1
|
Liu Y, Lyu D, Yao Y, Cui J, Liu J, Bai Z, Zhao Z, Li Y, Lu B, Dong K, Pan X. The comprehensive potential of AQP1 as a tumor biomarker: evidence from kidney neoplasm cohorts, cell experiments and pan-cancer analysis. Hum Genomics 2025; 19:15. [PMID: 39988693 PMCID: PMC11849320 DOI: 10.1186/s40246-025-00726-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Accepted: 02/12/2025] [Indexed: 02/25/2025] Open
Abstract
Aquaporin1 (AQP1) facilitates water transport. Its ability to be a biomarker at the pan-cancer level remains uninvestigated. We performed immunohistochemical staining on tissues from 370 individuals with kidney neoplasms to measure AQP1 expression. We utilized Kaplan-Meier survival analysis, Chi-square tests, and multivariate Cox regression analyses to assess the prognostic relevance of AQP1 expression. In the pan-cancer context, we explored AQP1's competing endogenous RNAs network, protein-protein interactions, genomic changes, gene set enrichment analysis (GSEA), the correlation of AQP1 expression with survival outcomes, drug sensitivity, drug molecular docking, tumor purity and immunity. AQP1 shRNA expressing 786-O cells were established. Cell proliferation was assessed by Cell Counting Kit-8 and colony formation. Transwell migration, invasion, and cell scratch assays were conducted. In our study, AQP1 expression was an independent protective factor for OS and PFS in renal cancer patients. AQP1 expression significantly correlated with survival outcomes in renal cancers, LGG, SARC, HNSC and UVM. PI-103 sensitivity was related to AQP1 expression and had potential binding cite with AQP1 protein. Knockdown of AQP1 reduced cell proliferation, migration and invasion. Our study uncovered AQP1 as a biomarker for favorable survival outcomes in renal cancers. Furthermore, the bioinformatic analysis promoted its implication in pan-cancer scope.
Collapse
Affiliation(s)
- Yifan Liu
- Department of Urology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
- BGI research, BGI-Hangzhou, Hangzhou, 310012, China
| | - Donghao Lyu
- Department of Urology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Yuntao Yao
- Department of Urology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
- BGI research, BGI-Hangzhou, Hangzhou, 310012, China
| | - Jinming Cui
- Ulink College of Shanghai, Shanghai, 201615, China
| | - Jiangui Liu
- Department of Urology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Zikuan Bai
- Shanghai YK Pao School, Shanghai, 201620, China
| | - Zihui Zhao
- Department of Urology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Yuanan Li
- Department of Urology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Bingnan Lu
- Department of Urology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| | - Keqin Dong
- Department of Urology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
- Department of urology, Chinese PLA general hospital of central theater command, Wuhan, 430061, China.
| | - Xiuwu Pan
- Department of Urology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| |
Collapse
|
2
|
Drewniak P, Xiao P, Ladizhansky V, Bondar AN, Brown LS. A conserved H-bond network in human aquaporin-1 is necessary for native folding and oligomerization. Biophys J 2024; 123:4285-4303. [PMID: 39425471 DOI: 10.1016/j.bpj.2024.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/18/2024] [Accepted: 10/16/2024] [Indexed: 10/21/2024] Open
Abstract
Aquaporins (AQPs) are α-helical transmembrane proteins that conduct water through membranes with high selectivity and permeability. For human AQP1, in addition to the functional Asn-Pro-Ala motifs and the aromatic/Arg selectivity filter within the pore, there are several highly conserved residues that form an expansive hydrogen-bonding network. Previous solid-state nuclear magnetic resonance studies and structural conservation analysis have detailed which residues may be involved in this network. We explored this network by mutating the side chains or backbones involved in hydrogen-bonding, generating the following mutants: N127A, V133P, E142A, T187A, R195A, and S196A. The fold and stability of these mutants were assessed with attenuated total reflection Fourier transform infrared spectroscopy coupled with hydrogen/deuterium exchange upon increasing temperature. We found that replacement of any of the chosen residues to alanine leads to either partial instability or outright misfolding at room temperature, with the latter being most pronounced for the N127A, V133P, T187A, and R195A mutants. Deconvolution analysis of the amide I band revealed considerable secondary structure deviations, with some mutants exhibiting new random coil and β sheet structures. We also found that some of these mutations potentially disrupt the oligomerization of human AQP1. BN-PAGE and DLS data provide evidence toward the loss of tetramers within most of the mutants, meanwhile only the S196A mutant retains tetrameric organization. The molecular dynamics simulation of the wild-type, and the N127A, E142A, and T187A mutants show that these mutations result in major rearrangements of intra- and intermonomer hydrogen-bond networks. Overall, we show that specific point mutations that perturb hydrogen-bonding clusters result in severe misfolding in hAQP1 and disruption of its oligomerization. These data provide valuable insight into the structural stability of human aquaporin-1 and have implications toward other members of the AQP family, as these networks are largely conserved among a variety of human and nonmammalian AQP homologs.
Collapse
Affiliation(s)
- Philip Drewniak
- Department of Physics and Biophysics Interdepartmental Group, University of Guelph, Guelph, ON, Canada
| | - Peng Xiao
- Department of Physics and Biophysics Interdepartmental Group, University of Guelph, Guelph, ON, Canada
| | - Vladimir Ladizhansky
- Department of Physics and Biophysics Interdepartmental Group, University of Guelph, Guelph, ON, Canada
| | - Ana-Nicoleta Bondar
- University of Bucharest, Faculty of Physics, Atomiștilor 405, Măgurele 077125, Romania; Forschungszentrum Jülich, Institute for Neuroscience and Medicine (INM), Computational Biomedicine (INM-9), Wilhelm-Johnen Straße, 5428 Jülich, Germany.
| | - Leonid S Brown
- Department of Physics and Biophysics Interdepartmental Group, University of Guelph, Guelph, ON, Canada.
| |
Collapse
|
3
|
Gurung R, Masood M, Singh P, Jha P, Sinha A, Ajmeriya S, Sharma M, Dohare R, Haque MM. Uncovering the role of aquaporin and chromobox family members as potential biomarkers in head and neck squamous cell carcinoma via integrative multiomics and in silico approach. J Appl Genet 2024; 65:839-851. [PMID: 38358594 DOI: 10.1007/s13353-024-00843-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 02/03/2024] [Accepted: 02/06/2024] [Indexed: 02/16/2024]
Abstract
Head and neck squamous cell carcinoma (HNSC) is a diverse group of tumors arising from oral cavity, oropharynx, larynx, and hypopharynx squamous epithelium, posing significant morbidity. Aquaporins (AQPs) are membrane proteins forming water channels, some associated with carcinomas. Chromobox (CBX) family is known to modulate physiological and oncological processes. In our study, we analyzed AQPs and CBXs having significant expression followed by their prognostic and mutational assessment. Next, we performed enrichment and tumor infiltration analysis followed by HPA validation. Lastly, we established a 3-node miRNA-TF-mRNA regulatory network and performed protein-protein docking of the highest-degree subnetwork motif between TF and mRNA. Significant upregulation of CBX3/2 and downregulation of AQP3/5/7 correlated with poor overall survival (OS) in HNSC patients. The most significant pathway, GO-BP, GO-MF, and GO-CC terms associated with AQP3 and CBX3 were passive transport by aquaporins, response to vitamin, glycerol channel activity, and condensed chromosome, centromeric region. AQP3 negatively correlated withCD 4 + T cells, positively withCD 8 + T cells and B cells, and negatively with tumor purity, whereas CBX3 positively correlated withCD 4 + T cells, negatively withCD 8 + T cells and B cells, and positively with tumor purity. Three-node miRNA-TF-mRNA regulatory network revealed a highest-degree subnetwork motif comprising one TF (SMAD3), one miRNA (miR-423-5p), and one mRNA (AQP3). Protein-protein interaction studies suggested a direct interaction between AQP3 and Smad3 proteins. We concluded that AQP3 and CBX3 hold potential as treatment strategies and individual prognostic biomarkers, while further protein-protein interaction studies of AQP3 could offer insights into its interactions with Smad3 proteins.
Collapse
Affiliation(s)
- Rishabh Gurung
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Mohammad Masood
- Department of Biotechnology, Faculty of Life Sciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Prithvi Singh
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Prakash Jha
- Laboratory of Molecular Modeling and Anticancer Drug Development, Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, New Delhi, 110007, India
| | - Anuradha Sinha
- Department of Preventive Oncology, Homi Bhabha Cancer Hospital and Research Centre, Muzaffarpur, 842004, India
| | - Swati Ajmeriya
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Milin Sharma
- Department of Biotechnology, Faculty of Life Sciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Ravins Dohare
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025, India.
| | - Mohammad Mahfuzul Haque
- Department of Biotechnology, Faculty of Life Sciences, Jamia Millia Islamia, New Delhi, 110025, India.
| |
Collapse
|
4
|
Yun X, Niedermeyer S, Andrade MR, Jiang H, Suresh K, Kolb T, Damarla M, Shimoda LA. Aquaporin 1 confers apoptosis resistance in pulmonary arterial smooth muscle cells from the SU5416 hypoxia rat model. Physiol Rep 2024; 12:e16156. [PMID: 39175041 PMCID: PMC11341275 DOI: 10.14814/phy2.16156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 07/09/2024] [Accepted: 07/09/2024] [Indexed: 08/24/2024] Open
Abstract
Pulmonary hypertension (PH) arises from increased pulmonary vascular resistance due to contraction and remodeling of the pulmonary arteries. The structural changes include thickening of the smooth muscle layer from increased proliferation and resistance to apoptosis. The mechanisms underlying apoptosis resistance in PH are not fully understood. In cancer cells, high expression of aquaporin 1 (AQP1), a water channel, is associated with apoptosis resistance. We showed AQP1 protein was expressed in pulmonary arterial smooth muscle cells (PASMCs) and upregulated in preclinical PH models. In this study, we used PASMCs isolated from control male rats and the SU5416 plus hypoxia (SuHx) model to test the role of AQP1 in modulating susceptibility to apoptosis. We found the elevated level of AQP1 in PASMCs from SuHx rats was necessary for resistance to apoptosis and that apoptosis resistance could be conferred by increasing AQP1 in control PASMCs. In exploring the downstream pathways involved, we found AQP1 levels influence the expression of Bcl-2, with enhanced AQP1 levels corresponding to increased Bcl-2 expression, reducing the ratio of BAX to Bcl-2, consistent with apoptosis resistance. These results provide a mechanism by which AQP1 can regulate PASMC fate.
Collapse
MESH Headings
- Animals
- Aquaporin 1/metabolism
- Aquaporin 1/genetics
- Apoptosis
- Male
- Pulmonary Artery/metabolism
- Pulmonary Artery/pathology
- Pulmonary Artery/cytology
- Rats
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/cytology
- Pyrroles/pharmacology
- Indoles/pharmacology
- Hypoxia/metabolism
- Rats, Sprague-Dawley
- Hypertension, Pulmonary/metabolism
- Hypertension, Pulmonary/pathology
- Cells, Cultured
- Proto-Oncogene Proteins c-bcl-2/metabolism
- Proto-Oncogene Proteins c-bcl-2/genetics
- Disease Models, Animal
Collapse
Affiliation(s)
- Xin Yun
- Division of Pulmonary and Critical Care MedicineJohns Hopkins School of MedicineBaltimoreMarylandUSA
| | - Shannon Niedermeyer
- Division of Pulmonary and Critical Care MedicineJohns Hopkins School of MedicineBaltimoreMarylandUSA
| | - Manuella Ribas Andrade
- Division of Pulmonary and Critical Care MedicineJohns Hopkins School of MedicineBaltimoreMarylandUSA
| | - Haiyang Jiang
- Division of Pulmonary and Critical Care MedicineJohns Hopkins School of MedicineBaltimoreMarylandUSA
| | - Karthik Suresh
- Division of Pulmonary and Critical Care MedicineJohns Hopkins School of MedicineBaltimoreMarylandUSA
| | - Todd Kolb
- Division of Pulmonary and Critical Care MedicineJohns Hopkins School of MedicineBaltimoreMarylandUSA
| | - Mahendra Damarla
- Division of Pulmonary and Critical Care MedicineJohns Hopkins School of MedicineBaltimoreMarylandUSA
| | - Larissa A. Shimoda
- Division of Pulmonary and Critical Care MedicineJohns Hopkins School of MedicineBaltimoreMarylandUSA
| |
Collapse
|
5
|
Shin HG, Li X, Heo HY, Knutsson L, Szczepankiewicz F, Nilsson M, van Zijl PCM. Compartmental anisotropy of filtered exchange imaging (FEXI) in human white matter: What is happening in FEXI? Magn Reson Med 2024; 92:660-675. [PMID: 38525601 PMCID: PMC11142880 DOI: 10.1002/mrm.30086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 01/30/2024] [Accepted: 02/28/2024] [Indexed: 03/26/2024]
Abstract
PURPOSE To investigate the effects of compartmental anisotropy on filtered exchange imaging (FEXI) in white matter (WM). THEORY AND METHODS FEXI signals were measured using multiple combinations of diffusion filter and detection directions in five healthy volunteers. Additional filters, including a trace-weighted diffusion filter with trapezoidal gradients, a spherical b-tensor encoded diffusion filter, and a T2 filter, were tested with trace-weighted diffusion detection. RESULTS A large range of apparent exchange rates (AXR) and both positive and negative filter efficiencies (σ) were found depending on the mutual orientation of the filter and detection gradients relative to WM fiber orientation. The data demonstrated that the fast-diffusion compartment suppressed by diffusional filtering is not exclusively extra-cellular, but also intra-cellular. While not comprehensive, a simple two-compartment diffusion tensor model with water exchange was able to account qualitatively for the trends in positive and negative filtering efficiencies, while standard model imaging (SMI) without exchange could not. This two-compartment diffusion tensor model also demonstrated smaller AXR variances across subjects. When employing trace-weighted diffusion detection, AXR values were on the order of the R1 (=1/T1) of water at 3T for crossing fibers, while being less than R1 for parallel fibers. CONCLUSION Orientation-dependent AXR and σ values were observed when using multi-orientation filter and detection gradients in FEXI, indicating that WM FEXI models need to account for compartmental anisotropy. When using trace-weighted detection, AXR values were on the order of or less than R1, complicating the interpretation of FEXI results in WM in terms of biological exchange properties. These findings may contribute toward better understanding of FEXI results in WM.
