1
|
Huynh PN, Cheng C. Spatial-temporal comparison of Eph/Ephrin gene expression in ocular lenses from aging and knockout mice. FRONTIERS IN OPHTHALMOLOGY 2024; 4:1410860. [PMID: 38984128 PMCID: PMC11182306 DOI: 10.3389/fopht.2024.1410860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 05/06/2024] [Indexed: 07/11/2024]
Abstract
Cataracts, defined as any opacity in the transparent ocular lens, remain the leading cause of blindness and visual impairment in the world; however, the etiology of this pathology is not fully understood. Studies in mice and humans have found that the EphA2 receptor and the ephrin-A5 ligand play important roles in maintaining lens homeostasis and transparency. However, due to the diversity of the family of Eph receptors and ephrin ligands and their promiscuous binding, identifying functional interacting partners remains a challenge. Previously, 12 of the 14 Ephs and 8 of 8 ephrins in mice were characterized to be expressed in the mouse lens. To further narrow down possible genes of interest in life-long lens homeostasis, we collected and separated the lens epithelium from the fiber cell mass and isolated RNA from each compartment in samples from young adult and middle-aged mice that were either wild-type, EphA2-/- (knockout), or ephrin-A5 -/- . Reverse transcription quantitative polymerase chain reaction (RT-qPCR) was implemented to compare transcript levels of 33 Eph and ephrin gene variants in each tissue compartment. Our results show that, of the Eph and ephrin variants screened, 5 of 33 showed age-related changes, and 2 of 33 showed genotype-related changes in lens epithelium. In the isolated fibers, more dynamic gene expression changes were observed, in which 12 of 33 variants showed age-related changes, and 6 of 33 showed genotype-related changes. These data allow for a more informed decision in determining mechanistic leads in Eph-ephrin-mediated signaling in the lens.
Collapse
Affiliation(s)
| | - Catherine Cheng
- School of Optometry and Vision Science Program, Indiana University, Bloomington, IN, United States
| |
Collapse
|
2
|
Peng N, Zheng M, Song B, Jiao R, Wang W. Transcription Factor EGR1 Facilitates Neovascularization in Mice with Retinopathy of Prematurity by Regulating the miR-182-5p/EFNA5 Axis. Biochem Genet 2024; 62:1070-1086. [PMID: 37530910 DOI: 10.1007/s10528-023-10433-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 06/15/2023] [Indexed: 08/03/2023]
Abstract
Neovascularization is the hallmark of retinopathy of prematurity (ROP). Early growth response 1 (EGR1) has been reported as an angiogenic factor. This study was conducted to probe the regulatory mechanism of EGR1 in neovascularization in ROP model mice. The ROP mouse model was established, followed by determination of EGR1 expression and assessment of neovascularization [vascular endothelial growth factor-A (VEGF-A) and pigment epithelium-derived factor (PEDF)]. Retinal vascular endothelial cells were cultured and treated with hypoxia, followed by the tube formation assay. The state of oxygen induction was assessed by real-time quantitative polymerase chain reaction (RT-qPCR) and Western blot assay to determine hypoxia-inducible factor 1-alpha (HIF-1A). The levels of microRNA (miRNA)-182-5p and ephrin-A5 (EFNA5) in tissues and cells were determined by RT-qPCR. Chromatin immunoprecipitation and dual-luciferase assay were used to validate gene interaction. EGR1 and EFNA5 were upregulated in the retina of ROP mice while miR-182-5p was downregulated. EGR1 knockdown decreased VEGF-A and HIF-1A expression and increased PEDF expression in the retina of ROP mice. In vitro, EGR1 knockdown also reduced neovascularization. EGR1 binding to the miR-182-5p promoter inhibited miR-182-5p transcription and further promoted EFNA5 transcription. miR-182-5p downregulation or EFNA5 overexpression averted the inhibition of neovascularization caused by EGR1 downregulation. Overall, EGR1 bound to the miR-182-5p promoter to inhibit miR-182-5p transcription and further promoted EFNA5 transcription, thus promoting retinal neovascularization in ROP mice.
Collapse
Affiliation(s)
- Ningning Peng
- Department of Neonatology, Xiangyang No.1 People's Hospital, Hubei University of Medicine, No. 15 Jiefang Road, Fancheng District, Xiangyang City, 441000, Hubei Province, China
| | - Mei Zheng
- Department of Neonatology, Xiangyang No.1 People's Hospital, Hubei University of Medicine, No. 15 Jiefang Road, Fancheng District, Xiangyang City, 441000, Hubei Province, China
| | - Bei Song
- Department of Neonatology, Xiangyang No.1 People's Hospital, Hubei University of Medicine, No. 15 Jiefang Road, Fancheng District, Xiangyang City, 441000, Hubei Province, China
| | - Rong Jiao
- Department of Neonatology, Xiangyang No.1 People's Hospital, Hubei University of Medicine, No. 15 Jiefang Road, Fancheng District, Xiangyang City, 441000, Hubei Province, China.
| | - Wenxiang Wang
- Department of Neonatology, Xiangyang No.1 People's Hospital, Hubei University of Medicine, No. 15 Jiefang Road, Fancheng District, Xiangyang City, 441000, Hubei Province, China.
| |
Collapse
|
3
|
Li J, Chen K, Li X, Zhang X, Zhang L, Yang Q, Xia Y, Xie C, Wang X, Tong J, Shen Y. Mechanistic insights into the alterations and regulation of the AKT signaling pathway in diabetic retinopathy. Cell Death Discov 2023; 9:418. [PMID: 37978169 PMCID: PMC10656479 DOI: 10.1038/s41420-023-01717-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 11/05/2023] [Accepted: 11/08/2023] [Indexed: 11/19/2023] Open
Abstract
In the early stages of diabetic retinopathy (DR), diabetes-related hyperglycemia directly inhibits the AKT signaling pathway by increasing oxidative stress or inhibiting growth factor expression, which leads to retinal cell apoptosis, nerve proliferation and fundus microvascular disease. However, due to compensatory vascular hyperplasia in the late stage of DR, the vascular endothelial growth factor (VEGF)/phosphatidylinositol 3 kinase (PI3K)/AKT cascade is activated, resulting in opposite levels of AKT regulation compared with the early stage. Studies have shown that many factors, including insulin, insulin-like growth factor-1 (IGF-1), VEGF and others, can regulate the AKT pathway. Disruption of the insulin pathway decreases AKT activation. IGF-1 downregulation decreases the activation of AKT in DR, which abrogates the neuroprotective effect, upregulates VEGF expression and thus induces neovascularization. Although inhibiting VEGF is the main treatment for neovascularization in DR, excessive inhibition may lead to apoptosis in inner retinal neurons. AKT pathway substrates, including mammalian target of rapamycin (mTOR), forkhead box O (FOXO), glycogen synthase kinase-3 (GSK-3)/nuclear factor erythroid 2-related factor 2 (Nrf2), and nuclear factor kappa-B (NF-κB), are a research focus. mTOR inhibitors can delay or prevent retinal microangiopathy, whereas low mTOR activity can decrease retinal protein synthesis. Inactivated AKT fails to inhibit FOXO and thus causes apoptosis. The GSK-3/Nrf2 cascade regulates oxidation and inflammation in DR. NF-κB is activated in diabetic retinas and is involved in inflammation and apoptosis. Many pathways or vital activities, such as the Janus kinase (JAK)/signal transducer and activator of transcription (STAT) and mitogen-activated protein kinase (MAPK) signaling pathways, interact with the AKT pathway to influence DR development. Numerous regulatory methods can simultaneously impact the AKT pathway and other pathways, and it is essential to consider both the connections and interactions between these pathways. In this review, we summarize changes in the AKT signaling pathway in DR and targeted drugs based on these potential sites.
Collapse
Affiliation(s)
- Jiayuan Li
- Department of Ophthalmology, The First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang, China
- Department of Cardiology, The Second Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang, China
| | - Kuangqi Chen
- Department of Ophthalmology, The First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiang Li
- Department of Ophthalmology, The First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang, China
| | - Xuhong Zhang
- Department of Ophthalmology, The First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang, China
| | - Liyue Zhang
- Department of Ophthalmology, The First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang, China
| | - Qianjie Yang
- Department of Ophthalmology, The First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang, China
| | - Yutong Xia
- Department of Ophthalmology, The First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang, China
| | - Chen Xie
- Department of Ophthalmology, The First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiawei Wang
- Department of Ophthalmology, The First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang, China
| | - Jianping Tong
- Department of Ophthalmology, The First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang, China.
| | - Ye Shen
- Department of Ophthalmology, The First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
4
|
Bhardwaj V, Zhang X, Pandey V, Garg M. Neo-vascularization-based therapeutic perspectives in advanced ovarian cancer. Biochim Biophys Acta Rev Cancer 2023; 1878:188888. [PMID: 37001618 DOI: 10.1016/j.bbcan.2023.188888] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 02/23/2023] [Accepted: 03/02/2023] [Indexed: 03/30/2023]
Abstract
The process of angiogenesis is well described for its potential role in the development of normal ovaries, and physiological functions as well as in the initiation, progression, and metastasis of ovarian cancer (OC). In advanced stages of OC, cancer cells spread outside the ovary to the pelvic, abdomen, lung, or multiple secondary sites. This seriously limits the efficacy of therapeutic options contributing to fatal clinical outcomes. Notably, a variety of angiogenic effectors are produced by the tumor cells to initiate angiogenic processes leading to the development of new blood vessels, which provide essential resources for tumor survival, dissemination, and dormant micro-metastasis of tumor cells. Multiple proangiogenic effectors and their signaling axis have been discovered and functionally characterized for potential clinical utility in OC. In this review, we have provided the current updates on classical and emerging proangiogenic effectors, their signaling axis, and the immune microenvironment contributing to the pathogenesis of OC. Moreover, we have comprehensively reviewed and discussed the significance of the preclinical strategies, drug repurposing, and clinical trials targeting the angiogenic processes that hold promising perspectives for the better management of patients with OC.
Collapse
Affiliation(s)
- Vipul Bhardwaj
- Tsinghua Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China; Institute of Biopharmaceutical and Bioengineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China
| | - Xi Zhang
- Shenzhen Bay Laboratory, Shenzhen 518055, PR China
| | - Vijay Pandey
- Tsinghua Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China; Institute of Biopharmaceutical and Bioengineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China.
| | - Manoj Garg
- Amity Institute of Molecular Medicine and Stem Cell Research, Amity University Uttar Pradesh, Sector-125, Noida 201301, India.
| |
Collapse
|
5
|
Wu S, Mo X. Optic Nerve Regeneration in Diabetic Retinopathy: Potentials and Challenges Ahead. Int J Mol Sci 2023; 24:ijms24021447. [PMID: 36674963 PMCID: PMC9865663 DOI: 10.3390/ijms24021447] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/31/2022] [Accepted: 01/09/2023] [Indexed: 01/15/2023] Open
Abstract
Diabetic retinopathy (DR), the most common microvascular compilation of diabetes, is the leading cause of vision loss and blindness worldwide. Recent studies indicate that retinal neuron impairment occurs before any noticeable vascular changes in DR, and retinal ganglion cell (RGC) degeneration is one of the earliest signs. Axons of RGCs have little capacity to regenerate after injury, clinically leading the visual functional defects to become irreversible. In the past two decades, tremendous progress has been achieved to enable RGC axon regeneration in animal models of optic nerve injury, which holds promise for neural repair and visual restoration in DR. This review summarizes these advances and discusses the potential and challenges for developing optic nerve regeneration strategies treating DR.
Collapse
Affiliation(s)
| | - Xiaofen Mo
- Correspondence: ; Tel.: +86-021-64377134
| |
Collapse
|
6
|
Pan D, Xu L, Guo M. The role of protein kinase C in diabetic microvascular complications. Front Endocrinol (Lausanne) 2022; 13:973058. [PMID: 36060954 PMCID: PMC9433088 DOI: 10.3389/fendo.2022.973058] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 07/25/2022] [Indexed: 11/17/2022] Open
Abstract
Protein kinase C (PKC) is a family of serine/threonine protein kinases, the activation of which plays an important role in the development of diabetic microvascular complications. The activation of PKC under high-glucose conditions stimulates redox reactions and leads to an accumulation of redox stress. As a result, various types of cells in the microvasculature are influenced, leading to changes in blood flow, microvascular permeability, extracellular matrix accumulation, basement thickening and angiogenesis. Structural and functional disorders further exacerbate diabetic microvascular complications. Here, we review the roles of PKC in the development of diabetic microvascular complications, presenting evidence from experiments and clinical trials.
