1
|
Rabaan AA, Alfaresi M, Alrasheed HA, Al Kaabi NA, Abduljabbar WA, Al Fares MA, Al-Subaie MF, Alissa M. Network-Based Drug Repurposing and Genomic Analysis to Unveil Potential Therapeutics for Monkeypox Virus. Chem Biodivers 2024; 21:e202400895. [PMID: 39082609 DOI: 10.1002/cbdv.202400895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 07/22/2024] [Indexed: 10/10/2024]
Abstract
The emergence of the human monkeypox virus (MPXV) and the lack of effective medications have necessitated the exploration of various strategies to combat its infection. This study employs a network-based approach to drug discovery, utilizing the BLASTn and phylogenetic analysis to compare the MPXV genome with those of 18 related orthopoxviruses, revealing over 75 % genomic similarity. Through a literature review, 160 human-host proteins linked to MPXV and its relatives were identified, leading to the construction of a human-host protein interactome. Analysis of this interactome highlighted 39 central hub proteins, which were then examined for potential drug targets. The process successfully revealed 15 targets already approved for use with medications. Additionally, the functional enrichment analysis provided insights into potential pathways and disorders connected with these targets. Four medications, namely Baricitinib, Infliximab, Adalimumab, and Etanercept, have been identified as potential candidates for repurposing to combat MPXV. In addition, the pharmacophore-based screening identified a molecule that is comparable to Baricitinib and has the potential to be effective against MPXV. The findings of the study suggest that ZINC22060520 is a promising medication for treating MPXV infection and proposes these medications as potential options for additional experimental and clinical assessment in the battle against MPXV.
Collapse
Affiliation(s)
- Ali A Rabaan
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran, 31311, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh, 11533, Saudi Arabia
- Department of Public Health and Nutrition, The University of Haripur, Haripur, 22610, Pakistan
| | - Mubarak Alfaresi
- Department of Microbiology, National Reference laboratory, Cleveland Clinic Abu Dhabi, Abu Dhabi, 92323, United Arab Emirates
- Department of Pathology, College of Medicine, Mohammed Bin Rashid, University of Medicine and Health Sciences, Dubai, 505055, United Arab Emirates
| | - Hayam A Alrasheed
- Department of Pharmacy Practice, College of Pharmacy, Princess Nourah bint Abdulrahman University, Riyadh, 11671, Saudi Arabia
| | - Nawal A Al Kaabi
- College of Medicine and Health Science, Khalifa University, Abu Dhabi, 127788, United Arab Emirates
- Sheikh Khalifa Medical City, Abu Dhabi Health Services Company (SEHA), Abu Dhabi, 51900, United Arab Emirates
| | - Wesam A Abduljabbar
- Department of Medical Laboratory Sciences, Fakeeh College for Medical Science, Jeddah, 21134, Saudi Arabia
| | - Mona A Al Fares
- Department of Internal Medicine, King Abdulaziz University Hospital, Jeddah, 21589, Saudi Arabia
| | - Maha F Al-Subaie
- College of Medicine, Alfaisal University, Riyadh, 11533, Saudi Arabia
- Research Center, Dr. Sulaiman Alhabib Medical Group, Riyadh, 13328, Saudi Arabia
| | - Mohammed Alissa
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
| |
Collapse
|
2
|
Li Y, He C, Liu R, Xiao Z, Sun B. Stem cells therapy for diabetes: from past to future. Cytotherapy 2023; 25:1125-1138. [PMID: 37256240 DOI: 10.1016/j.jcyt.2023.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 04/05/2023] [Accepted: 04/24/2023] [Indexed: 06/01/2023]
Abstract
Diabetes mellitus is a chronic disease of carbohydrate metabolism characterized by uncontrolled hyperglycemia due to the body's impaired ability to produce or respond to insulin. Oral or injectable exogenous insulin and its analogs cannot mimic endogenous insulin secreted by healthy individuals, and pancreatic and islet transplants face a severe shortage of sources and transplant complications, all of which limit the widespread use of traditional strategies in diabetes treatment. We are now in the era of stem cells and their potential in ameliorating human disease. At the same time, the rapid development of gene editing and cell-encapsulation technologies has added to the wings of stem cell therapy. However, there are still many unanswered questions before stem cell therapy can be applied clinically to patients with diabetes. In this review, we discuss the progress of strategies to obtain insulin-producing cells from different types of stem cells, the application of gene editing in stem cell therapy for diabetes, as well as summarize the current advanced cell encapsulation technologies in diabetes therapy and look forward to the future development of stem cell therapy in diabetes.
Collapse
Affiliation(s)
- Yumin Li
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Cong He
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China; Department of Hepatobiliary Surgery, Nanjing Drum Tower Hospital,The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Rui Liu
- Department of Genetic Engineering, College of Natural Science, University of Suwon, Kyunggi-Do, Republic of Korea
| | - Zhongdang Xiao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China.
| | - Bo Sun
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China.
