1
|
Jiang H, Bai W, Yang Y, Zhou G, Li J, Li X, Wan X, Shao J. Biliverdin alleviates cerebral ischemia-reperfusion injury by regulating the P4hb/MAPK/mTOR pathway to inhibit autophagy. Cell Signal 2025; 132:111815. [PMID: 40258578 DOI: 10.1016/j.cellsig.2025.111815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 03/26/2025] [Accepted: 04/14/2025] [Indexed: 04/23/2025]
Abstract
BACKGROUND Biliverdin (BV) exhibits anti-inflammatory and antioxidative effects. Autophagy activation is crucial in the pathogenesis of cerebral ischemia-reperfusion injury (CIRI). This study aimed to investigate whether BV could ameliorate CIRI by regulating autophagy. METHODS A middle cerebral artery occlusion-reperfusion (MCAO/R) model in Sprague-Dawley (SD) rats and an oxygen-glucose deprivation/reoxygenation (OGD/R) model in PC12 cells were employed to explore the neuroprotective effects of BV and its underlying mechanisms. In these rats, once BV was administered post-MCAO/R, its treatment efficacy and underlying mechanisms were evaluated through behavioral, morphological, and molecular analyses. Alternatively, for PC12 cells, following successful OGD/R modeling, BV, autophagy activator rapamycin, prolyl 4-hydroxylase beta (P4hb) knockdown or overexpression, and the specific inhibitors of three classic autophagy pathways were applied. Cell viability (using CCK8 assay), Calcein/PI staining, autophagosome staining (using MDC assay), reverse transcription quantitative polymerase chain reaction, and western blot were subsequently carried out to investigate the mechanisms by which BV ameliorates CIRI. RESULTS BV alleviated CIRI by inhibiting autophagy. Further investigation suggested that BV downregulated P4hb expression. In vitro experiments showed that P4hb knockdown reduced autophagy in post-CIRI cells, while its overexpression reversed the effects of BV. Rescue experiments indicated that MAPK pathway inhibitors counteracted the effects of P4hb overexpression on autophagy post-CIRI. CONCLUSION BV improves CIRI by regulating the P4hb/MAPK/mTOR signaling pathway to inhibit autophagy, offering a novel therapeutic strategy for ischemic stroke.
Collapse
Affiliation(s)
- Huan Jiang
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, 650032 Kunming, Yunnan Province, China
| | - Wenya Bai
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, 650032 Kunming, Yunnan Province, China
| | - Yuan Yang
- Department of Anesthesiology, Second Affiliated Hospital of Kunming Medical University, 650000 Kunming, Yunnan Province, China
| | - Guilin Zhou
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, 650032 Kunming, Yunnan Province, China
| | - Junjie Li
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, 650032 Kunming, Yunnan Province, China
| | - Xuelian Li
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, 650032 Kunming, Yunnan Province, China
| | - Xiaohong Wan
- Department of Anesthesiology, Second Affiliated Hospital of Kunming Medical University, 650000 Kunming, Yunnan Province, China.
| | - Jianlin Shao
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, 650032 Kunming, Yunnan Province, China.
| |
Collapse
|
2
|
Li J, Jiang H, Tan G, Lv Z, Liu Z, Guo H, Sun Z, Xu X, Shi D. Fibrocartilage hyalinization: A potential therapeutic strategy for articular fibrocartilage. J Orthop Translat 2025; 52:313-324. [PMID: 40421144 PMCID: PMC12104164 DOI: 10.1016/j.jot.2025.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 04/20/2025] [Accepted: 04/23/2025] [Indexed: 05/28/2025] Open
Abstract
Articular fibrocartilage is commonly observed on the joint surface in osteoarthritis (OA) or cartilage injury, often seen as a result of cartilage degeneration. Compared to hyaline cartilage, fibrocartilage exhibits inferior mechanical properties and biological functions, which contribute to further cartilage degeneration and the progression of OA. Despite this, research on cartilage regeneration has not sufficiently addressed the specific challenges and strategies related to fibrocartilage. Although fibrocartilage formation is an unavoidable outcome during cartilage repair, it offers several benefits in the regeneration process, such as providing a natural cell source and establishing a strong integration with surrounding tissues. Recently, a therapeutic approach focused on the in-situ modification of fibrocartilage to promote hyaline cartilage regeneration, referred to as "fibrocartilage hyalinization", has been proposed. Our recent work has demonstrated the feasibility of converting existing fibrocartilage into hyaline cartilage in vivo within the injured area. Key elements of this strategy include modifying the extracellular matrix (ECM), targeting fibrotic chondrocytes, and altering the local microenvironment. This review summarizes the current understanding of articular fibrocartilage's characteristics and mechanisms, while also discussing potential approaches and the feasibility of fibrocartilage hyalinization for cartilage regeneration.
