1
|
De Leon N, Tse WH, Ameis D, Keijzer R. Embryology and anatomy of congenital diaphragmatic hernia. Semin Pediatr Surg 2022; 31:151229. [PMID: 36446305 DOI: 10.1016/j.sempedsurg.2022.151229] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Prenatal and postnatal treatment modalities for congenital diaphragmatic hernia (CDH) continue to improve, however patients still face high rates of morbidity and mortality caused by severe underlying persistent pulmonary hypertension and pulmonary hypoplasia. Though the majority of CDH cases are idiopathic, it is believed that CDH is a polygenic developmental defect caused by interactions between candidate genes, as well as environmental and epigenetic factors. However, the origin and pathogenesis of these developmental insults are poorly understood. Further, connections between disrupted lung development and the failure of diaphragmatic closure during embryogenesis have not been fully elucidated. Though several animal models have been useful in identifying candidate genes and disrupted signalling pathways, more studies are required to understand the pathogenesis and to develop effective preventative care. In this article, we summarize the most recent litterature on disrupted embryological lung and diaphragmatic development associated with CDH.
Collapse
Affiliation(s)
- Nolan De Leon
- Departments of Surgery, Division of Pediatric Surgery, Pediatrics & Child Health and Physiology and Pathophysiology, University of Manitoba and Biology of Breathing Theme, Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
| | - Wai Hei Tse
- Departments of Surgery, Division of Pediatric Surgery, Pediatrics & Child Health and Physiology and Pathophysiology, University of Manitoba and Biology of Breathing Theme, Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
| | - Dustin Ameis
- Departments of Surgery, Division of Pediatric Surgery, Pediatrics & Child Health and Physiology and Pathophysiology, University of Manitoba and Biology of Breathing Theme, Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
| | - Richard Keijzer
- Departments of Surgery, Division of Pediatric Surgery, Pediatrics & Child Health and Physiology and Pathophysiology, University of Manitoba and Biology of Breathing Theme, Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada.
| |
Collapse
|
2
|
Tsikis ST, Hirsch TI, Fligor SC, Quigley M, Puder M. Targeting the lung endothelial niche to promote angiogenesis and regeneration: A review of applications. Front Mol Biosci 2022; 9:1093369. [PMID: 36601582 PMCID: PMC9807216 DOI: 10.3389/fmolb.2022.1093369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Lung endothelial cells comprise the pulmonary vascular bed and account for the majority of cells in the lungs. Beyond their role in gas exchange, lung ECs form a specialized microenvironment, or niche, with important roles in health and disease. In early development, progenitor ECs direct alveolar development through angiogenesis. Following birth, lung ECs are thought to maintain their regenerative capacity despite the aging process. As such, harnessing the power of the EC niche, specifically to promote angiogenesis and alveolar regeneration has potential clinical applications. Here, we focus on translational research with applications related to developmental lung diseases including pulmonary hypoplasia and bronchopulmonary dysplasia. An overview of studies examining the role of ECs in lung regeneration following acute lung injury is also provided. These diseases are all characterized by significant morbidity and mortality with limited existing therapeutics, affecting both young children and adults.
Collapse
Affiliation(s)
- Savas T Tsikis
- Vascular Biology Program, Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Thomas I Hirsch
- Vascular Biology Program, Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Scott C Fligor
- Vascular Biology Program, Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Mikayla Quigley
- Vascular Biology Program, Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Mark Puder
- Vascular Biology Program, Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
3
|
Yu LJ, Ko VH, Dao DT, Secor JD, Pan A, Cho BS, Mitchell PD, Kishikawa H, Bielenberg DR, Puder M. Investigation of the mechanisms of VEGF-mediated compensatory lung growth: the role of the VEGF heparin-binding domain. Sci Rep 2021; 11:11827. [PMID: 34088930 PMCID: PMC8178332 DOI: 10.1038/s41598-021-91127-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 05/17/2021] [Indexed: 02/04/2023] Open
Abstract
Morbidity and mortality for neonates with congenital diaphragmatic hernia-associated pulmonary hypoplasia remains high. These patients may be deficient in vascular endothelial growth factor (VEGF). Our lab previously established that exogenous VEGF164 accelerates compensatory lung growth (CLG) after left pneumonectomy in a murine model. We aimed to further investigate VEGF-mediated CLG by examining the role of the heparin-binding domain (HBD). Eight-week-old, male, C57BL/6J mice underwent left pneumonectomy, followed by post-operative and daily intraperitoneal injections of equimolar VEGF164 or VEGF120, which lacks the HBD. Isovolumetric saline was used as a control. VEGF164 significantly increased lung volume, total lung capacity, and alveolarization, while VEGF120 did not. Treadmill exercise tolerance testing (TETT) demonstrated improved functional outcomes post-pneumonectomy with VEGF164 treatment. In lung protein analysis, VEGF treatment modulated downstream angiogenic signaling. Activation of epithelial growth factor receptor and pulmonary cell proliferation was also upregulated. Human microvascular lung endothelial cells (HMVEC-L) treated with VEGF demonstrated decreased potency of VEGFR2 activation with VEGF121 treatment compared to VEGF165 treatment. Taken together, these data indicate that the VEGF HBD contributes to angiogenic and proliferative signaling, is required for accelerated compensatory lung growth, and improves functional outcomes in a murine CLG model.