| |
Collapse
|
3
|
Tootee A, Nikbin B, Ghahary A, Esfahani EN, Arjmand B, Aghayan H, Qorbani M, Larijani B. Immunopathology of Type 1 Diabetes and Immunomodulatory Effects of Stem Cells: A Narrative Review of the Literature. Endocr Metab Immune Disord Drug Targets 2021; 22:169-197. [PMID: 33538679 DOI: 10.2174/1871530321666210203212809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 10/11/2020] [Accepted: 10/27/2020] [Indexed: 11/22/2022]
Abstract
Type 1 Diabetes (T1D) is a complex autoimmune disorder which occurs as a result of an intricate series of pathologic interactions between pancreatic β-cells and a wide range of components of both the innate and the adaptive immune systems. Stem-cell therapy, a recently-emerged potentially therapeutic option for curative treatment of diabetes, is demonstrated to cause significant alternations to both different immune cells such as macrophages, natural killer (NK) cells, dendritic cells, T cells, and B cells and non-cellular elements including serum cytokines and different components of the complement system. Although there exists overwhelming evidence indicating that the documented therapeutic effects of stem cells on patients with T1D is primarily due to their potential for immune regulation rather than pancreatic tissue regeneration, to date, the precise underlying mechanisms remain obscure. On the other hand, immune-mediated rejection of stem cells remains one of the main obstacles to regenerative medicine. Moreover, the consequences of efferocytosis of stem-cells by the recipients' lung-resident macrophages have recently emerged as a responsible mechanism for some immune-mediated therapeutic effects of stem-cells. This review focuses on the nature of the interactions amongst different compartments of the immune systems which are involved in the pathogenesis of T1D and provides explanation as to how stem cell-based interventions can influence immune system and maintain the physiologic equilibrium.
Collapse
Affiliation(s)
- Ali Tootee
- Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, . Iran
| | - Behrouz Nikbin
- Research Center of Molecular Immunology, Tehran University of Medical Sciences, Tehran, . Iran
| | - Aziz Ghahary
- British Columbia Professional Firefighters' Burn and Wound Healing Research Laboratory, Department of Surgery, Plastic Surgery, University of British Columbia, Vancouver, . Canada
| | - Ensieh Nasli Esfahani
- Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, . Iran
| | - Babak Arjmand
- Cell therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, . Iran
| | - Hamidreza Aghayan
- Cell therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, . Iran
| | - Mostafa Qorbani
- Non-communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, . Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, . Iran
| |
Collapse
|
4
|
Mesenchymal stem cells to treat type 1 diabetes. Biochim Biophys Acta Mol Basis Dis 2018; 1866:165315. [PMID: 30508575 DOI: 10.1016/j.bbadis.2018.10.033] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 10/26/2018] [Indexed: 12/13/2022]
Abstract
What is clear is we are in the era of the stem cell and its potential in ameliorating human disease. Our perspective is generated from an in vivo model in a large animal that offers significant advantages (complete transplantation tolerance, large size and long life span). This review is an effort to meld our preclinical observations with others for the reader and to outline potential avenues to improve the present outlook for patients with diabetes. This effort exams the history or background of stem cell research in the laboratory and the clinic, types of stem cells, pluripotency or lack thereof based on a variety of pre-clinical investigations attempting endocrine pancreas recovery using stem cell transplantation. The focus is on the use of hematopoietic and mesenchymal stem cells. This review will also examine recent clinical experience following stem cell transplantation in patients with type 1 diabetes.
Collapse
|
5
|
Abstract
I started research in high school, experimenting on immunological tolerance to transplantation antigens. This led to studies of the thymus as the site of maturation of T cells, which led to the discovery, isolation, and clinical transplantation of purified hematopoietic stem cells (HSCs). The induction of immune tolerance with HSCs has led to isolation of other tissue-specific stem cells for regenerative medicine. Our studies of circulating competing germline stem cells in colonial protochordates led us to document competing HSCs. In human acute myelogenous leukemia we showed that all preleukemic mutations occur in HSCs, and determined their order; the final mutations occur in a multipotent progenitor derived from the preleukemic HSC clone. With these, we discovered that CD47 is an upregulated gene in all human cancers and is a "don't eat me" signal; blocking it with antibodies leads to cancer cell phagocytosis. CD47 is the first known gene common to all cancers and is a target for cancer immunotherapy.
Collapse
Affiliation(s)
- Irving Weissman
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA 94305, and Ludwig Center for Cancer Stem Cell Research and Medicine at Stanford, Stanford, CA 94305
| |
Collapse
|
6
|
Sordi V, Pellegrini S, Krampera M, Marchetti P, Pessina A, Ciardelli G, Fadini G, Pintus C, Pantè G, Piemonti L. Stem cells to restore insulin production and cure diabetes. Nutr Metab Cardiovasc Dis 2017; 27:583-600. [PMID: 28545927 DOI: 10.1016/j.numecd.2017.02.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 01/24/2017] [Accepted: 02/11/2017] [Indexed: 12/17/2022]
Abstract
BACKGROUND The advancement of knowledge in the field of regenerative medicine is increasing the therapeutic expectations of patients and clinicians on cell therapy approaches. Within these, stem cell therapies are often evoked as a possible therapeutic option for diabetes, already ongoing or possible in the near future. AIM The purpose of this document is to make a point of the situation on existing knowledge and therapies with stem cells to treat patients with diabetes by focusing on some of the aspects that most frequently raise curiosity and discussion in clinical practice and in the interaction with the patient. In fact, at present there are no clinically approved treatments based on the use of stem cells for the treatment of diabetes, but several therapeutic approaches have already been evaluated or are being evaluated in clinical trials. DATA SYNTHESIS It is possible to identify three large potential application fields: 1) the reconstruction of the β cell mass; 2) the immunomodulation in type 1 diabetes (T1D); 3) the treatment of complications. In this study we will limit the discussion to approaches that have the potential for clinical translation, deliberately omitting aspects of basic biology and preclinical data. Also, we intentionally omit the treatment of the complications that will be the subject of a future document. Finally, an overview of the Italian situation regarding the storage of cord blood cells for the therapy of diabetes will be given.