Collapse
Affiliation(s)
- Jiawei Li
- Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, PR China
- Department of Orthopedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325200, Zhejiang, PR China
| | - Huiming Jiang
- Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, PR China
| | - Guihua Tan
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu, PR China
| | - Zhongyang Lv
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu, PR China
| | - Zizheng Liu
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu, PR China
| | - Hu Guo
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu, PR China
| | - Ziying Sun
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu, PR China
| | - Xingquan Xu
- Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, PR China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu, PR China
- Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, PR China
| | - Dongquan Shi
- Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, PR China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu, PR China
- Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, PR China
| |
Collapse
|
3
|
Rüdig V, Braun T, Fleischmann N, Reinhardt A, Wehrmann J, Gögele C, Kokozidou M, Werner C, Mrosewski I, Schulze-Tanzil G. Differential Responses of Articular Chondrocytes from Diabetic and Non-Diabetic Rats to Glucose Conditions and Inflammatory Stimuli: Influence of a Vitamin K2 Enriched Diet. Cartilage 2025:19476035251317091. [PMID: 40119526 PMCID: PMC11948243 DOI: 10.1177/19476035251317091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 01/11/2025] [Accepted: 01/16/2025] [Indexed: 03/24/2025] Open
Abstract
ObjectiveMeanwhile, the association between osteoarthritis (OA) and type 2 diabetes mellitus (T2DM) is well known. However, it remains unclear whether vitamin K2 (vit.K2) could exert chondroprotective effects. Hence, this study investigates the interrelation between OA and T2DM under the influence of vit.K2 in chondrocytes.MethodsUsing an in vitro OA/T2DM model, articular chondrocytes were harvested from adult male Zucker diabetic fatty (ZDF) Leptfa/Crl rats, categorized as non-diabetic (heterozygous: fa/+) or diabetic (homozygous: fa/fa). Based on vit.K2 supplementation of the rats, four groups arose: control without or with vit.K2 and diabetic without or with vit.K2 supplementation. Inflammatory conditions simulating OA were induced by exposing chondrocytes to tumor necrosis factor alpha (TNFα) and C5a. Chondrocyte response was analyzed using proliferation, metabolic and wound healing assays, immunolabeling, as well as gene expression analyses.ResultsThe proliferation of chondrocytes from control rats with vit.K2 supplementation was significantly higher than those without vit.K2 feeding, under both normoglycemic (NG) and hyperglycemic (HG) conditions. The wound closure ability of chondrocytes was significantly higher in the non-diabetic compared with the diabetic chondrocyte donor group. TNFα and C5a exerted catabolic effects under HG conditions by significantly inducing Tnfα gene activity in chondrocytes of control rats without vit.K2 supplementation and a significant reduction of collagen type 2 gene expression in those cells of control rats with vit.K2 supplementation.ConclusionsThe response of chondrocytes derived from non-diabetic and diabetic donors differed. The vit.K2 supply of chondrocyte donor rats exerted anabolic effects on chondrocytes.
