1
|
Lithovius V, Saarimäki-Vire J, Balboa D, Ibrahim H, Montaser H, Barsby T, Otonkoski T. SUR1-mutant iPS cell-derived islets recapitulate the pathophysiology of congenital hyperinsulinism. Diabetologia 2021; 64:630-640. [PMID: 33404684 DOI: 10.1007/s00125-020-05346-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 10/13/2020] [Indexed: 12/27/2022]
Abstract
AIMS/HYPOTHESIS Congenital hyperinsulinism caused by mutations in the KATP-channel-encoding genes (KATPHI) is a potentially life-threatening disorder of the pancreatic beta cells. No optimal medical treatment is available for patients with diazoxide-unresponsive diffuse KATPHI. Therefore, we aimed to create a model of KATPHI using patient induced pluripotent stem cell (iPSC)-derived islets. METHODS We derived iPSCs from a patient carrying a homozygous ABCC8V187D mutation, which inactivates the sulfonylurea receptor 1 (SUR1) subunit of the KATP-channel. CRISPR-Cas9 mutation-corrected iPSCs were used as controls. Both were differentiated to stem cell-derived islet-like clusters (SC-islets) and implanted into NOD-SCID gamma mice. RESULTS SUR1-mutant and -corrected iPSC lines both differentiated towards the endocrine lineage, but SUR1-mutant stem cells generated 32% more beta-like cells (SC-beta cells) (64.6% vs 49.0%, p = 0.02) and 26% fewer alpha-like cells (16.1% vs 21.8% p = 0.01). SUR1-mutant SC-beta cells were 61% more proliferative (1.23% vs 0.76%, p = 0.006), and this phenotype could be induced in SUR1-corrected cells with pharmacological KATP-channel inactivation. The SUR1-mutant SC-islets secreted 3.2-fold more insulin in low glucose conditions (0.0174% vs 0.0054%/min, p = 0.0021) and did not respond to KATP-channel-acting drugs in vitro. Mice carrying grafts of SUR1-mutant SC-islets presented with 38% lower fasting blood glucose (4.8 vs 7.7 mmol/l, p = 0.009) and their grafts failed to efficiently shut down insulin secretion during induced hypoglycaemia. Explanted SUR1-mutant grafts displayed an increase in SC-beta cell proportion and SC-beta cell nucleomegaly, which was independent of proliferation. CONCLUSIONS/INTERPRETATION We have created a model recapitulating the known pathophysiology of KATPHI both in vitro and in vivo. We have also identified a novel role for KATP-channel activity during human islet development. This model will enable further studies for the improved understanding and clinical management of KATPHI without the need for primary patient tissue.
Collapse
Affiliation(s)
- Väinö Lithovius
- Stem Cells and Metabolism Research Program in the Faculty of Medicine of the University of Helsinki, Helsinki, Finland.
| | - Jonna Saarimäki-Vire
- Stem Cells and Metabolism Research Program in the Faculty of Medicine of the University of Helsinki, Helsinki, Finland
| | - Diego Balboa
- Stem Cells and Metabolism Research Program in the Faculty of Medicine of the University of Helsinki, Helsinki, Finland
- Bioinformatics and Genomics Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Hazem Ibrahim
- Stem Cells and Metabolism Research Program in the Faculty of Medicine of the University of Helsinki, Helsinki, Finland
| | - Hossam Montaser
- Stem Cells and Metabolism Research Program in the Faculty of Medicine of the University of Helsinki, Helsinki, Finland
| | - Tom Barsby
- Stem Cells and Metabolism Research Program in the Faculty of Medicine of the University of Helsinki, Helsinki, Finland
| | - Timo Otonkoski
- Stem Cells and Metabolism Research Program in the Faculty of Medicine of the University of Helsinki, Helsinki, Finland.