Collapse
Affiliation(s)
- Lumeng J. Yu
- grid.2515.30000 0004 0378 8438Vascular Biology Program, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115 USA ,grid.2515.30000 0004 0378 8438Department of Surgery, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Ave, Fegan 3, Boston, MA 02115 USA
| | - Victoria H. Ko
- grid.2515.30000 0004 0378 8438Vascular Biology Program, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115 USA ,grid.2515.30000 0004 0378 8438Department of Surgery, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Ave, Fegan 3, Boston, MA 02115 USA
| | - Duy T. Dao
- grid.2515.30000 0004 0378 8438Vascular Biology Program, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115 USA ,grid.2515.30000 0004 0378 8438Department of Surgery, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Ave, Fegan 3, Boston, MA 02115 USA
| | - Jordan D. Secor
- grid.2515.30000 0004 0378 8438Vascular Biology Program, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115 USA ,grid.2515.30000 0004 0378 8438Department of Surgery, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Ave, Fegan 3, Boston, MA 02115 USA
| | - Amy Pan
- grid.2515.30000 0004 0378 8438Vascular Biology Program, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115 USA ,grid.2515.30000 0004 0378 8438Department of Surgery, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Ave, Fegan 3, Boston, MA 02115 USA
| | - Bennet S. Cho
- grid.2515.30000 0004 0378 8438Vascular Biology Program, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115 USA ,grid.2515.30000 0004 0378 8438Department of Surgery, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Ave, Fegan 3, Boston, MA 02115 USA
| | - Paul D. Mitchell
- grid.2515.30000 0004 0378 8438Institutional Centers for Clinical and Translational Research, Boston Children’s Hospital, Boston, MA 02115 USA
| | - Hiroko Kishikawa
- grid.2515.30000 0004 0378 8438Vascular Biology Program, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115 USA ,grid.2515.30000 0004 0378 8438Department of Surgery, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Ave, Fegan 3, Boston, MA 02115 USA
| | - Diane R. Bielenberg
- grid.2515.30000 0004 0378 8438Vascular Biology Program, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115 USA
| | - Mark Puder
- grid.2515.30000 0004 0378 8438Vascular Biology Program, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115 USA ,grid.2515.30000 0004 0378 8438Department of Surgery, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Ave, Fegan 3, Boston, MA 02115 USA
| |
Collapse
|
4
|
Huo Z, Bilang R, Brantner B, von der Weid N, Holland-Cunz SG, Gros SJ. Perspective on Similarities and Possible Overlaps of Congenital Disease Formation-Exemplified on a Case of Congenital Diaphragmatic Hernia and Neuroblastoma in a Neonate. CHILDREN-BASEL 2021; 8:children8020163. [PMID: 33671521 PMCID: PMC7926624 DOI: 10.3390/children8020163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/17/2021] [Accepted: 02/17/2021] [Indexed: 11/25/2022]
Abstract
The coincidence of two rare diseases such as congenital diaphragmatic hernia (CDH) and neuroblastoma is exceptional. With an incidence of around 2–3:10,000 and 1:8000 for either disease occurring on its own, the chance of simultaneous presentation of both pathologies at birth is extremely low. Unfortunately, the underlying processes leading to congenital malformation and neonatal tumors are not yet thoroughly understood. There are several hypotheses revolving around the formation of CDH and neuroblastoma. The aim of our study was to put the respective hypotheses of disease formation as well as known factors in this process into perspective regarding their similarities and possible overlaps of congenital disease formation. We present the joint occurrence of these two rare diseases based on a patient presentation and immunochemical prognostic marker evaluation. The aim of this manuscript is to elucidate possible similarities in the pathogeneses of both disease entities. Discussed are the role of toxins, cell differentiation, the influence of retinoic acid and NMYC as well as of hypoxia. The detailed discussion reveals that some of the proposed pathophysiological mechanisms of both malformations have common aspects. Especially disturbances of the retinoic acid pathway and NMYC expression can influence and disrupt cell differentiation in either disease. Due to the rarity of both diseases, interdisciplinary efforts and multi-center studies are needed to investigate the reasons for congenital malformations and their interlinkage with neonatal tumor disease.
Collapse
Affiliation(s)
- Zihe Huo
- Department of Pediatric Surgery, University Children’s Hospital Basel, 4031 Basel, Switzerland; (Z.H.); (R.B.); (B.B.); (S.G.H.-C.)
- Department of Clinical Research, University of Basel, 4001 Basel, Switzerland;
| | - Remo Bilang
- Department of Pediatric Surgery, University Children’s Hospital Basel, 4031 Basel, Switzerland; (Z.H.); (R.B.); (B.B.); (S.G.H.-C.)
- Department of Clinical Research, University of Basel, 4001 Basel, Switzerland;
| | - Benedikt Brantner
- Department of Pediatric Surgery, University Children’s Hospital Basel, 4031 Basel, Switzerland; (Z.H.); (R.B.); (B.B.); (S.G.H.-C.)
| | - Nicolas von der Weid
- Department of Clinical Research, University of Basel, 4001 Basel, Switzerland;
- Department of Hematology and Oncology, University Children’s Hospital Basel, 4056 Basel, Switzerland
| | - Stefan G. Holland-Cunz
- Department of Pediatric Surgery, University Children’s Hospital Basel, 4031 Basel, Switzerland; (Z.H.); (R.B.); (B.B.); (S.G.H.-C.)
- Department of Clinical Research, University of Basel, 4001 Basel, Switzerland;
| | - Stephanie J. Gros
- Department of Pediatric Surgery, University Children’s Hospital Basel, 4031 Basel, Switzerland; (Z.H.); (R.B.); (B.B.); (S.G.H.-C.)
- Department of Clinical Research, University of Basel, 4001 Basel, Switzerland;
- Correspondence:
| |
Collapse
|
5
|
Ko VH, Yu LJ, Dao DT, Li X, Secor JD, Anez-Bustillos L, Cho BS, Pan A, Mitchell PD, Kishikawa H, Puder M. Roxadustat (FG-4592) accelerates pulmonary growth, development, and function in a compensatory lung growth model. Angiogenesis 2020; 23:637-649. [PMID: 32666268 DOI: 10.1007/s10456-020-09735-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 07/06/2020] [Indexed: 12/12/2022]
Abstract
Children with hypoplastic lung disease associated with congenital diaphragmatic hernia (CDH) continue to suffer significant morbidity and mortality secondary to progressive pulmonary disease. Current management of CDH is primarily supportive and mortality rates of the most severely affected children have remained unchanged in the last few decades. Previous work in our lab has demonstrated the importance of vascular endothelial growth factor (VEGF)-mediated angiogenesis in accelerating compensatory lung growth. In this study, we evaluated the potential for Roxadustat (FG-4592), a prolyl hydroxylase inhibitor known to increase endogenous VEGF, in accelerating compensatory lung growth. Treatment with Roxadustat increased lung volume, total lung capacity, alveolarization, and exercise tolerance compared to controls following left pneumonectomy. However, this effect was likely modulated not only by increased VEGF, but rather also by decreased pigment epithelium-derived factor (PEDF), an anti-angiogenic factor. Furthermore, this mechanism of action may be specific to Roxadustat. Vadadustat (AKB-6548), a structurally similar prolyl hydroxylase inhibitor, did not demonstrate accelerated compensatory lung growth or decreased PEDF expression following left pneumonectomy. Given that Roxadustat is already in Phase III clinical studies for the treatment of chronic kidney disease-associated anemia with minimal side effects, its use for the treatment of pulmonary hypoplasia could potentially proceed expeditiously.