Collapse
Affiliation(s)
- Deng Pan
- Xiyuan hospital of China Academy of Chinese Medical Sciences, Beijing, China
- National Clinical Research Centre for Chinese Medicine Cardiology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School of Beijing University of Chinese Medicine, Beijing, China
| | - Lin Xu
- Gynecological Department of Traditional Chinese Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Ming Guo
- Xiyuan hospital of China Academy of Chinese Medical Sciences, Beijing, China
- National Clinical Research Centre for Chinese Medicine Cardiology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
7
|
Chu LY, Huang BL, Huang XC, Peng YH, Xie JJ, Xu YW. EFNA1 in gastrointestinal cancer: Expression, regulation and clinical significance. World J Gastrointest Oncol 2022; 14:973-988. [PMID: 35646281 PMCID: PMC9124989 DOI: 10.4251/wjgo.v14.i5.973] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 09/17/2021] [Accepted: 04/04/2022] [Indexed: 02/06/2023] Open
Abstract
Ephrin-A1 is a protein that in humans is encoded by the EFNA1 gene. The ephrins and EPH-related receptors comprise the largest subfamily of receptor protein-tyrosine kinases which play an indispensable role in normal growth and development or in the pathophysiology of various tumors. The role of EFNA1 in tumorigenesis and development is complex and depends on the cell type and microenvironment which in turn affect the expression of EFNA1. This article reviews the expression, prognostic value, regulation and clinical significance of EFNA1 in gastrointestinal tumors.
Collapse
Affiliation(s)
- Ling-Yu Chu
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, Guangdong Province, China
| | - Bin-Liang Huang
- Department of Clinical Laboratory Medicine, The Cancer Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
| | - Xu-Chun Huang
- Department of Clinical Laboratory Medicine, The Cancer Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
| | - Yu-Hui Peng
- Department of Clinical Laboratory Medicine, The Cancer Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
- Guangdong Esophageal Cancer Research Institute, The Cancer Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
| | - Jian-Jun Xie
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, Guangdong Province, China
| | - Yi-Wei Xu
- Department of Clinical Laboratory Medicine, The Cancer Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
- Guangdong Esophageal Cancer Research Institute, The Cancer Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
| |
Collapse
|
8
|
Townes-Anderson E, Halasz E, Wang W, Zarbin M. Coming of Age for the Photoreceptor Synapse. Invest Ophthalmol Vis Sci 2021; 62:24. [PMID: 34550300 PMCID: PMC8475281 DOI: 10.1167/iovs.62.12.24] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Purpose To discuss the potential contribution of rod and cone synapses to the loss of visual function in retinal injury and disease. Methods The published literature and the authors' own work were reviewed. Results Retinal detachment is used as a case study of rod spherule and cone pedicle plasticity after injury. Both rod and cone photoreceptors terminals are damaged after detachment although the structural changes observed are only partially overlapping. For second-order neurons, only those associated with rod spherules respond consistently to injury by remodeling. Examination of signaling pathways involved in plasticity of conventional synapses and in neural development has been and may continue to be productive in discovering novel therapeutic targets. Rho kinase (ROCK) inhibition is an example of therapy that may reduce synaptic damage by preserving normal synaptic structure of rod and cone cells. Conclusions We hypothesize that synaptic damage contributes to poor visual restoration after otherwise successful anatomical repair of retinal detachment. A similar situation may exist for patients with degenerative retinal disease. Thus, synaptic structure and function should be routinely studied, as this information may disclose therapeutic strategies to mitigate visual loss.
Collapse
Affiliation(s)
- Ellen Townes-Anderson
- Department of Pharmacology, Physiology, and Neuroscience, Rutgers New Jersey Medical School, Newark, New Jersey, United States
| | - Eva Halasz
- Department of Pharmacology, Physiology, and Neuroscience, Rutgers New Jersey Medical School, Newark, New Jersey, United States
| | - Weiwei Wang
- Schepens Eye Research Institute and Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard University, Boston, Massachusetts, United States
| | - Marco Zarbin
- Institute of Ophthalmology and Visual Science, Rutgers New Jersey Medical School, Newark, New Jersey, United States
| |
Collapse
|
9
|
Kaczmarek R, Gajdzis P, Gajdzis M. Eph Receptors and Ephrins in Retinal Diseases. Int J Mol Sci 2021; 22:ijms22126207. [PMID: 34201393 PMCID: PMC8227845 DOI: 10.3390/ijms22126207] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 06/06/2021] [Accepted: 06/07/2021] [Indexed: 02/06/2023] Open
Abstract
Retinal diseases are the leading cause of irreversible blindness. They affect people of all ages, from newborns in retinopathy of prematurity, through age-independent diabetic retinopathy and complications of retinal detachment, to age-related macular degeneration (AMD), which occurs mainly in the elderly. Generally speaking, the causes of all problems are disturbances in blood supply, hypoxia, the formation of abnormal blood vessels, and fibrosis. Although the detailed mechanisms underlying them are varied, the common point is the involvement of Eph receptors and ephrins in their pathogenesis. In our study, we briefly discussed the pathophysiology of the most common retinal diseases (diabetic retinopathy, retinopathy of prematurity, proliferative vitreoretinopathy, and choroidal neovascularization) and collected available research results on the role of Eph and ephrins. We also discussed the safety aspect of the use of drugs acting on Eph and ephrin for ophthalmic indications.
Collapse
Affiliation(s)
- Radoslaw Kaczmarek
- Department of Ophthalmology, Wroclaw Medical University, 50-556 Wroclaw, Poland;
| | - Pawel Gajdzis
- Department of Pathomorphology and Oncological Cytology, Wroclaw Medical University, 50-556 Wroclaw, Poland;
| | - Malgorzata Gajdzis
- Department of Ophthalmology, Wroclaw Medical University, 50-556 Wroclaw, Poland;
- Correspondence: ; Tel.: +00-48-71-736-4300
| |
Collapse
|
10
|
Niu T, Fang J, Shi X, Zhao M, Xing X, Wang Y, Zhu S, Liu K. Pathogenesis Study Based on High-Throughput Single-Cell Sequencing Analysis Reveals Novel Transcriptional Landscape and Heterogeneity of Retinal Cells in Type 2 Diabetic Mice. Diabetes 2021; 70:1185-1197. [PMID: 33674409 DOI: 10.2337/db20-0839] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 02/26/2021] [Indexed: 11/13/2022]
Abstract
Diabetic retinopathy (DR) is the leading cause of acquired blindness in middle-aged people. The complex pathology of DR is difficult to dissect, given the convoluted cytoarchitecture of the retina. Here, we performed single-cell RNA sequencing (scRNA-seq) of retina from a model of type 2 diabetes, induced in leptin receptor-deficient (db/db) and control db/m mice, with the aim of elucidating the factors mediating the pathogenesis of DR. We identified 11 cell types and determined cell-type-specific expression of DR-associated loci via genome-wide association study (GWAS)-based enrichment analysis. DR also impacted cell-type-specific genes and altered cell-cell communication. Based on the scRNA-seq results, retinaldehyde-binding protein 1 (RLBP1) was investigated as a promising therapeutic target for DR. Retinal RLBP1 expression was decreased in diabetes, and its overexpression in Müller glia mitigated DR-associated neurovascular degeneration. These data provide a detailed analysis of the retina under diabetic and normal conditions, revealing new insights into pathogenic factors that may be targeted to treat DR and related dysfunctions.
Collapse
Affiliation(s)
- Tian Niu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine; National Clinical Research Center for Eye Diseases; Shanghai Key Laboratory of Ocular Fundus Diseases; Shanghai Engineering Center for Visual Science and Photo Medicine; and Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Junwei Fang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine; National Clinical Research Center for Eye Diseases; Shanghai Key Laboratory of Ocular Fundus Diseases; Shanghai Engineering Center for Visual Science and Photo Medicine; and Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Xin Shi
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine; National Clinical Research Center for Eye Diseases; Shanghai Key Laboratory of Ocular Fundus Diseases; Shanghai Engineering Center for Visual Science and Photo Medicine; and Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Mengya Zhao
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine; National Clinical Research Center for Eye Diseases; Shanghai Key Laboratory of Ocular Fundus Diseases; Shanghai Engineering Center for Visual Science and Photo Medicine; and Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Xindan Xing
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine; National Clinical Research Center for Eye Diseases; Shanghai Key Laboratory of Ocular Fundus Diseases; Shanghai Engineering Center for Visual Science and Photo Medicine; and Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Yihan Wang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine; National Clinical Research Center for Eye Diseases; Shanghai Key Laboratory of Ocular Fundus Diseases; Shanghai Engineering Center for Visual Science and Photo Medicine; and Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Shaopin Zhu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine; National Clinical Research Center for Eye Diseases; Shanghai Key Laboratory of Ocular Fundus Diseases; Shanghai Engineering Center for Visual Science and Photo Medicine; and Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Kun Liu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine; National Clinical Research Center for Eye Diseases; Shanghai Key Laboratory of Ocular Fundus Diseases; Shanghai Engineering Center for Visual Science and Photo Medicine; and Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| |
Collapse
|
11
|
Kaczmarek R, Zimmer K, Gajdzis P, Gajdzis M. The Role of Eph Receptors and Ephrins in Corneal Physiology and Diseases. Int J Mol Sci 2021; 22:ijms22094567. [PMID: 33925443 PMCID: PMC8123804 DOI: 10.3390/ijms22094567] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 04/21/2021] [Accepted: 04/26/2021] [Indexed: 11/29/2022] Open
Abstract
The cornea, while appearing to be simple tissue, is actually an extremely complex structure. In order for it to retain its biomechanical and optical properties, perfect organization of its cells is essential. Proper regeneration is especially important after injuries and in the course of various diseases. Eph receptors and ephrin are mainly responsible for the proper organization of tissues as well as cell migration and communication. In this review, we present the current state of knowledge on the role of Eph and ephrins in corneal physiology and diseases, in particular, we focused on the functions of the epithelium and endothelium. Since the role of Eph and ephrins in the angiogenesis process has been well established, we also analyzed their influence on conditions with corneal neovascularization.
Collapse
Affiliation(s)
- Radoslaw Kaczmarek
- Department of Ophthalmology, Wroclaw Medical University, 50-556 Wroclaw, Poland; (R.K.); (K.Z.)
| | - Katarzyna Zimmer
- Department of Ophthalmology, Wroclaw Medical University, 50-556 Wroclaw, Poland; (R.K.); (K.Z.)
| | - Pawel Gajdzis
- Department of Pathomorphology and Oncological Cytology, Wroclaw Medical University, 50-556 Wroclaw, Poland;
| | - Malgorzata Gajdzis
- Department of Ophthalmology, Wroclaw Medical University, 50-556 Wroclaw, Poland; (R.K.); (K.Z.)
- Correspondence: ; Tel.: +48-71-736-43-00
| |
Collapse
|
12
|
Akhter MH, Beg S, Tarique M, Malik A, Afaq S, Choudhry H, Hosawi S. Receptor-based targeting of engineered nanocarrier against solid tumors: Recent progress and challenges ahead. Biochim Biophys Acta Gen Subj 2020; 1865:129777. [PMID: 33130062 DOI: 10.1016/j.bbagen.2020.129777] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 10/16/2020] [Accepted: 10/26/2020] [Indexed: 02/07/2023]
Abstract
Background In past few decades, the research on engineered nanocarriers (NCs) has gained significant attention in cancer therapy due to selective delivery of drug molecules on the diseased cells thereby preventing unwanted uptake into healthy cells to cause toxicity. Scope of review The applicability of enhanced permeability and retention (EPR) effect for the delivery of nanomedicines in cancer therapy has gained limited success due to poor accessibility of the drugs to the target cells where non-specific payload delivery to the off target region lack substantial reward over the conventional therapeutic systems. Major conclusions In spite of the fact, nanomedicines fabricated from the biocompatible nanocarriers have reduced targeting potential for meaningful clinical benefits. However, over expression of receptors on the tumor cells provides opportunity to design functional nanomedicine to bind substantially and deliver therapeutics to the cells or tissues of interest by alleviating the bio-toxicity and unwanted effects. This critique will give insight into the over expressed receptor in various tumor and targeting potential of functional nanomedicine as new therapeutic avenues for effective treatment. General significance This review shortly shed light on EPR-based drug targeting using nanomedicinal strategies, their limitation, and advances in therapeutic targeting to the tumor cells.