Collapse
Affiliation(s)
- V Sordi
- Diabetes Research Institute (DRI) - IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - S Pellegrini
- Diabetes Research Institute (DRI) - IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - M Krampera
- Stem Cell Research Laboratory, Section of Hematology, Department of Medicine, University of Verona, Italy
| | - P Marchetti
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - A Pessina
- CRC-StaMeTec (Mesenchymal Stem Cells for Cell Therapy), Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
| | - G Ciardelli
- DIMEAS - Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - G Fadini
- Medicine Department (DIMED), University of Padua, Italy
| | - C Pintus
- Italian National Transplant Center (CNT), Italy
| | - G Pantè
- Italian Medicines Agency (AIFA), Italy
| | - L Piemonti
- Diabetes Research Institute (DRI) - IRCCS San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|
7
|
Ye L, Li L, Wan B, Yang M, Hong J, Gu W, Wang W, Ning G. Immune response after autologous hematopoietic stem cell transplantation in type 1 diabetes mellitus. Stem Cell Res Ther 2017; 8:90. [PMID: 28420440 PMCID: PMC5395765 DOI: 10.1186/s13287-017-0542-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 02/10/2017] [Accepted: 03/23/2017] [Indexed: 01/07/2023] Open
Abstract
Background This study explored the details of the immune response after autologous hematopoietic stem cell transplantation (AHSCT) treatment in type 1 diabetes mellitus. Methods Peripheral blood mononuclear cells (PBMCs) from 18 patients with type 1 diabetes mellitus were taken at baseline and 12 months after AHSCT or insulin-only therapy. The lymphocyte proliferation, mRNA expression and secretion of pro-inflammatory and anti-inflammatory cytokines belonging to T-helper type 1 (Th1), T-helper type 17 (Th17) and regulatory T (Treg) cells in PBMC culture supernatants were assessed. Results Compared with patients receiving insulin-only treatment, the patients receiving AHSCT treatment showed better residual C-peptide secretion, lower anti-GAD titers and less exogenous insulin dosages after 12 months of follow-up. AHSCT treatment was associated with significantly reduced Th1 and Th17 cell proportions as well as decreased IFN-γ, IL-2, IL-12p40 and IL-17A levels in the PBMC culture supernatants (all P < 0.05). Although there was no significant Treg cell expansion after AHSCT treatment, we observed increased IL-10, TGF-β and Foxp3 mRNA expression and increased TGF-β levels. However, we found no significant changes in the T-cell subpopulations after insulin treatment, except for higher IL-12p40 mRNA expression and a lower proportion of Treg cells. Conclusions AHSCT treatment was associated with decreased expansion and function of Th1 and Th17 cells, which may explain the better therapeutic effect of AHSCT compared with the traditional intensive insulin therapy. Trial registration Clinicaltrials.gov NCT00807651. Registered 18 December 2008.
Collapse
Affiliation(s)
- Lei Ye
- The Department of Endocrinology and Metabolism, Ruijin Hospital, Shanghai Jiao-tong University School of Medicine, Shanghai Institution of Endocrine and Metabolism Diseases, Endocrine and Metabolic E-Institutes of Shanghai Universities and Key Laboratory for Endocrinology and Metabolism of Chinese Health Ministry, No. 197 Ruijin 2nd Road, Shanghai, 200025, People's Republic of China
| | - Li Li
- The Department of Endocrinology and Metabolism, Ruijin Hospital, Shanghai Jiao-tong University School of Medicine, Shanghai Institution of Endocrine and Metabolism Diseases, Endocrine and Metabolic E-Institutes of Shanghai Universities and Key Laboratory for Endocrinology and Metabolism of Chinese Health Ministry, No. 197 Ruijin 2nd Road, Shanghai, 200025, People's Republic of China
| | - Bing Wan
- The Shanghai Institute of Immunology, Institutes of Medical Sciences, Shanghai Jiao-tong University School of Medicine and Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences & SJTUSM, Shanghai, People's Republic of China
| | - Minglan Yang
- The Department of Endocrinology and Metabolism, Ruijin Hospital, Shanghai Jiao-tong University School of Medicine, Shanghai Institution of Endocrine and Metabolism Diseases, Endocrine and Metabolic E-Institutes of Shanghai Universities and Key Laboratory for Endocrinology and Metabolism of Chinese Health Ministry, No. 197 Ruijin 2nd Road, Shanghai, 200025, People's Republic of China
| | - Jie Hong
- The Department of Endocrinology and Metabolism, Ruijin Hospital, Shanghai Jiao-tong University School of Medicine, Shanghai Institution of Endocrine and Metabolism Diseases, Endocrine and Metabolic E-Institutes of Shanghai Universities and Key Laboratory for Endocrinology and Metabolism of Chinese Health Ministry, No. 197 Ruijin 2nd Road, Shanghai, 200025, People's Republic of China
| | - Weiqiong Gu
- The Department of Endocrinology and Metabolism, Ruijin Hospital, Shanghai Jiao-tong University School of Medicine, Shanghai Institution of Endocrine and Metabolism Diseases, Endocrine and Metabolic E-Institutes of Shanghai Universities and Key Laboratory for Endocrinology and Metabolism of Chinese Health Ministry, No. 197 Ruijin 2nd Road, Shanghai, 200025, People's Republic of China.