Collapse
Affiliation(s)
- Victoria H Ko
- Vascular Biology Program, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA.,Department of Surgery, Boston Children's Hospital, Harvard Medical School, 300 Longwood Ave, Fegan 3, Boston, MA, 02115, USA
| | - Lumeng J Yu
- Vascular Biology Program, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA.,Department of Surgery, Boston Children's Hospital, Harvard Medical School, 300 Longwood Ave, Fegan 3, Boston, MA, 02115, USA
| | - Duy T Dao
- Vascular Biology Program, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA.,Department of Surgery, Boston Children's Hospital, Harvard Medical School, 300 Longwood Ave, Fegan 3, Boston, MA, 02115, USA
| | - Xiaoran Li
- Vascular Biology Program, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA.,Department of Surgery, Boston Children's Hospital, Harvard Medical School, 300 Longwood Ave, Fegan 3, Boston, MA, 02115, USA
| | - Jordan D Secor
- Vascular Biology Program, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA.,Department of Surgery, Boston Children's Hospital, Harvard Medical School, 300 Longwood Ave, Fegan 3, Boston, MA, 02115, USA
| | - Lorenzo Anez-Bustillos
- Vascular Biology Program, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA.,Department of Surgery, Boston Children's Hospital, Harvard Medical School, 300 Longwood Ave, Fegan 3, Boston, MA, 02115, USA
| | - Bennet S Cho
- Vascular Biology Program, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA.,Department of Surgery, Boston Children's Hospital, Harvard Medical School, 300 Longwood Ave, Fegan 3, Boston, MA, 02115, USA
| | - Amy Pan
- Vascular Biology Program, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA.,Department of Surgery, Boston Children's Hospital, Harvard Medical School, 300 Longwood Ave, Fegan 3, Boston, MA, 02115, USA
| | - Paul D Mitchell
- Institutional Centers for Clinical and Translational Research, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Hiroko Kishikawa
- Vascular Biology Program, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA.,Department of Surgery, Boston Children's Hospital, Harvard Medical School, 300 Longwood Ave, Fegan 3, Boston, MA, 02115, USA
| | - Mark Puder
- Vascular Biology Program, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA. .,Department of Surgery, Boston Children's Hospital, Harvard Medical School, 300 Longwood Ave, Fegan 3, Boston, MA, 02115, USA.
| |
Collapse
|
6
|
Complementary Effect of Maternal Sildenafil and Fetal Tracheal Occlusion Improves Lung Development in the Rabbit Model of Congenital Diaphragmatic Hernia. Ann Surg 2020; 275:e586-e595. [PMID: 33055583 DOI: 10.1097/sla.0000000000003943] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
OBJECTIVE To evaluate the effect of combining antenatal sildenafil with fetal tracheal occlusion (TO) in fetal rabbits with surgically induced congenital diaphragmatic hernia (CDH). BACKGROUND Although antenatal sildenafil administration rescues vascular abnormalities in lungs of fetal rabbits with CDH, it only partially improves airway morphometry. We hypothesized that we could additionally stimulate lung growth by combining this medical treatment with fetal TO. METHODS CDH was created on gestational day (GD)23 (n=54). Does were randomized to receive either sildenafil 10 mg/kg/d or placebo by subcutaneous injection from GD24 to GD30. On GD28, fetuses were randomly assigned to TO or sham neck dissection. At term (GD30) fetuses were delivered, ventilated, and finally harvested for histological and molecular analyses. Unoperated littermates served as controls. RESULTS The lung-to-body-weight ratio was significantly reduced in sham-CDH fetuses either (1.2 ± 0.3% vs 2.3 ± 0.3% in controls, P=0.0003). Sildenafil had no effect on this parameter, while CDH fetuses undergoing TO had a lung-to-body-weight ratio comparable to that of controls (2.5 ± 0.8%, P<0.0001). Sildenafil alone induced an improvement in the mean terminal bronchiolar density (2.5 ± 0.8 br/mm vs 3.5 ± 0.9 br/mm, P=0.043) and lung mechanics (static elastance 61 ± 36 cmH2O /mL vs 113 ± 40 cmH2O/mL, P=0.008), but both effects were more pronounced in fetuses undergoing additional TO (2.1 ± 0.8 br/mm, P=0.001 and 31 ± 9 cmH2O/mL, P<0.0001 respectively). Both CDH-sham and CDH-TO fetuses treated with placebo had an increased medial wall thickness of peripheral pulmonary vessels (41.9 ± 2.9% and 41.8 ± 3.2%, vs 24.0 ± 2.9% in controls, P<0.0001). CDH fetuses treated with sildenafil, either with or without TO, had a medial thickness in the normal range (29.4% ± 2.6%). Finally, TO reduced gene expression of vascular endothelial growth factor and surfactant protein A and B, but this effect was counteracted by sildenafil. CONCLUSION In the rabbit model for CDH, the combination of maternal sildenafil and TO has a complementary effect on vascular and parenchymal lung development.
Collapse
|
7
|
Russo FM, De Bie F, Hodges R, Flake A, Deprest J. Sildenafil for Antenatal Treatment of Congenital Diaphragmatic Hernia: From Bench to Bedside. Curr Pharm Des 2020; 25:601-608. [PMID: 30894101 DOI: 10.2174/1381612825666190320151856] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 03/18/2019] [Indexed: 01/19/2023]
Abstract
BACKGROUND Persistent pulmonary hypertension (PPH) is one of the main causes of mortality and morbidity in infants affected by congenital diaphragmatic hernia (CDH). Since the structural changes that lead to PPH take place already in utero, a treatment starting in the prenatal phase may prevent the occurrence of this complication. OBJECTIVE To summarize the development process of antenatal sildenafil for CDH. METHODS The pharmacokinetics and efficacy of sildenafil have been assessed in the rat and the rabbit model. The transfer of the drug through the human placenta has been measured with the ex-vivo placenta perfusion model. Results from this experiment are being incorporated in a pregnancy-physiologically based pharmacokinetic (p- PBPK) model. A phase I-IIb placental transfer and safety study is ongoing. RESULTS Sildenafil administration to pregnant rats and rabbits led to therapeutic foetal drug levels without maternal and foetal toxicity, although it was associated with impaired vascular development in foetuses with nonhypoplastic lungs. Peak concentrations and 24-hour exposure were higher in pregnant rabbits compared to nonpregnant ones. In rat and rabbit foetuses with CDH, sildenafil rescued the lung vascular anomalies and partially improved parenchymal development. Sildenafil crossed the human placenta at a high rate ex-vivo, independently from the initial maternal concentration. CONCLUSION There is preclinical evidence that maternally administered sildenafil prevents the vascular changes that lead to PPH in CDH newborns. The phase I/IIb clinical study together with the p-PBPK model will define the maternal dose needed for a therapeutic effect in the foetus. Foetal safety will be investigated both in the clinical study and in the sheep. The final step will be a multicentre, randomized, placebo-controlled trial.