Collapse
Affiliation(s)
- Hyeong-Geol Shin
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Xu Li
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Hye-Young Heo
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Linda Knutsson
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Medical Radiation Physics, Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Filip Szczepankiewicz
- Department of Medical Radiation Physics, Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Markus Nilsson
- Department of Radiology, Clinical Sciences Lund, Lund University, Lund, Sweden
- Department of Medical Imaging and Physiology, Skåne University Hospital, Lund, Sweden
| | - Peter C M van Zijl
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
6
|
da Silva IV, Mlinarić M, Lourenço AR, Pérez-Garcia O, Čipak Gašparović A, Soveral G. Peroxiporins and Oxidative Stress: Promising Targets to Tackle Inflammation and Cancer. Int J Mol Sci 2024; 25:8381. [PMID: 39125952 PMCID: PMC11313477 DOI: 10.3390/ijms25158381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/25/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
Peroxiporins are a specialized subset of aquaporins, which are integral membrane proteins primarily known for facilitating water transport across cell membranes. In addition to the classical water transport function, peroxiporins have the unique capability to transport hydrogen peroxide (H2O2), a reactive oxygen species involved in various cellular signaling pathways and regulation of oxidative stress responses. The regulation of H2O2 levels is crucial for maintaining cellular homeostasis, and peroxiporins play a significant role in this process by modulating its intracellular and extracellular concentrations. This ability to facilitate the passage of H2O2 positions peroxiporins as key players in redox biology and cellular signaling, with implications for understanding and treating various diseases linked to oxidative stress and inflammation. This review provides updated information on the physiological roles of peroxiporins and their implications in disease, emphasizing their potential as novel biomarkers and drug targets in conditions where they are dysregulated, such as inflammation and cancer.
Collapse
Affiliation(s)
- Inês V. da Silva
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal
| | - Monika Mlinarić
- Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| | - Ana Rita Lourenço
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal
| | - Olivia Pérez-Garcia
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal
| | | | - Graça Soveral
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal
| |
Collapse
|
7
|
Azimi Mohammadabadi M, Moazzeni A, Jafarzadeh L, Faraji F, Mansourabadi AH, Safari E. Aquaporins in colorectal cancer: exploring their role in tumorigenesis, metastasis, and drug response. Hum Cell 2024; 37:917-930. [PMID: 38806940 DOI: 10.1007/s13577-024-01078-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 05/14/2024] [Indexed: 05/30/2024]
Abstract
Aquaporins (AQPs) are small, integral proteins facilitating water transport across plasma cell membranes in response to osmotic gradients. This family has 13 unique members (AQP0-12), which can also transport glycerol, urea, gases, and other salute small molecules. AQPs play a crucial role in the regulation of different cellular processes, including metabolism, migration, immunity, barrier function, and angiogenesis. These proteins are found to aberrantly overexpress in various cancers, including colorectal cancer (CRC). Growing evidence has explored AQPs as a potential diagnostic biomarker and therapeutic target in different cancers. However, there is no comprehensive review compiling the available information on the crucial role of AQPs in the context of colorectal cancer. This review highlights the significance of AQPs as the biomarker and regulator of tumor cells metabolism. In addition, the proliferation, angiogenesis, and metastasis of tumor cells related to AQPs expression as well as function are discussed. Understanding the AQPs prominent role in chemotherapy resistance is of great importance clinically.
Collapse
Affiliation(s)
- Maryam Azimi Mohammadabadi
- Department of Obstetrics and Gynecology, Vincent Center for Reproductive Biology, Massachusetts General Hospital, Boston, MA, USA
- Obstetrics, Gynecology and Reproductive Biology, Harvard Medical School, Boston, MA, USA
| | - Ali Moazzeni
- Department of Hematology, Faculty of Allied Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Leila Jafarzadeh
- Department of Immunology, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Fatemeh Faraji
- Antimicrobial Resistance Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Amir Hossein Mansourabadi
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada, Ottawa, Canada
- University of Ottawa, Brain and Mind Research Institute, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada, Ottawa, Canada
| | - Elahe Safari
- Breast Health & Cancer Research Center, Iran University of Medical Sciences, Tehran, Iran.
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
8
|
Bhattacharjee A, Jana A, Bhattacharjee S, Mitra S, De S, Alghamdi BS, Alam MZ, Mahmoud AB, Al Shareef Z, Abdel-Rahman WM, Woon-Khiong C, Alexiou A, Papadakis M, Ashraf GM. The role of Aquaporins in tumorigenesis: implications for therapeutic development. Cell Commun Signal 2024; 22:106. [PMID: 38336645 PMCID: PMC10854195 DOI: 10.1186/s12964-023-01459-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 12/25/2023] [Indexed: 02/12/2024] Open
Abstract
Aquaporins (AQPs) are ubiquitous channel proteins that play a critical role in the homeostasis of the cellular environment by allowing the transit of water, chemicals, and ions. They can be found in many different types of cells and organs, including the lungs, eyes, brain, glands, and blood vessels. By controlling the osmotic water flux in processes like cell growth, energy metabolism, migration, adhesion, and proliferation, AQPs are capable of exerting their regulatory influence over a wide range of cellular processes. Tumour cells of varying sources express AQPs significantly, especially in malignant tumours with a high propensity for metastasis. New insights into the roles of AQPs in cell migration and proliferation reinforce the notion that AQPs are crucial players in tumour biology. AQPs have recently been shown to be a powerful tool in the fight against pathogenic antibodies and metastatic cell migration, despite the fact that the molecular processes of aquaporins in pathology are not entirely established. In this review, we shall discuss the several ways in which AQPs are expressed in the body, the unique roles they play in tumorigenesis, and the novel therapeutic approaches that could be adopted to treat carcinoma.
Collapse
Affiliation(s)
- Arkadyuti Bhattacharjee
- Morningside Graduate School of Biomedical Sciences, University of Massachusetts Medical School, Worcester, USA
| | - Ankit Jana
- Department of Biological Sciences, National University of Singapore, Singapore, 117558, Singapore
| | - Swagato Bhattacharjee
- KoshKey Sciences Pvt Ltd, Canara Bank Layout, Karnataka, Bengaluru, Rajiv Gandhi Nagar, Kodigehalli, 560065, India
| | - Sankalan Mitra
- KIIT School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT-DU), Bhubaneswar, Odisha, India
| | - Swagata De
- Department of English, DDE Unit, The University of Burdwan, Golapbag, Burdwan, West Bengal, 713104, India
| | - Badrah S Alghamdi
- Department of Physiology, Neuroscience Unit, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
- Pre-clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammad Zubair Alam
- Pre-clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ahmad Bakur Mahmoud
- College of Applied Medical Sciences, Taibah University, Almadinah, Almunwarah, 71491, Saudi Arabia
| | - Zainab Al Shareef
- College of Medicine, and Research Institute for Medical and Health Sciences, Department of Basic Medical Sciences, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Wael M Abdel-Rahman
- College of Health Sciences, and Research Institute for Medical and Health Sciences, Department of Medical Laboratory Sciences, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Chan Woon-Khiong
- Department of Biological Sciences, National University of Singapore, Singapore, 117558, Singapore.
| | - Athanasios Alexiou
- University Centre for Research & Development, Chandigarh University, Chandigarh-Ludhiana Highway, Mohali, Punjab, India
- Department of Research & Development, Funogen, Athens, Greece
- Department of Research & Development, AFNP Med, 1030, Wien, Austria
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, NSW, 2770, Australia
| | - Marios Papadakis
- Department of Surgery II, University Hospital Witten-Herdecke, Heusnerstrasse 40, University of Witten-Herdecke, 42283, Wuppertal, Germany.
| | - Ghulam Md Ashraf
- College of Health Sciences, and Research Institute for Medical and Health Sciences, Department of Medical Laboratory Sciences, University of Sharjah, Sharjah, 27272, United Arab Emirates.
| |
Collapse
|
9
|
Guo HM, Yu HC. Aquaporin 1 in cancer: Oncogene or a tumor suppressor? Dig Liver Dis 2024; 56:218. [PMID: 37925253 DOI: 10.1016/j.dld.2023.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 10/10/2023] [Indexed: 11/06/2023]
Affiliation(s)
- Hong-Mei Guo
- Department of gastrointestinal surgery, Second Affiliated Hospital of Jiaxing University, Jiaxing 314000, PR China
| | - Hui-Chuang Yu
- Department of gastrointestinal surgery, Second Affiliated Hospital of Jiaxing University, Jiaxing 314000, PR China.
| |
Collapse
|
10
|
Toader C, Tataru CP, Florian IA, Covache-Busuioc RA, Dumitrascu DI, Glavan LA, Costin HP, Bratu BG, Ciurea AV. From Homeostasis to Pathology: Decoding the Multifaceted Impact of Aquaporins in the Central Nervous System. Int J Mol Sci 2023; 24:14340. [PMID: 37762642 PMCID: PMC10531540 DOI: 10.3390/ijms241814340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
Aquaporins (AQPs), integral membrane proteins facilitating selective water and solute transport across cell membranes, have been the focus of extensive research over the past few decades. Particularly noteworthy is their role in maintaining cellular homeostasis and fluid balance in neural compartments, as dysregulated AQP expression is implicated in various degenerative and acute brain pathologies. This article provides an exhaustive review on the evolutionary history, molecular classification, and physiological relevance of aquaporins, emphasizing their significance in the central nervous system (CNS). The paper journeys through the early studies of water transport to the groundbreaking discovery of Aquaporin 1, charting the molecular intricacies that make AQPs unique. It delves into AQP distribution in mammalian systems, detailing their selective permeability through permeability assays. The article provides an in-depth exploration of AQP4 and AQP1 in the brain, examining their contribution to fluid homeostasis. Furthermore, it elucidates the interplay between AQPs and the glymphatic system, a critical framework for waste clearance and fluid balance in the brain. The dysregulation of AQP-mediated processes in this system hints at a strong association with neurodegenerative disorders such as Parkinson's Disease, idiopathic normal pressure hydrocephalus, and Alzheimer's Disease. This relationship is further explored in the context of acute cerebral events such as stroke and autoimmune conditions such as neuromyelitis optica (NMO). Moreover, the article scrutinizes AQPs at the intersection of oncology and neurology, exploring their role in tumorigenesis, cell migration, invasiveness, and angiogenesis. Lastly, the article outlines emerging aquaporin-targeted therapies, offering a glimpse into future directions in combatting CNS malignancies and neurodegenerative diseases.
Collapse
Affiliation(s)
- Corneliu Toader
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.T.); (R.-A.C.-B.); (D.-I.D.); (L.A.G.); (H.P.C.); (B.-G.B.); (A.V.C.)
- Department of Vascular Neurosurgery, National Institute of Neurology and Neurovascular Diseases, 077160 Bucharest, Romania
| | - Calin Petru Tataru
- Department of Opthamology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Central Military Emergency Hospital “Dr. Carol Davila”, 010825 Bucharest, Romania
| | - Ioan-Alexandru Florian
- Department of Neurosciences, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Razvan-Adrian Covache-Busuioc
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.T.); (R.-A.C.-B.); (D.-I.D.); (L.A.G.); (H.P.C.); (B.-G.B.); (A.V.C.)
| | - David-Ioan Dumitrascu
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.T.); (R.-A.C.-B.); (D.-I.D.); (L.A.G.); (H.P.C.); (B.-G.B.); (A.V.C.)
| | - Luca Andrei Glavan
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.T.); (R.-A.C.-B.); (D.-I.D.); (L.A.G.); (H.P.C.); (B.-G.B.); (A.V.C.)
| | - Horia Petre Costin
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.T.); (R.-A.C.-B.); (D.-I.D.); (L.A.G.); (H.P.C.); (B.-G.B.); (A.V.C.)
| | - Bogdan-Gabriel Bratu
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.T.); (R.-A.C.-B.); (D.-I.D.); (L.A.G.); (H.P.C.); (B.-G.B.); (A.V.C.)
| | - Alexandru Vlad Ciurea
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.T.); (R.-A.C.-B.); (D.-I.D.); (L.A.G.); (H.P.C.); (B.-G.B.); (A.V.C.)
- Neurosurgery Department, Sanador Clinical Hospital, 010991 Bucharest, Romania
| |
Collapse
|
11
|
Guo Z, Zhang H, Liu X, Zhao Y, Chen Y, Jin J, Guo C, Zhang M, Gu F, Ma Y. Water channel protein AQP1 in cytoplasm is a critical factor in breast cancer local invasion. J Exp Clin Cancer Res 2023; 42:49. [PMID: 36803413 PMCID: PMC9940370 DOI: 10.1186/s13046-023-02616-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 02/02/2023] [Indexed: 02/21/2023] Open
Abstract
BACKGROUND Metastasis of breast cancer grows from the local invasion to the distant colonization. Blocking the local invasion step would be promising for breast cancer treatment. Our present study demonstrated AQP1 was a crucial target in breast cancer local invasion. METHODS Mass spectrometry combined with bioinformatics analysis was used to identify AQP1 associated proteins ANXA2 and Rab1b. Co-immunoprecipitation, immunofluorescence assays and cell functional experiments were carried out to define the relationship among AQP1, ANXA2 and Rab1b and their re-localization in breast cancer cells. The Cox proportional hazards regression model was performed toward the identification of relevant prognostic factors. Survival curves were plotted by the Kaplan-Meier method and compared by the log-rank test. RESULTS Here, we show that the cytoplasmic water channel protein AQP1, a crucial target in breast cancer local invasion, recruited ANXA2 from the cellular membrane to the Golgi apparatus, promoted Golgi apparatus extension, and induced breast cancer cell migration and invasion. In addition, cytoplasmic AQP1 recruited cytosolic free Rab1b to the Golgi apparatus to form a ternary complex containing AQP1, ANXA2, and Rab1b, which induced cellular secretion of the pro-metastatic proteins ICAM1 and CTSS. Cellular secretion of ICAM1 and CTSS led to the migration and invasion of breast cancer cells. Both in vivo assay and clinical analysis data confirmed above results. CONCLUSIONS Our findings suggested a novel mechanism for AQP1-induced breast cancer local invasion. Therefore, targeting AQP1 offers promises in breast cancer treatment.
