Zahurin Mohamed
- Pharmacogenomics Lab, Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Nor Azizan Abdullah
- Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | | | - Monir Sadat Haerian
- Shahid Beheshti University of Medical Sciences, P.O. Box 19395-4763, Tehran, Iran
- Food and Drug Control Reference Labs Center (FDCRLC), Ministry of Health and Medical Education, Tehran 131456-8784, Iran
| | - Batoul Sadat Haerian
- Pharmacogenomics Lab, Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
- *Batoul Sadat Haerian:
| |
Collapse
|
42
|
Li Q, Chen M, Zhang R, Jiang F, Wang J, Zhou J, Bao Y, Hu C, Jia W. KCNJ11E23K variant is associated with the therapeutic effect of sulphonylureas in Chinese type 2 diabetic patients. Clin Exp Pharmacol Physiol 2014; 41:748-54. [DOI: 10.1111/1440-1681.12280] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 06/06/2014] [Accepted: 06/16/2014] [Indexed: 11/28/2022]
Affiliation(s)
- Qing Li
- Department of Endocrinology and Metabolism; Shanghai Diabetes Institute; Shanghai Jiao Tong University Affiliated Sixth People's Hospital; Shanghai Clinical Center of Diabetes; Shanghai Diabetes Institute; Shanghai Key Laboratory of Diabetes Mellitus; Shanghai China
| | - Miao Chen
- Department of Endocrinology and Metabolism; Shanghai Diabetes Institute; Shanghai Jiao Tong University Affiliated Sixth People's Hospital; Shanghai Clinical Center of Diabetes; Shanghai Diabetes Institute; Shanghai Key Laboratory of Diabetes Mellitus; Shanghai China
| | - Rong Zhang
- Department of Endocrinology and Metabolism; Shanghai Diabetes Institute; Shanghai Jiao Tong University Affiliated Sixth People's Hospital; Shanghai Clinical Center of Diabetes; Shanghai Diabetes Institute; Shanghai Key Laboratory of Diabetes Mellitus; Shanghai China
| | - Feng Jiang
- Department of Endocrinology and Metabolism; Shanghai Diabetes Institute; Shanghai Jiao Tong University Affiliated Sixth People's Hospital; Shanghai Clinical Center of Diabetes; Shanghai Diabetes Institute; Shanghai Key Laboratory of Diabetes Mellitus; Shanghai China
| | - Jie Wang
- Department of Endocrinology and Metabolism; Shanghai Diabetes Institute; Shanghai Jiao Tong University Affiliated Sixth People's Hospital; Shanghai Clinical Center of Diabetes; Shanghai Diabetes Institute; Shanghai Key Laboratory of Diabetes Mellitus; Shanghai China
| | - Jian Zhou
- Department of Endocrinology and Metabolism; Shanghai Diabetes Institute; Shanghai Jiao Tong University Affiliated Sixth People's Hospital; Shanghai Clinical Center of Diabetes; Shanghai Diabetes Institute; Shanghai Key Laboratory of Diabetes Mellitus; Shanghai China
| | - Yuqian Bao
- Department of Endocrinology and Metabolism; Shanghai Diabetes Institute; Shanghai Jiao Tong University Affiliated Sixth People's Hospital; Shanghai Clinical Center of Diabetes; Shanghai Diabetes Institute; Shanghai Key Laboratory of Diabetes Mellitus; Shanghai China
| | - Cheng Hu
- Department of Endocrinology and Metabolism; Shanghai Diabetes Institute; Shanghai Jiao Tong University Affiliated Sixth People's Hospital; Shanghai Clinical Center of Diabetes; Shanghai Diabetes Institute; Shanghai Key Laboratory of Diabetes Mellitus; Shanghai China
| | - Weiping Jia
- Department of Endocrinology and Metabolism; Shanghai Diabetes Institute; Shanghai Jiao Tong University Affiliated Sixth People's Hospital; Shanghai Clinical Center of Diabetes; Shanghai Diabetes Institute; Shanghai Key Laboratory of Diabetes Mellitus; Shanghai China
| |
Collapse
|
43
|