Collapse
Affiliation(s)
- Francesca M Russo
- Cluster Woman and Child, Department of Development and Regeneration, Biomedical Sciences, KU Leuven, Leuven, Belgium
| | - Felix De Bie
- Cluster Woman and Child, Department of Development and Regeneration, Biomedical Sciences, KU Leuven, Leuven, Belgium
| | - Ryan Hodges
- The Ritchie Centre, Hudson Institute for Medical Research, Department of Obstetrics and Gynaecology, Monash University, Melbourne, Victoria, Australia
| | - Alan Flake
- Center for Fetal Research, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Jan Deprest
- Cluster Woman and Child, Department of Development and Regeneration, Biomedical Sciences, KU Leuven, Leuven, Belgium.,Department of Obstetrics and Gynecology, Institute of Women's Health, University College London, London, United Kingdom
| |
Collapse
|
8
|
Montalva L, Antounians L, Zani A. Pulmonary hypertension secondary to congenital diaphragmatic hernia: factors and pathways involved in pulmonary vascular remodeling. Pediatr Res 2019; 85:754-768. [PMID: 30780153 DOI: 10.1038/s41390-019-0345-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 02/10/2019] [Indexed: 02/06/2023]
Abstract
Congenital diaphragmatic hernia (CDH) is a severe birth defect that is characterized by pulmonary hypoplasia and pulmonary hypertension (PHTN). PHTN secondary to CDH is a result of vascular remodeling, a structural alteration in the pulmonary vessel wall that occurs in the fetus. Factors involved in vascular remodeling have been reported in several studies, but their interactions remain unclear. To help understand PHTN pathophysiology and design novel preventative and treatment strategies, we have conducted a systematic review of the literature and comprehensively analyzed all factors and pathways involved in the pathogenesis of pulmonary vascular remodeling secondary to CDH in the nitrofen model. Moreover, we have linked the dysregulated factors with pathways involved in human CDH. Of the 358 full-text articles screened, 75 studies reported factors that play a critical role in vascular remodeling secondary to CDH. Overall, the impairment of epithelial homeostasis present in pulmonary hypoplasia results in altered signaling to endothelial cells, leading to endothelial dysfunction. This causes an impairment of the crosstalk between endothelial cells and pulmonary artery smooth muscle cells, resulting in increased smooth muscle cell proliferation, resistance to apoptosis, and vasoconstriction, which clinically translate into PHTN.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Disease Models, Animal
- Endothelial Cells/drug effects
- Endothelial Cells/pathology
- Endothelial Cells/physiology
- Female
- Hernias, Diaphragmatic, Congenital/complications
- Hernias, Diaphragmatic, Congenital/pathology
- Hernias, Diaphragmatic, Congenital/physiopathology
- Humans
- Hypertension, Pulmonary/etiology
- Hypertension, Pulmonary/pathology
- Hypertension, Pulmonary/physiopathology
- Infant, Newborn
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/pathology
- Myocytes, Smooth Muscle/physiology
- Phenyl Ethers/toxicity
- Pregnancy
- Pulmonary Artery/drug effects
- Pulmonary Artery/pathology
- Pulmonary Artery/physiopathology
- Rats
- Risk Factors
- Vascular Remodeling/drug effects
- Vascular Remodeling/physiology
Collapse
Affiliation(s)
- Louise Montalva
- Division of General and Thoracic Surgery, Department of Surgery, The Hospital for Sick Children, Toronto, Canada
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Canada
| | - Lina Antounians
- Division of General and Thoracic Surgery, Department of Surgery, The Hospital for Sick Children, Toronto, Canada
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Canada
| | - Augusto Zani
- Division of General and Thoracic Surgery, Department of Surgery, The Hospital for Sick Children, Toronto, Canada.
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Canada.
| |
Collapse
|
9
|
Sinha KM, Tseng C, Guo P, Lu A, Pan H, Gao X, Andrews R, Eltzschig H, Huard J. Hypoxia-inducible factor 1α (HIF-1α) is a major determinant in the enhanced function of muscle-derived progenitors from MRL/MpJ mice. FASEB J 2019; 33:8321-8334. [PMID: 30970214 DOI: 10.1096/fj.201801794r] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Although the mouse strain Murphy Roths Large (MRL/MpJ) possesses high regenerative potential, the mechanism of tissue regeneration, including skeletal muscle, in MRL/MpJ mice after injury is still unclear. Our previous studies have shown that muscle-derived stem/progenitor cell (MDSPC) function is significantly enhanced in MRL/MpJ mice when compared with MDSPCs isolated from age-matched wild-type (WT) mice. Using mass spectrometry-based proteomic analysis, we identified increased expression of hypoxia-inducible factor (HIF) 1α target genes (expression of glycolytic factors and antioxidants) in sera from MRL/MpJ mice compared with WT mice. Therefore, we hypothesized that HIF-1α promotes the high muscle healing capacity of MRL/MpJ mice by increasing the potency of MDSPCs. We demonstrated that treating MRL/MpJ MDSPCs with dimethyloxalylglycine and CoCl2 increased the expression of HIF-1α and target genes, including angiogenic and cell survival genes. We also observed that HIF-1α activated the expression of paired box (Pax)7 through direct interaction with the Pax7 promoter. Furthermore, we also observed a higher myogenic potential of MDSPCs derived from prolyl hydroxylase (Phd) 3-knockout (Phd3-/-) mice, which displayed higher stability of HIF-1α. Taken together, our findings suggest that HIF-1α is a major determinant in the increased MDSPC function of MRL/MpJ mice through enhancement of cell survival, proliferation, and myogenic differentiation.-Sinha, K. M., Tseng, C., Guo, P., Lu, A., Pan, H., Gao, X., Andrews, R., Eltzschig, H., Huard, J. Hypoxia-inducible factor 1α (HIF-1α) is a major determinant in the enhanced function of muscle-derived progenitors from MRL/MpJ mice.