Collapse
Affiliation(s)
- Md Habban Akhter
- Department of Pharmaceutics, Faculty of Pharmacy, DIT University, Dehradun, India
| | - Sarwar Beg
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India.
| | - Mohammed Tarique
- Center for Interdisciplinary Research in Basic Science, Jamia Millia Islamia, New Delhi, India
| | - Arshi Malik
- Department of Clinical Biochemistry, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Sarah Afaq
- Department of Clinical Biochemistry, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Hani Choudhry
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia; Department of Biochemistry, Cancer Metabolism & Epigenetic Unit, Faculty of Science, King Fahd Center for Medical Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Salman Hosawi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
13
|
Mao D, Hu Y, Bao Q, Wu K, Zheng Y, Yang Y, Lei B, Jiang Y. Plasma Ephrin-A1 level in a cohort of diabetic retinopathy patients. BMC Ophthalmol 2020; 20:319. [PMID: 32758187 PMCID: PMC7404912 DOI: 10.1186/s12886-020-01580-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 07/22/2020] [Indexed: 11/21/2022] Open
Abstract
Background To determine plasma ephrin-A1 and VEGF165 levels in a cohort of diabetic retinopathy patients. Methods Plasma ephrin-A1 and VEGF165 levels in fifty-five subjects including 19 individuals without diabetes (non-DM), 16 patients with diabetes (DM) but without diabetic retinopathy, and 20 patients with diabetic retinopathy (DR), were determined by ELISA. Serum creatinine, total cholesterol, fasting blood glucose and HbA1c were also measured. One-way ANOVA, Kruskal-Wallis Test, Mann-Whitney U Test corrected by Bonferroni, Pearson Correlation Analysis and Spearman Correlation Coefficient Analysis were used for data analysis. Results Ephrin-A1 expression could be detected in human plasma with an average of 1.52 ± 0.43 (mean ± SEM) ng/ml. In DR subjects, the plasma ephrin-A1concentration was 3.63 ± 4.63 ng/ml, which was significantly higher than that of the other two groups (non-DM: 0.27 ± 0.13 ng/ml, DM: 0.35 ± 0.34 ng/ml). The expression of VEGF165 in human plasma was 34.00 ± 42.55 pg/ml, with no statistical difference among the three groups. There was no correlation between ephrin-A1 and VEGF165 in human plasma, but there was a correlation between plasma ephrin-A1 and duration of diabetes. Conclusions Plasma ephrin-A1 was highly expressed in patients with diabetic retinopathy, and there was no difference of plasma VEGF165 expression in patients with diabetic retinopathy compared to the other two groups, suggesting that changes of plasma ephrin-A1 may be a more sensitive biomarker than plasma VEGF165 in detecting diabetic retinopathy.
Collapse
Affiliation(s)
- Danna Mao
- Department of Ophthalmology, Medical community of Fenghua Hospital of Traditional Chinese Medicine, 22 Zhong Shan Road, Feng Hua District, NingBo, 315500, ZheJiang, China
| | - Ying Hu
- Department of Ophthalmology, Medical community of Fenghua Hospital of Traditional Chinese Medicine, 22 Zhong Shan Road, Feng Hua District, NingBo, 315500, ZheJiang, China
| | - Qi Bao
- Department of Clinical Laboratory, Medical community of Fenghua Hospital of Traditional Chinese Medicine, Ningbo, Zhejiang, China
| | - Kewei Wu
- Department of Ophthalmology, Medical community of Fenghua Hospital of Traditional Chinese Medicine, 22 Zhong Shan Road, Feng Hua District, NingBo, 315500, ZheJiang, China
| | - Yaoding Zheng
- Department of Ophthalmology, Medical community of Fenghua Hospital of Traditional Chinese Medicine, 22 Zhong Shan Road, Feng Hua District, NingBo, 315500, ZheJiang, China
| | - Yukun Yang
- Department of Ophthalmology, Medical community of Fenghua Hospital of Traditional Chinese Medicine, 22 Zhong Shan Road, Feng Hua District, NingBo, 315500, ZheJiang, China
| | - Bo Lei
- People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Henan Eye Institute, Henan Eye Institute, 7# Weiwu Road, Zhengzhou, 450003, Henan, China.
| | - Ying Jiang
- Department of Ophthalmology, Medical community of Fenghua Hospital of Traditional Chinese Medicine, 22 Zhong Shan Road, Feng Hua District, NingBo, 315500, ZheJiang, China.
| |
Collapse
|
14
|
Kim Y, Park SY, Jung H, Noh YS, Lee JJ, Hong JY. Inhibition of NADPH Oxidase 4 (NOX4) Signaling Attenuates Tuberculous Pleural Fibrosis. J Clin Med 2019; 8:jcm8010116. [PMID: 30669315 PMCID: PMC6351931 DOI: 10.3390/jcm8010116] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 01/15/2019] [Accepted: 01/15/2019] [Indexed: 02/06/2023] Open
Abstract
Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase [NOX] enzymes serve several hemostatic and host defense functions in various lung diseases, but the role of NOX4 signaling in tuberculous pleurisy is not well understood. The role of NOX4 signaling in tuberculous pleural fibrosis was studied using invitro pleural mesothelial cell (PMC) experiments and a murine model of Mycobacterium bovis bacillus Calmette–Guérin (BCG) pleural infection. The production of NOX4 reactive oxygen species (NOX4–ROS) and the epithelial mesenchymal transition (EMT) in PMCs were both induced by heat-killed mycobacterium tuberculosis (HKMT). In cultured PMCs, HKMT-induced collagen-1 synthesis and EMT were blocked by pretreatment with small interfering RNA (siRNA) NOX4. Moreover, NOX4–ROS production and subsequent fibrosis were reduced by treatment with losartan and the toll-like receptor 4 (TLR4) inhibitor TAK-242. The HKMT-induced EMT and intracellular ROS production were mediated by NOX4 via the activation of extracellular signal-regulated kinase (ERK) signaling. Finally, in a BCG-induced pleurisy model, recruitment of inflammatory pleural cells, release of inflammatory cytokines, and thickened mesothelial fibrosis were attenuated by SiNOX4 compared to SiCon. Our study identified that HKMT-induced pleural fibrosis is mediated by NOX4–ERK–ROS via TLR4 and Angiotensin II receptor type1 (AT1R). There results suggest that NOX4 may be a novel therapeutic target for intervention in tuberculous pleural fibrosis.
Collapse
Affiliation(s)
- Youngmi Kim
- Institute of New frontier Research, Hallym University College of Medicine, Chuncheon 24253, Korea.
| | - So Yeong Park
- Institute of New frontier Research, Hallym University College of Medicine, Chuncheon 24253, Korea.
| | - Harry Jung
- Institute of New frontier Research, Hallym University College of Medicine, Chuncheon 24253, Korea.
| | - You Sun Noh
- Institute of New frontier Research, Hallym University College of Medicine, Chuncheon 24253, Korea.
| | - Jae Jun Lee
- Institute of New frontier Research, Hallym University College of Medicine, Chuncheon 24253, Korea.
| | - Ji Young Hong
- Institute of New frontier Research, Hallym University College of Medicine, Chuncheon 24253, Korea.
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, Chuncheon Sacred Heart Hospital, Hallym University Medical Center, Chuncheon 24235, Korea.
- Lung Research Institute of Hallym University College of Medicine, Chuncheon 24253, Korea.
| |
Collapse
|
15
|
You ZP, Chen SS, Yang ZY, Li SR, Xiong F, Liu T, Fu SH. GEP100/ARF6 regulates VEGFR2 signaling to facilitate high-glucose-induced epithelial-mesenchymal transition and cell permeability in retinal pigment epithelial cells. Am J Physiol Cell Physiol 2018; 316:C782-C791. [PMID: 30540496 DOI: 10.1152/ajpcell.00312.2018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cell permeability and epithelial-mesenchymal transition (EMT) were found to be enhanced in diabetic retinopathy, and the aim of this study was to investigate the underlying mechanism. ARPE-19 cell line or primary retinal pigment epithelial (RPE) cells were cultured under high or normal glucose conditions. Specific shRNAs were employed to knock down ADP-ribosylation factor 6 (ARF6), GEP100, or VEGF receptor 2 (VEGFR2) in ARPE-19 or primary RPE cells. Cell migration ability was measured using Transwell assay. Western blotting was used to measure indicated protein levels. RPE cells treated with high glucose showed increased cell migration, paracellular permeability, EMT, and expression of VEGF. Knockdown of VEGFR2 inhibited the high-glucose-induced effects on RPE cells via inactivation of ARF6 and MAPK pathways. Knockdown ARF6 or GEP100 led to inhibition of high-glucose-induced effects via inactivation of VEGFR2 pathway. Knockdown of ARF6, but not GEP100, decreased high-glucose-induced internalization of VEGFR2. High-glucose enhances EMT and cell permeability of RPE cells through activation of VEGFR2 and ARF6/GEP100 pathways, which form a positive feedback loop to maximize the activation of VEGF/VEGFR2 signaling.
Collapse
Affiliation(s)
- Zhi-Peng You
- Department of Ophthalmology, The Second Affiliated Hospital of Nanchang University , Nanchang , People's Republic of China
| | - Shan-Shan Chen
- Department of Ophthalmology, The Second Affiliated Hospital of Nanchang University , Nanchang , People's Republic of China
| | - Zhong-Yi Yang
- Department of Ophthalmology, The Second Affiliated Hospital of Nanchang University , Nanchang , People's Republic of China
| | - Shu-Rong Li
- Department of Ophthalmology, The Second Affiliated Hospital of Nanchang University , Nanchang , People's Republic of China
| | - Fan Xiong
- Department of Ophthalmology, The Second Affiliated Hospital of Nanchang University , Nanchang , People's Republic of China
| | - Ting Liu
- Department of Ophthalmology, The Second Affiliated Hospital of Nanchang University , Nanchang , People's Republic of China
| | - Shu-Hua Fu
- Department of Ophthalmology, The Second Affiliated Hospital of Nanchang University , Nanchang , People's Republic of China
| |
Collapse
|
16
|
Chu M, Zhang C. Inhibition of angiogenesis by leflunomide via targeting the soluble ephrin-A1/EphA2 system in bladder cancer. Sci Rep 2018; 8:1539. [PMID: 29367676 PMCID: PMC5784165 DOI: 10.1038/s41598-018-19788-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 01/02/2018] [Indexed: 12/26/2022] Open
Abstract
Angiogenesis plays an important role in bladder cancer (BCa). The immunosuppressive drug leflunomide has attracted worldwide attention. However, the effects of leflunomide on angiogenesis in cancer remain unclear. Here, we report the increased expression of soluble ephrin-A1 (sEphrin-A1) in supernatants of BCa cell lines (RT4, T24, and TCCSUP) co-cultured with human umbilical vein endothelial cells (HUVECs) compared with that in immortalized uroepithelial cells (SV-HUC-1) co-cultured with HUVECs. sEphrin-A1 is released from BCa cells as a monomeric protein that is a functional form of the ligand. The co-culture supernatants containing sEphrin-A1 caused the internalization and down-regulation of EphA2 on endothelial cells and dramatic functional activation of HUVECs. This sEphrin-A1/EphA2 system is mainly functional in regulating angiogenesis in BCa tissue. We showed that leflunomide (LEF) inhibited angiogenesis in a N-butyl-N-(4-hydroxybutyl)-nitrosamine (BBN)-induced bladder carcinogenesis model and a tumor xenograft model, as well as in BCa cell and HUVEC co-culture systems, via significant inhibition of the sEphrin-A1/EphA2 system. Ephrin-A1 overexpression could partially reverse LEF-induced suppression of angiogenesis and subsequent tumor growth inhibition. Thus, LEF has a significant anti-angiogenesis effect on BCa cells and BCa tissue via its inhibition of the functional angiogenic sEphrin-A1/EphA2 system and may have potential for treating BCa beyond immunosuppressive therapy.