| |
Collapse
|
2
|
Viji D, Aswathi P, Pricilla Charmine P, Akram Husain R, Noorul Ameen S, Ahmed SS, Ramakrishnan V. Genetic association of ABCC8 rs757110 polymorphism with Type 2 Diabetes Mellitus risk: A case-control study in South India and a meta-analysis. GENE REPORTS 2018; 13:220-228. [DOI: 10.1016/j.genrep.2018.10.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
3
|
Han B, Mohamed Z, Estebanez MS, Craigie RJ, Newbould M, Cheesman E, Padidela R, Skae M, Johnson M, Flanagan S, Ellard S, Cosgrove KE, Banerjee I, Dunne MJ. Atypical Forms of Congenital Hyperinsulinism in Infancy Are Associated With Mosaic Patterns of Immature Islet Cells. J Clin Endocrinol Metab 2017; 102:3261-3267. [PMID: 28605545 PMCID: PMC5587070 DOI: 10.1210/jc.2017-00158] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 06/02/2017] [Indexed: 01/16/2023]
Abstract
OBJECTIVES We aimed to characterize mosaic populations of pancreatic islet cells from patients with atypical congenital hyperinsulinism in infancy (CHI-A) and the expression profile of NKX2.2, a key transcription factor expressed in β-cells but suppressed in δ-cells in the mature pancreas. PATIENTS/METHODS Tissue was isolated from three patients with CHI-A following subtotal pancreatectomy. CHI-A was diagnosed on the basis of islet mosaicism and the absence of histopathological hallmarks of focal and diffuse CHI (CHI-D). Immunohistochemistry was used to identify and quantify the proportions of insulin-secreting β-cells and somatostatin-secreting δ-cells in atypical islets, and results were compared with CHI-D (n = 3) and age-matched control tissues (n = 3). RESULTS In CHI-A tissue, islets had a heterogeneous profile. In resting/quiescent islets, identified by a condensed cytoplasm and nuclear crowding, β-cells were reduced to <50% of the total cell numbers in n = 65/70 islets, whereas δ-cell numbers were increased with 85% of islets (n = 49/57) containing >20% δ-cells. In comparison, all islets in control tissue (n = 72) and 99% of CHI-D islets (n = 72) were composed of >50% β-cells, and >20% δ-cells were found only in 12% of CHI-D (n = 8/66) and 5% of control islets (n = 3/60). Active islets in CHI-A tissue contained proportions of β-cells and δ-cells similar to those of control and CHI-D islets. Finally, when compared with active islets, quiescent islets had a twofold higher prevalence of somatostatin/NKX2.2+ coexpressed cells. CONCLUSIONS Marked increases in NKX2.2 expression combined with increased numbers of δ-cells strongly imply that an immature δ-cell profile contributed to the pathobiology of CHI-A.
Collapse
Affiliation(s)
- Bing Han
- Faculty of Biology, Medicine & Health, The University of Manchester, Manchester M13 9PT, United Kingdom
| | - Zainab Mohamed
- Faculty of Biology, Medicine & Health, The University of Manchester, Manchester M13 9PT, United Kingdom
- Paediatric Endocrinology, The University of Manchester, Manchester M13 9PT, United Kingdom
| | - Maria Salomon Estebanez
- Faculty of Biology, Medicine & Health, The University of Manchester, Manchester M13 9PT, United Kingdom
- Paediatric Endocrinology, The University of Manchester, Manchester M13 9PT, United Kingdom
| | - Ross J. Craigie
- Paediatric Surgery, Central Manchester University Hospitals NHS Foundation Trust (CMFT) and The University of Manchester, Manchester M13 9PT, United Kingdom
| | - Melanie Newbould
- Paediatric Histopathology, Central Manchester University Hospitals NHS Foundation Trust (CMFT) and The University of Manchester, Manchester M13 9PT, United Kingdom
| | - Edmund Cheesman
- Paediatric Histopathology, Central Manchester University Hospitals NHS Foundation Trust (CMFT) and The University of Manchester, Manchester M13 9PT, United Kingdom
| | - Raja Padidela
- Paediatric Endocrinology, The University of Manchester, Manchester M13 9PT, United Kingdom
| | - Mars Skae
- Paediatric Endocrinology, The University of Manchester, Manchester M13 9PT, United Kingdom
| | - Matthew Johnson
- Molecular Genetics, Royal Devon and Exeter NHS Foundation Trust, University of Exeter Medical School, Royal Devon and Exeter Hospital, Exeter EX2 5DW, United Kingdom
| | - Sarah Flanagan
- Molecular Genetics, Royal Devon and Exeter NHS Foundation Trust, University of Exeter Medical School, Royal Devon and Exeter Hospital, Exeter EX2 5DW, United Kingdom
| | - Sian Ellard
- Molecular Genetics, Royal Devon and Exeter NHS Foundation Trust, University of Exeter Medical School, Royal Devon and Exeter Hospital, Exeter EX2 5DW, United Kingdom
| | - Karen E. Cosgrove
- Faculty of Biology, Medicine & Health, The University of Manchester, Manchester M13 9PT, United Kingdom
| | - Indraneel Banerjee
- Paediatric Endocrinology, The University of Manchester, Manchester M13 9PT, United Kingdom
| | - Mark J. Dunne
- Faculty of Biology, Medicine & Health, The University of Manchester, Manchester M13 9PT, United Kingdom
| |
Collapse
|
4
|