Collapse
Affiliation(s)
- Zhifang Guo
- grid.411918.40000 0004 1798 6427Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Huanhu West Road, Hexi District, Tianjin, 300060 People’s Republic of China ,grid.411918.40000 0004 1798 6427Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China ,grid.411918.40000 0004 1798 6427Key Laboratory of Cancer Prevention and Therapy, Tianjin, China ,grid.265021.20000 0000 9792 1228Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
| | - Huikun Zhang
- grid.411918.40000 0004 1798 6427Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Huanhu West Road, Hexi District, Tianjin, 300060 People’s Republic of China ,grid.411918.40000 0004 1798 6427Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China ,grid.411918.40000 0004 1798 6427Key Laboratory of Cancer Prevention and Therapy, Tianjin, China ,grid.265021.20000 0000 9792 1228Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
| | - Xiaoli Liu
- grid.411918.40000 0004 1798 6427Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Huanhu West Road, Hexi District, Tianjin, 300060 People’s Republic of China ,grid.411918.40000 0004 1798 6427Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China ,grid.411918.40000 0004 1798 6427Key Laboratory of Cancer Prevention and Therapy, Tianjin, China ,grid.265021.20000 0000 9792 1228Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
| | - Yawen Zhao
- grid.411918.40000 0004 1798 6427Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Huanhu West Road, Hexi District, Tianjin, 300060 People’s Republic of China ,grid.411918.40000 0004 1798 6427Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China ,grid.411918.40000 0004 1798 6427Key Laboratory of Cancer Prevention and Therapy, Tianjin, China ,grid.265021.20000 0000 9792 1228Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
| | - Yongzi Chen
- grid.411918.40000 0004 1798 6427Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Huanhu West Road, Hexi District, Tianjin, 300060 People’s Republic of China ,grid.411918.40000 0004 1798 6427Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China ,grid.411918.40000 0004 1798 6427Key Laboratory of Cancer Prevention and Therapy, Tianjin, China ,grid.265021.20000 0000 9792 1228Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
| | - Jiaqi Jin
- grid.411918.40000 0004 1798 6427Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Huanhu West Road, Hexi District, Tianjin, 300060 People’s Republic of China ,grid.411918.40000 0004 1798 6427Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China ,grid.411918.40000 0004 1798 6427Key Laboratory of Cancer Prevention and Therapy, Tianjin, China ,grid.265021.20000 0000 9792 1228Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
| | - Caixia Guo
- grid.410726.60000 0004 1797 8419CAS Key Laboratory of Genomics and Precision Medicine, Beijing Institute of Genomics, University of Chinese Academy of Sciences, Chinese Academy of Sciences, China National Center for Bioinformation, Beijing, 100101 China
| | - Ming Zhang
- grid.213876.90000 0004 1936 738XDepartment of Epidemiology and Biostatistics, University of Georgia, Athens, GA USA
| | - Feng Gu
- grid.411918.40000 0004 1798 6427Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China ,grid.411918.40000 0004 1798 6427Key Laboratory of Cancer Prevention and Therapy, Tianjin, China ,grid.265021.20000 0000 9792 1228Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China ,grid.411918.40000 0004 1798 6427Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Yongjie Ma
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Huanhu West Road, Hexi District, Tianjin, 300060, People's Republic of China. .,Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China. .,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China. .,Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China.
| |
Collapse
|
12
|
Aquaporins and Ion Channels as Dual Targets in the Design of Novel Glioblastoma Therapeutics to Limit Invasiveness. Cancers (Basel) 2023; 15:cancers15030849. [PMID: 36765806 PMCID: PMC9913334 DOI: 10.3390/cancers15030849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/20/2023] [Accepted: 01/28/2023] [Indexed: 01/31/2023] Open
Abstract
Current therapies for Glioblastoma multiforme (GBM) focus on eradicating primary tumors using radiotherapy, chemotherapy and surgical resection, but have limited success in controlling the invasive spread of glioma cells into a healthy brain, the major factor driving short survival times for patients post-diagnosis. Transcriptomic analyses of GBM biopsies reveal clusters of membrane signaling proteins that in combination serve as robust prognostic indicators, including aquaporins and ion channels, which are upregulated in GBM and implicated in enhanced glioblastoma motility. Accumulating evidence supports our proposal that the concurrent pharmacological targeting of selected subclasses of aquaporins and ion channels could impede glioblastoma invasiveness by impairing key cellular motility pathways. Optimal sets of channels to be selected as targets for combined therapies could be tailored to the GBM cancer subtype, taking advantage of differences in patterns of expression between channels that are characteristic of GBM subtypes, as well as distinguishing them from non-cancerous brain cells such as neurons and glia. Focusing agents on a unique channel fingerprint in GBM would further allow combined agents to be administered at near threshold doses, potentially reducing off-target toxicity. Adjunct therapies which confine GBM tumors to their primary sites during clinical treatments would offer profound advantages for treatment efficacy.
Collapse
|
13
|
Benson KK, Sheel A, Rahman S, Esnakula A, Manne A. Understanding the Clinical Significance of MUC5AC in Biliary Tract Cancers. Cancers (Basel) 2023; 15:cancers15020433. [PMID: 36672382 PMCID: PMC9856870 DOI: 10.3390/cancers15020433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 12/30/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Biliary tract cancers (BTC) arise from biliary epithelium and include cholangiocarcinomas or CCA (including intrahepatic (ICC) and extrahepatic (ECC)) and gallbladder cancers (GBC). They often have poor outcomes owing to limited treatment options, advanced presentations, frequent recurrence, and poor response to available systemic therapy. Mucin 5AC (MUC5AC) is rarely expressed in normal biliary epithelium, but can be upregulated in tissues of benign biliary disease, premalignant conditions (e.g., biliary intraepithelial neoplasia), and BTCs. This mucin's numerous glycoforms can be divided into less-glycosylated immature and heavily-glycosylated mature forms. Reported MUC5AC tissue expression in BTC varies widely, with some associations based on cancer location (e.g., perihilar vs. peripheral ICC). Study methods were variable regarding cancer subtypes, expression positivity thresholds, and MUC5AC glycoforms. MUC5AC can be detected in serum of BTC patients at high concentrations. The hesitancy in developing MUC5AC into a clinically useful biomarker in BTC management is due to variable evidence on the diagnostic and prognostic value. Concrete conclusions on tissue MUC5AC are difficult, but serum detection might be relevant for diagnosis and is associated with poor prognosis. Future studies are needed to further the understanding of the potential clinical value of MUC5AC in BTC, especially regarding predictive and therapeutic value.
Collapse
Affiliation(s)
- Katherine K. Benson
- Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Ankur Sheel
- Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Shafia Rahman
- Department of Internal Medicine, Division of Medical Oncology at the Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Ashwini Esnakula
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Ashish Manne
- Department of Internal Medicine, Division of Medical Oncology at the Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
- Correspondence: ; Tel.: +1-614-366-2982
| |
Collapse
|
14
|
Wang L, Wang J, Zhu X, Bai C, Song Y. Aquaporins in Respiratory System. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1398:137-144. [PMID: 36717491 DOI: 10.1007/978-981-19-7415-1_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Aquaporins (AQPs) are water channel proteins facilitating fluid transport in alveolar space, airway humidification, pleural fluid absorption, and submucosal gland secretion. In this chapter, we mainly focus on the expression of four AQPs in the lungs, which include AQP1, AQP2, AQP4, and AQP5 in normal and disease status, and the experience of AQPs function from various model and transgenic mice were summarized in detail to improve our understanding of the role of AQPs in fluid balance of respiratory system. It has been suggested that AQPs play important roles in various physiology and pathophysiology conditions of different lung diseases. There still remains unclear the exact role of AQPs in lung diseases, and thus continuous efforts on elucidating the roles of AQPs in lung physiological and pathophysiological processes are warranted.
Collapse
Affiliation(s)
- Linlin Wang
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jian Wang
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiaodan Zhu
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chunxue Bai
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yuanlin Song
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, China.
- Shanghai Key Laboratory of Lung Inflammation and Injury, Shanghai, China.
- Shanghai Institute of Infectious Disease and Biosecurity, Shanghai, China.
- Shanghai Respiratory Research Institute, Shanghai, China.
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China.
- Jinshan Hospital of Fudan University, Shanghai, China.
| |
Collapse
|
15
|
Abulizi A, Dawuti A, Yang B. Aquaporins in Tumor. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1398:303-315. [PMID: 36717503 DOI: 10.1007/978-981-19-7415-1_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Recent researches have demonstrated that aquaporins (AQPs), including water-selective channels, aquaglyceroporins and superaquaporins, are generally expressed in various tumors, such as lung, colorectal, liver, brain, breast tumors, etc. Therefore, it is imperative to study the accurate relationship between AQPs and tumor, which may provide innovative approaches to treat and prevent tumor development. In this chapter, we mainly reviewed the expression and pathophysiological function of AQPs in tumor, and summarize recent work on AQPs in tumor. Although, the underlying mechanism of AQP in tumor is not very clear, growing evidences suggest that cell migration, adhesion, angiogenesis, and division contribute to tumor development, in which AQPs might be involved. Therefore, it is still necessary to conduct further studies to determine the specific roles of AQPs in the tumor.
Collapse
Affiliation(s)
- Abudumijiti Abulizi
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, Shihezi, China.
| | - Awaguli Dawuti
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Baoxue Yang
- School of Basic Medical Sciences, Peking University, Beijing, China
| |
Collapse
|
16
|
Aquaporin 5 (AQP5) expression in breast cancer and its clinicopathological characteristics. PLoS One 2023; 18:e0270752. [PMID: 36706090 PMCID: PMC9882752 DOI: 10.1371/journal.pone.0270752] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 06/16/2022] [Indexed: 01/28/2023] Open
Abstract
The role of aquaporin water channels (AQPs) has become an area of great interest in human carcinogenesis. In this report, we have demonstrated the expression of AQP5 in breast cancer by analyzing 591 tissue samples with 7-year follow-ups. By immunochemistry analysis, AQP5 overexpression was observed in 36% (212/591 cases). Then, we have focused on the clinicopathologic variables among cancer tissue samples with strong AQP5 expression (3+ expression, 60/591 cases). The strong AQP5 expression was positively correlated with tumor grade in BCs (p<0.001) and was more frequent in ER/PR-negative BCs than positive ones (14.9% vs. 3.3% and 13.1% vs. 4.8%, respectively, both p<0.001), while Her2/neu-positive status was positively correlated with strong expression of AQP5 (p = 0.005). Of note, breast cancer patients with positive AQP expression (212/591 cases) showed a less favorable breast cancer specific survival rate over 7 years of follow and we further conclude that AQP5 expression is an independent molecular marker associated with worse clinical outcomes. By fluorescence in situ hybridization (FISH), we have identified evidence of gene amplification in 3 of 30 readable breast cancer and further conclude that, in breast cancer, at least some part of AQP5 overexpression is associated with an aberration in the genome level.
Collapse
|
17
|
Kim SJ, Seong MJ, Mun JJ, Bae JH, Joh HM, Chung TH. Differential Sensitivity of Melanoma Cells and Their Non-Cancerous Counterpart to Cold Atmospheric Plasma-Induced Reactive Oxygen and Nitrogen Species. Int J Mol Sci 2022; 23:ijms232214092. [PMID: 36430569 PMCID: PMC9698967 DOI: 10.3390/ijms232214092] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/11/2022] [Accepted: 11/12/2022] [Indexed: 11/18/2022] Open
Abstract
Despite continuous progress in therapy, melanoma is one of the most aggressive and malignant human tumors, often relapsing and metastasizing to almost all organs. Cold atmospheric plasma (CAP) is a novel anticancer tool that utilizes abundant reactive oxygen and nitrogen species (RONS) being deposited on the target cells and tissues. CAP-induced differential effects between non-cancerous and cancer cells were comparatively examined. Melanoma and non-cancerous skin fibroblast cells (counterparts; both cell types were isolated from the same patient) were used for plasma-cell interactions. The production of intracellular RONS, such as nitric oxide (NO), hydroxyl radical (•OH), and hydrogen peroxide (H2O2), increased remarkably only in melanoma cancer cells. It was observed that cancer cells morphed from spread to round cell shapes after plasma exposure, suggesting that they were more affected than non-cancerous cells in the same plasma condition. Immediately after both cell types were treated with plasma, there were no differences in the amount of extracellular H2O2 production, while Hanks' balanced salt solution-containing cancer cells had lower concentrations of H2O2 than that of non-cancerous cells at 1 h after treatment. The melanoma cells seemed to respond to CAP treatment with a greater rise in RONS and a higher consumption rate of H2O2 than homologous non-cancerous cells. These results suggest that differential sensitivities of non-cancerous skin and melanoma cells to CAP-induced RONS can enable the applicability of CAP in anticancer therapy.
Collapse
|
18
|
Expression Profiles of AQP3 and AQP4 in Lung Adenocarcinoma Samples Generated via Bronchoscopic Biopsies. J Clin Med 2022; 11:jcm11195954. [PMID: 36233821 PMCID: PMC9573329 DOI: 10.3390/jcm11195954] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/05/2022] [Accepted: 10/08/2022] [Indexed: 12/03/2022] Open
Abstract
Aquaporins (AQPs) are highly conserved channel proteins which are mainly responsible for the exchange of water and small molecules and have shown to play a pivotal role in the development and progression of cancer. Lung adenocarcinoma is the most common primary lung cancer seen in patients in Europe and the United States. However, in patients it is often not diagnosed until the advanced tumor stage is present. Previous studies provided strong evidence that some members of the AQP family could serve as clinical biomarkers for different diseases. Therefore, we aimed to investigate how AQP3 and AQP4 protein expression in lung adenocarcinoma (ADC) biopsy samples correlate with clinical and pathological parameters. The protein expression of AQP3 and AQP4 was analyzed based on immunohistochemical staining. AQP3 protein was observed in the cytoplasmic membrane of cancer tissue in 82% of lung samples. Significant differences in relative protein expression of AQP3 were noted between advanced age patients compared to younger counterparts (p = 0.017). A high expression of AQP3 was significant in cancer tissue when compared to the control group (p < 0.001), whereas a low AQP4 membrane expression was noted as significantly common in cancer tissue compared to non-neoplastic lung tissue (p < 0.001). Moreover, a low AQP4 membrane expression was positively correlated with a more advanced disease status, e.g., lymph node metastases (p = 0.046). Based on our findings, AQP3 and AQP4 could be used as biomarkers in ADC patients.
Collapse
|
19
|
Wang Y, Li C, Qi X, Yao Y, Zhang L, Zhang G, Xie L, Wang Q, Zhu W, Guo X. A Comprehensive Prognostic Analysis of Tumor-Related Blood Group Antigens in Pan-Cancers Suggests That SEMA7A as a Novel Biomarker in Kidney Renal Clear Cell Carcinoma. Int J Mol Sci 2022; 23:ijms23158799. [PMID: 35955933 PMCID: PMC9369114 DOI: 10.3390/ijms23158799] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/30/2022] [Accepted: 08/02/2022] [Indexed: 11/16/2022] Open
Abstract
Blood group antigen is a class of heritable antigenic substances present on the erythrocyte membrane. However, the role of blood group antigens in cancer prognosis is still largely unclear. In this study, we investigated the expression of 33 blood group antigen genes and their association with the prognosis of 30 types of cancers in 31,870 tumor tissue samples. Our results revealed that blood group antigens are abnormally expressed in a variety of cancers. The high expression of these antigen genes was mainly related to the activation of the epithelial-mesenchymal transition (EMT) pathway. High expression of seven antigen genes, i.e., FUT7, AQP1, P1, C4A, AQP3, KEL and DARC, were significantly associated with good OS (Overall Survival) in six types of cancers, while ten genes, i.e., AQP1, P1, C4A, AQP3, BSG, CD44, CD151, LU, FUT2, and SEMA7A, were associated with poor OS in three types of cancers. Kidney renal clear cell carcinoma (KIRC) is associated with the largest number (14 genes) of prognostic antigen genes, i.e., CD44, CD151, SEMA7A, FUT7, CR1, AQP1, GYPA, FUT3, FUT6, FUT1, SLC14A1, ERMAP, C4A, and B3GALT3. High expression of SEMA7A gene was significantly correlated with a poor prognosis of KIRC in this analysis but has not been reported previously. SEMA7A might be a putative biomarker for poor prognosis in KIRC. In conclusion, our analysis indicates that blood group antigens may play functional important roles in tumorigenesis, progression, and especially prognosis. These results provide data to support prognostic marker development and future clinical management.