| | - Weiqing Wang
- The Department of Endocrinology and Metabolism, Ruijin Hospital, Shanghai Jiao-tong University School of Medicine, Shanghai Institution of Endocrine and Metabolism Diseases, Endocrine and Metabolic E-Institutes of Shanghai Universities and Key Laboratory for Endocrinology and Metabolism of Chinese Health Ministry, No. 197 Ruijin 2nd Road, Shanghai, 200025, People's Republic of China
| | - Guang Ning
- The Department of Endocrinology and Metabolism, Ruijin Hospital, Shanghai Jiao-tong University School of Medicine, Shanghai Institution of Endocrine and Metabolism Diseases, Endocrine and Metabolic E-Institutes of Shanghai Universities and Key Laboratory for Endocrinology and Metabolism of Chinese Health Ministry, No. 197 Ruijin 2nd Road, Shanghai, 200025, People's Republic of China.,The Chinese Academy of Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai Institutes for Biological Sciences, Laboratory of Endocrinology and Metabolism, Institute of Health Sciences, Shanghai, People's Republic of China
| |
Collapse
|
8
|
Creusot RJ, Battaglia M, Roncarolo MG, Fathman CG. Concise Review: Cell-Based Therapies and Other Non-Traditional Approaches for Type 1 Diabetes. Stem Cells 2016; 34:809-19. [PMID: 26840009 PMCID: PMC5021120 DOI: 10.1002/stem.2290] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 12/07/2015] [Indexed: 01/01/2023]
Abstract
The evolution of Type 1 diabetes (T1D) therapy has been marked by consecutive shifts, from insulin replacement to immunosuppressive drugs and targeted biologics (following the understanding that T1D is an autoimmune disease), and to more disease‐specific or patient‐oriented approaches such as antigen‐specific and cell‐based therapies, with a goal to provide efficacy, safety, and long‐term protection. At the same time, another important paradigm shift from treatment of new onset T1D patients to prevention in high‐risk individuals has taken place, based on the hypothesis that therapeutic approaches deemed sufficiently safe may show better efficacy if applied early enough to maintain endogenous β cell function, a concept supported by many preclinical studies. This new strategy has been made possible by capitalizing on a variety of biomarkers that can more reliably estimate the risk and rate of progression of the disease. More advanced (“omic”‐based) biomarkers that also shed light on the underlying contributors of disease for each individual will be helpful to guide the choice of the most appropriate therapies, or combinations thereof. In this review, we present current efforts to stratify patients according to biomarkers and current alternatives to conventional drug‐based therapies for T1D, with a special emphasis on cell‐based therapies, their status in the clinic and potential for treatment and/or prevention. Stem Cells2016;34:809–819
Collapse
Affiliation(s)
- Remi J Creusot
- Department of Medicine, Columbia Center for Translational Immunology and Naomi Berrie Diabetes Center, Columbia University Medical Center, New York, USA
| | - Manuela Battaglia
- Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Maria-Grazia Roncarolo
- Division of Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine Stanford, CA, USA
| | - C Garrison Fathman
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine Stanford, CA, USA
| |
Collapse
|
9
|
MHC-mismatched mixed chimerism augments thymic regulatory T-cell production and prevents relapse of EAE in mice. Proc Natl Acad Sci U S A 2015; 112:15994-9. [PMID: 26647186 DOI: 10.1073/pnas.1521157112] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Multiple sclerosis (MS) is an autoimmune inflammatory disease of the central nervous system with demyelination, axon damage, and paralysis. Induction of mixed chimerism with allogeneic donors has been shown to not cause graft-versus-host disease (GVHD) in animal models and humans. We have reported that induction of MHC-mismatched mixed chimerism can cure autoimmunity in autoimmune NOD mice, but this approach has not yet been tested in animal models of MS, such as experimental autoimmune encephalomyelitis (EAE). Here, we report that MHC-mismatched mixed chimerism with C57BL/6 (H-2(b)) donor in SJL/J (H-2(s)) EAE recipients eliminates clinical symptoms and prevents relapse. This cure is demonstrated by not only disappearance of clinical signs but also reversal of autoimmunity; elimination of infiltrating T, B, and macrophage cells in the spinal cord; and regeneration of myelin sheath. The reversal of autoimmunity is associated with a marked reduction of autoreactivity of CD4(+) T cells and significant increase in the percentage of Foxp3(+) Treg among host-type CD4(+) T cells in the spleen and lymph nodes. The latter is associated with a marked reduction of the percentage of host-type CD4(+)CD8(+) thymocytes and an increase of Treg percentage among the CD4(+)CD8(+) and CD4(+)CD8(-) thymocytes. Thymectomy leads to loss of prevention of EAE relapse by induction of mixed chimerism, although there is a dramatic expansion of host-type Treg cells in the lymph nodes. These results indicate that induction of MHC-mismatched mixed chimerism can restore thymic negative selection of autoreactive CD4(+) T cells, augment production of Foxp3(+) Treg, and cure EAE.