Collapse
Affiliation(s)
- Krishna M Sinha
- Department of Orthopedic Surgery, McGovern Medical School, University of Texas Health Science Center-Houston, Houston, Texas, USA
| | - Chieh Tseng
- Department of Orthopedic Surgery, McGovern Medical School, University of Texas Health Science Center-Houston, Houston, Texas, USA
| | - Ping Guo
- Department of Orthopedic Surgery, McGovern Medical School, University of Texas Health Science Center-Houston, Houston, Texas, USA
| | - Aiping Lu
- Department of Orthopedic Surgery, McGovern Medical School, University of Texas Health Science Center-Houston, Houston, Texas, USA
| | - Haiying Pan
- Department of Orthopedic Surgery, McGovern Medical School, University of Texas Health Science Center-Houston, Houston, Texas, USA
| | - Xueqin Gao
- Department of Orthopedic Surgery, McGovern Medical School, University of Texas Health Science Center-Houston, Houston, Texas, USA
| | - Reid Andrews
- Department of Orthopedic Surgery, McGovern Medical School, University of Texas Health Science Center-Houston, Houston, Texas, USA
| | - Holger Eltzschig
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center-Houston, Houston, Texas, USA
| | - Johnny Huard
- Department of Orthopedic Surgery, McGovern Medical School, University of Texas Health Science Center-Houston, Houston, Texas, USA.,Steadman Philippon Research Institute, Vail, Colorado, USA
| |
Collapse
|
10
|
Dao DT, Anez-Bustillos L, Jabbouri SS, Pan A, Kishikawa H, Mitchell PD, Fell GL, Baker MA, Watnick RS, Chen H, Rogers MS, Bielenberg DR, Puder M. A paradoxical method to enhance compensatory lung growth: Utilizing a VEGF inhibitor. PLoS One 2018; 13:e0208579. [PMID: 30566445 PMCID: PMC6300284 DOI: 10.1371/journal.pone.0208579] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Accepted: 11/20/2018] [Indexed: 12/11/2022] Open
Abstract
Exogenous vascular endothelial growth factor (VEGF) accelerates compensatory lung growth (CLG) in mice after unilateral pneumonectomy. In this study, we unexpectedly discovered a method to enhance CLG with a VEGF inhibitor, soluble VEGFR1. Eight-week-old C57BL/6 male mice underwent left pneumonectomy, followed by daily intraperitoneal (ip) injection of either saline (control) or 20 μg/kg of VEGFR1-Fc. On post-operative day (POD) 4, mice underwent pulmonary function tests (PFT) and lungs were harvested for volume measurement and analyses of the VEGF signaling pathway. To investigate the role of hypoxia in mediating the effects of VEGFR1, experiments were repeated with concurrent administration of PT-2385, an inhibitor of hypoxia-induced factor (HIF)2α, via orogastric gavage at 10 mg/kg every 12 hours for 4 days. We found that VEGFR1-treated mice had increased total lung capacity (P = 0.006), pulmonary compliance (P = 0.03), and post-euthanasia lung volume (P = 0.049) compared to control mice. VEGFR1 treatment increased pulmonary levels of VEGF (P = 0.008) and VEGFR2 (P = 0.01). It also stimulated endothelial proliferation (P < 0.0001) and enhanced pulmonary surfactant production (P = 0.03). The addition of PT-2385 abolished the increase in lung volume and endothelial proliferation in response to VEGFR1. By paradoxically stimulating angiogenesis and enhancing lung growth, VEGFR1 could represent a new treatment strategy for neonatal lung diseases characterized by dysfunction of the HIF-VEGF pathway.
Collapse
Affiliation(s)
- Duy T. Dao
- Vascular Biology Program, Boston Children’s Hospital, Boston, MA, United States of America
- Department of Surgery, Boston Children’s Hospital, Boston, MA, United States of America
| | - Lorenzo Anez-Bustillos
- Vascular Biology Program, Boston Children’s Hospital, Boston, MA, United States of America
- Department of Surgery, Boston Children’s Hospital, Boston, MA, United States of America
| | - Sahir S. Jabbouri
- Vascular Biology Program, Boston Children’s Hospital, Boston, MA, United States of America
- Department of Surgery, Boston Children’s Hospital, Boston, MA, United States of America
| | - Amy Pan
- Vascular Biology Program, Boston Children’s Hospital, Boston, MA, United States of America
- Department of Surgery, Boston Children’s Hospital, Boston, MA, United States of America
| | - Hiroko Kishikawa
- Vascular Biology Program, Boston Children’s Hospital, Boston, MA, United States of America
- Department of Surgery, Boston Children’s Hospital, Boston, MA, United States of America
| | - Paul D. Mitchell
- Institutional Centers for Clinical and Translational Research, Boston Children’s Hospital, Boston, MA, United States of America
| | - Gillian L. Fell
- Vascular Biology Program, Boston Children’s Hospital, Boston, MA, United States of America
- Department of Surgery, Boston Children’s Hospital, Boston, MA, United States of America
| | - Meredith A. Baker
- Vascular Biology Program, Boston Children’s Hospital, Boston, MA, United States of America
- Department of Surgery, Boston Children’s Hospital, Boston, MA, United States of America
| | - Randolph S. Watnick
- Vascular Biology Program, Boston Children’s Hospital, Boston, MA, United States of America
- Department of Surgery, Boston Children’s Hospital, Boston, MA, United States of America
| | - Hong Chen
- Vascular Biology Program, Boston Children’s Hospital, Boston, MA, United States of America
- Department of Surgery, Boston Children’s Hospital, Boston, MA, United States of America
| | - Michael S. Rogers
- Vascular Biology Program, Boston Children’s Hospital, Boston, MA, United States of America
- Department of Surgery, Boston Children’s Hospital, Boston, MA, United States of America
| | - Diane R. Bielenberg
- Vascular Biology Program, Boston Children’s Hospital, Boston, MA, United States of America
- Department of Surgery, Boston Children’s Hospital, Boston, MA, United States of America
| | - Mark Puder
- Vascular Biology Program, Boston Children’s Hospital, Boston, MA, United States of America
- Department of Surgery, Boston Children’s Hospital, Boston, MA, United States of America
| |
Collapse
|
11
|
Vascular Endothelial Growth Factor Enhances Compensatory Lung Growth in Piglets. Surgery 2018; 164:1279-1286. [PMID: 30193736 DOI: 10.1016/j.surg.2018.07.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 06/25/2018] [Accepted: 07/05/2018] [Indexed: 01/12/2023]
Abstract
BACKGROUND Vascular endothelial growth factor has been found to accelerate compensatory lung growth after left pneumonectomy in mice. The aim of this study was to determine the natural history and the effects of vascular endothelial growth factor on compensatory lung growth in a large animal model. METHODS To determine the natural history of compensatory lung growth, female Yorkshire piglets underwent a left pneumonectomy on days of life 10-11. Tissue harvest and volume measurement of the right lung were performed at baseline (n = 5) and on postoperative days 7 (n = 5), 14 (n = 4), and 21 (n = 5). For pharmacokinetic studies, vascular endothelial growth factor was infused via a central venous catheter, with plasma vascular endothelial growth factor levels measured at various time points. To test the effect of vascular endothelial growth factor on compensatory lung growth, 26 female Yorkshire piglets underwent a left pneumonectomy followed by daily infusion of vascular endothelial growth factor at 200 µg/kg or isovolumetric 0.9% NaCl (saline control). Lungs were harvested on postoperative day 7 for volume measurement and morphometric analyses. RESULTS Compared with baseline, right lung volume after left pneumonectomy increased by factors of 2.1 ± 0.6, 3.3 ± 0.6, and 3.6 ± 0.4 on postoperative days 7, 14, and 21, respectively. The half-life of VEGF ranged from 89 to 144 minutes. Lesser doses of vascular endothelial growth factor resulted in better tolerance, volume of distribution, and clearance. Compared with the control group, piglets treated with vascular endothelial growth factor had greater lung volume (P < 0.0001), alveolar volume (P = 0.001), septal surface area (P = 0.007) and total alveolar count (P = 0.01). CONCLUSION Vascular endothelial growth factor enhanced alveolar growth in neonatal piglets after unilateral pneumonectomy.