Collapse
Affiliation(s)
- Yange Wang
- Department of Preventive Medicine, Institute of Biomedical Informatics, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng 475004, China
| | - Chenyang Li
- Department of Preventive Medicine, Institute of Biomedical Informatics, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng 475004, China
| | - Xinlei Qi
- Department of Preventive Medicine, Institute of Biomedical Informatics, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng 475004, China
| | - Yafei Yao
- Department of Preventive Medicine, Institute of Biomedical Informatics, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng 475004, China
| | - Lu Zhang
- Department of Preventive Medicine, Institute of Biomedical Informatics, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng 475004, China
| | - Guosen Zhang
- Department of Preventive Medicine, Institute of Biomedical Informatics, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng 475004, China
| | - Longxiang Xie
- Department of Preventive Medicine, Institute of Biomedical Informatics, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng 475004, China
| | - Qiang Wang
- Department of Preventive Medicine, Institute of Biomedical Informatics, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng 475004, China
| | - Wan Zhu
- Department of Anesthesia, Stanford University, Stanford, CA 94305, USA
| | - Xiangqian Guo
- Department of Preventive Medicine, Institute of Biomedical Informatics, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng 475004, China
- Correspondence:
| |
Collapse
|
20
|
Abstract
Aquaporins (AQPs) are a family of transmembrane water channel proteins, which were initially characterized as a novel protein family that plays a vital role in transcellular and transepithelial water movement. AQP1, AQP2, AQP4, AQP5, and AQP8 are primarily water selective, whereas AQP3, AQP7, AQP9, and AQP10 (called “aqua-glyceroporins”) also transport glycerol and other small solutes. Recently, multiple reports have suggested that AQPs have important roles in cancer cell growth, migration, invasion, and angiogenesis, each of which is important in human carcinogenesis. Here, we review recent data concerning the involvement of AQPs in tumor growth, angiogenesis, and metastasis and explore the expression profiles from various resected cancer samples to further dissect the underlying molecular mechanisms. Moreover, we discuss the potential role of AQPs during the development of genomic instability and performed modeling to describe the integration of binding between AQPs with various SH3 domain binning adaptor molecules. Throughout review and discussion of numerous reports, we have tried to provide key evidence that AQPs play key roles in tumor biology, which may provide a unique opportunity in designing a novel class of anti-tumor agents.
Collapse
Affiliation(s)
- Chul So Moon
- Department of Otolaryngology-Head and Neck Surgery, The Johns Hopkins Medical Institution, Baltimore, MD, United States.,HJM Cancer Research Foundation Corporation, Lutherville, MD, United States
| | - David Moon
- Department of Otolaryngology-Head and Neck Surgery, The Johns Hopkins Medical Institution, Baltimore, MD, United States.,HJM Cancer Research Foundation Corporation, Lutherville, MD, United States
| | - Sung Koo Kang
- Department of Otolaryngology-Head and Neck Surgery, The Johns Hopkins Medical Institution, Baltimore, MD, United States.,HJM Cancer Research Foundation Corporation, Lutherville, MD, United States
| |
Collapse
|
21
|
Behnam M, Motamedzadeh A, Aalinezhad M, Dadgostar E, Rashidi Noshabad FZ, Pourfridoni M, Raei M, Mirzaei H, Aschner M, Tamtaji OR. The role of aquaporin 4 in brain tumors: implications for pathophysiology, diagnosis and therapy. Mol Biol Rep 2022; 49:10609-10615. [PMID: 35715607 DOI: 10.1007/s11033-022-07656-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/25/2022] [Accepted: 05/27/2022] [Indexed: 11/24/2022]
Abstract
Primary brain tumors are a heterogeneous group of tumors that arise from cells intrinsic to the central nervous system (CNS). Aquaporin-4 (AQP4) has been implicated in the pathogenesis of brain tumors. Previous reports have documented a relationship between AQP4 and several molecular pathways associated with the etiology of brain tumors, such as apoptosis, invasion and cell migration. AQP4 affects apoptosis via cytochrome C, Bad and Bcl-2, as well as invasion and migration via IDO1/TDO-Kyn-AhR axis, lncRNA LINC00461, miR-216a, miRNA-320a and MMPs. In addition, inhibition of AQP4 mitigates the progression of brain tumors. This review summarizes current knowledge and evidence regarding the relationship between AQP4 and brain tumors, and the mechanisms involved.
Collapse
Affiliation(s)
- Mohammad Behnam
- Student Research Committee, Kashan University of Medical Sciences, Kashan, I.R. of Iran
| | - Alireza Motamedzadeh
- Department of Internal Medicine, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, I.R. of Iran
| | - Marzieh Aalinezhad
- Department of Radiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, I.R. of Iran
| | - Ehsan Dadgostar
- Behavioral Sciences Research Center, Isfahan University of Medical Sciences, Isfahan, I.R. of Iran.,Student Research Committee, Isfahan University of Medical Sciences, Isfahan, I.R. of Iran
| | | | - Mohammad Pourfridoni
- Student Research Committee, Jiroft University of Medical Sciences, Jiroft, I.R. of Iran
| | - Maedeh Raei
- Faculty of Medicine, Sari Branch, Islamic Azad University, Sari, I.R. of Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I.R. of Iran.
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, 10461, Bronx, NY, USA
| | - Omid Reza Tamtaji
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, I.R. of Iran. .,Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, I.R. of Iran.
| |
Collapse
|
22
|
Dutta A, Das M. Deciphering the Role of Aquaporins in Metabolic Diseases: A Mini Review. Am J Med Sci 2022; 364:148-162. [DOI: 10.1016/j.amjms.2021.10.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 06/16/2021] [Accepted: 10/21/2021] [Indexed: 12/23/2022]
|
23
|
Wagner K, Unger L, Salman MM, Kitchen P, Bill RM, Yool AJ. Signaling Mechanisms and Pharmacological Modulators Governing Diverse Aquaporin Functions in Human Health and Disease. Int J Mol Sci 2022; 23:1388. [PMID: 35163313 PMCID: PMC8836214 DOI: 10.3390/ijms23031388] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/18/2022] [Accepted: 01/20/2022] [Indexed: 02/07/2023] Open
Abstract
The aquaporins (AQPs) are a family of small integral membrane proteins that facilitate the bidirectional transport of water across biological membranes in response to osmotic pressure gradients as well as enable the transmembrane diffusion of small neutral solutes (such as urea, glycerol, and hydrogen peroxide) and ions. AQPs are expressed throughout the human body. Here, we review their key roles in fluid homeostasis, glandular secretions, signal transduction and sensation, barrier function, immunity and inflammation, cell migration, and angiogenesis. Evidence from a wide variety of studies now supports a view of the functions of AQPs being much more complex than simply mediating the passive flow of water across biological membranes. The discovery and development of small-molecule AQP inhibitors for research use and therapeutic development will lead to new insights into the basic biology of and novel treatments for the wide range of AQP-associated disorders.
Collapse
Affiliation(s)
- Kim Wagner
- School of Biomedicine, University of Adelaide, Adelaide, SA 5005, Australia;
| | - Lucas Unger
- College of Health and Life Sciences, Aston University, Birmingham B4 7ET, UK; (L.U.); (P.K.)
| | - Mootaz M. Salman
- Department of Physiology Anatomy and Genetics, University of Oxford, Oxford OX1 3QX, UK;
- Oxford Parkinson’s Disease Centre, University of Oxford, South Parks Road, Oxford OX1 3QX, UK
| | - Philip Kitchen
- College of Health and Life Sciences, Aston University, Birmingham B4 7ET, UK; (L.U.); (P.K.)
| | - Roslyn M. Bill
- College of Health and Life Sciences, Aston University, Birmingham B4 7ET, UK; (L.U.); (P.K.)
| | - Andrea J. Yool
- School of Biomedicine, University of Adelaide, Adelaide, SA 5005, Australia;
| |
Collapse
|
24
|
Henderson SW, Nourmohammadi S, Ramesh SA, Yool AJ. Aquaporin ion conductance properties defined by membrane environment, protein structure, and cell physiology. Biophys Rev 2022; 14:181-198. [PMID: 35340612 PMCID: PMC8921385 DOI: 10.1007/s12551-021-00925-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 12/09/2021] [Indexed: 01/13/2023] Open
Abstract
Aquaporins (AQPs) are multifunctional transmembrane channel proteins permeable to water and an expanding array of solutes. AQP-mediated ion channel activity was first observed when purified AQP0 from bovine lens was incorporated into lipid bilayers. Electrophysiological properties of ion-conducting AQPs since discovered in plants, invertebrates, and mammals have been assessed using native, reconstituted, and heterologously expressed channels. Accumulating evidence is defining amino acid residues that govern differential solute permeability through intrasubunit and central pores of AQP tetramers. Rings of charged and hydrophobic residues around pores influence AQP selectivity, and are candidates for further work to define motifs that distinguish ion conduction capability, versus strict water and glycerol permeability. Similarities between AQP ion channels thus far include large single channel conductances and long open times, but differences in ionic selectivity, permeability to divalent cations, and mechanisms of gating (e.g., by voltage, pH, and cyclic nucleotides) are unique to subtypes. Effects of lipid environments in modulating parameters such as single channel amplitude could explain in part the variations in AQP ion channel properties observed across preparations. Physiological roles of the ion-conducting AQP classes span diverse processes including regulation of cell motility, organellar pH, neural development, signaling, and nutrient acquisition. Advances in computational methods can generate testable predictions of AQP structure-function relationships, which combined with innovative high-throughput assays could revolutionize the field in defining essential properties of ion-conducting AQPs, discovering new AQP ion channels, and understanding the effects of AQP interactions with proteins, signaling cascades, and membrane lipids.
Collapse
Affiliation(s)
- Sam W. Henderson
- School of Biomedicine, University of Adelaide, Adelaide, SA 5005 Australia
| | | | - Sunita A. Ramesh
- College of Science and Engineering, Flinders University, Bedford Park, SA 5042 Australia
| | - Andrea J. Yool
- School of Biomedicine, University of Adelaide, Adelaide, SA 5005 Australia
| |
Collapse
|
25
|
Shi X, Chen Y, Zhao Y, Ye M, Zhang S, Gong S. Ultrasound-activable piezoelectric membranes for accelerating wound healing. Biomater Sci 2021; 10:692-701. [PMID: 34919105 DOI: 10.1039/d1bm01062j] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Ultrasonic energy harvesting technologies have gained much attention for biomedical applications due to their several desirable features including low-energy attenuation and strong penetration capability. In this work, flexible piezoelectric poly(vinylidenefluoride-co-trifluoroethylene) (P(VDF-TrFE))/barium titanate (BaTiO3, BT) membranes, capable of converting ultrasound energy to electric energy, were fabricated by an electrospinning process and their effects on the wound healing behaviors with/without ultrasonic stimulation were investigated. The piezoelectric membranes showed excellent electric outputs and can be used as a sustainable power source to quickly charge LEDs and capacitors. The penetration capability of ultrasound waves was investigated by implanting the membranes at different depths of porcine tissue. The membrane was able to generate a high voltage of 8.22 V even at a depth of 4.5 cm. Furthermore, ultrasonic stimulation on the piezoelectric membranes facilitated the proliferation and migration of the fibroblasts, and a cell migration rate of 92.6% was obtained after 24 h in the cell migration test. Under ultrasonic vibration, the electric field generated from the membranes accelerated the wound closure rate in an animal wound model. These results demonstrated the effectiveness of the flexible piezoelectric membranes in stimulating cellular behaviors, which may provide a new therapeutic strategy for wound care.
Collapse
Affiliation(s)
- Xingxing Shi
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA. .,School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou, Guangdong 510640, China
| | - Yingxin Chen
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA. .,Key Laboratory of Novel Materials for Sensor of Zhejiang Province, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, Zhejiang 310018, China
| | - Yi Zhao
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA. .,Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Mingzhou Ye
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA. .,Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Shuidong Zhang
- School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou, Guangdong 510640, China
| | - Shaoqin Gong
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA. .,Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA.,Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA.,Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| |
Collapse
|
26
|
Ala M, Mohammad Jafari R, Hajiabbasi A, Dehpour AR. Aquaporins and diseases pathogenesis: From trivial to undeniable involvements, a disease-based point of view. J Cell Physiol 2021; 236:6115-6135. [PMID: 33559160 DOI: 10.1002/jcp.30318] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 01/11/2021] [Accepted: 01/12/2021] [Indexed: 01/01/2023]
Abstract
Aquaporins (AQPs), as transmembrane proteins, were primarily identified as water channels with the ability of regulating the transmission of water, glycerol, urea, and other small-sized molecules. The classic view of AQPs involvement in therapeutic plan restricted them and their regulators into managing only a narrow spectrum of the diseases such as diabetes insipidus and the syndrome of inappropriate ADH secretion. However, further investigations performed, especially in the third millennium, has found that their cooperation in water transmission control can be manipulated to handle other burden-imposing diseases such as cirrhosis, heart failure, Meniere's disease, cancer, bullous pemphigoid, eczema, and Sjögren's syndrome.
Collapse
Affiliation(s)
- Moein Ala
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Razieh Mohammad Jafari
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Asghar Hajiabbasi
- Guilan Rheumatology Research Center, Razi Hospital, Guilan University of Medical Sciences, Rasht, Iran
| | - Ahmad Reza Dehpour
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
27
|
Yin Z, Chen W, Yin J, Sun J, Xie Q, Wu M, Zeng F, Ren H. RIPK1 is a negative mediator in Aquaporin 1-driven triple-negative breast carcinoma progression and metastasis. NPJ Breast Cancer 2021; 7:53. [PMID: 33980862 PMCID: PMC8115349 DOI: 10.1038/s41523-021-00261-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 04/15/2021] [Indexed: 02/05/2023] Open
Abstract
The triple-negative breast carcinoma (TNBC) is the most aggressive subtype of breast cancer. In TNBC, Aquaporin 1 (AQP1), a water-transporting transmembrane protein, is aberrantly enriched in cytoplasm and causes tumor cell death evasion. However, the carcinogenetic bioactivities of cytoplasmic AQP1 cannot be attributed to the canonical "osmotic engine model". In the present study, the receptor-interacting protein kinase 1 (RIPK1), a cell death regulator, was identified to negatively mediate AQP1-driven TNBC progression and metastasis. AQP1 overabundance and RIPK1 depletion occurred in TNBC, which were correlated with aggressive oncological features and poor prognosis. AQP1 bound with RIPK1, resulting in the inhibition of RIPK1/RIPK3/MLKL-mediated necroptosis and RIPK1/caspase-8/caspase-3-mediated apoptosis. Genetic inhibition of RIPK1 significantly exacerbated the pro-tumor effect of AQP1, while ectopic expression of RIPK1 notably blunted AQP1 signaling. Mechanistically, AQP1 binds to the D324 site of RIPK1, and facilitates RIPK1 cleavage and inactivation by excessively activating the caspase-8/RIPK1 negative feedback loop. RIPK1D324K overexpression significantly prevented RIPK1 cleavage and weakened the aggressiveness of AQP1-enriched TNBC cells. Overall, our findings clarify the underlying mechanism of cytoplasmic AQP1-driven TNBC progression and metastasis, in which RIPK1 exerts an essential role as a negative mediator and exhibits the potential as a therapeutic target for TNBC.