Han B, Newbould M, Batra G, Cheesman E, Craigie RJ, Mohamed Z, Rigby L, Padidela R, Skae M, Mironov A, Starborg T, Kadler KE, Cosgrove KE, Banerjee I, Dunne MJ. Enhanced Islet Cell Nucleomegaly Defines Diffuse Congenital Hyperinsulinism in Infancy but Not Other Forms of the Disease. Am J Clin Pathol 2016; 145:757-68. [PMID: 27334808 PMCID: PMC4922485 DOI: 10.1093/ajcp/aqw075] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
OBJECTIVES To quantify islet cell nucleomegaly in controls and tissues obtained from patients with congenital hyperinsulinism in infancy (CHI) and to examine the association of nucleomegaly with proliferation. METHODS High-content analysis of histologic sections and serial block-face scanning electron microscopy were used to quantify nucleomegaly. RESULTS Enlarged islet cell nuclear areas were 4.3-fold larger than unaffected nuclei, and the mean nuclear volume increased to approximately threefold. Nucleomegaly was a normal feature of pediatric islets and detected in the normal regions of the pancreas from patients with focal CHI. The incidence of nucleomegaly was highest in diffuse CHI (CHI-D), with more than 45% of islets containing two or more affected cells. While in CHI-D nucleomegaly was negatively correlated with cell proliferation, in all other cases, there was a positive correlation. CONCLUSIONS Increased incidence of nucleomegaly is pathognomonic for CHI-D, but these cells are nonproliferative, suggesting a novel role in the pathobiology of this condition.
Collapse
Affiliation(s)
- Bing Han
- From the Faculty of Life Sciences, University of Manchester, Manchester, UK
| | | | | | | | | | - Zainab Mohamed
- From the Faculty of Life Sciences, University of Manchester, Manchester, UK Department of Paediatric Endocrinology, Royal Manchester Children's Hospital, Central Manchester University Hospitals NHS Foundation Trust (CMFT), Manchester, UK
| | - Lindsey Rigby
- Department of Paediatric Endocrinology, Royal Manchester Children's Hospital, Central Manchester University Hospitals NHS Foundation Trust (CMFT), Manchester, UK
| | - Raja Padidela
- Department of Paediatric Endocrinology, Royal Manchester Children's Hospital, Central Manchester University Hospitals NHS Foundation Trust (CMFT), Manchester, UK
| | - Mars Skae
- Department of Paediatric Endocrinology, Royal Manchester Children's Hospital, Central Manchester University Hospitals NHS Foundation Trust (CMFT), Manchester, UK
| | - Aleksandr Mironov
- From the Faculty of Life Sciences, University of Manchester, Manchester, UK
| | - Tobias Starborg
- From the Faculty of Life Sciences, University of Manchester, Manchester, UK
| | - Karl E Kadler
- From the Faculty of Life Sciences, University of Manchester, Manchester, UK
| | - Karen E Cosgrove
- From the Faculty of Life Sciences, University of Manchester, Manchester, UK
| | - Indraneel Banerjee
- Department of Paediatric Endocrinology, Royal Manchester Children's Hospital, Central Manchester University Hospitals NHS Foundation Trust (CMFT), Manchester, UK
| | - Mark J Dunne
- From the Faculty of Life Sciences, University of Manchester, Manchester, UK
| |
Collapse
|
5
|
Salisbury RJ, Han B, Jennings RE, Berry AA, Stevens A, Mohamed Z, Sugden SA, De Krijger R, Cross SE, Johnson PPV, Newbould M, Cosgrove KE, Hanley KP, Banerjee I, Dunne MJ, Hanley NA. Altered Phenotype of β-Cells and Other Pancreatic Cell Lineages in Patients With Diffuse Congenital Hyperinsulinism in Infancy Caused by Mutations in the ATP-Sensitive K-Channel. Diabetes 2015; 64:3182-8. [PMID: 25931474 PMCID: PMC4542438 DOI: 10.2337/db14-1202] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 04/23/2015] [Indexed: 12/13/2022]
Abstract
Diffuse congenital hyperinsulinism in infancy (CHI-D) arises from mutations inactivating the KATP channel; however, the phenotype is difficult to explain from electrophysiology alone. Here we studied wider abnormalities in the β-cell and other pancreatic lineages. Islets were disorganized in CHI-D compared with controls. PAX4 and ARX expression was decreased. A tendency toward increased NKX2.2 expression was consistent with its detection in two-thirds of CHI-D δ-cell nuclei, similar to the fetal pancreas, and implied immature δ-cell function. CHI-D δ-cells also comprised 10% of cells displaying nucleomegaly. In CHI-D, increased proliferation was most elevated in duct (5- to 11-fold) and acinar (7- to 47-fold) lineages. Increased β-cell proliferation observed in some cases was offset by an increase in apoptosis; this is in keeping with no difference in INSULIN expression or surface area stained for insulin between CHI-D and control pancreas. However, nuclear localization of CDK6 and P27 was markedly enhanced in CHI-D β-cells compared with cytoplasmic localization in control cells. These combined data support normal β-cell mass in CHI-D, but with G1/S molecules positioned in favor of cell cycle progression. New molecular abnormalities in δ-cells and marked proliferative increases in other pancreatic lineages indicate CHI-D is not solely a β-cell disorder.