Collapse
|
12
|
Dao DT, Anez-Bustillos L, Ourieff J, Pan A, Mitchell PD, Kishikawa H, Fell GL, Baker MA, Watnick RS, Chen H, Hamilton TE, Rogers MS, Bielenberg DR, Puder M. Heparin impairs angiogenic signaling and compensatory lung growth after left pneumonectomy. Angiogenesis 2018; 21:837-848. [PMID: 29956017 DOI: 10.1007/s10456-018-9628-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 06/26/2018] [Indexed: 12/24/2022]
Abstract
Children with hypoplastic lung diseases, such as congenital diaphragmatic hernia, can require life support via extracorporeal membrane oxygenation and systemic anticoagulation, usually in the form of heparin. The role of heparin in angiogenesis and organ growth is inconclusive, with conflicting data reported in the literature. This study aimed to investigate the effects of heparin on lung growth in a model of compensatory lung growth (CLG). Compared to the absence of heparin, treatment with heparin decreased the vascular endothelial growth factor (VEGF)-mediated activation of VEGFR2 and mitogenic effect on human lung microvascular endothelial cells in vitro. Compared to non-heparinized controls, heparinized mice demonstrated impaired pulmonary mechanics, decreased respiratory volumes and flows, and reduced activity levels after left pneumonectomy. They also had lower lung volume, pulmonary septal surface area and alveolar density on morphometric analyses. Lungs of heparinized mice displayed decreased phosphorylation of VEGFR2 compared to the control group, with consequential downstream reduction in markers of cellular proliferation and survival. The use of bivalirudin, an alternative anticoagulant that does not interact with VEGF, preserved lung growth and pulmonary mechanics. These results demonstrated that heparin impairs CLG by reducing VEGFR2 activation. These findings raise concern for the clinical use of heparin in the setting of organ growth or regeneration.
Collapse
Affiliation(s)
- Duy T Dao
- Vascular Biology Program, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA.,Department of Surgery, Boston Children's Hospital, Harvard Medical School, 300 Longwood Ave, Fegan 3, Boston, MA, 02115, USA
| | - Lorenzo Anez-Bustillos
- Vascular Biology Program, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA.,Department of Surgery, Boston Children's Hospital, Harvard Medical School, 300 Longwood Ave, Fegan 3, Boston, MA, 02115, USA
| | - Jared Ourieff
- Vascular Biology Program, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA.,Department of Surgery, Boston Children's Hospital, Harvard Medical School, 300 Longwood Ave, Fegan 3, Boston, MA, 02115, USA
| | - Amy Pan
- Vascular Biology Program, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA.,Department of Surgery, Boston Children's Hospital, Harvard Medical School, 300 Longwood Ave, Fegan 3, Boston, MA, 02115, USA
| | - Paul D Mitchell
- Institutional Centers for Clinical and Translational Research, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Hiroko Kishikawa
- Vascular Biology Program, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA.,Department of Surgery, Boston Children's Hospital, Harvard Medical School, 300 Longwood Ave, Fegan 3, Boston, MA, 02115, USA
| | - Gillian L Fell
- Vascular Biology Program, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA.,Department of Surgery, Boston Children's Hospital, Harvard Medical School, 300 Longwood Ave, Fegan 3, Boston, MA, 02115, USA
| | - Meredith A Baker
- Vascular Biology Program, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA.,Department of Surgery, Boston Children's Hospital, Harvard Medical School, 300 Longwood Ave, Fegan 3, Boston, MA, 02115, USA
| | - Randolph S Watnick
- Vascular Biology Program, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA.,Department of Surgery, Boston Children's Hospital, Harvard Medical School, 300 Longwood Ave, Fegan 3, Boston, MA, 02115, USA
| | - Hong Chen
- Vascular Biology Program, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA.,Department of Surgery, Boston Children's Hospital, Harvard Medical School, 300 Longwood Ave, Fegan 3, Boston, MA, 02115, USA
| | - Thomas E Hamilton
- Department of Surgery, Boston Children's Hospital, Harvard Medical School, 300 Longwood Ave, Fegan 3, Boston, MA, 02115, USA
| | - Michael S Rogers
- Vascular Biology Program, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA.,Department of Surgery, Boston Children's Hospital, Harvard Medical School, 300 Longwood Ave, Fegan 3, Boston, MA, 02115, USA
| | - Diane R Bielenberg
- Vascular Biology Program, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA.,Department of Surgery, Boston Children's Hospital, Harvard Medical School, 300 Longwood Ave, Fegan 3, Boston, MA, 02115, USA
| | - Mark Puder
- Vascular Biology Program, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA. .,Department of Surgery, Boston Children's Hospital, Harvard Medical School, 300 Longwood Ave, Fegan 3, Boston, MA, 02115, USA.
| |
Collapse
|
13
|
Huang Y, Boerema-de Munck A, Buscop-van Kempen M, Sluiter I, de Krijger R, Tibboel D, Rottier RJ. Hypoxia inducible factor 2α (HIF2α/EPAS1) is associated with development of pulmonary hypertension in severe congenital diaphragmatic hernia patients. Pulm Circ 2018; 8:2045894018783734. [PMID: 29855254 PMCID: PMC6055252 DOI: 10.1177/2045894018783734] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
We show that hypoxia inducible factor 2α (HIF2α) is highly expressed in patients
with pulmonary hypertension (PH). HIF2α is expressed in every patient with
congenital diaphragmatic hernia, while only half of the controls express HIF2α.
Our data suggest that HIF2α is a link between hypoxia and the development of
PH.