Collapse
|
10
|
Wang N, Rajasekaran N, Hou T, Macaubas C, Mellins ED. Immunological Basis for Rapid Progression of Diabetes in Older NOD Mouse Recipients Post BM-HSC Transplantation. PLoS One 2015; 10:e0128494. [PMID: 26020954 PMCID: PMC4447290 DOI: 10.1371/journal.pone.0128494] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 04/27/2015] [Indexed: 01/07/2023] Open
Abstract
Type I diabetes (T1D), mediated by autoreactive T cell destruction of insulin-producing islet beta cells, has been treated with bone marrow-derived hematopoietic stem cell (BM-HSC) transplantation. Older non-obese diabetic (NOD) mice recipients (3m, at disease-onset stage) receiving syngeneic BM-HSC progressed more rapidly to end-stage diabetes post-transplantation than younger recipients (4-6w, at disease-initiation stage). FACS analyses showed a higher percentage and absolute number of regulatory T cells (Treg) and lower proportion of proliferating T conventional cells (Tcon) in pancreatic lymph nodes from the resistant mice among the younger recipients compared to the rapid progressors among the older recipients. Treg distribution in spleen, mesenteric lymph nodes (MLN), blood and thymus between the two groups was similar. However, the percentage of thymic Tcon and the proliferation of Tcon in MLN and blood were lower in the young resistants. These results suggest recipient age and associated disease stage as a variable to consider in BM-HSC transplantation for treating T1D.
Collapse
MESH Headings
- Aging/immunology
- Aging/pathology
- Animals
- Antigens, CD/genetics
- Antigens, CD/immunology
- Biomarkers/metabolism
- Blood Glucose/immunology
- Blood Glucose/metabolism
- Diabetes Mellitus, Type 1/immunology
- Diabetes Mellitus, Type 1/mortality
- Diabetes Mellitus, Type 1/pathology
- Diabetes Mellitus, Type 1/therapy
- Disease Models, Animal
- Female
- Forkhead Transcription Factors/genetics
- Forkhead Transcription Factors/immunology
- Gene Expression
- Hematopoietic Stem Cell Transplantation
- Hematopoietic Stem Cells/cytology
- Hematopoietic Stem Cells/immunology
- Immunophenotyping
- Lymphocyte Count
- Mice
- Mice, Inbred NOD
- Survival Analysis
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/pathology
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/pathology
- Whole-Body Irradiation
Collapse
Affiliation(s)
- Nan Wang
- Program in Immunology, Division of Human Gene Therapy, Department of Pediatrics, Stanford University School of Medicine, Stanford, California, United States of America
| | - Narendiran Rajasekaran
- Program in Immunology, Division of Human Gene Therapy, Department of Pediatrics, Stanford University School of Medicine, Stanford, California, United States of America
| | - Tieying Hou
- Program in Immunology, Division of Human Gene Therapy, Department of Pediatrics, Stanford University School of Medicine, Stanford, California, United States of America
| | - Claudia Macaubas
- Program in Immunology, Division of Human Gene Therapy, Department of Pediatrics, Stanford University School of Medicine, Stanford, California, United States of America
| | - Elizabeth D. Mellins
- Program in Immunology, Division of Human Gene Therapy, Department of Pediatrics, Stanford University School of Medicine, Stanford, California, United States of America
- * E-mail:
| |
Collapse
|
11
|
Racine JJ, Zhang M, Wang M, Morales W, Shen C, Zeng D. MHC-mismatched mixed chimerism mediates thymic deletion of cross-reactive autoreactive T cells and prevents insulitis in nonobese diabetic mice. THE JOURNAL OF IMMUNOLOGY 2014; 194:407-17. [PMID: 25429069 DOI: 10.4049/jimmunol.1401584] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Type 1 diabetic NOD mice have defects in both thymic negative selection and peripheral regulation of autoreactive T cells, and induction of mixed chimerism can effectively reverse these defects. Our recent studies suggest that MHC-mismatched mixed chimerism mediates negative selection of autoreactive thymocytes in wild-type NOD and TCR-transgenic NOD.Rag1(+/+).BDC2.5 mice. However, it remains unknown how mismatched I-A(b) MHC class II can mediate deletion of autoreactive T cells positively selected by I-A(g7). In the present study, we directly tested the hypothesis that mismatched MHC class II in mixed chimeras mediates deletion of cross-reactive autoreactive thymocytes. We first identify that transgenic BDC2.5 T cells from NOD.Rag1(+/+).BDC2.5 but not NOD.Rag1(-/-).BDC2.5 mice possess cross-reactive TCRs with endogenous TCRα-chains; MHC-mismatched H-2(b) but not matched H-2(g7) mixed chimerism mediates thymic deletion of the cross-reactive transgenic T cells in NOD.Rag1(+/+).BDC2.5 mice. Second, by transplanting T cell-depleted (TCD) bone marrow (BM) cells from NOD.Rag1(+/+).BDC2.5 or NOD.Rag1(-/-).BDC2.5 mice into lethally irradiated MHC-mismatched H-2(b) C57BL/6 or MHC-matched congenic B6.H-2(g7) recipients, we demonstrate that NOD.Rag1(+/+).BDC2.5 BM-derived cross-reactive transgenic T cells, but not NOD.Rag1(-/-).BDC2.5 BM-derived non-cross-reactive transgenic T cells, can be positively selected in MHC-mismatched H-2(b) thymus. Third, by cotransplanting NOD.Rag1(+/+).BDC2.5 TCD BM cells with BM cells from MHC-mismatched T cell-deficient C57BL/6 mice into lethally irradiated MHC-matched B6.H-2(g7) recipients, we demonstrate that thymic deletion of the cross-reactive transgenic T cells is dependent on MHC-mismatched donor BM-derived APCs but not on donor BM-derived T cells. Taken together, our studies indicate that MHC-mismatched mixed chimerism can mediate thymic deletion of cross-reactive autoreactive T cells that express more than one TCR.