Collapse
Affiliation(s)
- Zhuming Yin
- Department of Breast Oncoplastic Surgery, Tianjin Medical University Cancer Institute and Hospital; National Clinical Research Center for Cancer; Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education; Key Laboratory of Cancer Prevention and Therapy, Tianjin; Tianjin's Clinical Research Center for Cancer; Sino-Russian Joint Research Center for Oncoplastic Breast Surgery, Tianjin, China
| | - Wenlin Chen
- Department of Breast Surgery, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Jian Yin
- Department of Breast Oncoplastic Surgery, Tianjin Medical University Cancer Institute and Hospital; National Clinical Research Center for Cancer; Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education; Key Laboratory of Cancer Prevention and Therapy, Tianjin; Tianjin's Clinical Research Center for Cancer; Sino-Russian Joint Research Center for Oncoplastic Breast Surgery, Tianjin, China
| | - Jingyan Sun
- Department of Breast Oncoplastic Surgery, Tianjin Medical University Cancer Institute and Hospital; National Clinical Research Center for Cancer; Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education; Key Laboratory of Cancer Prevention and Therapy, Tianjin; Tianjin's Clinical Research Center for Cancer; Sino-Russian Joint Research Center for Oncoplastic Breast Surgery, Tianjin, China
| | - Qianrong Xie
- Department of Clinical Research Center, Dazhou Central Hospital, Dazhou, China
| | - Min Wu
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Fanxin Zeng
- Department of Clinical Research Center, Dazhou Central Hospital, Dazhou, China.
| | - Huiwen Ren
- Department of Pharmacology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.
| |
Collapse
|
28
|
Azad AK, Raihan T, Ahmed J, Hakim A, Emon TH, Chowdhury PA. Human Aquaporins: Functional Diversity and Potential Roles in Infectious and Non-infectious Diseases. Front Genet 2021; 12:654865. [PMID: 33796134 PMCID: PMC8007926 DOI: 10.3389/fgene.2021.654865] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 02/22/2021] [Indexed: 12/11/2022] Open
Abstract
Aquaporins (AQPs) are integral membrane proteins and found in all living organisms from bacteria to human. AQPs mainly involved in the transmembrane diffusion of water as well as various small solutes in a bidirectional manner are widely distributed in various human tissues. Human contains 13 AQPs (AQP0-AQP12) which are divided into three sub-classes namely orthodox aquaporin (AQP0, 1, 2, 4, 5, 6, and 8), aquaglyceroporin (AQP3, 7, 9, and 10) and super or unorthodox aquaporin (AQP11 and 12) based on their pore selectivity. Human AQPs are functionally diverse, which are involved in wide variety of non-infectious diseases including cancer, renal dysfunction, neurological disorder, epilepsy, skin disease, metabolic syndrome, and even cardiac diseases. However, the association of AQPs with infectious diseases has not been fully evaluated. Several studies have unveiled that AQPs can be regulated by microbial and parasitic infections that suggest their involvement in microbial pathogenesis, inflammation-associated responses and AQP-mediated cell water homeostasis. This review mainly aims to shed light on the involvement of AQPs in infectious and non-infectious diseases and potential AQPs-target modulators. Furthermore, AQP structures, tissue-specific distributions and their physiological relevance, functional diversity and regulations have been discussed. Altogether, this review would be useful for further investigation of AQPs as a potential therapeutic target for treatment of infectious as well as non-infectious diseases.
Collapse
Affiliation(s)
- Abul Kalam Azad
- Department of Genetic Engineering and Biotechnology, School of Life Sciences, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Topu Raihan
- Department of Genetic Engineering and Biotechnology, School of Life Sciences, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Jahed Ahmed
- Department of Genetic Engineering and Biotechnology, School of Life Sciences, Shahjalal University of Science and Technology, Sylhet, Bangladesh
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Al Hakim
- Department of Genetic Engineering and Biotechnology, School of Life Sciences, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Tanvir Hossain Emon
- Department of Genetic Engineering and Biotechnology, School of Life Sciences, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | | |
Collapse
|
29
|
Mu YR, Cai L, Zhou MY, Liu MM, Li Z, Li R. Acetazolamide ameliorates the severity of collagen-induced arthritis in rats: Involvement of inducing synovial apoptosis and inhibiting Wnt/β-catenin pathway. Int Immunopharmacol 2021; 90:107214. [PMID: 33278748 DOI: 10.1016/j.intimp.2020.107214] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 11/09/2020] [Accepted: 11/15/2020] [Indexed: 12/12/2022]
Abstract
We previously revealed that the overexpression of synovial aquaporin 1 (AQP1) aggravated collagen-induced arthritis (CIA) in rats via regulating β-catenin signaling. This study was to demonstrate the therapeutic effect of acetazolamide (AZ, an AQP1 inhibitor) on rat CIA and explored its underlying mechanisms. Paw swelling, arthritis index, pathological assessments, and serum levels of collagen type II (Col II) antibody, IL-1β and TNF-α were measured to evaluate the anti-arthritic effect of AZ on rat CIA. Ki67 immunohistochemistry and TUNEL assay were performed to reveal the anti-proliferative and pro-apoptotic effects of AZ on synovial cells in vivo. The protein levels of apoptosis-related genes and Wnt/β-catenin pathway key members were detected by western blot. We found that AZ treatment on CIA rats could inhibit paw swelling, reduce arthritis index, alleviate the pathologic changes of ankle joint and decrease the serum levels of Col II antibody, TNF-α and IL-1β. AZ could reduce Ki67 expression and increase apoptosis index in CIA synovial tissues by reducing Bcl-2 protein level, increasing Bax and caspase 3 protein levels and normalizing Bcl-2/Bax ratio. Moreover, AZ could reduce the protein levels of Wnt1, β-catenin, p-GSK-3β (Ser9), c-myc, cyclin D1 and MMP9, while increase GSK-3β protein level in CIA synovial tissues. Importantly, these mentioned effects of AZ (60 mg/kg) on CIA rats could be reversed by the combined use of lithium chloride (LiCl), an activator of Wnt/β-catenin pathway. In short, AZ exerted potent anti-arthritic effects on CIA rats by inducing synovial apoptosis and inhibiting Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Yu-Rong Mu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei 230032, Anhui Province, PR China
| | - Li Cai
- Department of Pathology, School of Basic Medicine, Anhui Medical University, 81 Meishan Road, Hefei 230032, Anhui Province, PR China
| | - Meng-Yuan Zhou
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei 230032, Anhui Province, PR China
| | - Ming-Ming Liu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei 230032, Anhui Province, PR China
| | - Zeng Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei 230032, Anhui Province, PR China
| | - Rong Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei 230032, Anhui Province, PR China.
| |
Collapse
|
30
|
Yadav E, Yadav N, Hus A, Yadav JS. Aquaporins in lung health and disease: Emerging roles, regulation, and clinical implications. Respir Med 2020; 174:106193. [PMID: 33096317 DOI: 10.1016/j.rmed.2020.106193] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 08/17/2020] [Accepted: 10/13/2020] [Indexed: 12/16/2022]
Abstract
Aquaporins (AQPs) aka water channels are a family of conserved transmembrane proteins (~30 kDa monomers) expressed in various organ systems. Of the 13 AQPs (AQP0 through AQP12) in the human body, four (AQPs 1, 3, 4, and 5) are expressed in the respiratory system. These channels are conventionally known for mediating transcellular fluid movements. Certain AQPs (aquaglyceroporins) have the capability to transport glycerol and potentially other solutes. There is an emerging body of literature unveiling the non-conventional roles of AQPs such as in cell proliferation and migration, gas permeation, signal potentiation, etc. Initial gene knock-out studies established a physiological role for lung AQPs, particularly AQP5, in maintaining homeostasis, by mediating fluid secretion from submucosal glands onto the airway surface liquid (ASL) lining. Subsequent studies have highlighted the functional significance of AQPs, particularly AQP1 and AQP5 in lung pathophysiology and diseases, including but not limited to chronic and acute lung injury, chronic obstructive pulmonary disease (COPD), other inflammatory lung conditions, and lung cancer. AQP1 has been suggested as a potential prognostic marker for malignant mesothelioma. Recent efforts are directed toward exploiting AQPs as targets for diagnosis, prevention, intervention, and/or treatment of various lung conditions. Emerging information on regulatory pathways and directed mechanistic research are posited to unravel novel strategies for these clinical implications. Future considerations should focus on development of AQP inhibitors, blockers, and modulators for therapeutic needs, and better understanding the role of lung-specific AQPs in inter-individual susceptibility to chronic lung diseases such as COPD and cancer.
Collapse
Affiliation(s)
- Ekta Yadav
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA.
| | - Niket Yadav
- Medical Scientist Training Program, University of Virginia School of Medicine, Charlottesville, VA, 22908-0738, USA
| | - Ariel Hus
- Department of Biology, University of Miami, Coral Gables, Florida, 33146, USA
| | - Jagjit S Yadav
- Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA.
| |
Collapse
|
31
|
Buschur KL, Chikina M, Benos PV. Causal network perturbations for instance-specific analysis of single cell and disease samples. Bioinformatics 2020; 36:2515-2521. [PMID: 31873725 PMCID: PMC7178399 DOI: 10.1093/bioinformatics/btz949] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 11/22/2019] [Accepted: 12/19/2019] [Indexed: 12/14/2022] Open
Abstract
MOTIVATION Complex diseases involve perturbation in multiple pathways and a major challenge in clinical genomics is characterizing pathway perturbations in individual samples. This can lead to patient-specific identification of the underlying mechanism of disease thereby improving diagnosis and personalizing treatment. Existing methods rely on external databases to quantify pathway activity scores. This ignores the data dependencies and that pathways are incomplete or condition-specific. RESULTS ssNPA is a new approach for subtyping samples based on deregulation of their gene networks. ssNPA learns a causal graph directly from control data. Sample-specific network neighborhood deregulation is quantified via the error incurred in predicting the expression of each gene from its Markov blanket. We evaluate the performance of ssNPA on liver development single-cell RNA-seq data, where the correct cell timing is recovered; and two TCGA datasets, where ssNPA patient clusters have significant survival differences. In all analyses ssNPA consistently outperforms alternative methods, highlighting the advantage of network-based approaches. AVAILABILITY AND IMPLEMENTATION http://www.benoslab.pitt.edu/Software/ssnpa/. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Kristina L Buschur
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA.,Joint CMU-Pitt PhD Program in Computational Biology, Pittsburgh, PA 15260, USA
| | - Maria Chikina
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA
| | - Panayiotis V Benos
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA
| |
Collapse
|
32
|
Mu YR, Zhou MY, Cai L, Liu MM, Li R. Overexpression of Aquaporin 1 in Synovium Aggravates Rat Collagen-Induced Arthritis Through Regulating β-Catenin Signaling: An in vivo and in vitro Study. J Inflamm Res 2020; 13:701-712. [PMID: 33116749 PMCID: PMC7550268 DOI: 10.2147/jir.s271664] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 09/02/2020] [Indexed: 12/20/2022] Open
Abstract
Introduction Previous studies have confirmed that aquaporin 1 (AQP1) is up-regulated in synovium of rheumatoid arthritis (RA), but its exact pathogenic mechanisms in RA are unclear. This study revealed the pathogenic role of AQP1 in rat collagen-induced arthritis (CIA) and the underlying mechanisms related to β-catenin signaling. Materials and Methods Secondary paw swelling and pathological changes of ankle joints were used to evaluate the severity of rat CIA. Synovial AQP1 and β-catenin expression were measured by immunohistochemistry (IHC) and Western blot assay. AQP1 siRNA was applied to knockdown AQP1 in cultured CIA fibroblast-like synoviocyte (FLS). Assays of MTT, PCNA immunofluorescence and transwell were performed to detect cell proliferation, migration and invasion. The protein levels of β-catenin pathway members and ratio of TOP/FOP luciferase activity were also measured. Results In vivo, we revealed that synovial AQP1 and β-catenin expressions in CIA rats were higher than normal rats, and synovial AQP1 expression of CIA rats increased in parallel with secondary paw swelling and total pathological score on joint damage. Correlation analysis of IHC results indicated that synovial AQP1 expression positively correlated with β-catenin expression in CIA rat. In vitro, AQP1 siRNA apparently reduced the proliferation, migration and invasion of CIA FLS by inhibiting β-catenin signaling pathway. As an activator of β-catenin signaling, lithium chloride (an inhibitor of GSK-3β) reversed the inhibitory effects of AQP1 siRNA on the cultured CIA FLS. Conclusion We concluded that the overexpression of synovial AQP1 aggravated rat CIA by promoting the activation of FLS through β-catenin signaling pathway.
Collapse
Affiliation(s)
- Yu-Rong Mu
- School of Pharmacy, Anhui Medical University, Hefei, Anhui Province, People's Republic of China.,Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, People's Republic of China
| | - Meng-Yuan Zhou
- School of Pharmacy, Anhui Medical University, Hefei, Anhui Province, People's Republic of China.,Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, People's Republic of China
| | - Li Cai
- Department of Pathology, School of Basic Medicine, Anhui Medical University, Hefei, Anhui Province, People's Republic of China
| | - Ming-Ming Liu
- School of Pharmacy, Anhui Medical University, Hefei, Anhui Province, People's Republic of China.,Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, People's Republic of China
| | - Rong Li
- School of Pharmacy, Anhui Medical University, Hefei, Anhui Province, People's Republic of China.,Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, People's Republic of China
| |
Collapse
|
33
|
Combined treatment with acetazolamide and cisplatin enhances the chemosensitivity of human head and neck squamous cell carcinoma TU868 cells. Arch Oral Biol 2020; 119:104905. [PMID: 32947166 DOI: 10.1016/j.archoralbio.2020.104905] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 05/21/2020] [Accepted: 08/31/2020] [Indexed: 12/17/2022]
Abstract
AIMS To investigate whether combination of acetazolamide and cisplatin can enhance the chemosensitivity of human head and neck squamous cell carcinoma (HNSCC) cell line TU868. METHODS MTT assay was performed to determine the effect of acetazolamide, cisplatin and their combination on the proliferation of TU868 cells. Then the effect of these 2 drugs on the expression of proliferation-related and apoptosis-related proteins was detected by Western blot. Moreover, the effect of acetazolamide and cisplatin on the expression of aquaporin-1 was detected by RT-qPCR. Loss-of-function assays was performed to assess whether the effect of acetazolamide and cisplatin on TU868 cells was mediated by aquaporin-1. The effect of acetazolamide and cisplatin on tumor cell growth was confirmed in mice by testing the tumor growth size. RESULTS Acetazolamide and cisplatin treatment displayed synergistic effects on the inhibition of TU868 cell growth compared with the drugs used alone. Moreover, the acetazolamide/cisplatin combination could decrease the level of PCNA but increase the level of p53; decrease the ratio of Bcl-2/Bax and increase the expression of caspase-3 compared with the single drug treated group. Moreover, we found that the combination also significantly inhibits aquaporin-1 expression. Loss-of-function assays suggested that the anti-tumor effect of these 2 drugs was achieved via affecting aquaporin-1. Consistent with the in vitro assays, combined treatment with acetazolamide and cisplatin significantly inhibits the tumor growth in mice compared with the single drug treated group. CONCLUSION These results demonstrated that combined treatment with acetazolamide and cisplatin could synergistically inhibit the malignant development of HNSCC cells.