Collapse
Affiliation(s)
- Maolin Chu
- Department of Urology, The Second Affiliated Hospital, Harbin Medical University, 246 Xuefu St., Nan Gang District, Harbin, China.
| | - Chunying Zhang
- Department of Urology, The Second Affiliated Hospital, Harbin Medical University, 246 Xuefu St., Nan Gang District, Harbin, China.
| |
Collapse
|
17
|
All-trans retinoic acid attenuates bleomycin-induced pulmonary fibrosis via downregulating EphA2-EphrinA1 signaling. Biochem Biophys Res Commun 2017; 491:721-726. [PMID: 28743499 DOI: 10.1016/j.bbrc.2017.07.122] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 07/21/2017] [Indexed: 01/19/2023]
Abstract
The role of all-trans retinoic acid (ATRA) in pulmonary fibrosis is relatively unknown, although this metabolite modulates cell differentiation, proliferation, and development. We aimed to evaluate the role of ATRA in bleomycin-induced pulmonary fibrosis, and whether the mechanism involves EphA2-EphrinA1 and PI3K-Akt signaling. We evaluated three groups of mice: a control group (intraperitoneal DMSO injection 3 times weekly after PBS instillation), bleomycin group (intraperitoneal DMSO injection 3 times weekly after bleomycin instillation), and bleomycin + ATRA group (intraperitoneal ATRA injection 3 times weekly after bleomycin instillation). The cell counts and protein concentration in the bronchoalveolar lavage fluid (BALF), changes in histopathology, Ashcroft score, hydroxyproline assay, expression of several signal pathway proteins including EphA2-EphrinA1, and PI3K-Akt, and cytokine levels were compared among the groups. We found that bleomycin significantly increased the protein concentration in the BALF, Ashcroft score in lung tissue, and hydroxyproline contents in lung lysates. Furthermore, bleomycin upregulated EphA2, EphrinA1, PI3K 110γ, Akt, IL-6 and TNF-α. However, administration of ATRA attenuated the upregulation of EphA2-EphrinA1 and PI3K-Akt after bleomycin instillation, and decreased pulmonary fibrosis. In addition, ATRA suppressed IL-6 and TNF-α production induced by bleomycin-induced injury. Collectively, these data suggest that ATRA attenuates bleomycin-induced pulmonary fibrosis by regulating EphA2-EphrinA1 and PI3K-Akt signaling.
Collapse
|
18
|
Abstract
Eph-ephrin bidirectional signaling is essential for eye lens transparency in humans and mice. Our previous studies in mouse lenses demonstrate that ephrin-A5 is mainly expressed in the anterior epithelium, where it is required for maintaining the anterior epithelial monolayer. In contrast, EphA2 is localized in equatorial epithelial and fiber cells where it is essential for equatorial epithelial and fiber cell organization and hexagonal cell shape. Immunostaining of lens epithelial and fiber cells reveals that EphA2 and ephrin-A5 are also co-expressed in anterior fiber cell tips, equatorial epithelial cells and newly formed lens fibers, although they are not precisely colocalized. Due to this complex expression pattern and the promiscuous interactions between Eph receptors and ephrin ligands, as well as their complex bidirectional signaling pathways, cataracts in ephrin-A5(-/-) or EphA2(-/-) lenses may arise from loss of function or abnormal signaling mechanisms. To test whether abnormal signaling mechanisms may play a role in cataractogenesis in ephrin-A5(-/-) or EphA2(-/-) lenses, we generated EphA2 and ephrin-A5 double knockout (DKO) mice. We compared the phenotypes of EphA2(-/-) and ephrin-A5(-/-) lenses to that of DKO lenses. DKO lenses displayed an additive lens phenotype that was not significantly different from the two single KO lens phenotypes. Similar to ephrin-A5(-/-) lenses, DKO lenses had abnormal anterior epithelial cells leading to a large mass of epithelial cells that invade into the underlying fiber cell layer, directly resulting in anterior cataracts in ephrin-A5(-/-) and DKO lenses. Yet, similar to EphA2(-/-) lenses, DKO lenses also had abnormal packing of equatorial epithelial cells with disorganized meridional rows, lack of a lens fulcrum and disrupted fiber cells. The DKO lens phenotype rules out abnormal signaling by EphA2 in ephrin-A5(-/-) lenses or by ephrin-A5 in EphA2(-/-) lenses as possible cataract mechanisms. Thus, these results indicate that EphA2 and ephrin-A5 do not form a lens receptor-ligand pair, and that EphA2 and ephrin-A5 have other binding partners in the lens to help align differentiating equatorial epithelial cells or maintain the anterior epithelium, respectively.
Collapse
|
19
|
Patient-Specific iPSC-Derived Endothelial Cells Uncover Pathways that Protect against Pulmonary Hypertension in BMPR2 Mutation Carriers. Cell Stem Cell 2016; 20:490-504.e5. [PMID: 28017794 DOI: 10.1016/j.stem.2016.08.019] [Citation(s) in RCA: 165] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 07/11/2016] [Accepted: 08/19/2016] [Indexed: 01/15/2023]
Abstract
In familial pulmonary arterial hypertension (FPAH), the autosomal dominant disease-causing BMPR2 mutation is only 20% penetrant, suggesting that genetic variation provides modifiers that alleviate the disease. Here, we used comparison of induced pluripotent stem cell-derived endothelial cells (iPSC-ECs) from three families with unaffected mutation carriers (UMCs), FPAH patients, and gender-matched controls to investigate this variation. Our analysis identified features of UMC iPSC-ECs related to modifiers of BMPR2 signaling or to differentially expressed genes. FPAH-iPSC-ECs showed reduced adhesion, survival, migration, and angiogenesis compared to UMC-iPSC-ECs and control cells. The "rescued" phenotype of UMC cells was related to an increase in specific BMPR2 activators and/or a reduction in inhibitors, and the improved cell adhesion could be attributed to preservation of related signaling. The improved survival was related to increased BIRC3 and was independent of BMPR2. Our findings therefore highlight protective modifiers for FPAH that could help inform development of future treatment strategies.
Collapse
|
20
|
Mammadzada P, Gudmundsson J, Kvanta A, André H. Differential hypoxic response of human choroidal and retinal endothelial cells proposes tissue heterogeneity of ocular angiogenesis. Acta Ophthalmol 2016; 94:805-814. [PMID: 27255568 DOI: 10.1111/aos.13119] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 04/14/2016] [Indexed: 02/06/2023]
Abstract
PURPOSE To elaborate molecular differences between choroidal and retinal angiogenesis by generating and comparatively analysing human primary choroidal and retinal endothelial cell (CEC and REC) lines. METHODS Human CEC and REC were isolated by positive selection and were cultured. Characterization was performed by immunostaining for endothelial cell (EC)-specific markers. Total RNA and protein were extracted from normoxic or hypoxic CEC and REC cultures. Quantitative polymerase chain reaction (PCR) arrays were used to comparatively analyse 133 genes between CEC and REC, and the expression differences were calculated by ΔΔCt method. A total of 57 angiogenesis-related protein expression differences were investigated by Western blot and proteome profiler and were calculated by densitometry. RESULTS Primary human CEC and REC lines stained positively for all EC markers and demonstrated high purity with similar staining and morphology. Under normoxia, CEC showed significantly lower expression levels for cell proliferation and vessel maturation genes and higher expression levels for inflammation-related genes when compared to REC. In response to hypoxia, CEC and REC displayed differential regulation for a multitude of angiogenesis-related genes and proteins. Furthermore, within the vascular endothelial growth factor (VEGF) family, CEC showed preferential upregulation for vascular endothelial growth factor A (VEGFA) while REC upregulated placenta growth factor (PlGF) levels. CONCLUSION Differential normoxic and hypoxic regulation of angiogenesis-related factors by CEC and REC outlines tissue heterogeneity of ocular angiogenesis and suggests that tissue specificity should be considered as a novel treatment modality for successfully overcoming choroidal and retinal angiogenic conditions in the clinic.
Collapse
Affiliation(s)
- Parviz Mammadzada
- Section of Ophthalmology and Vision; Department of Clinical Neuroscience; St. Erik Eye Hospital; Karolinska Institute; Stockholm Sweden
| | - Johann Gudmundsson
- Section of Ophthalmology and Vision; Department of Clinical Neuroscience; St. Erik Eye Hospital; Karolinska Institute; Stockholm Sweden
| | - Anders Kvanta
- Section of Ophthalmology and Vision; Department of Clinical Neuroscience; St. Erik Eye Hospital; Karolinska Institute; Stockholm Sweden
| | - Helder André
- Section of Ophthalmology and Vision; Department of Clinical Neuroscience; St. Erik Eye Hospital; Karolinska Institute; Stockholm Sweden
| |
Collapse
|
21
|
Regulation of endothelial migration and proliferation by ephrin-A1. Cell Signal 2016; 29:84-95. [PMID: 27742560 DOI: 10.1016/j.cellsig.2016.10.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 10/09/2016] [Accepted: 10/10/2016] [Indexed: 11/21/2022]
Abstract
Endothelial migration and proliferation are fundamental processes in angiogenesis and wound healing of injured or inflamed vessels. The present study aimed to investigate the regulation of the Eph/ephrin-system during endothelial proliferation and the impact of the ligand ephrin-A1 on proliferation and migration of human umbilical venous (HUVEC) and arterial endothelial cells (HUAEC). Endothelial cells that underwent contact inhibition showed a massive induction of ephrin-A1. In contrast, an injury to a confluent endothelial layer, associated with induction of migration and proliferation, showed reduced ephrin-A1 levels. In addition, reducing ephrin-A1 expression by siRNA led to increased proliferation, whereas the overexpression of ephrin-A1 led to decreased proliferative activity. Due to the fact that wound healing is a combination of proliferation and migration, migration was investigated in detail. First, classical wound-healing assays showed increased wound closure in both ephrin-A1 silenced and overexpressing cells. Live-cell imaging enlightened the underlying differences. Silencing of ephrin-A1 led to a faster but more disorientated migration. In contrast, ephrin-A1 overexpression did not influence velocity of the cells, but the migration was more directed in comparison to the controls. Additional analysis of EphA2-silenced cells showed similar results in terms of proliferation and migration compared to ephrin-A1 silenced cells. Detailed analysis of EphA2 phosphorylation on ligand-dependent phospho-site (Y588) and autonomous activation site (S897) revealed a distinct phosphorylation pattern. Furthermore, the endothelial cells ceased to migrate when they came in contact with an ephrin-A1 coated surface. Using a baculoviral-mediated expression system, ephrin-A1 silencing and overexpression was shown to modulate the formation of focal adhesions. This implicates that ephrin-A1 is involved in changes of the actin cytoskeleton which explains the alterations in migratory actions, at least in part. In conclusion, ephrin-A1 expression is regulated by cellular density and is itself a critical determinant of endothelial proliferation. According to current knowledge, ephrin-A1 seems to be remarkably involved in elementary processes of endothelial migration like cellular polarization, migratory direction and speed. These data support the notion that ephrin-A1 plays a pivotal role in basal mechanisms of re-endothelialization.
Collapse
|
22
|
Inhibition of EphA2/EphrinA1 signal attenuates lipopolysaccharide-induced lung injury. Clin Sci (Lond) 2016; 130:1993-2003. [PMID: 27549114 DOI: 10.1042/cs20160360] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 08/22/2016] [Indexed: 01/30/2023]
Abstract
Eph-Ephrin signalling mediates various cellular processes, including vasculogenesis, angiogenesis, cell migration, axon guidance, fluid homoeostasis and repair after injury. Although previous studies have demonstrated that stimulation of the EphA receptor induces increased vascular permeability and inflammatory response in lung injury, the detailed mechanisms of EphA2 signalling are unknown. In the present study, we evaluated the role of EphA2 signalling in mice with lipopolysaccharide (LPS)-induced lung injury. Acute LPS exposure significantly up-regulated EphA2 and EphrinA1 expression. Compared with LPS+IgG mice (IgG instillation after LPS exposure), LPS+EphA2 mAb mice [EphA2 monoclonal antibody (mAb) instillation posttreatment after LPS exposure] had attenuated lung injury and reduced cell counts and protein concentration of bronchoalveolar lavage fluid (BALF). EphA2 mAb posttreatment down-regulated the expression of phosphoinositide 3-kinases (PI3K) 110γ, phospho-Akt, phospho-NF-κB p65, phospho-Src and phospho-S6K in lung lysates. In addition, inhibiting the EphA2 receptor augmented the expression of E-cadherin, which is involved in cell-cell adhesion. Our study identified EphA2 receptor as an unrecognized modulator of several signalling pathways-including PI3K-Akt-NF-kB, Src-NF-κB, E-cadherin and mTOR-in LPS-induced lung injury. These results suggest that EphA2 receptor inhibitors may function as novel therapeutic agents for LPS-induced lung injury.