Collapse
Affiliation(s)
- Jeremy J Racine
- Irell and Manella Graduate School of Biological Sciences, City of Hope, Duarte, CA 91010; Department of Diabetes Research, Beckman Research Institute, City of Hope, Duarte, CA 91010; Department of Hematology and Hematopoietic Cell Transplantation, Beckman Research Institute, City of Hope, Duarte, CA 91010; and
| | - Mingfeng Zhang
- Department of Diabetes Research, Beckman Research Institute, City of Hope, Duarte, CA 91010; Department of Hematology and Hematopoietic Cell Transplantation, Beckman Research Institute, City of Hope, Duarte, CA 91010; and
| | - Miao Wang
- Department of Diabetes Research, Beckman Research Institute, City of Hope, Duarte, CA 91010; Department of Hematology and Hematopoietic Cell Transplantation, Beckman Research Institute, City of Hope, Duarte, CA 91010; and
| | - William Morales
- Eugene and Ruth Roberts Summer Student Academy, Beckman Research Institute, City of Hope, Duarte, CA 91010
| | - Christine Shen
- Eugene and Ruth Roberts Summer Student Academy, Beckman Research Institute, City of Hope, Duarte, CA 91010
| | - Defu Zeng
- Irell and Manella Graduate School of Biological Sciences, City of Hope, Duarte, CA 91010; Department of Diabetes Research, Beckman Research Institute, City of Hope, Duarte, CA 91010; Department of Hematology and Hematopoietic Cell Transplantation, Beckman Research Institute, City of Hope, Duarte, CA 91010; and
| |
Collapse
|
12
|
Al-Adra DP, Pawlick R, Shapiro AMJ, Anderson CC. Targeting cells causing split tolerance allows fully allogeneic islet survival with minimal conditioning in NOD mixed chimeras. Am J Transplant 2012; 12:3235-45. [PMID: 22974315 DOI: 10.1111/j.1600-6143.2012.04260.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Donor-specific tolerance induced by mixed chimerism is one approach that may eliminate the need for long-term immunosuppressive therapy, while preventing chronic rejection of an islet transplant. However, even in the presence of chimerism it is possible for certain donor tissues or cells to be rejected whereas others from the same donor are accepted (split tolerance). We previously developed a nonmyeloablative protocol that generated mixed chimerism across full major histocompatability complex plus minor mismatches in NOD (nonobese diabetic) mice, however, these chimeras demonstrated split tolerance. In this study, we used radiation chimeras and found that the radiosensitive component of NOD has a greater role in the split tolerance NOD mice develop. We then show that split tolerance is mediated primarily by preexisting NOD lymphocytes and have identified T cells, but not NK cells or B cells, as cells that both resist chimerism induction and mediate split tolerance. Finally, after recognizing the barrier that preexisting T cells impose on the generation of fully tolerant chimeras, the chimerism induction protocol was refined to include nonmyeloablative recipient NOD T cell depletion which generated long-term mixed chimerism across fully allogeneic barriers. Furthermore, these chimeric NOD mice are immunocompetent, diabetes free and accept donor islet allografts.
Collapse
Affiliation(s)
- D P Al-Adra
- Department of Surgery and Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | |
Collapse
|
13
|
Logan AC, Weissman IL, Shizuru JA. The road to purified hematopoietic stem cell transplants is paved with antibodies. Curr Opin Immunol 2012; 24:640-8. [PMID: 22939368 PMCID: PMC5061494 DOI: 10.1016/j.coi.2012.08.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Revised: 08/08/2012] [Accepted: 08/10/2012] [Indexed: 12/24/2022]
Abstract
Hematopoietic progenitor cell replacement therapy remains a surprisingly unrefined process. In general, unmanipulated bone marrow or mobilized peripheral blood (MPB) grafts which carry potentially harmful passenger cells are administered after treating recipients with high-dose chemotherapy and/or radiotherapy to eradicate malignant disease, eliminate immunologic barriers to allogeneic cell engraftment, and to 'make space' for rare donor stem cells within the stem cell niche. The sequalae of such treatments are substantial, including direct organ toxicity and nonspecific inflammation that contribute to the development of graft-versus-host disease (GVHD) and poor immune reconstitution. Passenger tumor cells that contaminate autologous hematopoietic grafts may contribute to relapse post-transplant. Use of antibodies to rid grafts of unwanted cell populations, and to eliminate or minimize the need for nonspecifically cytotoxic therapies used to condition transplant recipients, will dramatically improve the safety profile of allogeneic and gene-modified autologous hematopoietic stem cell therapies.
Collapse
Affiliation(s)
- Aaron C. Logan
- Department of Medicine, Division of Blood and Marrow Transplantation, Stanford University School of Medicine, Stanford, CA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA
| | - Irving L. Weissman
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA
| | - Judith A. Shizuru
- Department of Medicine, Division of Blood and Marrow Transplantation, Stanford University School of Medicine, Stanford, CA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA
| |
Collapse
|
14
|
Abstract
Haematopoietic cell transplantation (HCT) is the most widely used form of cellular therapy. It is the only known cure for some haematological malignancies and has recently been used in additional clinical settings, such as allograft tolerance induction and treatment of autoimmune diseases. Recent advances have enabled HCT in a wider range of patients with improved outcomes. This Review summarizes the latest developments in this therapy, focusing on issues that will affect future advancement.