Collapse
Affiliation(s)
- Rachel J Salisbury
- Centre for Endocrinology and Diabetes, Institute of Human Development, Faculty of Medical and Human Sciences, Manchester Academic Health Sciences Centre, The University of Manchester, Manchester, U.K
| | - Bing Han
- Faculty of Life Sciences, The University of Manchester, Manchester, U.K
| | - Rachel E Jennings
- Centre for Endocrinology and Diabetes, Institute of Human Development, Faculty of Medical and Human Sciences, Manchester Academic Health Sciences Centre, The University of Manchester, Manchester, U.K. Department of Endocrinology, Central Manchester University Hospitals NHS Foundation Trust, Manchester, U.K
| | - Andrew A Berry
- Centre for Endocrinology and Diabetes, Institute of Human Development, Faculty of Medical and Human Sciences, Manchester Academic Health Sciences Centre, The University of Manchester, Manchester, U.K
| | - Adam Stevens
- Faculty of Life Sciences, The University of Manchester, Manchester, U.K. Department of Paediatric Endocrinology, Central Manchester University Hospitals NHS Foundation Trust, Manchester, U.K
| | - Zainab Mohamed
- Faculty of Life Sciences, The University of Manchester, Manchester, U.K. Department of Paediatric Endocrinology, Central Manchester University Hospitals NHS Foundation Trust, Manchester, U.K
| | - Sarah A Sugden
- Centre for Endocrinology and Diabetes, Institute of Human Development, Faculty of Medical and Human Sciences, Manchester Academic Health Sciences Centre, The University of Manchester, Manchester, U.K
| | - Ronald De Krijger
- Erasmus MC, Rotterdam, the Netherlands Department of Pathology, Reinier de Graaf Hospital, Delft, the Netherlands
| | - Sarah E Cross
- Diabetes Research & Wellness Foundation Human Islet Isolation Facility, Nuffield Department of Surgical Sciences and Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, U.K
| | - Paul P V Johnson
- Diabetes Research & Wellness Foundation Human Islet Isolation Facility, Nuffield Department of Surgical Sciences and Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, U.K
| | - Melanie Newbould
- Department of Paediatric Histopathology, Central Manchester University Hospitals NHS Foundation Trust, Manchester, U.K
| | - Karen E Cosgrove
- Faculty of Life Sciences, The University of Manchester, Manchester, U.K
| | - Karen Piper Hanley
- Centre for Endocrinology and Diabetes, Institute of Human Development, Faculty of Medical and Human Sciences, Manchester Academic Health Sciences Centre, The University of Manchester, Manchester, U.K
| | - Indraneel Banerjee
- Centre for Endocrinology and Diabetes, Institute of Human Development, Faculty of Medical and Human Sciences, Manchester Academic Health Sciences Centre, The University of Manchester, Manchester, U.K. Department of Paediatric Endocrinology, Central Manchester University Hospitals NHS Foundation Trust, Manchester, U.K
| | - Mark J Dunne
- Faculty of Life Sciences, The University of Manchester, Manchester, U.K.
| | - Neil A Hanley
- Centre for Endocrinology and Diabetes, Institute of Human Development, Faculty of Medical and Human Sciences, Manchester Academic Health Sciences Centre, The University of Manchester, Manchester, U.K. Department of Endocrinology, Central Manchester University Hospitals NHS Foundation Trust, Manchester, U.K.
| |
Collapse
|