Population specific impact of genetic variants in KCNJ11 gene to type 2 diabetes: a case-control and meta-analysis study. PLoS One 2014; 9:e107021. [PMID: 25247988 PMCID: PMC4172481 DOI: 10.1371/journal.pone.0107021] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 08/04/2014] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND AND OBJECTIVES Potassium inwardly rectifying channel, subfamily J, member 11 (KCNJ11) gene have a key role in insulin secretion and is of substantial interest as a candidate gene for type 2 diabetes (T2D). The current work was performed to delineate the genetic influence of KCNJ11 polymorphisms on risk of T2D in South Indian population through case-control association study along with systematic review and meta-analysis. METHODS A case-control study of 400 T2D cases and controls of South Indian origin were performed to analyze the association of KCNJ11 polymorphisms (rs5219, rs5215, rs41282930, rs1800467) and copy number variations (CNV) on the risk of T2D. In addition a systematic review and meta-analysis for KCNJ11 rs5219 was conducted in 3,831 cases and 3,543 controls from 5 published reports from South-Asian population by searching various databases. Odds ratio with 95% confidence interval (CI) was used to assess the association strength. Cochran's Q, I2 statistics were used to study heterogeneity between the eligible studies. RESULTS KCNJ11 rs5215, C-G-C-C haplotype and two loci analysis (rs5219 vs rs1800467) showed a significant association with T2D but CNV analysis did not show significant variation between T2D cases and control subjects. Lower age of disease onset (P = 0.04) and higher body mass index (BMI) (P = 0.04) were associated with rs5219 TT genotype in T2D patients. The meta-analysis of KCNJ11 rs5219 on South Asian population showed no association on susceptibility to T2D with an overall pooled OR = 0.98, 95% CI = 0.83-1.16. Stratification analysis showed East Asian population and global population were associated with T2D when compared to South Asians. CONCLUSION KCNJ11 rs5219 is not independently associated with T2D in South-Indian population and our meta-analysis suggests that KCNJ11 polymorphism (rs5219) is associated with risk of T2D in East Asian population and global population but this outcome could not be replicated in South Asian sub groups.
Collapse
|
44
|
Al-Sinani S, Hassan MO, Zadjali F, Al-Yahyaee S, Albarwani S, Rizvi S, Jaju D, Comuzzie A, Voruganti VS, Bayoumi R. Utility of large consanguineous family-based model for investigating the genetics of type 2 diabetes mellitus. Gene 2014; 548:22-8. [DOI: 10.1016/j.gene.2014.06.053] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2013] [Revised: 06/16/2014] [Accepted: 06/23/2014] [Indexed: 12/24/2022]
|
45
|
Evidence for association of the E23K variant of KCNJ11 gene with type 2 diabetes in Tunisian population: population-based study and meta-analysis. BIOMED RESEARCH INTERNATIONAL 2014; 2014:265274. [PMID: 25165692 PMCID: PMC4140131 DOI: 10.1155/2014/265274] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 05/30/2014] [Indexed: 01/22/2023]
Abstract
Aims. Genetic association studies have reported the E23K variant of KCNJ11 gene to be associated with Type 2 diabetes. In Arab populations, only four studies have investigated the role of this variant. We aimed to replicate and validate the association between the E23K variant and Type 2 diabetes in Tunisian and Arab populations. Methods. We have performed a case-control association study including 250 Tunisian patients with Type 2 diabetes and 267 controls. Allelic association has also been evaluated by 2 meta-analyses including all population-based studies among Tunisians and Arabs (2 and 5 populations, resp.). Results. A significant association between the E23K variant and Type 2 diabetes was found (OR = 1.6, 95% CI = 1.14–2.27, and P = 0.007). Furthermore, our meta-analysis has confirmed the significant role of the E23K variant in susceptibility of Type 2 diabetes in Tunisian and Arab populations (OR = 1.29, 95% CI = 1.15–1.46, and P < 10−3 and OR = 1.33, 95% CI = 1.13–1.56, and P = 0.001, resp.). Conclusion. Both case-control and meta-analyses results revealed the significant association between the E23K variant of KCNJ11 and Type 2 diabetes among Tunisians and Arabs.