Collapse
|
34
|
Chow PH, Bowen J, Yool AJ. Combined Systematic Review and Transcriptomic Analyses of Mammalian Aquaporin Classes 1 to 10 as Biomarkers and Prognostic Indicators in Diverse Cancers. Cancers (Basel) 2020; 12:E1911. [PMID: 32679804 PMCID: PMC7409285 DOI: 10.3390/cancers12071911] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/29/2020] [Accepted: 07/07/2020] [Indexed: 12/24/2022] Open
Abstract
Aquaporin (AQP) channels enable regulated transport of water and solutes essential for fluid homeostasis, but they are gaining attention as targets for anticancer therapies. Patterns of AQP expression and survival rates for patients were evaluated by systematic review (PubMed and Embase) and transcriptomic analyses of RNAseq data (Human Protein Atlas database). Meta-analyses confirmed predominantly negative associations between AQP protein and RNA expression levels and patient survival times, most notably for AQP1 in lung, breast and prostate cancers; AQP3 in esophageal, liver and breast cancers; and AQP9 in liver cancer. Patterns of AQP expression were clustered for groups of cancers and associated with risk of death. A quantitative transcriptomic analysis of AQP1-10 in human cancer biopsies similarly showed that increased transcript levels of AQPs 1, 3, 5 and 9 were most frequently associated with poor survival. Unexpectedly, increased AQP7 and AQP8 levels were associated with better survival times in glioma, ovarian and endometrial cancers, and increased AQP11 with better survival in colorectal and breast cancers. Although molecular mechanisms of aquaporins in pathology or protection remain to be fully defined, results here support the hypothesis that overexpression of selected classes of AQPs differentially augments cancer progression. Beyond fluid homeostasis, potential roles for AQPs in cancers (suggested from an expanding appreciation of their functions in normal tissues) include cell motility, membrane process extension, transport of signaling molecules, control of proliferation and apoptosis, increased mechanical compliance, and gas exchange. AQP expression also has been linked to differences in sensitivity to chemotherapy treatments, suggesting possible roles as biomarkers for personalized treatments. Development of AQP pharmacological modulators, administered in cancer-specific combinations, might inspire new interventions for controlling malignant carcinomas.
Collapse
Affiliation(s)
| | | | - Andrea J Yool
- Adelaide Medical School, University of Adelaide, Adelaide SA 5005, Australia; (P.H.C.); (J.B.)
| |
Collapse
|
35
|
Maltaneri RE, Schiappacasse A, Chamorro ME, Nesse AB, Vittori DC. Aquaporin-1 plays a key role in erythropoietin-induced endothelial cell migration. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1867:118569. [PMID: 31676353 DOI: 10.1016/j.bbamcr.2019.118569] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 08/29/2019] [Accepted: 10/10/2019] [Indexed: 01/30/2023]
Abstract
Water influx through aquaporin-1 (AQP-1) has been linked to the ability of different cell types to migrate, and therefore plays an important part in processes like metastasis and angiogenesis. Since the erythroid growth factor erythropoietin (Epo) is now recognized as an angiogenesis promoter, we investigated the participation of AQP-1 as a downstream effector of this cytokine in the migration of endothelial cells. Inhibition of AQP-1 with either mercury ions (Hg2+) or a specific siRNA led to an impaired migration of EA.hy926 endothelial cells exposed to Epo (wound-healing assays). Epo also induced the expression of AQP-1 at mRNA and protein levels, an effect which was dependent on the influx of extracellular calcium through L-type calcium channels as well as TRPC3 channels. The relationship between Epo and AQP-1 was further confirmed at shorter exposure times, as the cytokine was unable to trigger calcium influxes in cells where AQP-1 had previously been knocked down. Moreover, Epo promoted changes in the subcellular localization of AQP-1 as well as rearrangements in the actin cytoskeleton, which are consistent with a migratory phenotype. Worthy of note, carbamylated erythropoietin (cEpo), the non-erythropoietic and non-promigratory derivative of Epo, was incapable of AQP-1 modulation. The therapeutical implications of aquaporin targeting in angiogenesis-related diseases highlight the importance of the present results in the context of the relationship between AQP-1 and Epo.
Collapse
Affiliation(s)
- Romina E Maltaneri
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto del Departamento de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Buenos Aires, Argentina
| | - Agustina Schiappacasse
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto del Departamento de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Buenos Aires, Argentina
| | - María E Chamorro
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto del Departamento de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Buenos Aires, Argentina
| | - Alcira B Nesse
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto del Departamento de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Buenos Aires, Argentina
| | - Daniela C Vittori
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto del Departamento de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Buenos Aires, Argentina.
| |
Collapse
|
36
|
Osorio G, Zulueta-Dorado T, González-Rodríguez P, Bernabéu-Wittel J, Conejo-Mir J, Ramírez-Lorca R, Echevarría M. Expression Pattern of Aquaporin 1 and Aquaporin 3 in Melanocytic and Nonmelanocytic Skin Tumors. Am J Clin Pathol 2019; 152:446-457. [PMID: 31305898 DOI: 10.1093/ajcp/aqz066] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES Study of aquaporin 1 (AQP1) and aquaporin 3 (AQP3) expression to understand its potential role in the pathophysiology of skin cancer. METHODS Analysis of AQP1 and AQP3 expression by immunohistochemistry of 72 skin biopsy specimens from melanocytic skin tumors, nonmelanocytic tumors, or healthy samples. RESULTS AQP1 showed strong labeling in 100% of benign common melanocytic nevi. Small blood vessels, stroma, and melanophages surrounding different types of melanomas tumors also were positive. Tumoral melanocytes in atypical nevi and melanomas were negative for AQP1. AQP3 showed strong labeling in 100% of melanocytic nevi, 100% of atypical melanocytic nevi, and 100% of melanomas. In all basal cell carcinomas and squamous cell carcinomas, staining for AQP3 was positive. CONCLUSIONS To our knowledge, this work represents the first demonstration of AQP1/AQP3 expression in human melanocytic skin tumors. More studies are needed to understand the underlying molecular mechanisms of expression of both AQPs in melanocytic tumors and their potential as molecular therapeutic targets.
Collapse
Affiliation(s)
- Giovana Osorio
- Department of Medical Physiology and Biophysics, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Department of Dermatology, Hospital Universitario Virgen del Rocío, Seville, Spain
| | - Teresa Zulueta-Dorado
- Department of Pathological Anatomy, Hospital Universitario Virgen del Rocío, Seville, Spain
| | - Patricia González-Rodríguez
- Department of Medical Physiology and Biophysics, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - José Bernabéu-Wittel
- Department of Dermatology, Hospital Universitario Virgen del Rocío, Seville, Spain
| | - Julian Conejo-Mir
- Department of Dermatology, Hospital Universitario Virgen del Rocío, Seville, Spain
| | - Reposo Ramírez-Lorca
- Department of Medical Physiology and Biophysics, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Miriam Echevarría
- Department of Medical Physiology and Biophysics, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| |
Collapse
|
37
|
De Ieso ML, Pei JV, Nourmohammadi S, Smith E, Chow PH, Kourghi M, Hardingham JE, Yool AJ. Combined pharmacological administration of AQP1 ion channel blocker AqB011 and water channel blocker Bacopaside II amplifies inhibition of colon cancer cell migration. Sci Rep 2019; 9:12635. [PMID: 31477744 PMCID: PMC6718670 DOI: 10.1038/s41598-019-49045-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 08/13/2019] [Indexed: 12/14/2022] Open
Abstract
Aquaporin-1 (AQP1) has been proposed as a dual water and cation channel that when upregulated in cancers enhances cell migration rates; however, the mechanism remains unknown. Previous work identified AqB011 as an inhibitor of the gated human AQP1 cation conductance, and bacopaside II as a blocker of AQP1 water pores. In two colorectal adenocarcinoma cell lines, high levels of AQP1 transcript were confirmed in HT29, and low levels in SW480 cells, by quantitative PCR (polymerase chain reaction). Comparable differences in membrane AQP1 protein levels were demonstrated by immunofluorescence imaging. Migration rates were quantified using circular wound closure assays and live-cell tracking. AqB011 and bacopaside II, applied in combination, produced greater inhibitory effects on cell migration than did either agent alone. The high efficacy of AqB011 alone and in combination with bacopaside II in slowing HT29 cell motility correlated with abundant membrane localization of AQP1 protein. In SW480, neither agent alone was effective in blocking cell motility; however, combined application did cause inhibition of motility, consistent with low levels of membrane AQP1 expression. Bacopaside alone or combined with AqB011 also significantly impaired lamellipodial formation in both cell lines. Knockdown of AQP1 with siRNA (confirmed by quantitative PCR) reduced the effectiveness of the combined inhibitors, confirming AQP1 as a target of action. Invasiveness measured using transwell filters layered with extracellular matrix in both cell lines was inhibited by AqB011, with a greater potency in HT29 than SW480. A side effect of bacopaside II at high doses was a potentiation of invasiveness, that was reversed by AqB011. Results here are the first to demonstrate that combined block of the AQP1 ion channel and water pores is more potent in impairing motility across diverse classes of colon cancer cells than single agents alone.
Collapse
Affiliation(s)
- Michael L De Ieso
- Adelaide Medical School, University of Adelaide, Adelaide, SA, 5005, Australia
| | - Jinxin V Pei
- Adelaide Medical School, University of Adelaide, Adelaide, SA, 5005, Australia
| | - Saeed Nourmohammadi
- Adelaide Medical School, University of Adelaide, Adelaide, SA, 5005, Australia
| | - Eric Smith
- Adelaide Medical School, University of Adelaide, Adelaide, SA, 5005, Australia
- Oncology Department, The Basil Hetzel Institute, The Queen Elizabeth Hospital, Woodville, SA, 5011, Australia
| | - Pak Hin Chow
- Adelaide Medical School, University of Adelaide, Adelaide, SA, 5005, Australia
| | - Mohamad Kourghi
- Adelaide Medical School, University of Adelaide, Adelaide, SA, 5005, Australia
| | - Jennifer E Hardingham
- Adelaide Medical School, University of Adelaide, Adelaide, SA, 5005, Australia
- Oncology Department, The Basil Hetzel Institute, The Queen Elizabeth Hospital, Woodville, SA, 5011, Australia
| | - Andrea J Yool
- Adelaide Medical School, University of Adelaide, Adelaide, SA, 5005, Australia.
| |
Collapse
|
38
|
Wei M, Yu H, Zhang Y, Zeng J, Cai C, Shi R. Decreased expression of aquaporin 1 correlates with clinicopathological features of patients with cervical cancer. Onco Targets Ther 2019; 12:2843-2851. [PMID: 31118662 PMCID: PMC6499498 DOI: 10.2147/ott.s194650] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 02/11/2019] [Indexed: 12/18/2022] Open
Abstract
Purpose: We aimed to investigate the expression dynamics of Aquaporin 1 (AQP1) in cervical cancer and evaluate correlations among AQP1 levels and the clinicopathological features of patients with cervical cancer. Patients and methods:AQP1 mRNA and protein levels in cervical cancer and adjacent normal tissues were evaluated by quantitative reverse-transcription PCR (qRT-PCR) and western blot. Immunohistochemistry (IHC) for AQP1 was performed with a tissue microarray of cervical cancer (containing 63 cases of squamous cell cervical cancers and 10 normal cervical tissues) to investigate clinicopathological outcomes. Cut-off scores for positive expression of AQP1 were determined by receiver operating characteristic analysis. The χ2 test was used to analyze correlations among AQP1 expression and clinicopathological features of cervical cancer. Results: The expression of AQP1 was decreased in the majority of cervical cancer tissues by qRT-PCR and western blot analysis. Positive expression of AQP1 was observed in 100% (10/10) of normal cervical tissues and in 42.86% (27/63) of cervical cancer tissues by IHC analysis. The cut-off score for positive expression of AQP1 was determined to be 45% of cancer cells. Decreased expression of AQP1 was correlated with clinicopathological features including; poor pathological grade (P=0.000), late International Federation of Gynecology and Obstetrics stage (P=0.008), and positive lymph nodes (P=0.002). Conclusion: These data suggest that decreased expression of AQP1 correlated with progressive features in patients with cervical cancer. AQP1 levels may serve as a potential biomarker for the diagnosis of cervical cancer.
Collapse
Affiliation(s)
- Min Wei
- Clinical Laboratory, Nanshan Maternity & Child Healthcare Hospital, Shenzhen, Guangdong 518067, People's Republic of China
| | - Hailang Yu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, People's Republic of China
| | - Yanling Zhang
- Department of Obstetrics and Gynecology, The General Hospital of Guangzhou Military Command, Guangzhou, Guangdong 510010, People's Republic of China
| | - Jun Zeng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, People's Republic of China
| | - Cuixia Cai
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, People's Republic of China
| | - Rong Shi
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, People's Republic of China
| |
Collapse
|
39
|
Tomita Y, Palethorpe HM, Smith E, Nakhjavani M, Townsend AR, Price TJ, Yool AJ, Hardingham JE. Bumetanide-Derived Aquaporin 1 Inhibitors, AqB013 and AqB050 Inhibit Tube Formation of Endothelial Cells through Induction of Apoptosis and Impaired Migration In Vitro. Int J Mol Sci 2019; 20:ijms20081818. [PMID: 31013775 PMCID: PMC6515555 DOI: 10.3390/ijms20081818] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 04/09/2019] [Accepted: 04/10/2019] [Indexed: 12/24/2022] Open
Abstract
AqB013 and AqB050 compounds inhibit aquaporin 1 (AQP1), a dual water and ion channel implicated in tumour angiogenesis. We tested AqB013 and AqB050 either as monotherapy or in combination on tube formation of murine endothelial cells (2H-11 and 3B-11) and human umbilical vascular endothelial cells (HUVECs). The mechanism underlying their anti-tubulogenic effect was explored by examining cell viability, induction of apoptosis and migration using 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) assay, Annexin V/propidium iodide apoptosis assay and scratch wound assay. Tube formation of all the cell lines was inhibited by AqB013, AqB050 and the combination of the two compounds. The inhibition of 2H-11 and 3B-11 was frequently accompanied by impaired migration, whereas that of HUVEC treated with AqB050 and the combination was associated with reduced cell viability due to apoptosis. AqB013 and AqB050 exhibited an anti-tubulogenic effect through inhibition of AQP1-mediated cell migration and induction of apoptosis. Together with previously reported anti-tumour cell effect of AqB013 and AqB050, our findings support further evaluation of these compounds as potential cancer therapeutics.