Collapse
|
23
|
The hypoxia-related signaling pathways of vasculogenic mimicry in tumor treatment. Biomed Pharmacother 2016; 80:127-135. [DOI: 10.1016/j.biopha.2016.03.010] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2015] [Revised: 03/13/2016] [Accepted: 03/13/2016] [Indexed: 12/20/2022] Open
|
24
|
Cardona SM, Mendiola AS, Yang YC, Adkins SL, Torres V, Cardona AE. Disruption of Fractalkine Signaling Leads to Microglial Activation and Neuronal Damage in the Diabetic Retina. ASN Neuro 2015; 7:7/5/1759091415608204. [PMID: 26514658 PMCID: PMC4641555 DOI: 10.1177/1759091415608204] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Fractalkine (CX3CL1 or FKN) is a membrane-bound chemokine expressed on neuronal membranes and is proteolytically cleaved to shed a soluble chemoattractant domain. FKN signals via its unique receptor CX3CR1 expressed on microglia and other peripheral leukocytes. The aim of this study is to determine the role of CX3CR1 in inflammatory-mediated damage to retinal neurons using a model of diabetic retinopathy. For this, we compared neuronal, microglial, and astroglial densities and inflammatory response in nondiabetic and diabetic (Ins2Akita) CX3CR1-wild-type and CX3CR1-deficient mice at 10 and 20 weeks of age. Our results show that Ins2Akita CX3CR1-knockout mice exhibited (a) decreased neuronal cell counts in the retinal ganglion cell layer, (b) increased microglial cell numbers, and (c) decreased astrocyte responses comparable with Ins2Akita CX3CR1-Wild-type mice at 20 weeks of age. Analyses of the inflammatory response using PCR arrays showed several inflammatory genes differentially regulated in diabetic tissues. From those, the response in Ins2Akita CX3CR1-deficient mice at 10 weeks of age revealed a significant upregulation of IL-1β at the transcript level that was confirmed by enzyme-linked immunosorbent assay in soluble retinal extracts. Overall, IL-1β, VEGF, and nitrite levels as a read out of nitric oxide production were abundant in Ins2Akita CX3CR1-deficient retina. Notably, double immunofluorescence staining shows that astrocytes act as a source of IL-1β in the Ins2Akita retina, and CX3CR1-deficient microglia potentiate the inflammatory response via IL-1β release. Collectively, these data demonstrate that dysregulated microglial responses in absence of CX3CR1 contribute to inflammatory-mediated damage of neurons in the diabetic retina.
Collapse
Affiliation(s)
- Sandra M Cardona
- Department of Biology, South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, TX, USA
| | - Andrew S Mendiola
- Department of Biology, South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, TX, USA
| | - Ya-Chin Yang
- Department of Biology, South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, TX, USA
| | - Sarina L Adkins
- Department of Biology, South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, TX, USA
| | - Vanessa Torres
- Department of Biology, South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, TX, USA
| | - Astrid E Cardona
- Department of Biology, South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, TX, USA
| |
Collapse
|
25
|
Feng F, Cheng Y, Liu QH. Bevacizumab treatment reduces retinal neovascularization in a mouse model of retinopathy of prematurity. Int J Ophthalmol 2014; 7:608-13. [PMID: 25161929 PMCID: PMC4137193 DOI: 10.3980/j.issn.2222-3959.2014.04.04] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 02/20/2014] [Indexed: 12/23/2022] Open
Abstract
AIM To evaluate the effect of different bevacizumab concentrations on retinal neovascularization in a retinopathy of prematurity (ROP) mouse model. METHODS A total of 60 of C57BL/6 J mice were exposed to 75%±2% oxygen from postnatal d7 to postnatal d12. Fifteen nonexposed mice served as negative controls (group A). On d12, 30 mice (group C) were injected with 2.5 µg intravitreal bevacizumab (IVB), 30 mice (group D) were injected with 1.25 µg IVB in one eye. The contralateral eyes were injected with balanced salt solution (BSS) (control group=group B). The adenosine diphosphatase (ADPase) histochemical technique was used for retinal flat mount to assess the oxygen-induced changes of retinal vessels. Neovascularization was quantified by counting the endothelial cell proliferation on the vitreal side of the inner limiting membrane of the retina. Histological changes were examined by light microscopy. The mRNA levels of vascular endothelial growth factor (VEGF) were quantified by Real-time PCR. Western-blotting analysis was performed to examine the expression of P-VEGFR. RESULTS Comparing with the control group B, regular distributions and reduced tortuosity of vessels were observed in our retinal flat mounts in groups C and D. The endothelial cell count per histological section was lower in groups C (P<0.0001) and D (P<0.0001) compared with the control group B. Histological evaluation showed no retinal toxicity in any group. In all oxygen treated groups VEGF mRNA expression was significantly increased as compared to age-matched controls. No significant change in VEGF mRNA expression could be achieved in either of the treatments or the oxygen controls. The results of the Western blot were consistent with that of the Real-time PCR analysis. CONCLUSION An intravitreal injection of Bevacizumab is able to reduce angioproliferative retinopathy in a mouse model for oxygen-induced retinopathy.
Collapse
Affiliation(s)
- Fei Feng
- Department of Ophthalmology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
- Department of Ophthalmology, Taixing People's Hospital, Taixing 225400, Jiangsu Province, China
| | - Yan Cheng
- Department of Ophthalmology, Taixing People's Hospital, Taixing 225400, Jiangsu Province, China
| | - Qing-Huai Liu
- Department of Ophthalmology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| |
Collapse
|
26
|
Li Y, Liu DX, Li MY, Qin XX, Fang WG, Zhao WD, Chen YH. Ephrin-A3 and ephrin-A4 contribute to microglia-induced angiogenesis in brain endothelial cells. Anat Rec (Hoboken) 2014; 297:1908-18. [PMID: 25070915 DOI: 10.1002/ar.22998] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Accepted: 06/05/2014] [Indexed: 12/14/2022]
Abstract
The association of microglia with brain vasculature during development and the reduced brain vascular complexity in microglia-deficient mice suggest the role of microglia in cerebrovascular angiogenesis. However, the underlying molecular mechanism remains unclear. Here, using an in vitro angiogenesis model, we found the culture supernatant of BV2 microglial cells significantly enhanced capillary-like tube formation and migration of brain microvascular endothelial cells (BMECs). The expression of angiogenic factors, ephrin-A3 and ephrin-A4, were specifically upregulated in BMECs exposed to BV2-derived culture supernatant. Knockdown of ephrin-A3 and ephrin-A4 in BMECs by siRNA significantly attenuated the enhanced angiogenesis and migration of BMECs induced by BV2 supernatant. Our further results indicated that the ability of BV2 supernatant to promote endothelial angiogenesis was caused by the soluble tumor necrosis factor α (TNF-α) released from BV2 microglial cells. Moreover, the upregulations of ephrin-A3 and ephrin-A4 in BMECs in response to BV2 supernatant were effectively abolished by neutralization antibody against TNF-α and TNF receptor 1, respectively. The present study provides evidence that microglia upregulates endothelial ephrin-A3 and ephrin-A4 to facilitate in vitro angiogenesis of brain endothelial cells, which is mediated by microglia-released TNF-α.
Collapse
Affiliation(s)
- Ying Li
- Department of Developmental Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, China Medical University, Shenyang, 110001, China; Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, 110001, China
| | | | | | | | | | | | | |
Collapse
|
27
|
Son AI, Sheleg M, Cooper MA, Sun Y, Kleiman NJ, Zhou R. Formation of persistent hyperplastic primary vitreous in ephrin-A5-/- mice. Invest Ophthalmol Vis Sci 2014; 55:1594-606. [PMID: 24550361 DOI: 10.1167/iovs.13-12706] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Primary vitreous regression is a critical event in mammalian eye development required for proper ocular maturity and unhindered vision. Failure of this event results in the eye disease persistent hyperplastic primary vitreous (PHPV), also identified as persistent fetal vasculature (PFV), a condition characterized by the presence of a fibrovascular mass adjacent to the lens and retina, and associated with visual disability and blindness. Here, we identify ephrin-A5 to be a critical regulator for primary vitreous regression. METHODS Wild-type and ephrin-A5(-/-) eyes were examined at various developmental stages to determine the progression of PHPV. Eye tissue was sectioned and examined by H&E staining. Protein expression and localization was determined through immunohistochemistry. Relative levels of Eph receptors were determined by RT-PCR. RESULTS Ephrin-A5(-/-) animals develop ocular phenotypes representative of PHPV, most notably the presence of a large hyperplastic mass posterior to the lens that remains throughout the lifetime of the animal. The aberrant tissue in these mutant mice consists of residual hyaloid vessels surrounded by pigmented cells of neural crest origin. Labeling with bromodeoxyuridine (BrdU) and detection of proliferating cell nuclear antigen (PCNA) expression shows that the mass in ephrin-A5(-/-) animals is mitotically active in embryonic and postnatal stages. CONCLUSIONS Ephrin-A5 is a critical factor that regulates primary vitreous regression.
Collapse
Affiliation(s)
- Alexander I Son
- Department of Chemical Biology, Susan Lehman-Cullman Laboratory for Cancer Research, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey
| | | | | | | | | | | |
Collapse
|
28
|
Sun Q, Zou X, Zhang T, Shen J, Yin Y, Xiang J. The role of miR-200a in vasculogenic mimicry and its clinical significance in ovarian cancer. Gynecol Oncol 2014; 132:730-8. [DOI: 10.1016/j.ygyno.2014.01.047] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Revised: 01/23/2014] [Accepted: 01/27/2014] [Indexed: 01/15/2023]
|
29
|
Miao Z, Dong Y, Fang W, Shang D, Liu D, Zhang K, Li B, Chen YH. VEGF Increases Paracellular Permeability in Brain Endothelial Cells via Upregulation of EphA2. Anat Rec (Hoboken) 2014; 297:964-72. [DOI: 10.1002/ar.22878] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 12/13/2013] [Accepted: 12/13/2013] [Indexed: 12/15/2022]
Affiliation(s)
- Ziwei Miao
- Department of Developmental Cell Biology; Key Laboratory of Cell Biology; Ministry of Public Health; and Key Laboratory of Medical Cell Biology; Ministry of Education, China Medical University; Heping District Shenyang China
| | - Yanbin Dong
- Department of Developmental Cell Biology; Key Laboratory of Cell Biology; Ministry of Public Health; and Key Laboratory of Medical Cell Biology; Ministry of Education, China Medical University; Heping District Shenyang China
| | - Wengang Fang
- Department of Developmental Cell Biology; Key Laboratory of Cell Biology; Ministry of Public Health; and Key Laboratory of Medical Cell Biology; Ministry of Education, China Medical University; Heping District Shenyang China
| | - Deshu Shang
- Department of Developmental Cell Biology; Key Laboratory of Cell Biology; Ministry of Public Health; and Key Laboratory of Medical Cell Biology; Ministry of Education, China Medical University; Heping District Shenyang China
| | - Dongxin Liu
- Department of Developmental Cell Biology; Key Laboratory of Cell Biology; Ministry of Public Health; and Key Laboratory of Medical Cell Biology; Ministry of Education, China Medical University; Heping District Shenyang China
| | - Ke Zhang
- Department of Developmental Cell Biology; Key Laboratory of Cell Biology; Ministry of Public Health; and Key Laboratory of Medical Cell Biology; Ministry of Education, China Medical University; Heping District Shenyang China
| | - Bo Li
- Department of Developmental Cell Biology; Key Laboratory of Cell Biology; Ministry of Public Health; and Key Laboratory of Medical Cell Biology; Ministry of Education, China Medical University; Heping District Shenyang China
| | - Yu-Hua Chen
- Department of Developmental Cell Biology; Key Laboratory of Cell Biology; Ministry of Public Health; and Key Laboratory of Medical Cell Biology; Ministry of Education, China Medical University; Heping District Shenyang China
| |
Collapse
|
30
|
Park JE, Son AI, Zhou R. Roles of EphA2 in Development and Disease. Genes (Basel) 2013; 4:334-57. [PMID: 24705208 PMCID: PMC3924825 DOI: 10.3390/genes4030334] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Revised: 05/22/2013] [Accepted: 05/23/2013] [Indexed: 01/12/2023] Open
Abstract
The Eph family of receptor tyrosine kinases (RTKs) has been implicated in the regulation of many aspects of mammalian development. Recent analyses have revealed that the EphA2 receptor is a key modulator for a wide variety of cellular functions. This review focuses on the roles of EphA2 in both development and disease.