Collapse
Affiliation(s)
- Vivienne Rüdig
- Institute of Anatomy and Cell Biology, Paracelsus Medical University, Nuremberg, Germany
| | - Tobias Braun
- Institute of Anatomy and Cell Biology, Paracelsus Medical University, Nuremberg, Germany
| | - Nils Fleischmann
- Institute of Anatomy and Cell Biology, Paracelsus Medical University, Nuremberg, Germany
| | - Alexander Reinhardt
- Institute of Anatomy and Cell Biology, Paracelsus Medical University, Nuremberg, Germany
| | - Julius Wehrmann
- Institute of Anatomy and Cell Biology, Paracelsus Medical University, Nuremberg, Germany
| | - Clemens Gögele
- Institute of Anatomy and Cell Biology, Paracelsus Medical University, Nuremberg, Germany
| | - Maria Kokozidou
- Institute of Anatomy and Cell Biology, Paracelsus Medical University, Nuremberg, Germany
| | - Christian Werner
- Institute of Anatomy and Cell Biology, Paracelsus Medical University, Nuremberg, Germany
| | | | - Gundula Schulze-Tanzil
- Institute of Anatomy and Cell Biology, Paracelsus Medical University, Nuremberg, Germany
| |
Collapse
|
4
|
Zhang J, Gao P, Chang WR, Song JY, An FY, Wang YJ, Xiao ZP, Jin H, Zhang XH, Yan CL. The role of HIF-1α in hypoxic metabolic reprogramming in osteoarthritis. Pharmacol Res 2025; 213:107649. [PMID: 39947451 DOI: 10.1016/j.phrs.2025.107649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 02/08/2025] [Accepted: 02/09/2025] [Indexed: 02/17/2025]
Abstract
The joint dysfunction caused by osteoarthritis (OA) is increasingly becoming a major challenge in global healthcare, and there is currently no effective strategy to prevent the progression of OA. Therefore, better elucidating the relevant mechanisms of OA occurrence and development will provide theoretical basis for formulating new prevention and control strategies. Due to long-term exposure of cartilage tissue to the hypoxic microenvironment of joints, metabolic reprogramming changes occur. Hypoxia-inducible factor-1alpha (HIF-1α), as a core gene regulating hypoxia response in vivo, plays an important regulatory role in the hypoxic metabolism of chondrocytes. HIF-1α adapts to the hypoxic microenvironment by regulating metabolic reprogramming changes such as glycolysis, oxidative phosphorylation (OXPHOS), amino acid metabolism, and lipid metabolism in OA chondrocytes. In addition, HIF-1α also regulates macrophage polarization and synovial inflammation, chondrocytes degeneration and extracellular matrix (ECM) degradation, subchondral bone remodeling and angiogenesis in the hypoxic microenvironment of OA, and affects the pathophysiological progression of OA. Consequently, the regulation of chondrocytes metabolic reprogramming by HIF-1α has become an important therapeutic target for OA. Therefore, this article reviews the mechanism of hypoxia affecting chondrocyte metabolic reprogramming, focusing on the regulatory mechanism of HIF-1α on chondrocyte metabolic reprogramming, and summarizes potential effective ingredients or targets targeting chondrocyte metabolic reprogramming, in order to provide more beneficial basis for the prevention and treatment of clinical OA and the development of effective drugs.
Collapse
Affiliation(s)
- Jie Zhang
- School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu 73000, PR China
| | - Peng Gao
- School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu 73000, PR China
| | - Wei-Rong Chang
- School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu 73000, PR China
| | - Jia-Yi Song
- School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu 73000, PR China
| | - Fang-Yu An
- Teaching Experiment Training Center, Gansu University of Chinese Medicine, Lanzhou, Gansu 73000, PR China.
| | - Yu-Jie Wang
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu 73000, PR China
| | - Zhi-Pan Xiao
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu 73000, PR China
| | - Hua Jin
- Clinical College of Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu 73000, PR China.
| | - Xu-Hui Zhang
- Clinical College of Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu 73000, PR China
| | - Chun-Lu Yan
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu 73000, PR China; Research Center of Traditional Chinese Medicine of Gansu, Gansu University of Chinese Medicine, Lanzhou, Gansu 73000, PR China.