Collapse
Affiliation(s)
- Yoko Tomita
- Solid Tumour Group, Basil Hetzel Institute, Queen Elizabeth Hospital, Woodville South, SA 5011, Australia.
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia.
- Medical Oncology, Queen Elizabeth Hospital, Woodville South, SA 5011, Australia.
| | - Helen M Palethorpe
- Solid Tumour Group, Basil Hetzel Institute, Queen Elizabeth Hospital, Woodville South, SA 5011, Australia.
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia.
| | - Eric Smith
- Solid Tumour Group, Basil Hetzel Institute, Queen Elizabeth Hospital, Woodville South, SA 5011, Australia.
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia.
| | - Maryam Nakhjavani
- Solid Tumour Group, Basil Hetzel Institute, Queen Elizabeth Hospital, Woodville South, SA 5011, Australia.
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia.
| | - Amanda R Townsend
- Solid Tumour Group, Basil Hetzel Institute, Queen Elizabeth Hospital, Woodville South, SA 5011, Australia.
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia.
- Medical Oncology, Queen Elizabeth Hospital, Woodville South, SA 5011, Australia.
| | - Timothy J Price
- Solid Tumour Group, Basil Hetzel Institute, Queen Elizabeth Hospital, Woodville South, SA 5011, Australia.
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia.
- Medical Oncology, Queen Elizabeth Hospital, Woodville South, SA 5011, Australia.
| | - Andrea J Yool
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia.
| | - Jennifer E Hardingham
- Solid Tumour Group, Basil Hetzel Institute, Queen Elizabeth Hospital, Woodville South, SA 5011, Australia.
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia.
| |
Collapse
|
40
|
Aquaporins 1, 3 and 5 in Different Tumors, their Expression, Prognosis Value and Role as New Therapeutic Targets. Pathol Oncol Res 2019; 26:615-625. [PMID: 30927206 DOI: 10.1007/s12253-019-00646-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 03/19/2019] [Indexed: 02/06/2023]
Abstract
All different types of metabolism of tumors are dependent on the flow of water molecules through the biological membrane, where fluid transfer interceded by aquaporins (AQPs) are the basis means for water entrance into the cells or outside them. Aquaporins play other roles including cellular migration, cellular expansion and cellular adhesion facilitation. Therefore, regulators of AQPs may be useful anticancer agents. Medline, Scopus, Embase, and Web of Sciences were searched. From among the papers found, 106 were related to the subject. All of the examined cancers in relation to AQP1 included adenoid cystic carcinoma, bladder, breast, cervical, colon, colorectal, hepatocellular, lung, ovarian, plural mesothelioma, prostate, renal cell carcinoma and squamous cell carcinoma. All of the studied cancers in relation with AQP3 included gastric, breast, prostate, lung, pancreas, skin, bladder, squamous cell carcinoma, cervical, adenoid cystic carcinoma, colon, colorectal, ovarian, and hepatocellular cancers and with regard to AQP5 were lung, squamous cell carcinoma, ovarian, adenoid cystic carcinoma, breast, colon, colorectal, hepatic, pancreas, gallbladder, prostate, and gastric cancers. Over or under-expression of AQP1, 3 and is exist in the mentioned cancers across different studies. Over-expression of AQP1, AQP3 and AQP5 is clearly associated with carcinogenesis, metastasis, reduced survival rate, lymph node metastasis, poorer prognosis, and cellular migration. Also, cancer treatments in relation to these markers suggest AQP reduction during the treatment.
Collapse
|
41
|
Sisto M, Ribatti D, Lisi S. Aquaporin water channels: New perspectives on the potential role in inflammation. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2019; 116:311-345. [PMID: 31036295 DOI: 10.1016/bs.apcsb.2018.11.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Aquaporins (AQPs) are a family of membrane water channel proteins that osmotically modulate water fluid homeostasis in several tissues; some of them also transport small solutes such as glycerol. At the cellular level, the AQPs regulate not only cell migration and transepithelial fluid transport across membranes, but also common events that are crucial for the inflammatory response. Emerging data reveal a new function of AQPs in the inflammatory process, as demonstrated by their dysregulation in a wide range of inflammatory diseases including edematous states, cancer, obesity, wound healing and several autoimmune diseases. This chapter summarizes the discoveries made so far about the structure and functions of the AQPs and provides updated information on the underlying mechanisms of AQPs in several human inflammatory diseases. The discovery of new functions for AQPs opens new vistas offering promise for the discovery of mechanisms and therapeutic opportunities in inflammatory disorders.
Collapse
Affiliation(s)
- Margherita Sisto
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs (SMBNOS), Section of Human Anatomy and Histology, University of Bari "Aldo Moro", Bari, Italy.
| | - Domenico Ribatti
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs (SMBNOS), Section of Human Anatomy and Histology, University of Bari "Aldo Moro", Bari, Italy
| | - Sabrina Lisi
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs (SMBNOS), Section of Human Anatomy and Histology, University of Bari "Aldo Moro", Bari, Italy
| |
Collapse
|
42
|
Chen XL, Lui EY, Ip YK, Lam SH. RNA sequencing, de novo assembly and differential analysis of the gill transcriptome of freshwater climbing perch Anabas testudineus after 6 days of seawater exposure. JOURNAL OF FISH BIOLOGY 2018; 93:215-228. [PMID: 29931780 DOI: 10.1111/jfb.13653] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 05/13/2018] [Indexed: 06/08/2023]
Abstract
To obtain transcriptomic insights into branchial responses to salinity challenge in Anabas testudineus, this study employed RNA sequencing (RNA-Seq) to analyse the gill transcriptome of A. testudineus exposed to seawater (SW) for 6 days compared with the freshwater (FW) control group. A combined FW and SW gill transcriptome was de novo assembled from 169.9 million 101 bp paired-end reads. In silico validation employing 17 A. testudineus Sanger full-length coding sequences showed that 15/17 of them had greater than 80% of their sequences aligned to the de novo assembled contigs where 5/17 had their full-length (100%) aligned and 9/17 had greater than 90% of their sequences aligned. The combined FW and SW gill transcriptome was mapped to 13,780 unique human identifiers at E-value ≤1.0E-20 while 952 and 886 identifiers were determined as up and down-regulated by 1.5 fold, respectively, in the gills of A. testudineus in SW when compared with FW. These genes were found to be associated with at least 23 biological processes. A larger proportion of genes encoding enzymes and transporters associated with molecular transport, energy production, metabolisms were up-regulated, while a larger proportion of genes encoding transmembrane receptors, G-protein coupled receptors, kinases and transcription regulators associated with cell cycle, growth, development, signalling, morphology and gene expression were relatively lower in the gills of A. testudineus in SW when compared with FW. High correlation (R = 0.99) was observed between RNA-Seq data and real-time quantitative PCR validation for 13 selected genes. The transcriptomic sequence information will facilitate development of molecular resources and tools while the findings will provide insights for future studies into branchial iono-osmoregulation and related cellular processes in A. testudineus.
Collapse
Affiliation(s)
- Xiu L Chen
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Eei Y Lui
- NUS Environmental Research Institute, National University of Singapore, Singapore
| | - Yuen K Ip
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Siew H Lam
- Department of Biological Sciences, National University of Singapore, Singapore
- NUS Environmental Research Institute, National University of Singapore, Singapore
| |
Collapse
|
43
|
Sato K, Miyamoto M, Takano M, Furuya K, Tsuda H. Different Prognostic Implications of Aquaporin-1 and Aquaporin-5 Expression among Different Histological Types of Ovarian Carcinoma. Pathol Oncol Res 2018; 26:263-271. [PMID: 30022455 DOI: 10.1007/s12253-018-0456-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 07/11/2018] [Indexed: 01/05/2023]
Abstract
The aquaporins (AQPs) are a family of transmembrane water channel proteins that are distributed in various human tissues. Recent studies have suggested that AQP expression correlates with various aspects of cancer biology that determine the aggressiveness of different cancers. Ovarian carcinoma is one of the most lethal gynecological cancers. Some studies have suggested that AQPs are expressed in ovarian carcinoma, and are associated with cancer cell growth and migration. In this study, we immunohistochemically evaluated the expression of AQP1, 3, 5, and 9 in a total of 300 ovarian carcinomas using tissue microarrays. In our analyses of correlations between aquaporin expression and overall survival, high AQP5 expression was significantly associated with poorer prognosis (P = 0.029). For AQP1, the low expression group trended towards poorer prognosis than the high expression group, but the difference was not statistically significant. When ovarian carcinomas were divided by histological types, high AQP5 expression correlated with poorer prognosis in serous carcinoma (P = 0.015), and low AQP1 expression correlated with poorer prognosis in clear cell carcinomas (P = 0.0055). By contrast, high AQP1 expression correlated with poorer prognosis in mucinous carcinoma (P = 0.0001) and endometrioid carcinoma (P = 0.021). Our studies suggest that AQPs can be useful prognostic markers in ovarian carcinoma, but their correlation with prognosis depends on the histological type of ovarian carcinoma.
Collapse
Affiliation(s)
- Kimiya Sato
- Department of Basic Pathology, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama, 359-8513, Japan.
| | - Morikazu Miyamoto
- Department of Obstetrics and Gynecology, National Defense Medical College, Tokorozawa, Japan
| | - Masashi Takano
- Department of Clinical Oncology, National Defense Medical College, Tokorozawa, Japan
| | - Kenichi Furuya
- Department of Obstetrics and Gynecology, National Defense Medical College, Tokorozawa, Japan
| | - Hitoshi Tsuda
- Department of Basic Pathology, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama, 359-8513, Japan
| |
Collapse
|
44
|
Bellezza G, Vannucci J, Bianconi F, Metro G, Del Sordo R, Andolfi M, Ferri I, Siccu P, Ludovini V, Puma F, Sidoni A, Cagini L. Prognostic implication of aquaporin 1 overexpression in resected lung adenocarcinoma. Interact Cardiovasc Thorac Surg 2018; 25:856-861. [PMID: 29106595 DOI: 10.1093/icvts/ivx202] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 05/24/2017] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES Aquaporins (AQPs) are a group of transmembrane water-selective channel proteins thought to play a role in the regulation of water permeability for plasma membranes. Indeed, high AQP levels have been suggested to promote the progression, invasion and metastasis of tumours. Specifically, AQP1 and AQP5 overexpression in lung adenocarcinoma (AC) have been suggested to be involved in molecular mechanisms in lung cancer. The aim of this retrospective cohort single-centre study was to assess both the levels of expression and therein the prognostic significance, regarding outcome of AQP1 and AQP5 in resected AC patients. METHODS Patients with histological diagnoses of lung AC submitted to pulmonary resection were included in this cohort study. Tissue microarrays containing cores from 185 ACs were prepared. AQP1 and AQP5 expressions were assessed by immunohistochemistry. Results were scored as either low (Score 0-2) or high (Score 3-9). Clinical data, pathological tumour-node-metastasis staging and follow-up were recorded. Multivariate Cox survival analysis and Fisher's t-test were performed. RESULTS AQP1 overexpression was detected in 85 (46%) patients, while AQP5 overexpression was observed in 45 (24%) patients. AQP1 did not result being significantly correlated with clinical and pathological parameters, while AQP5 resulted more expressed in AC with mucinous and papillary predominant patterns. Patients with AQP1 overexpression had shorter disease-free survival (P = 0.001) compared with patients without AQP1 overexpression. Multivariate analysis confirmed that AQP1 overexpression was significantly associated with shorter disease-free survival (P = 0.001). CONCLUSIONS Our results evidenced that AQP1 overexpression resulted in a shorter disease-free survival in lung AC patients. Being so, AQP1 overexpression might be an important prognostic marker in lung AC.
Collapse
Affiliation(s)
- Guido Bellezza
- Section of Anatomic Pathology and Histology, Department of Experimental Medicine, University of Perugia Medical School, Perugia, Italy
| | - Jacopo Vannucci
- Department of Thoracic Surgery, University of Perugia Medical School, Perugia, Italy
| | - Fortunato Bianconi
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Giulio Metro
- Division of Medical Oncology, S. Maria della Misericordia Hospital, Perugia, Italy
| | - Rachele Del Sordo
- Section of Anatomic Pathology and Histology, Department of Experimental Medicine, University of Perugia Medical School, Perugia, Italy
| | - Marco Andolfi
- Department of Thoracic Surgery, University of Perugia Medical School, Perugia, Italy
| | - Ivana Ferri
- Section of Anatomic Pathology and Histology, Department of Experimental Medicine, University of Perugia Medical School, Perugia, Italy
| | - Paola Siccu
- Section of Anatomic Pathology and Histology, Department of Experimental Medicine, University of Perugia Medical School, Perugia, Italy
| | - Vienna Ludovini
- Division of Medical Oncology, S. Maria della Misericordia Hospital, Perugia, Italy
| | - Francesco Puma
- Department of Thoracic Surgery, University of Perugia Medical School, Perugia, Italy
| | - Angelo Sidoni
- Section of Anatomic Pathology and Histology, Department of Experimental Medicine, University of Perugia Medical School, Perugia, Italy
| | - Lucio Cagini
- Department of Thoracic Surgery, University of Perugia Medical School, Perugia, Italy
| |
Collapse
|
45
|
Qiu J, Zhang Y, Chen H, Guo Z. MicroRNA-488 inhibits proliferation, invasion and EMT in osteosarcoma cell lines by targeting aquaporin 3. Int J Oncol 2018; 53:1493-1504. [PMID: 30015825 PMCID: PMC6086618 DOI: 10.3892/ijo.2018.4483] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 06/06/2018] [Indexed: 02/06/2023] Open
Abstract
It has been reported that aquaporin 3 (AQP3) expression is associated with the progression of numerous types of cancer and microRNA (miRNA/miR) processing. However, the effects and precise mechanisms of AQP3 in osteosarcoma (OS) have not been fully elucidated. The present study aimed to investigate the interaction between AQP3 and miR-488 in OS. The reverse transcription-quantitative polymerase chain reaction (RT-qPCR) assay was performed to detect the levels of AQP3 and miR-488 in OS tissues and cell lines, respectively. Cell proliferation, invasion and epithelial-mesenchymal transition (EMT) were detected to analyze the biological functions of miR-488 and AQP3 in OS cells. Furthermore, mRNA and protein levels of AQP3 was measured by RT-qPCR and western blot analysis. Furthermore, AQP3 was validated as an miR-488 target using luciferase assays in OS cells. The present study revealed that the miR-488 level was significantly downregulated in OS tissues and cell lines, and that the expression of AQP3 was markedly increased. Notable, the low miR-488 expression level was associated with upregulated AQP3 expression in OS tissues. Furthermore, introduction of miR-488 markedly suppressed the proliferation, invasion and EMT of OS cells. However, miR-488-knockdown increased the proliferation, invasion and EMT of OS cells. The present study demonstrated that miR-488 could directly target AQP3 using bioinformatics analysis and luciferase reporter assays. In addition, AQP3-silencing had similar effects to miR-488 overexpression on OS cells. Overexpression of AQP3 in OS cells partially reversed the inhibitory effects of miR-488 mimic. miR-488 inhibited the proliferation, invasion and EMT of OS cells by directly downregulating AQP3 expression, and miR-488 targeting AQP3 was responsible for inhibition of the proliferation, invasion and EMT of OS cells.