Collapse
Affiliation(s)
- Jeong Eun Park
- Susan Lehman-Cullman Laboratory for Cancer Research, Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, USA.
| | - Alexander I Son
- Susan Lehman-Cullman Laboratory for Cancer Research, Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, USA.
| | - Renping Zhou
- Susan Lehman-Cullman Laboratory for Cancer Research, Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, USA.
| |
Collapse
|
31
|
Hogerheyde TA, Stephenson SA, Harkin DG, Bray LJ, Madden PW, Woolf MI, Richardson NA. Evaluation of Eph receptor and ephrin expression within the human cornea and limbus. Exp Eye Res 2012; 107:110-20. [PMID: 23247085 DOI: 10.1016/j.exer.2012.11.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Revised: 10/18/2012] [Accepted: 11/27/2012] [Indexed: 11/28/2022]
Abstract
Eph receptor tyrosine kinases and their ligands, the ephrins, regulate the development and maintenance of multiple organs but little is known about their potential role within the cornea. The purpose of this study was to perform a thorough investigation of Eph/ephrin expression within the human cornea including the limbal stem cell niche. Initially, immunohistochemistry was performed on human donor eyes to determine the spatial distribution of Eph receptors and ephrins in the cornea and limbus. Patterns of Eph/ephrin gene expression in (1) immortalised human corneal endothelial (B4G12) or corneal epithelial (HCE-T) cell lines, and (2) primary cultures of epithelial or stromal cells established from the corneal limbus of cadaveric eye tissue were then assessed by reverse transcription (RT) PCR. Limbal epithelial or stromal cells from primary cultures were also assessed for evidence of Eph/ephrin-reactivity by immunofluorescence. Immunoreactivity for ephrinA1 and EphB4 was detected in the corneal endothelium of donor eyes. EphB4 was also consistently detected in the limbal and corneal epithelium and in cells located in the stroma of the peripheral cornea. Expression of multiple Eph/ephrin genes was detected in immortalised corneal epithelial and endothelial cell lines. Evidence of Eph/ephrin gene expression was also demonstrated in primary cultures of human limbal stromal (EphB4, B6; ephrinA5) and epithelial cells (EphA1, A2; ephrinA5, B2) using both RT-PCR and immunofluorescence. The expression of Eph receptors and ephrins within the human cornea and limbus is much wider than previously appreciated and suggests multiple potential roles for these molecules in the maintenance of normal corneal architecture.
Collapse
Affiliation(s)
- Thomas A Hogerheyde
- School of Biomedical Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, Queensland 4001, Australia.
| | | | | | | | | | | | | |
Collapse
|
32
|
Coulthard MG, Morgan M, Woodruff TM, Arumugam TV, Taylor SM, Carpenter TC, Lackmann M, Boyd AW. Eph/Ephrin signaling in injury and inflammation. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 181:1493-503. [PMID: 23021982 DOI: 10.1016/j.ajpath.2012.06.043] [Citation(s) in RCA: 169] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Accepted: 06/28/2012] [Indexed: 12/20/2022]
Abstract
The Eph/ephrin receptor-ligand system plays an important role in embryogenesis and adult life, principally by influencing cell behavior through signaling pathways, resulting in modification of the cell cytoskeleton and cell adhesion. There are 10 EphA receptors, and six EphB receptors, distinguished on sequence difference and binding preferences, that interact with the six glycosylphosphatidylinositol-linked ephrin-A ligands and the three transmembrane ephrin-B ligands, respectively. The Eph/ephrin proteins, originally described as developmental regulators that are expressed at low levels postembryonically, are re-expressed after injury to the optic nerve, spinal cord, and brain in fish, amphibians, rodents, and humans. In rodent spinal cord injury, the up-regulation of EphA4 prevents recovery by inhibiting axons from crossing the injury site. Eph/ephrin proteins may be partly responsible for the phenotypic changes to the vascular endothelium in inflammation, which allows fluid and inflammatory cells to pass from the vascular space into the interstitial tissues. Specifically, EphA2/ephrin-A1 signaling in the lung may be responsible for pulmonary inflammation in acute lung injury. A role in T-cell maturation and chronic inflammation (heart failure, inflammatory bowel disease, and rheumatoid arthritis) is also reported. Although there remains much to learn about Eph/ephrin signaling in human disease, and specifically in injury and inflammation, this area of research raises the exciting prospect that novel therapies will be developed that precisely target these pathways.
Collapse
Affiliation(s)
- Mark G Coulthard
- Academic Discipline of Paediatrics and Child Health, University of Queensland, Royal Children's Hospital, Herston, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Nievergall E, Lackmann M, Janes PW. Eph-dependent cell-cell adhesion and segregation in development and cancer. Cell Mol Life Sci 2012; 69:1813-42. [PMID: 22204021 PMCID: PMC11114713 DOI: 10.1007/s00018-011-0900-6] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Revised: 11/06/2011] [Accepted: 11/28/2011] [Indexed: 01/23/2023]
Abstract
Numerous studies attest to essential roles for Eph receptors and their ephrin ligands in controlling cell positioning and tissue patterning during normal and oncogenic development. These studies suggest multiple, sometimes contradictory, functions of Eph-ephrin signalling, which under different conditions can promote either spreading and cell-cell adhesion or cytoskeletal collapse, cell rounding, de-adhesion and cell-cell segregation. A principle determinant of the balance between these two opposing responses is the degree of receptor/ligand clustering and activation. This equilibrium is likely altered in cancers and modulated by somatic mutations of key Eph family members that have emerged as candidate cancer markers in recent profiling studies. In addition, cross-talk amongst Ephs and with other signalling pathways significantly modulates cell-cell adhesion, both between and within Eph- and ephrin-expressing cell populations. This review summarises our current understanding of how Eph receptors control cell adhesion and morphology, and presents examples demonstrating the importance of these events in normal development and cancer.
Collapse
Affiliation(s)
- Eva Nievergall
- Department of Biochemistry and Molecular Biology, Monash University, Wellington Road, Clayton, VIC 3800 Australia
- Present Address: Haematology Department, SA Pathology, Frome Road, Adelaide, SA 5000 Australia
| | - Martin Lackmann
- Department of Biochemistry and Molecular Biology, Monash University, Wellington Road, Clayton, VIC 3800 Australia
| | - Peter W. Janes
- Department of Biochemistry and Molecular Biology, Monash University, Wellington Road, Clayton, VIC 3800 Australia
| |
Collapse
|
34
|
Jumping the barrier: VE-cadherin, VEGF and other angiogenic modifiers in cancer. Biol Cell 2012; 103:593-605. [PMID: 22054419 DOI: 10.1042/bc20110069] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The endothelial barrier controls the passage of fluids, nutrients and cells through the vascular wall. This physiological function is closely related to developmental and adult angiogenesis, blood pressure control, as well as immune responses. Moreover, cancer progression is frequently characterized by disorganized and leaky blood vessels. In this context, vascular permeability drives tumour-induced angiogenesis, blood flow disturbances, inflammatory cell infiltration and tumour cell extravasation. Although various molecules have been implicated, the vascular endothelial adhesion molecule, VE-cadherin (vascular endothelial cadherin), has emerged as a critical player involved in maintaining endothelial barrier integrity and homoeostasis. Indeed, VE-cadherin coordinates the endothelial cell-cell junctions through its adhesive and signalling properties. Of note, many angiogenic and inflammatory mediators released into the tumour microenvironment influence VE-cadherin behaviour. Therefore restoring VE-cadherin function could be one very promising target for vascular normalization in cancer therapies. In this review, we will mainly focus on recent discoveries concerning the molecular mechanisms involved in modulating VE-cadherin plasticity in cancer.
Collapse
|
35
|
Mei S, Cammalleri M, Azara D, Casini G, Bagnoli P, Dal Monte M. Mechanisms underlying somatostatin receptor 2 down-regulation of vascular endothelial growth factor expression in response to hypoxia in mouse retinal explants. J Pathol 2012; 226:519-533. [DOI: 10.1002/path.3006] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
|
36
|
Concepts and consequences of Eph receptor clustering. Semin Cell Dev Biol 2012; 23:43-50. [PMID: 22261642 DOI: 10.1016/j.semcdb.2012.01.001] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2012] [Accepted: 01/04/2012] [Indexed: 12/31/2022]
Abstract
Polymeric receptor-ligand complexes between interacting Eph and ephrin-expressing cells are regarded as dynamic intercellular signalling scaffolds that control cell-to-cell contact: the resulting Eph-ephrin signalling clusters function as positional cues that facilitate cell navigation and tissue patterning during normal and oncogenic development. The considerable complexity of this task, coordinating a multitude of cell movements and cellular interactions, is achieved by accurate translation of spatial information from Eph and ephrin expression gradients into fine-tuned changes in cell-cell adhesion and position. Here we review emerging evidence suggesting that the required combinatorial diversity is not only achieved by the large number of possible Eph-ephrin interactions and selective use of Eph forward and ephrin reverse signals, but in particular through the composition and signal capacity of Eph-ephrin clusters, which is adjusted dynamically to reflect overall Eph and ephrin surface densities on interacting cells. Fine-tuning is provided through multi-layered cluster assembly, where homo- and heterotypic Eph and ephrin interactions define the composition - whilst intracellular signalling feedbacks determine the size and lifetime - of signalling clusters.
Collapse
|
37
|
Vitreous inflammatory factors and serous retinal detachment in central retinal vein occlusion: a case control series. JOURNAL OF INFLAMMATION-LONDON 2011; 8:38. [PMID: 22152024 PMCID: PMC3253063 DOI: 10.1186/1476-9255-8-38] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Accepted: 12/12/2011] [Indexed: 11/15/2022]
Abstract
Background This study investigated whether the vitreous fluid levels of soluble vascular endothelial growth factor receptor-2 (sVEGFR-2), pigment epithelium-derived factor (PEDF), and soluble intercellular adhesion molecule 1 (sICAM-1) were associated with the occurrence of serous retinal detachment (SRD) in patients with central retinal vein occlusion (CRVO). Methods We recruited 33 patients with CRVO and macular edema, as well as 18 controls with nonischemic ocular diseases. Eighteen of the 33 patients with CRVO showed SRD on optical coherence tomography of the macula (defined as subretinal accumulation of fluid with low reflectivity), while the other 15 patients only had cystoid macular edema (CME, defined as hyporeflective intraretinal cavities). Retinal ischemia was evaluated by measuring the area of capillary non-perfusion using fluorescein angiography and the public domain Scion Image program, while central macular thickness (CMT) was examined by optical coherence tomography. Vitreous fluid samples were obtained during pars plana vitrectomy and levels of the target molecules were measured by enzyme-linked immunosorbent assay. Results Ischemia was significantly more common in the SRD group (17/18 patients) than in the CME group (5/15 patients) (P < 0.001). The vitreous fluid level of sICAM-1 increased significantly across the three groups from the control group (4.98 ± 1.73 ng/ml) to the CME group (15.4 ± 10.1 ng/ml) and the SRD group (27.1 ± 17.7 ng/ml) (ptrend< 0.001). The vitreous fluid level of sVEGFR-2 also showed a significant increase across the three groups (1083 ± 541 pg/ml, 1181 ± 522 pg/ml, and 1535 ± 617 pg/ml, respectively, ptrend = 0.019). On the other hand, the vitreous fluid level of PEDF showed a significant decrease across the three groups (56.4 ± 40.0 ng/ml, 24.3 ± 17.3 ng/ml, and 16.4 ± 12.6 ng/ml, respectively, ptrend< 0.001). Conclusions Higher levels of inflammatory factors (sICAM-1 and sVEGFR-2) and lower levels of anti-inflammatory PEDF were observed in macular edema patients with SRD, suggesting that inflammation plays a key role in determining the severity of CRVO.