Collapse
Affiliation(s)
- Yadi Huang
- 1 Department of Pediatric Surgery, Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Anne Boerema-de Munck
- 1 Department of Pediatric Surgery, Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands.,2 Department of Cell Biology, Erasmus MC, Rotterdam, The Netherlands
| | - Marjon Buscop-van Kempen
- 1 Department of Pediatric Surgery, Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands.,2 Department of Cell Biology, Erasmus MC, Rotterdam, The Netherlands
| | - Ilona Sluiter
- 1 Department of Pediatric Surgery, Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Ronald de Krijger
- 3 Department of Pathology, Reinier de Graaf Hospital, Delft, and Princess Maxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Dick Tibboel
- 1 Department of Pediatric Surgery, Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Robbert J Rottier
- 1 Department of Pediatric Surgery, Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands.,2 Department of Cell Biology, Erasmus MC, Rotterdam, The Netherlands
| |
Collapse
|
14
|
Affiliation(s)
- Jurjan Aman
- Department of Physiology, Institute for Cardiovascular Research, VU University Medical Center, Amsterdam, The Netherlands Department of Pulmonary Diseases, Institute for Cardiovascular Research, VU University Medical Center, Amsterdam, The Netherlands
| | - Harm Jan Bogaard
- Department of Pulmonary Diseases, Institute for Cardiovascular Research, VU University Medical Center, Amsterdam, The Netherlands
| | - Anton Vonk Noordegraaf
- Department of Pulmonary Diseases, Institute for Cardiovascular Research, VU University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
15
|
Fujinaga H, Fujinaga H, Watanabe N, Kato T, Tamano M, Terao M, Takada S, Ito Y, Umezawa A, Kuroda M. Cord blood-derived endothelial colony-forming cell function is disrupted in congenital diaphragmatic hernia. Am J Physiol Lung Cell Mol Physiol 2016; 310:L1143-54. [PMID: 27130531 DOI: 10.1152/ajplung.00357.2015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 04/22/2016] [Indexed: 01/07/2023] Open
Abstract
Vascular growth is necessary for normal lung development. Although endothelial progenitor cells (EPCs) play an important role in vascularization, little is known about EPC function in congenital diaphragmatic hernia (CDH), a severe neonatal condition that is associated with pulmonary hypoplasia. We hypothesized that the function of endothelial colony-forming cells (ECFCs), a type of EPC, is impaired in CDH. Cord blood (CB) was collected from full-term CDH patients and healthy controls. We assessed CB progenitor cell populations as well as plasma vascular endothelial growth factor (VEGF) and stromal cell-derived factor 1α (SDF1α) levels. CB ECFC clonogenicity; growth kinetics; migration; production of VEGF, SDF1α, and nitric oxide (NO); vasculogenic capacity; and mRNA expression of VEGF-A, fms-related tyrosine kinase 1 (FLT1), kinase insert domain receptor (KDR), nitric oxide synthase (NOS) 1-3, SDF1, and chemokine (C-X-C motif) receptor 4 (CXCR4) were also assessed. Compared with controls, CB ECFCs were decreased in CDH. CDH ECFCs had reduced potential for self-renewal, clonogenicity, proliferation, and migration. Their capacity for NO production was enhanced but their response to VEGF was blunted in CDH ECFCs. In vivo potential for de novo vasculogenesis was reduced in CDH ECFCs. There was no difference in CB plasma VEGF and SDF1α concentrations, VEGF and SDF1α production by ECFCs, and ECFC mRNA expression of VEGF-A, FLT1, KDR, NOS1-3, SDF1, and CXCR4 between CDH and control subjects. In conclusion, CB ECFC function is disrupted in CDH, but these changes may be caused by mechanisms other than alteration of VEGF-NO and SDF1-CXCR4 signaling.
Collapse
Affiliation(s)
- Hideshi Fujinaga
- Department of Molecular Pathology, Tokyo Medical University, Tokyo, Japan; Department of Reproductive Biology, National Institute for Child Health and Development, Tokyo, Japan; Division of Neonatology, Center for Maternal-Fetal and Neonatal Medicine, National Center for Child Health and Development, Tokyo, Japan;
| | - Hiroko Fujinaga
- Department of Reproductive Biology, National Institute for Child Health and Development, Tokyo, Japan
| | - Nobuyuki Watanabe
- Department of Human Genetics, National Institute for Child Health and Development, Tokyo, Japan; and
| | - Tomoko Kato
- Department of Systems BioMedicine, National Institute for Child Health and Development, Tokyo, Japan
| | - Moe Tamano
- Department of Systems BioMedicine, National Institute for Child Health and Development, Tokyo, Japan
| | - Miho Terao
- Department of Systems BioMedicine, National Institute for Child Health and Development, Tokyo, Japan
| | - Shuji Takada
- Department of Systems BioMedicine, National Institute for Child Health and Development, Tokyo, Japan
| | - Yushi Ito
- Division of Neonatology, Center for Maternal-Fetal and Neonatal Medicine, National Center for Child Health and Development, Tokyo, Japan
| | - Akihiro Umezawa
- Department of Reproductive Biology, National Institute for Child Health and Development, Tokyo, Japan
| | - Masahiko Kuroda
- Department of Molecular Pathology, Tokyo Medical University, Tokyo, Japan
| |
Collapse
|
16
|
Vuckovic A, Herber-Jonat S, Flemmer AW, Ruehl IM, Votino C, Segers V, Benachi A, Martinovic J, Nowakowska D, Dzieniecka M, Jani JC. Increased TGF-β: a drawback of tracheal occlusion in human and experimental congenital diaphragmatic hernia? Am J Physiol Lung Cell Mol Physiol 2015; 310:L311-27. [PMID: 26637634 DOI: 10.1152/ajplung.00122.2015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 12/03/2015] [Indexed: 12/15/2022] Open
Abstract
Survivors of severe congenital diaphragmatic hernia (CDH) present significant respiratory morbidity despite lung growth induced by fetal tracheal occlusion (TO). We hypothesized that the underlying mechanisms would involve changes in lung extracellular matrix and dysregulated transforming growth factor (TGF)-β pathway, a key player in lung development and repair. Pulmonary expression of TGF-β signaling components, downstream effectors, and extracellular matrix targets were evaluated in CDH neonates who died between birth and the first few weeks of life after prenatal conservative management or TO, and in rabbit pups that were prenatally randomized for surgical CDH and TO vs. sham operation. Before tissue harvesting, lung tissue mechanics in rabbits was measured using the constant-phase model during the first 30 min of life. Human CDH and control fetal lungs were also collected from midterm onwards. Human and experimental CDH did not affect TGF-β/Smad2/3 expression and activity. In human and rabbit CDH lungs, TO upregulated TGF-β transcripts. Analysis of downstream pathways indicated increased Rho-associated kinases to the detriment of Smad2/3 activation. After TO, subtle accumulation of collagen and α-smooth muscle actin within alveolar walls was detected in rabbit pups and human CDH lungs with short-term mechanical ventilation. Despite TO-induced lung growth, mediocre lung tissue mechanics in the rabbit model was associated with increased transcription of extracellular matrix components. These results suggest that prenatal TO increases TGF-β/Rho kinase pathway, myofibroblast differentiation, and matrix deposition in neonatal rabbit and human CDH lungs. Whether this might influence postnatal development of sustainably ventilated lungs remains to be determined.