Collapse
Affiliation(s)
- Jing Qiu
- Department of Administration, Cangzhou Central Hospital, Cangzhou, Hebei 061000, P.R. China
| | - Yongzhi Zhang
- Department of Radiology, Cangzhou Central Hospital, Cangzhou, Hebei 061000, P.R. China
| | - Hu Chen
- Department of Scientific Research, Cangzhou Central Hospital, Cangzhou, Hebei 061000, P.R. China
| | - Zhi Guo
- Department of Human Resources, Cangzhou Central Hospital, Cangzhou, Hebei 061000, P.R. China
| |
Collapse
|
46
|
Yamazato Y, Shiozaki A, Ichikawa D, Kosuga T, Shoda K, Arita T, Konishi H, Komatsu S, Kubota T, Fujiwara H, Okamoto K, Kishimoto M, Konishi E, Marunaka Y, Otsuji E. Aquaporin 1 suppresses apoptosis and affects prognosis in esophageal squamous cell carcinoma. Oncotarget 2018; 9:29957-29974. [PMID: 30042826 PMCID: PMC6057448 DOI: 10.18632/oncotarget.25722] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 06/19/2018] [Indexed: 12/31/2022] Open
Abstract
Aquaporin 1 (AQP1) is a membrane protein whose main function is to transfer water across cellular membranes. Recent studies have described important roles for AQP1 in epithelial carcinogenesis and tumor behavior. The objectives of the present study were to investigate the role of AQP1 in the regulation of genes involved in tumor progression and the clinicopathological significance of its expression in esophageal squamous cell carcinoma (ESCC). An immunohistochemical analysis was performed on 50 primary tumor samples underwent esophagectomy. AQP1 was primarily located in the cytoplasm and/or the nuclear membrane of carcinoma cells. The 5-year survival rate of patients with the “cytoplasm dominant” expression of AQP1 (47.1%) was significantly lower than other patients (83.2%). The depletion of AQP1 using siRNA induced apoptosis in TE5 and TE15 cells. The results of microarray analysis revealed that Death receptor signaling pathway-related genes were changed in AQP1-depleted TE5 cells. In conclusion, the results of the present study suggested that the cytoplasm dominant expression of AQP1 is related to a poor prognosis in patients with ESCC, and that it activates tumor progression by affecting Death receptor signaling pathway. These results provide insights into the role of AQP1 as a mediator of and/or a biomarker for ESCC.
Collapse
Affiliation(s)
- Yuzo Yamazato
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Atsushi Shiozaki
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Daisuke Ichikawa
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan.,Department of Gastrointestinal, Breast & Endocrine Surgery, Faculty of Medicine, University of Yamanashi, Chuo, 409-3898, Japan
| | - Toshiyuki Kosuga
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Katsutoshi Shoda
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Tomohiro Arita
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Hirotaka Konishi
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Shuhei Komatsu
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Takeshi Kubota
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Hitoshi Fujiwara
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Kazuma Okamoto
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Mitsuo Kishimoto
- Department of Pathology, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Eiichi Konishi
- Department of Pathology, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Yoshinori Marunaka
- Departments of Molecular Cell Physiology and Bio-Ionomics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan.,Japan Institute for Food Education and Health, St. Agnes' University, Kyoto, 602-8013, Japan
| | - Eigo Otsuji
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| |
Collapse
|
47
|
Gao H, Dong H, Li G, Jin H. Combined treatment with acetazolamide and cisplatin enhances chemosensitivity in laryngeal carcinoma Hep-2 cells. Oncol Lett 2018; 15:9299-9306. [PMID: 29928333 PMCID: PMC6004654 DOI: 10.3892/ol.2018.8529] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 01/17/2018] [Indexed: 12/14/2022] Open
Abstract
The aim of the present study was to determine whether acetazolamide (Ace) treatment enhances the chemosensitivity of Hep-2 laryngeal cells to cisplatin (Cis). At the logarithmic growth phase, Hep-2 cells were treated with Ace, Cis or both, and cell viability was detected using an MTT assay. The degree of apoptosis was detected using flow cytometry. Expression levels of apoptosis-related proteins, including BCL2 apoptosis regulator (bcl-2), BCL2 associated X (bax) and caspase-3, and of proliferation-related proteins, including proliferating cell nuclear antigen (PCNA) and tumor protein p53 (P53), were detected using western blotting. mRNA expression levels of aquaporin-1 (AQP1) in each group were detected using reverse transcription-polymerase chain reaction. Compared with the drugs used alone, treatment with both Ace and Cis displayed synergistic effects on the growth inhibition and apoptosis induction in Hep-2 cells. The Ace/Cis combination decreased the expression of PCNA but increased the expression of p53. In addition, the combination treatment decreased the ratio of bcl-2/bax and increased the expression of caspase-3, as well as decreased the expression of AQP1. These results demonstrated that the combined use of Ace and Cis enhanced the chemosensitivity of laryngeal carcinoma cells.
Collapse
Affiliation(s)
- Hong Gao
- Department of Head and Neck Surgery, Tumor Hospital of Jilin Province, Changchun, Jilin 130012, P.R. China
| | - Hai Dong
- Tonghua Mining Group Limited Liability Company General Hospital, Baishan, Jilin 134300, P.R. China
| | - Guijun Li
- Tonghua Mining Group Limited Liability Company General Hospital, Baishan, Jilin 134300, P.R. China
| | - Hui Jin
- Department of Head and Neck Surgery, Tumor Hospital of Jilin Province, Changchun, Jilin 130012, P.R. China
| |
Collapse
|
48
|
De Ieso ML, Yool AJ. Mechanisms of Aquaporin-Facilitated Cancer Invasion and Metastasis. Front Chem 2018; 6:135. [PMID: 29922644 PMCID: PMC5996923 DOI: 10.3389/fchem.2018.00135] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 04/09/2018] [Indexed: 01/02/2023] Open
Abstract
Cancer is a leading cause of death worldwide, and its incidence is rising with numbers expected to increase 70% in the next two decades. The fact that current mainline treatments for cancer patients are accompanied by debilitating side effects prompts a growing demand for new therapies that not only inhibit growth and proliferation of cancer cells, but also control invasion and metastasis. One class of targets gaining international attention is the aquaporins, a family of membrane-spanning water channels with diverse physiological functions and extensive tissue-specific distributions in humans. Aquaporins−1,−2,−3,−4,−5,−8, and−9 have been linked to roles in cancer invasion, and metastasis, but their mechanisms of action remain to be fully defined. Aquaporins are implicated in the metastatic cascade in processes of angiogenesis, cellular dissociation, migration, and invasion. Cancer invasion and metastasis are proposed to be potentiated by aquaporins in boosting tumor angiogenesis, enhancing cell volume regulation, regulating cell-cell and cell-matrix adhesions, interacting with actin cytoskeleton, regulating proteases and extracellular-matrix degrading molecules, contributing to the regulation of epithelial-mesenchymal transitions, and interacting with signaling pathways enabling motility and invasion. Pharmacological modulators of aquaporin channels are being identified and tested for therapeutic potential, including compounds derived from loop diuretics, metal-containing organic compounds, plant natural products, and other small molecules. Further studies on aquaporin-dependent functions in cancer metastasis are needed to define the differential contributions of different classes of aquaporin channels to regulation of fluid balance, cell volume, small solute transport, signal transduction, their possible relevance as rate limiting steps, and potential values as therapeutic targets for invasion and metastasis.
Collapse
Affiliation(s)
- Michael L De Ieso
- Department of Physiology, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Andrea J Yool
- Department of Physiology, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
49
|
Jakowiecki J, Sztyler A, Filipek S, Li P, Raman K, Barathiraja N, Ramakrishna S, Eswara JR, Altaee A, Sharif AO, Ajayan PM, Renugopalakrishnan V. Aquaporin-graphene interface: relevance to point-of-care device for renal cell carcinoma and desalination. Interface Focus 2018; 8:20170066. [PMID: 29696094 DOI: 10.1098/rsfs.2017.0066] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/02/2018] [Indexed: 12/18/2022] Open
Abstract
The aquaporin superfamily of hydrophobic integral membrane proteins constitutes water channels essential to the movement of water across the cell membrane, maintaining homeostatic equilibrium. During the passage of water between the extracellular and intracellular sides of the cell, aquaporins act as ultra-sensitive filters. Owing to their hydrophobic nature, aquaporins self-assemble in phospholipids. If a proper choice of lipids is made then the aquaporin biomimetic membrane can be used in the design of an artificial kidney. In combination with graphene, the aquaporin biomimetic membrane finds practical application in desalination and water recycling using mostly Escherichia coli AqpZ. Recently, human aquaporin 1 has emerged as an important biomarker in renal cell carcinoma. At present, the ultra-sensitive sensing of renal cell carcinoma is cumbersome. Hence, we discuss the use of epitopes from monoclonal antibodies as a probe for a point-of-care device for sensing renal cell carcinoma. This device works by immobilizing the antibody on the surface of a single-layer graphene, that is, as a microfluidic device for sensing renal cell carcinoma.
Collapse
Affiliation(s)
- Jakub Jakowiecki
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| | - Agnieszka Sztyler
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| | - Slawomir Filipek
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| | - Pingzuo Li
- Shanghai Research Center of Biotechnology, Chinese Academy of Sciences, Shanghai 200233, People's Republic of China
| | - Karthik Raman
- EREOI Power Solutions Pvt Ltd, no. 9, Nagarbhavi 1st Stage, 3rd Block, 1st Main Road, BDA Layout, Pattegarapalya Main Road, Bangalore 560079, India
| | | | - Seeram Ramakrishna
- Nanoscience and Nanotechnology Initiative, National University of Singapore, Engineering Drive 3, 117576 Singapore, Republic of Singapore
| | - Jairam R Eswara
- Division of Urology, Brigham and Women's Hospital, 75 Francis Street, Boston, MA 02115, USA
| | - Ali Altaee
- School of Civil and Environmental Engineering, University of Technology, Sydney, New South Wales 2007, Australia
| | - Adel O Sharif
- Center for Osmosis Research and Applications, Department of Chemical and Process Engineering, University of Surrey, Guildford GU2 7XH, UK
| | - Pulickel M Ajayan
- Department of Materials Science and Nanoengineering, Rice University, Houston, TX 77005, USA
| | - Venkatesan Renugopalakrishnan
- Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.,Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA
| |
Collapse
|
50
|
Yang J, Zhang JN, Chen WL, Wang GS, Mao Q, Li SQ, Xiong WH, Lin YY, Ge JW, Li XX, Gu Z, Zhao CR. Effects of AQP5 gene silencing on proliferation, migration and apoptosis of human glioma cells through regulating EGFR/ERK/ p38 MAPK signaling pathway. Oncotarget 2018; 8:38444-38455. [PMID: 28404978 PMCID: PMC5503544 DOI: 10.18632/oncotarget.16461] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 01/06/2017] [Indexed: 01/05/2023] Open
Abstract
We investigated the effects of aquaporin 5 (AQP5) gene silencing on the proliferation, migration and apoptosis of human glioma cells through regulating the EGFR/ERK/p38MAPK signaling pathway. qRT-PCR was applied to examine the mRNA expressions of AQP5 in five human glioma cell lines. U87-MG, U251 and LN229 cells were selected and assigned into blank, vector, AQP5 siRNA and FlagAQP5 groups. MTT assay was used to measure cell proliferation. Flow cytometry (FCM) with AnnexinV-FITC/PI double staining and PI staining were employed to analyze cell apoptosis and cell cycle respectively. Scratch test was used to detect cell migration. Western blotting was performed to determine the EGFR/ERK/p38 MAPK signaling pathway-related proteins. Results showed that the positive expression of AQP5 in primary glioblastoma was associated with the tumor size and whether complete excision was performed. The mRNA expressions of AQP5 in cell lines of U87-MG, U251 and LN229 were significantly higher than in U373 and T98G. The proliferation rates of U87-MG, U251 and LN229 cells in the AQP5 siRNA group were lower than in the vector and blank groups. The apoptosis rate increased in the AQP5 siRNA group compared with the vector group. Scratch test demonstrated that AQP5 gene silencing could suppress cell migration. Compared with the vector and blank groups, the AQP5 siRNA group showed decreased expressions of the ERK1/2, p38 MAPK, p-ERK1/2 and p-p38 MAPK proteins. AQP5 gene silencing could inhibit the cell proliferation, reduce cell migration and promote the cell apoptosis of U87-MG, U251 and LN229 by suppressing EGFR/ERK/p38 MAPK signaling pathway.
Collapse
Affiliation(s)
- Jian Yang
- Department of Neurosurgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, P. R. China
| | - Jian-Nan Zhang
- Operation Room, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, P. R. China
| | - Wei-Lin Chen
- Department of Neurosurgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, P. R. China
| | - Gui-Song Wang
- Department of Neurosurgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, P. R. China
| | - Qing Mao
- Department of Neurosurgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, P. R. China
| | - Shan-Quan Li
- Operation Room, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, P. R. China
| | - Wen-Hao Xiong
- Department of Neurosurgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, P. R. China
| | - Ying-Ying Lin
- Department of Neurosurgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, P. R. China
| | - Jian-Wei Ge
- Department of Neurosurgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, P. R. China
| | - Xiao-Xiong Li
- Department of Neurosurgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, P. R. China
| | - Zhao Gu
- Department of Neurosurgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, P. R. China
| | - Chun-Run Zhao
- Department of Neurosurgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, P. R. China
| |
Collapse
|