Collapse
Affiliation(s)
- Hao Wei Li
- Columbia Center for Translational Immunology, Columbia University Medical Center, 650 West 168th Street, BB 15-02, New York, New York 10032, USA
| | | |
Collapse
|
15
|
Racine J, Wang M, Zhang C, Lin CL, Liu H, Todorov I, Atkinson M, Zeng D. Induction of mixed chimerism with MHC-mismatched but not matched bone marrow transplants results in thymic deletion of host-type autoreactive T-cells in NOD mice. Diabetes 2011; 60:555-64. [PMID: 21270266 PMCID: PMC3028355 DOI: 10.2337/db10-0827] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVE Induction of mixed or complete chimerism via hematopoietic cell transplantation (HCT) from nonautoimmune donors could prevent or reverse type 1 diabetes (T1D). In clinical settings, HLA-matched HCT is preferred to facilitate engraftment and reduce the risk for graft versus host disease (GVHD). Yet autoimmune T1D susceptibility is associated with certain HLA types. Therefore, we tested whether induction of mixed chimerism with major histocompatibility complex (MHC)-matched donors could reverse autoimmunity in the NOD mouse model of T1D. RESEARCH DESIGN AND METHODS Prediabetic wild-type or transgenic BDC2.5 NOD mice were conditioned with a radiation-free GVHD preventative anti-CD3/CD8 conditioning regimen and transplanted with bone marrow (BM) from MHC-matched or mismatched donors to induce mixed or complete chimerism. T1D development and thymic deletion of host-type autoreactive T-cells in the chimeric recipients were evaluated. RESULTS Induction of mixed chimerism with MHC-matched nonautoimmune donor BM transplants did not prevent T1D in wild-type NOD mice, although induction of complete chimerism did prevent the disease. However, induction of either mixed or complete chimerism with MHC-mismatched BM transplants prevented T1D in such mice. Furthermore, induction of mixed chimerism in transgenic BDC2.5-NOD mice with MHC-matched or -mismatched MHC II(-/-) BM transplants failed to induce thymic deletion of de novo developed host-type autoreactive T-cells, whereas induction of mixed chimerism with mismatched BM transplants did. CONCLUSIONS Induction of mixed chimerism with MHC-mismatched, but not matched, donor BM transplants re-establishes thymic deletion of host-type autoreactive T-cells and prevents T1D, with donor antigen-presenting cell expression of mismatched MHC II molecules being required.
Collapse
Affiliation(s)
- Jeremy Racine
- Irell and Manella Graduate School of Biological Sciences, City of Hope, Duarte, California
- Department of Diabetes Research, The Beckman Research Institute, City of Hope, Duarte, California
- Department of Hematology and Hematopoietic Cell Transplantation, The Beckman Research Institute, City of Hope, Duarte, California
| | - Miao Wang
- Department of Diabetes Research, The Beckman Research Institute, City of Hope, Duarte, California
- Department of Hematology and Hematopoietic Cell Transplantation, The Beckman Research Institute, City of Hope, Duarte, California
| | - Chunyan Zhang
- Department of Diabetes Research, The Beckman Research Institute, City of Hope, Duarte, California
- Department of Hematology and Hematopoietic Cell Transplantation, The Beckman Research Institute, City of Hope, Duarte, California
| | - Chia-Lei Lin
- Department of Diabetes Research, The Beckman Research Institute, City of Hope, Duarte, California
- Department of Hematology and Hematopoietic Cell Transplantation, The Beckman Research Institute, City of Hope, Duarte, California
| | - Hongjun Liu
- Department of Diabetes Research, The Beckman Research Institute, City of Hope, Duarte, California
- Department of Hematology and Hematopoietic Cell Transplantation, The Beckman Research Institute, City of Hope, Duarte, California
| | - Ivan Todorov
- Irell and Manella Graduate School of Biological Sciences, City of Hope, Duarte, California
- Department of Diabetes Research, The Beckman Research Institute, City of Hope, Duarte, California
| | - Mark Atkinson
- Department of Pathology, University of Florida, Gainesville, Florida
| | - Defu Zeng
- Irell and Manella Graduate School of Biological Sciences, City of Hope, Duarte, California
- Department of Diabetes Research, The Beckman Research Institute, City of Hope, Duarte, California
- Department of Hematology and Hematopoietic Cell Transplantation, The Beckman Research Institute, City of Hope, Duarte, California
- Corresponding author: Defu Zeng,
| |
Collapse
|
16
|
Magro CM, Kerns MJ, Votava H, Vasil KE, Dyrsen ME, Morrison CD. Early-onset lichenoid graft-vs.-host disease: a unique variant of acute graft-vs.-host disease occurring in peripheral blood stem cell transplant recipients. J Cutan Pathol 2010; 37:549-58. [DOI: 10.1111/j.1600-0560.2009.01427.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
17
|
Driver JP, Serreze DV, Chen YG. Mouse models for the study of autoimmune type 1 diabetes: a NOD to similarities and differences to human disease. Semin Immunopathol 2010; 33:67-87. [DOI: 10.1007/s00281-010-0204-1] [Citation(s) in RCA: 138] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2010] [Accepted: 03/18/2010] [Indexed: 01/12/2023]
|
18
|
The origins of the identification and isolation of hematopoietic stem cells, and their capability to induce donor-specific transplantation tolerance and treat autoimmune diseases. Blood 2008; 112:3543-53. [PMID: 18948588 DOI: 10.1182/blood-2008-08-078220] [Citation(s) in RCA: 289] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Advances in the understanding of the cells of the hematopoietic system have provided a rich basis for improving clinical hematopoietic cell transplants; finding and using proteins and molecules to amplify or suppress particular blood cell types; understanding the stepwise progression of preleukemic stages leading first to chronic myeloid disorders, then the emergence of acute blastic leukemias; and treating malignant and nonmalignant diseases with cell subsets. As a result of intense scientific investigation, hematopoietic stem cells (HSCs) have been isolated and their key functional characteristics revealed-self-renewal and multilineage differentiation. These characteristics are now found to be present in all tissue/organ stem cell studies, and even in the analysis of pluripotent embryonic, nuclear transfer, and induced pluripotent stem cells. Studies on HSC have identified hematopoiesis as one of the best systems for studying developmental cell lineages and as the best for understanding molecular changes in cell fate decision-making and for finding preclinical and clinical platforms for tissue and organ replacement, regeneration, and oncogenesis. Here we review the steps, from our viewpoint, that led to HSC isolation and its importance in self-nonself immune recognition.