Collapse
|
38
|
Yoshida T, Gong J, Xu Z, Wei Y, Duh EJ. Inhibition of pathological retinal angiogenesis by the integrin αvβ3 antagonist tetraiodothyroacetic acid (tetrac). Exp Eye Res 2011; 94:41-8. [PMID: 22123068 DOI: 10.1016/j.exer.2011.11.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Revised: 11/04/2011] [Accepted: 11/09/2011] [Indexed: 11/26/2022]
Abstract
Retinal angiogenesis is a major cause of blindness in ischemic retinopathies including diabetic retinopathy and retinopathy of prematurity. Integrin αvβ3 is a promising therapeutic target for ocular angiogenesis, modulating the pro-angiogenic actions of multiple growth factors. In this study, we sought to determine the effects of the integrin αvβ3 antagonist tetra-iodothyroacetic acid (tetrac) on the angiogenic actions of VEGF and erythropoietin (EPO) in cultured human retinal endothelial cells. In addition, we investigated the effect of tetrac and a nanoparticulate formulation of tetrac on retinal angiogenesis in vivo, in the mouse oxygen-induced retinopathy (OIR) model. Tetrac inhibitory activity was evaluated in human retinal endothelial cells treated with VEGF and/or EPO. Endothelial cell proliferation, migration, and tube formation were assessed, in addition to phosphorylation of ERK1/2. For the studies of the oxygen-induced retinopathy model, C57BL/6 mice were exposed to 75% oxygen from postnatal day (P)7 to P12, and then returned to room air. Tetrac and tetrac-nanoparticle (tetrac-NP) were administered at P12 and P15 by either intraperitoneal or intravitreal injection. Retinal neovascularization was quantitated at P18. Tetrac significantly inhibited pro-angiogenic effects of VEGF and/or EPO on retinal endothelial cells, indicating that the angiogenic effects of both growth factors are dependent on integrin αvβ3. Retinal neovascularization in the OIR model was significantly inhibited by both tetrac and tetrac-NP. These results indicate that the integrin αvβ3 antagonist, tetrac, is an effective inhibitor of retinal angiogenesis. The ability of tetrac to inhibit the pro-angiogenic effect of both VEGF and EPO on retinal endothelial cells suggests that tetrac (and antagonism of integrin αvβ3) is a viable therapeutic strategy for proliferative diabetic retinopathy.
Collapse
Affiliation(s)
- Takeshi Yoshida
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, 400 N. Broadway, Baltimore, MD 21287, USA
| | | | | | | | | |
Collapse
|
39
|
Larkin SET, Holmes S, Cree IA, Walker T, Basketter V, Bickers B, Harris S, Garbis SD, Townsend PA, Aukim-Hastie C. Identification of markers of prostate cancer progression using candidate gene expression. Br J Cancer 2011; 106:157-65. [PMID: 22075945 PMCID: PMC3251845 DOI: 10.1038/bjc.2011.490] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Metastatic prostate cancer (PCa) has no curative treatment options. Some forms of PCa are indolent and slow growing, while others metastasise quickly and may prove fatal within a very short time. The basis of this variable prognosis is poorly understood, despite considerable research. The aim of this study was to identify markers associated with the progression of PCa. METHODS Artificial neuronal network analysis combined with data from literature and previous work produced a panel of putative PCa progression markers, which were used in a transcriptomic analysis of 29 radical prostatectomy samples and correlated with clinical outcome. RESULTS Statistical analysis yielded seven putative markers of PCa progression, ANPEP, ABL1, PSCA, EFNA1, HSPB1, INMT and TRIP13. Two data transformation methods were utilised with only markers that were significant in both selected for further analysis. ANPEP and EFNA1 were significantly correlated with Gleason score. Models of progression co-utilising markers ANPEP and ABL1 or ANPEP and PSCA had the ability to correctly predict indolent or aggressive disease, based on Gleason score, in 89.7% and 86.2% of cases, respectively. Another model of TRIP13 expression in combination with preoperative PSA level and Gleason score was able to correctly predict recurrence in 85.7% of cases. CONCLUSION This proof of principle study demonstrates a novel association of carcinogenic and tumourigenic gene expression with PCa stage and prognosis.
Collapse
Affiliation(s)
- S E T Larkin
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, St Michaels Building, White Swan Road, Portsmouth, PO1 2DT, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Robo4-dependent Slit signaling stabilizes the vasculature during pathologic angiogenesis and cytokine storm. Curr Opin Hematol 2011; 18:186-90. [PMID: 21423011 DOI: 10.1097/moh.0b013e328345a4b9] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
PURPOSE OF REVIEW The endothelium is bombarded with and must respond to multiple destabilizing proangiogenic and inflammatory cytokines. RECENT FINDINGS Endogenous cell signaling systems such as Roundabout (Robo)4-dependent Slit signaling are in place to help maintain homeostatic balance and prevent excessive destabilization. Upon Robo4 activation by Slit, paxillin is recruited to the cytoplasmic domain along with an ArfGAP known as GIT1. GIT1 recruitment results in inactivation of Arf6, a protein shown to regulate cadherin cell surface localization. Slit increases vascular endothelial-cadherin presentation at the cell surface and enhances vascular barrier function in the presence of inflammatory cytokines. SUMMARY Through harnessing Robo4-dependent Slit signaling, survival can be enhanced in mouse models of sepsis and avian flu infection. This effect is achieved by blunting the host vascular response to cytokines. Thus, vascular stabilizing programs should be investigated as potential therapeutics for infectious disease characterized by cytokine storm.
Collapse
|
41
|
Noma H, Funatsu H, Mimura T, Eguchi S, Hori S. Soluble vascular endothelial growth factor receptor-2 and inflammatory factors in macular edema with branch retinal vein occlusion. Am J Ophthalmol 2011; 152:669-677.e1. [PMID: 21726846 DOI: 10.1016/j.ajo.2011.04.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2010] [Revised: 04/09/2011] [Accepted: 04/12/2011] [Indexed: 02/01/2023]
Abstract
PURPOSE To investigate relationships among vitreous fluid levels of soluble vascular endothelial growth factor receptor-2 (sVEGFR-2), vascular endothelial growth factor (VEGF), and soluble intercellular adhesion molecule 1 (sICAM-1) in patients with branch retinal vein occlusion (BRVO) and macular edema or patients with idiopathic macular hole. DESIGN Retrospective case-control study. METHODS SETTING Tokyo Women's Medical University and Eguchi Eye Hospital. PATIENT POPULATION Forty-nine Japanese patients who underwent unilateral vitrectomy (27 with BRVO and 22 with macular hole). OBSERVATION PROCEDURES Vitreous fluid samples were obtained during vitreoretinal surgery to measure the levels of sVEGFR-2, VEGF, and sICAM-1. Retinal ischemia was evaluated from capillary nonperfusion on fluorescein angiography. Macular edema was examined by optical coherence tomography. MAIN OUTCOME MEASURES Vitreous fluid levels of the 3 molecules and severity of macular edema. RESULTS BRVO patients had a significantly higher vitreous fluid level of sVEGFR-2 (median, 1670 pg/mL; interquartile range [IQL], 1205 to 2225 pg/mL) than macular hole patients (median, 1265 pg/mL; IQR, 731 to 1800 pg/mL; P = .017), as was the case for VEGF (median, 237 pg/mL; IQR, 42.2 to 1305 pg/mL; vs median, 15.6 pg/mL; IQR, 15.6 to 15.6 pg/mL; P < .001) and sICAM-1 (median, 10.1 ng/mL; IQR, 6.3 to 22.5 ng/mL; vs median, 4.1 ng/mL; IQR, 3.3 to 6.0 ng/mL; P < .001). In BRVO patients, there was a significant positive correlation between vitreous fluid levels of sVEGFR-2 or VEGF and sICAM-1, but not between sVEGFR-2 and VEGF. Vitreous fluid levels of all 3 molecules were correlated significantly the with severity of macular edema in BRVO patients. CONCLUSIONS sVEGFR-2 may induce an increase of vascular permeability together with or via sICAM-1, or both with and via sICAM-1, in BRVO patients with macular edema.
Collapse
|
42
|
Gold nanoparticles inhibit vascular endothelial growth factor-induced angiogenesis and vascular permeability via Src dependent pathway in retinal endothelial cells. Angiogenesis 2011; 14:29-45. [PMID: 21061058 DOI: 10.1007/s10456-010-9193-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Accepted: 10/25/2010] [Indexed: 02/06/2023]
Abstract
The purpose of this study was to investigate the effect of gold nanoparticles on the signaling cascade related to angiogenesis and vascular permeability induced by Vascular Endothelial Growth Factor (VEGF) in Bovine retinal endothelial cells (BRECs). The effect of VEGF and gold nanoparticles on cell viability, migration and tubule formation was assessed. PP2 (Src Tyrosine Kinase inhibitor) was used as the positive control and the inhibitor assay was performed to compare the effect of AuNPs on VEGF induced angiogenesis. The transient transfection assay was performed to study the VEGFR2/Src activity during experimental conditions and was confirmed using western blot analysis. Treatment of BRECs with VEGF significantly increased the cell proliferation, migration and tube formation. Furthermore, gold nanoparticles (500 nM) significantly inhibited the proliferation, migration and tube formation, in the presence of VEGF in BRECs. The gold nanoparticles also inhibited VEGF induced Src phosphorylation through which their mode of action in inhibiting angiogenic pathways is revealed. The fate of the gold nanoparticles within the cells is being analyzed using the TEM images obtained. The potential of AuNPs to inhibit the VEGF165-induced VEGFR-2 phosphorylation is also being confirmed through the receptor assay which elucidates one of the possible mechanism by which AuNPs inhibit VEGF induced angiogenesis. These results indicate that gold nanoparticles can block VEGF activation of important signaling pathways, specifically Src in BRECs and hence modulation of these pathways may contribute to gold nanoparticles ability to block VEGF-induced retinal neovascularization.
Collapse
|
43
|
OLFERT IMARK, BIROT OLIVIER. Importance of Anti-angiogenic Factors in the Regulation of Skeletal Muscle Angiogenesis. Microcirculation 2011; 18:316-30. [DOI: 10.1111/j.1549-8719.2011.00092.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
44
|
Pourgholami MH, Khachigian LM, Fahmy RG, Badar S, Wang L, Chu SWL, Morris DL. Albendazole inhibits endothelial cell migration, tube formation, vasopermeability, VEGF receptor-2 expression and suppresses retinal neovascularization in ROP model of angiogenesis. Biochem Biophys Res Commun 2010; 397:729-34. [PMID: 20537982 DOI: 10.1016/j.bbrc.2010.06.019] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2010] [Accepted: 06/04/2010] [Indexed: 10/19/2022]
Abstract
The angiogenic process begins with the cell proliferation and migration into the primary vascular network, and leads to vascularization of previously avascular tissues and organs as well to growth and remodeling of the initially homogeneous capillary plexus to form a new microcirculation. Additionally, an increase in microvascular permeability is a crucial step in angiogenesis. Vascular endothelial growth factor (VEGF) plays a central role in angiogenesis. We have previously reported that albendazole suppresses VEGF levels and inhibits malignant ascites formation, suggesting a possible effect on angiogenesis. This study was therefore designed to investigate the antiangiogenic effect of albendazole in non-cancerous models of angiogenesis. In vitro, treatment of human umbilical vein endothelial cells (HUVECs) with albendazole led to inhibition of tube formation, migration, permeability and down-regulation of the VEGF type 2 receptor (VEGFR-2). In vivo albendazole profoundly inhibited hyperoxia-induced retinal angiogenesis in mice. These results provide new insights into the antiangiogenic effects of albendazole.