Collapse
|
46
|
Parvizi Z, Azarpira N, Kohan L, Darai M, Kazemi K, Parvizi MM. Association between E23K variant in KCNJ11 gene and new-onset diabetes after liver transplantation. Mol Biol Rep 2014; 41:6063-9. [PMID: 24996284 DOI: 10.1007/s11033-014-3483-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 06/17/2014] [Indexed: 12/24/2022]
Abstract
New-onset diabetes after transplantation (NODAT) is an important complication after solid organ transplantation. NODAT is a polygenic disease and KCNJ11 E23K polymorphism is considered as a diabetes-susceptibility gene. The present study aimed to assess the association between KCNJ11 (rs5219) variants and the risk of developing NODAT after liver transplantation. This study was conducted on 120 liver transplant recipients who had received tacrolimus-based immunosuppressive drugs. The liver transplant recipients were divided into an new onset diabetes mellitus (NODM) and a non-NODM group. The NODAT group consisted of 60 patients who developed diabetes in the first 6 months after transplantation, while the non-NODAT group included 60 patients who remained euglycemic. The patients were genotyped using polymerase chain reaction-restriction fragment length polymorphism and the incidence of NODAT was compared between the two groups. Nongenetic risk factors including donor gender and cold ischemia time, and recipient (MELD score, presence of viral hepatitis, acute rejection and steroid pulse therapy) were also considered. The KCNJ11 KK variant was associated with an increased risk for NODAT with respective odds ratio of 6.03 (95 % confidence interval 2.37-15.4; P < 0.001]. Donor age and male sex, recipient age as well as fasting plasma glucose before transplantation were significantly different between NODAT and non-NODAT groups (P < 0.05). The prednisolone daily dosage was significantly higher in the NODAT group (P = 0.01). These patients received pulse of methyl prednisolone for treatment of acute rejection. This study showed that polymorphisms in KCNJ11 might predispose the patients treated by tacrolimus to development of NODAT after liver transplantation.
Collapse
Affiliation(s)
- Zahra Parvizi
- Transplant Research Center, Nemazi Hospital, Shiraz University of Medical Sciences, Zand Street, 7193711351, Shiraz, Iran
| | | | | | | | | | | |
Collapse
|
47
|
Wang Z, York NW, Nichols CG, Remedi MS. Pancreatic β cell dedifferentiation in diabetes and redifferentiation following insulin therapy. Cell Metab 2014; 19:872-82. [PMID: 24746806 PMCID: PMC4067979 DOI: 10.1016/j.cmet.2014.03.010] [Citation(s) in RCA: 321] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 02/06/2014] [Accepted: 02/26/2014] [Indexed: 01/09/2023]
Abstract
Diabetes is characterized by "glucotoxic" loss of pancreatic β cell function and insulin content, but underlying mechanisms remain unclear. A mouse model of insulin-secretory deficiency induced by β cell inexcitability (K(ATP) gain of function) demonstrates development of diabetes and reiterates the features of human neonatal diabetes. In the diabetic state, β cells lose their mature identity and dedifferentiate to neurogenin3-positive and insulin-negative cells. Lineage-tracing experiments show that dedifferentiated cells can subsequently redifferentiate to mature neurogenin3-negative, insulin-positive β cells after lowering of blood glucose by insulin therapy. We demonstrate here that β cell dedifferentiation, rather than apoptosis, is the main mechanism of loss of insulin-positive cells, and redifferentiation accounts for restoration of insulin content and antidiabetic drug responsivity in these animals. These results may help explain gradual decrease in β cell mass in long-standing diabetes and recovery of β cell function and drug responsivity in type 2 diabetic patients following insulin therapy, and they suggest an approach to rescuing "exhausted" β cells in diabetes.