Collapse
Affiliation(s)
- Aline Vuckovic
- Laboratory of Physiology and Pathophysiology, Faculty of Medicine, Université Libre de Bruxelles, Brussels, Belgium;
| | - Susanne Herber-Jonat
- Division of Neonatology, University Children's Hospital, Perinatal Center, Ludwig-Maximilian-University Munich, Munich, Germany
| | - Andreas W Flemmer
- Division of Neonatology, University Children's Hospital, Perinatal Center, Ludwig-Maximilian-University Munich, Munich, Germany
| | - Ina M Ruehl
- Division of Neonatology, University Children's Hospital, Perinatal Center, Ludwig-Maximilian-University Munich, Munich, Germany
| | - Carmela Votino
- Department of Obstetrics and Gynecology, Fetal Medicine Unit, University Hospital Brugmann, Université Libre de Bruxelles, Brussels, Belgium
| | - Valérie Segers
- Unit of Pediatric Pathology, Pathology Department, University Hospital Brugmann, Université Libre de Bruxelles, Brussels, Belgium
| | - Alexandra Benachi
- Department of Obstetrics and Gynecology and Centre de Maladie Rare: Hernie de Coupole Diaphragmatique, Hôpital Antoine Béclère, Assistance Publique Hôpitaux de Paris (APHP), Université Paris Sud, Paris, France
| | - Jelena Martinovic
- Unit of Fetal Pathology, Hôpital Antoine Béclère, Assistance Publique Hôpitaux de Paris (APHP), Université Paris Sud, Paris, France
| | - Dorota Nowakowska
- Department of Fetal-Maternal Medicine and Gynecology, Medical University and the Research Institute Polish Mother's Memorial Hospital, Lodz, Poland; and
| | - Monika Dzieniecka
- Department of Clinical Pathology, Medical University and the Research Institute Polish Mother's Memorial Hospital, Lodz, Poland
| | - Jacques C Jani
- Department of Obstetrics and Gynecology, Fetal Medicine Unit, University Hospital Brugmann, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
17
|
Zhou K, Ma Y, Brogan MS. Chronic and non-healing wounds: The story of vascular endothelial growth factor. Med Hypotheses 2015; 85:399-404. [PMID: 26138626 DOI: 10.1016/j.mehy.2015.06.017] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 06/01/2015] [Accepted: 06/19/2015] [Indexed: 12/24/2022]
Abstract
The pathophysiology of the chronicity and non-healing status of wounds remains unknown. This paper presents the following hypothesis: abnormal patterns of vascular endothelial growth factor receptors (VEGFRs) are the culprits of wound chronicity and non-healing. More specifically, for patients with poor circulation, the decreased VEGFR-2 level is the cause of poor wound healing; for patients with non-compromised circulation, for example, patients with concurrent chronic wounds and active autoimmune diseases, the increased VEGFR-1 level is related to the non-healing status of wounds. The hypothesis is supported by the following facts. VEGFR-1 is the main contributor for inflammation and VEGFR-2 facilitates angiogenesis; soluble VEGFR-1 (sVEGFR-1) inactivates both VEGFR-1 and VEGFR-2. Patients with auto-immune disease have abnormally increased VEGFR-1 and decreased sVEGFR. Wounds in patients with active autoimmune diseases have poor response to electric stimulation which facilitates chronic wound healing in patients without active autoimmune diseases via increasing vascular endothelial growth factor (VEGF) secretion. Patients with chronic wounds (including diabetic foot ulcers and venous leg ulcers) but no active autoimmune diseases have decreased VEGFR-2 levels. We thus believe that abnormal patterns of VEGFRs are the culprits of wound chronicity and non-healing. For wounds with compromised circulation, VEGFR-2 decrease contributes to its chronicity; whereas for wounds with non-compromised circulation, VEGFR-1 increase is the leading cause of the non-healing status of chronic wounds. Treatments and research in wound care should be tailored to target these changes based on circulation status of wounds. Complete elucidation of changes of VEGFRs in chronic and non-healing wounds will enhance our understandings in tissue healing and thus better our selection of appropriate treatments for chronic and non-healing wounds.
Collapse
Affiliation(s)
- Kehua Zhou
- Department of Health Care Studies, Daemen College, Amherst, NY 14226, USA; Daemen College Physical Therapy Wound Care Clinic, Daemen College, Amherst, NY 14226, USA.
| | - Yan Ma
- Division of Interdisciplinary Medicine and Biotechnology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Internal Medicine and Sleep Center, Eye Hospital, China Academy of Chinese Medical Science, Beijing, China.
| | - Michael S Brogan
- Department of Physical Therapy, Daemen College, Amherst, NY 14226, USA.
| |
Collapse
|
18
|
Kool H, Mous D, Tibboel D, de Klein A, Rottier RJ. Pulmonary vascular development goes awry in congenital lung abnormalities. ACTA ACUST UNITED AC 2014; 102:343-58. [PMID: 25424472 DOI: 10.1002/bdrc.21085] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 10/29/2014] [Indexed: 01/04/2023]
Abstract
Pulmonary vascular diseases of the newborn comprise a wide range of pathological conditions with developmental abnormalities in the pulmonary vasculature. Clinically, pulmonary arterial hypertension (PH) is characterized by persistent increased resistance of the vasculature and abnormal vascular response. The classification of PH is primarily based on clinical parameters instead of morphology and distinguishes five groups of PH. Congenital lung anomalies, such as alveolar capillary dysplasia (ACD) and PH associated with congenital diaphragmatic hernia (CDH), but also bronchopulmonary dysplasia (BPD), are classified in group three. Clearly, tight and correct regulation of pulmonary vascular development is crucial for normal lung development. Human and animal model systems have increased our knowledge and make it possible to identify and characterize affected pathways and study pivotal genes. Understanding of the normal development of the pulmonary vasculature will give new insights in the origin of the spectrum of rare diseases, such as CDH, ACD, and BPD, which render a significant clinical problem in neonatal intensive care units around the world. In this review, we describe normal pulmonary vascular development, and focus on four diseases of the newborn in which abnormal pulmonary vascular development play a critical role in morbidity and mortality. In the future perspective, we indicate the lines of research that seem to be very promising for elucidating the molecular pathways involved in the origin of congenital pulmonary vascular disease.
Collapse
Affiliation(s)
- Heleen Kool
- Department of Pediatric Surgery of the Erasmus MC, Sophia Children's Hospital, Rotterdam, the Netherlands
| | | | | | | | | |
Collapse
|