Collapse
Affiliation(s)
- Mohammad H Pourgholami
- University of New South Wales, Department of Surgery, St George Hospital (SESIAHS), Sydney, Australia.
| | | | | | | | | | | | | |
Collapse
|
45
|
Kozulin P, Natoli R, Madigan MC, O’Brien KMB, Provis JM. Gradients of Eph-A6 expression in primate retina suggest roles in both vascular and axon guidance. Mol Vis 2009; 15:2649-62. [PMID: 20011078 PMCID: PMC2791039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2009] [Accepted: 12/02/2009] [Indexed: 11/16/2022] Open
Abstract
PURPOSE Recently we identified high levels of expression of Eph-A6 in the macula of developing human retina and showed localization of Eph-A6 to ganglion cells (GC). In the present study we investigated the expression of some members of the ephrin family in developing primate retina, including the topography of Eph-A6 expression, and its ligands, in developing macaque retinas. METHODS We extracted RNA from human fetal retinas and probed for Eph-A5-A7, Eph-B1, ephrin-B2, and ephrin-A1-A5 by RT-PCR, then prepared riboprobes for Eph-A5-A7, Eph-B1 and ephrin-A1, -A4 and -B2. Paraffin sections of fetal macaque retinas were used to localize expression of Ephs and ephrins by in situ hybridization and immunohistochemistry. RESULTS We identified prominent gradients of Eph-A6 mRNA expression in the ganglion cell layer (GCL) of fetal macaque retinas of different ages. The gradient of Eph-A6 expression was high near the optic disc and low at the developing macula at fetal day (Fd) 55. At Fd 70 and 80, the gradient of Eph-A6 expression was reversed, being higher temporal to the macula, and low at the disc. By Fd 110, when the fovea begins to form, a pattern of expression was established that persisted into the postnatal period, in which the highest levels of expression were detected at the developing fovea, and progressively lower levels of expression were detected at increasing distance from the fovea. Beginning at Fd 70, we also detected a gradient of Eph-A6 expression running perpendicular to the retinal surface within the GCL of central retina that was high in the inner GCL and low in the outer GCL. This second pattern persisted into the neonatal period. We found the two ligands for Eph-A6, ephrin-A1 and ephrin-A4, expressed by Pax2-immunoreactive astrocytes, in the optic nerve head and in the retina, by in situ hybridization and immunohistochemistry. We propose that during development of the retinal vasculature, migration of ligand-bearing astrocytes is slowed along this Eph-A6 expression gradient through repellent Eph-A6 - ephrin-A1 and -A4 signaling. CONCLUSIONS Patterns of Eph-A6 expression in the developing macaque retina suggest that Eph-A6 - ephrin-A1 and -A4 repellent signaling has a role in retinal vascular patterning, and in the postnatal maintenance of projections from macular and foveal GC.
Collapse
Affiliation(s)
- Peter Kozulin
- ARC Centre of Excellence in Vision Science and Research School of Biology, The Australian National University, Canberra, Australia
| | - Riccardo Natoli
- ARC Centre of Excellence in Vision Science and Research School of Biology, The Australian National University, Canberra, Australia
| | - Michele C. Madigan
- School of Optometry and Vision Science, The University of New South Wales, Kensington, Australia,Save Sight Institute, The University of Sydney, Sydney, Australia
| | - Keely M. Bumsted O’Brien
- ARC Centre of Excellence in Vision Science and Research School of Biology, The Australian National University, Canberra, Australia
| | - Jan M. Provis
- ARC Centre of Excellence in Vision Science and Research School of Biology, The Australian National University, Canberra, Australia,Australian National University Medical School, The Australian National University, Canberra, Australia
| |
Collapse
|
46
|
Chan B, Sukhatme VP. Receptor tyrosine kinase EphA2 mediates thrombin-induced upregulation of ICAM-1 in endothelial cells in vitro. Thromb Res 2009; 123:745-52. [PMID: 18768213 PMCID: PMC2684450 DOI: 10.1016/j.thromres.2008.07.010] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2008] [Revised: 03/08/2008] [Accepted: 07/17/2008] [Indexed: 02/07/2023]
Abstract
Thrombin potently induces endothelial inflammation. One of the responses is upregulation of adhesion molecules such as ICAM-1, resulting in enhanced leukocyte attachment to the endothelium. In this report, we examine the contribution of EphA2 in thrombin-induced expression of ICAM-1 in human umbilical vein endothelial cells (HUVECs). We showed that thrombin transiently induced tyrosine- phosphorylation of EphA2 in a Src-kinase dependent manner. This transactivation was mediated through PAR-1, because a PAR-1 specific agonistic peptide also transactivated EphA2. Expression knockdown of endogenous EphA2 by siRNAs blocked ICAM-1 upregulation and leukocyte/endothelium attachment induced by thrombin. Overexpression of exogenous mouse EphA2 rescued both ICAM-1 expression and leukocyte attachment induced by thrombin in endogenous EphA2-knockdown HUVECs. Mechanistically, we showed EphA2 knockdown suppressed thrombin-induced serine 536 phosphorylation of NFkappaB, an event critical of ICAM-1 transcriptional upregulation. Collectively, our results strongly suggest EphA2 is a necessary component for thrombin-induced ICAM-1 upregulation.
Collapse
Affiliation(s)
- Barden Chan
- Division of Interdisciplinary Medicine and Biotechnology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, RW 563, Boston, Massachusetts 02215, USA.
| | | |
Collapse
|
47
|
Wykosky J, Debinski W. The EphA2 receptor and ephrinA1 ligand in solid tumors: function and therapeutic targeting. Mol Cancer Res 2009; 6:1795-806. [PMID: 19074825 DOI: 10.1158/1541-7786.mcr-08-0244] [Citation(s) in RCA: 246] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The Eph receptor tyrosine kinases and ephrin ligands have been studied extensively for their roles in developmental processes. In recent years, Eph receptors and ephrins have been found to be integral players in cancer formation and progression. Among these are EphA2 and ephrinA1, which are involved in the development and maintenance of many different types of solid tumors. The function of EphA2 and ephrinA1 in tumorigenesis and tumor progression is complex and seems to be dependent on cell type and microenvironment. These variables affect the expression of the EphA2 and ephrinA1 proteins, the pathways through which they induce signaling, and the functional consequences of that signaling on the behavior of tumor cells and tumor-associated cells. This review will specifically focus on the roles that EphA2 and ephrinA1 play in the different cell types that contribute to the malignancy of solid tumors, with emphasis on the opportunities for therapeutic targeting.
Collapse
Affiliation(s)
- Jill Wykosky
- Department of Neurosurgery, Brain Tumor Center of Excellence, Comprehensive Cancer Center of Wake Forest University, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA
| | | |
Collapse
|
48
|
Clapp C, Thebault S, Arnold E, García C, Rivera JC, de la Escalera GM. Vasoinhibins: novel inhibitors of ocular angiogenesis. Am J Physiol Endocrinol Metab 2008; 295:E772-8. [PMID: 18544641 DOI: 10.1152/ajpendo.90358.2008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Disruption of the quiescent state of blood vessels in the retina leads to aberrant vasopermeability and angiogenesis, the major causes of vision loss in diabetic retinopathy. Prolactin is expressed throughout the retina, where it is proteolytically cleaved to vasoinhibins, a family of peptides (including the 16-kDa fragment of prolactin) with potent antiangiogenic, vasoconstrictive, and antivasopermeability actions. Ocular vasoinhibins act directly on endothelial cells to block blood vessel growth and dilation and to promote apoptosis-mediated vascular regression. Also, vasoinhibins prevent retinal angiogenesis and vasopermeability associated with diabetic retinopathy, and inactivation of endothelial nitric oxide synthase via protein phosphatase 2A is among the various mechanisms mediating their actions. Here, we discuss the potential role of vasoinhibins both in the maintenance of normal retinal vasculature and in the cause and prevention of diabetic retinopathy and other vasoproliferative retinopathies.
Collapse
Affiliation(s)
- Carmen Clapp
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus UNAM-Juriquilla, Apartado Postal 1-1141, Querétaro, Qro., Mexico, 76001.
| | | | | | | | | | | |
Collapse
|
49
|
Yue X, Dreyfus C, Kong TAN, Zhou R. A subset of signal transduction pathways is required for hippocampal growth cone collapse induced by ephrin-A5. Dev Neurobiol 2008; 68:1269-86. [PMID: 18563700 PMCID: PMC2750894 DOI: 10.1002/dneu.20657] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The Eph family tyrosine kinase receptors and their ligands, ephrins, play key roles in a wide variety of physiological and pathological processes including tissue patterning, angiogenesis, bone development, carcinogenesis, axon guidance, and neural plasticity. However, the signaling mechanisms underlying these diverse functions of Eph receptors have not been well understood. In this study, effects of Eph receptor activation on several important signal transduction pathways are examined. In addition, the roles of these pathways in ephrin-A5-induced growth cone collapse were assessed with a combination of biochemical analyses, pharmacological inhibition, and overexpression of dominant-negative and constitutively active mutants. These analyses showed that ephrin-A5 inhibits Erk activity but activates c-Jun N-terminal kinase. However, regulation of these two pathways is not required for ephrin-A5-induced growth cone collapse in hippocampal neurons. Artificial Erk activation by expression of constitutively active Mek1 and B-Raf failed to block ephrin-A5 effects on growth cones, and inhibitors of the Erk pathway also failed to inhibit collapse by ephrin-A5. Inhibition of JNK had no effects on ephrin-A5-induced growth cone collapse either. In addition, inhibitors to PKA and PI3-K showed no effects on ephrin-A5-induced growth cone collapse. However, pharmacological blockade of phosphotyrosine phosphatase activity, the Src family kinases, cGMP-dependent protein kinase, and myosin light chain kinase significantly inhibited ephrin-A5-induced growth cone collapse. These observations indicate that only a subset of signal transduction pathways is required for ephrin-A5-induced growth cone collapse.
Collapse
Affiliation(s)
- Xin Yue
- Department of Chemical Biology, College of Pharmacy, Rutgers University, Piscataway, NJ 08854
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Piscataway, NJ 08854
| | - Cheryl Dreyfus
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Piscataway, NJ 08854
| | - Tony Ah-Ng Kong
- Department of Pharmaceutics, College of Pharmacy, Rutgers University, Piscataway, NJ 08854
| | - Renping Zhou
- Department of Chemical Biology, College of Pharmacy, Rutgers University, Piscataway, NJ 08854
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Piscataway, NJ 08854
| |
Collapse
|
50
|
García C, Aranda J, Arnold E, Thébault S, Macotela Y, López-Casillas F, Mendoza V, Quiroz-Mercado H, Hernández-Montiel HL, Lin SH, de la Escalera GM, Clapp C. Vasoinhibins prevent retinal vasopermeability associated with diabetic retinopathy in rats via protein phosphatase 2A-dependent eNOS inactivation. J Clin Invest 2008; 118:2291-300. [PMID: 18497878 DOI: 10.1172/jci34508] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2007] [Accepted: 04/09/2008] [Indexed: 12/30/2022] Open
Abstract
Increased retinal vasopermeability contributes to diabetic retinopathy, the leading cause of blindness in working-age adults. Despite clinical progress, effective therapy remains a major need. Vasoinhibins, a family of peptides derived from the protein hormone prolactin (and inclusive of the 16-kDa fragment of prolactin), antagonize the proangiogenic effects of VEGF, a primary mediator of retinal vasopermeability. Here, we demonstrate what we believe to be a novel function of vasoinhibins as inhibitors of the increased retinal vasopermeability associated with diabetic retinopathy. Vasoinhibins inhibited VEGF-induced vasopermeability in bovine aortic and rat retinal capillary endothelial cells in vitro. In vivo, vasoinhibins blocked retinal vasopermeability in diabetic rats and in response to intravitreous injection of VEGF or of vitreous from patients with diabetic retinopathy. Inhibition by vasoinhibins was similar to that achieved following immunodepletion of VEGF from human diabetic retinopathy vitreous or blockage of NO synthesis, suggesting that vasoinhibins inhibit VEGF-induced NOS activation. We further showed that vasoinhibins activate protein phosphatase 2A (PP2A), leading to eNOS dephosphorylation at Ser1179 and, thereby, eNOS inactivation. Moreover, intravitreous injection of okadaic acid, a PP2A inhibitor, blocked the vasoinhibin effect on endothelial cell permeability and retinal vasopermeability. These results suggest that vasoinhibins have the potential to be developed as new therapeutic agents to control the excessive retinal vasopermeability observed in diabetic retinopathy and other vasoproliferative retinopathies.
Collapse
Affiliation(s)
- Celina García
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|