Collapse
Affiliation(s)
- Zhiyu Wang
- Department of Medicine, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA; Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | - Nathaniel W York
- Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | - Colin G Nichols
- Department of Cell Biology and Physiology, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA; Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | - Maria S Remedi
- Department of Cell Biology and Physiology, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA; Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA.
| |
Collapse
|
48
|
Qiu L, Na R, Xu R, Wang S, Sheng H, Wu W, Qu Y. Quantitative assessment of the effect of KCNJ11 gene polymorphism on the risk of type 2 diabetes. PLoS One 2014; 9:e93961. [PMID: 24710510 PMCID: PMC3977990 DOI: 10.1371/journal.pone.0093961] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 02/19/2014] [Indexed: 12/31/2022] Open
Abstract
To clarify the role of potassium inwardly-rectifying-channel, subfamily-J, member 11 (KCNJ11) variation in susceptibility to type 2 diabetes (T2D), we performed a systematic meta-analysis to investigate the association between the KCNJ11 E23K polymorphism (rs5219) and the T2D in different genetic models. Databases including PubMed, Medline, EMBASE, and ISI Web of Science were searched to identify relevant studies. A total of 48 published studies involving 56,349 T2D cases, 81,800 controls, and 483 family trios were included in this meta-analysis. Overall, the E23K polymorphism was significantly associated with increased T2D risk with per-allele odds ratio (OR) of 1.12 (95% CI: 1.09-1.16; P<10-5). The summary OR for T2D was 1.09 (95% CI: 1.03-1.14; P<10-5), and 1.26 (95% CI: 1.17-1.35; P<10-5), for heterozygous and homozygous, respectively. Similar results were also detected under dominant and recessive genetic models. When stratified by ethnicity, significantly increased risks were found for the polymorphism in Caucasians and East Asians. However, no such associations were detected among Indian and other ethnic populations. Significant associations were also observed in the stratified analyses according to different mean BMI of cases and sample size. Although significant between study heterogeneity was identified, meta-regression analysis suggested that the BMI of controls significantly correlated with the magnitude of the genetic effect. The current meta-analysis demonstrated that a modest but statistically significant effect of the 23K allele of rs5219 polymorphism in susceptibility to T2D. But the contribution of its genetic variants to the epidemic of T2D in Indian and other ethnic populations appears to be relatively low.
Collapse
Affiliation(s)
- Ling Qiu
- Department of Geriatrics, Shanghai Xuhui Central Hospital, Shanghai Clinical Center, Chinese Academy of Sciences, Shanghai, People's Republic of China
| | - Risu Na
- Department of Endocrinology, Shanghai Xuhui Central Hospital, Shanghai Clinical Center, Chinese Academy of Sciences, Shanghai, People's Republic of China
| | - Rong Xu
- Department of Geriatrics, Shanghai Xuhui Central Hospital, Shanghai Clinical Center, Chinese Academy of Sciences, Shanghai, People's Republic of China
| | - Siyang Wang
- Department of Geriatrics, Shanghai Xuhui Central Hospital, Shanghai Clinical Center, Chinese Academy of Sciences, Shanghai, People's Republic of China
| | - Hongguang Sheng
- Department of Endocrinology, Shanghai Xuhui Central Hospital, Shanghai Clinical Center, Chinese Academy of Sciences, Shanghai, People's Republic of China
| | - Wanling Wu
- Department of Endocrinology, The Ninth People's Hospital Attach to Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Yi Qu
- Department of Geriatrics, Shanghai Xuhui Central Hospital, Shanghai Clinical Center, Chinese Academy of Sciences, Shanghai, People's Republic of China
- * E-mail:
| |
Collapse
|
49
|
Abstract
Few Type 2 diabetes loci are considered confirmed and replicated across multiple populations. Some genes that have become accepted as contributors to diabetes risk include: calpain 10, peroxisome proliferator-activated receptor-gamma, ATP-sensitive inwardly rectifying potassium channel subunit Kir6.2, hepatocyte nuclear factor 4alpha and hepatic transcription factor 1. While numerous reports of new diabetes loci enter the literature on a regular basis, this review focuses on selected novel associations reported within the last 12 months. In particular, we highlight recent reports of associations between Type 2 diabetes and the transcription factor 7-like 2 gene, associations with micro-opioid receptor and supressor of cytokine signaling 2 genes, and expression and functional analyses of adipokines vaspin and retinol binding protein 4. These new results provide insights into possible mechanisms influencing disease susceptibility and thus new diagnostic and therapeutic opportunities for Type 2 diabetes.