Collapse
|
19
|
Wen Y, Ouyang J, Yang R, Chen J, Liu Y, Zhou X, Burt RK. Reversal of new-onset type 1 diabetes in mice by syngeneic bone marrow transplantation. Biochem Biophys Res Commun 2008; 374:282-7. [PMID: 18625200 DOI: 10.1016/j.bbrc.2008.07.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2008] [Accepted: 07/07/2008] [Indexed: 11/24/2022]
Abstract
Autologous hematopoietic stem cell transplantation (HSCT) has recently been performed as a novel strategy to treat patients with new-onset type 1 diabetes (T1D). However, the mechanism of autologous HSCT-induced remission of diabetes remains unknown. In order to help clarify the mechanism of remission-induction following autologous HSCT in patients with T1D, mice treated with multiple low doses of streptozotocin to induce diabetes were used as both donors (n=20) and recipients (n=20). Compared to streptozocin-treated mice not receiving transplantation, syngeneic bone marrow transplantation (syn-BMT) from a streptozocin-treated diabetic donor, if applied during new-onset T1D (day 10 after diabetes onset), can reverse hyperglycemia without relapse (P<0.001), maintain normal blood insulin levels (P<0.001), and preserve islet cell mass. Compared to diabetic mice not undergoing HSCT, syn-BMT, results in restoration of Tregs in spleens (P<0.01), increased Foxp3 mRNA expression (P<0.01) and increased Foxp3 protein expression (P<0.05). This diabetic-remission-inducing effect occurred in mice receiving bone marrow from either streptozocin-treated diabetic or non-diabetic normal donors. We conclude that autologous HSCT remission of diabetes is more than transient immune suppression, and is capable of prolonged remission-induction via regeneration of CD4+CD25+FoxP3+ Tregs.
Collapse
Affiliation(s)
- Yanting Wen
- Department of Hematology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, 321, Zhongshan Road, Nanjing 210008, China
| | | | | | | | | | | | | |
Collapse
|
20
|
Smith-Berdan S, Gille D, Weissman IL, Christensen JL. Reversal of autoimmune disease in lupus-prone New Zealand black/New Zealand white mice by nonmyeloablative transplantation of purified allogeneic hematopoietic stem cells. Blood 2007; 110:1370-8. [PMID: 17435112 DOI: 10.1182/blood-2007-03-081497] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Patients with severe systemic lupus erythematosus (SLE) refractory to conventional treatment are candidates for autologous hematopoietic stem cell (HSC) transplantation if the intent is to reset the immunologic clock. These patients might be candidates for allotransplantation with (SLE)-resistant major histocompatibility complex (MHC) haplotype-matched HSC if partial or complete replacement of an autoimmune-prone system is the intent. Using lupus-prone New Zealand black x New Zealand white (NZBW) mice, we investigated the use of highly enriched, haplomismatched, allogeneic HSC to prevent development of or to treat established autoimmune pathology. Young NZBW mice receiving purified allogeneic HSC transplants had improved survival, decreased proteinuria, circulating immune complexes, and autoantibodies to nuclear antigens than did untreated mice or mice given NZBW HSCs. NZBW mice with established lupus-like disease that received nonmyeloablative conditioning and transplants of (MHC) haplomismatched allogeneic HSCs also had greatly increased overall survival. Mice that received transplants exhibited stabilization or reversal of their lupus symptoms; stabilized or decreased proteinuria, and a lower frequency of elevated circulating immune complexes or autoantibodies than did control mice. Induction of durable mixed chimerism by transplantation of purified allogeneic HSCs after nonmyeloablative conditioning has the potential to reverse symptoms of established NZBW lupus.
Collapse
|
21
|
Serreze DV, Chen YG. Of mice and men: use of animal models to identify possible interventions for the prevention of autoimmune type 1 diabetes in humans. Trends Immunol 2005; 26:603-7. [PMID: 16140038 DOI: 10.1016/j.it.2005.08.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2005] [Revised: 07/28/2005] [Accepted: 08/23/2005] [Indexed: 12/20/2022]
Abstract
Animal model and clinical studies indicate that type 1 diabetes (T1D) results from T cell-mediated autoimmune destruction of insulin-producing pancreatic beta-cells. This review discusses the knowledge gained from animal models about the nature of the autoreactive T cells that cause T1D and the possible basis for their development. Based on this information, the possible positive and negative aspects of various antigen-specific and non-specific immunotherapies, which could potentially prevent the onset of T1D in at risk individuals, are discussed.
Collapse
Affiliation(s)
- David V Serreze
- The Jackson Laboratory, 600 Main St, Bar Harbor, ME 04609, USA.
| | | |
Collapse
|