Collapse
Affiliation(s)
- Michèle M Sale
- Internal Medicine, Wake Forest University School of Medicine, Center for Human Genomics, Medical Center Blvd, Winston-Salem, NC 27157, USA.
| | | |
Collapse
|
50
|
Jiang YD, Chuang LM, Pei D, Lee YJ, Wei JN, Sung FC, Chang TJ. Genetic Variations in the Kir6.2 Subunit (KCNJ11) of Pancreatic ATP-Sensitive Potassium Channel Gene Are Associated with Insulin Response to Glucose Loading and Early Onset of Type 2 Diabetes in Childhood and Adolescence in Taiwan. Int J Endocrinol 2014; 2014:983016. [PMID: 25309595 PMCID: PMC4189766 DOI: 10.1155/2014/983016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 08/20/2014] [Indexed: 11/18/2022] Open
Abstract
To investigate the role of E23K polymorphism of the KCNJ11 gene on early onset of type 2 diabetes in school-aged children/adolescents in Taiwan, we recruited 38 subjects with type 2 diabetes (ages 18.6 ± 6.6 years; body mass index percentiles 83.3 ± 15.4) and 69 normal controls (ages 17.3 ± 3.8 years; body mass index percentiles 56.7 ± 29.0) from a national surveillance for childhood/adolescent diabetes in Taiwan. We searched for the E23K polymorphism of the KCNJ11 gene. We found that type 2 diabetic subjects had higher carrier rate of E23K polymorphism of KCNJ11 gene than control subjects (P = 0.044). After adjusting for age, gender, body mass index percentiles, and fasting plasma insulin, the E23K polymorphism contributed to an increased risk for type 2 diabetes (P = 0.047). K23-allele-containing genotypes conferring increased plasma insulin level during OGTT in normal subjects. However, the diabetic subjects with the K23-allele-containing genotypes had lower fasting plasma insulin levels after adjustment of age and BMI percentiles. In conclusion, the E23K variant of the KCNJ11 gene conferred higher susceptibility to type 2 diabetes in children/adolescents. Furthermore, in normal glucose-tolerant children/adolescents, K23 allele carriers had a higher insulin response to oral glucose loading.
Collapse
Affiliation(s)
- Yi-Der Jiang
- Department of Internal Medicine, National Taiwan University Hospital, 7 Chung-Shan South Road, Taipei 10002, Taiwan
| | - Lee-Ming Chuang
- Department of Internal Medicine, National Taiwan University Hospital, 7 Chung-Shan South Road, Taipei 10002, Taiwan
- Graduate Institute of Preventive Medicine, School of Public Health, National Taiwan University, Taipei 10002, Taiwan
| | - Dee Pei
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Cardinal Tien Hospital, Xindian 23148, Taiwan
| | - Yann-Jinn Lee
- Department of Pediatrics, Mackay General Hospital, Taipei 10449, Taiwan
| | - Jun-Nan Wei
- Chia Nan University of Pharmacy and Science, Tainan 71710, Taiwan
| | - Fung-Chang Sung
- Institute of Environmental Health, College of Public Health, China Medical University, Taichung 40447, Taiwan
| | - Tien-Jyun Chang
- Department of Internal Medicine, National Taiwan University Hospital, 7 Chung-Shan South Road, Taipei 10002, Taiwan
- *Tien-Jyun Chang:
| |
Collapse
|