| |
Collapse
|
5
|
Zou L, Yang K, Yu Y, Wang C, Zhao J, Lu C, He D. Analysis of joint protein expression profile in anterior disc displacement of TMJ with or without OA. Oral Dis 2024; 30:4463-4482. [PMID: 38251222 DOI: 10.1111/odi.14871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 12/09/2023] [Accepted: 01/07/2024] [Indexed: 01/23/2024]
Abstract
OBJECTIVE Anterior disc displacement (ADD) is a common clinical issue and may cause osteoarthritis (OA). However, the research of protein changes in synovial fluid as disease development marker and potential treatment clue is still insufficient. MATERIALS AND METHODS We conducted the high-resolution mass spectrometry (MS) of synovial fluid collected from 60 patients with normal disk position to ADD and ADD with osteoarthritis (OA). The proteins with significant changes among the 3 groups were analyzed by biological information and further validated by in primary rat condyle chondrocytes and OA animal model. RESULTS FGL2, THBS4, TNC, FN1, OMD etc. were significantly increased in ADD without OA (p < 0.05), which reflected the active extracellular matrix and collagen metabolism. FGFR1, FBLN2, GRB2 etc. were significantly increased in ADD with OA group (p < 0.05), which revealed an association with apoptosis and ferroptosis. Proteins such as P4HB, CBLN4, FHL1, VIM continuously increase in the whole disease progress (p < 0.05). Both the in vitro and in vivo results are consistent with protein changes detected in MS profile. CONCLUSION This study firstly provides the expression changes of proteins from normal disc condyle relationship toward ADD with OA, which can be selected and studied further as disease progress marker and potential treatment targets.
Collapse
Affiliation(s)
- Luxiang Zou
- Department of Oral Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
- National Clinical Research Center of Stomatology, Shanghai, China
| | - Kaiwen Yang
- Department of Oral Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
- National Clinical Research Center of Stomatology, Shanghai, China
| | - Yeke Yu
- Department of Oral Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
- National Clinical Research Center of Stomatology, Shanghai, China
| | - Chuyao Wang
- Department of Oral Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
- National Clinical Research Center of Stomatology, Shanghai, China
| | - Jieyun Zhao
- Department of Oral Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
- National Clinical Research Center of Stomatology, Shanghai, China
| | - Chuan Lu
- Department of Oral Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
- National Clinical Research Center of Stomatology, Shanghai, China
| | - Dongmei He
- Department of Oral Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
- National Clinical Research Center of Stomatology, Shanghai, China
| |
Collapse
|
6
|
Padhee S, Mohanty D, Sahoo A, Jena S, Chandra Panda P, Ray A, Nayak S. Exploring the mechanism of action of Vanda tessellata extract for the treatment of osteoarthritis through network pharmacology, molecular modelling and experimental assays. Heliyon 2024; 10:e35971. [PMID: 39224251 PMCID: PMC11367146 DOI: 10.1016/j.heliyon.2024.e35971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/30/2024] [Accepted: 08/07/2024] [Indexed: 09/04/2024] Open
Abstract
The present study employed a comprehensive approach of network pharmacology, molecular dynamic simulation and in-vitro assays to investigate the underlying mechanism of the anti-osteoarthritic potential of Vanda tessellata extract (VTE). Thirteen active compounds of VTE were retrieved from the literature and the IMPPAT database. All of these passed the drug likeness and oral bioavailability parameters. A total of 535 VTE targets and 2577 osteoarthritis related targets were obtained. The compound-target-disease network analysis revealed vanillin, daucosterol, gigantol and syringaldehyde as the core key components. Protein-protein interaction analysis revealed BCL2, FGF2, ICAM 1, MAPK1, MMP1, MMP2, MMP9, COX2, STAT3 and ESR1 as the hub genes. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis revealed AGE-RAGE signalling pathway, HIF-1 signalling pathway and ESR signalling pathway as the major signalling pathway of VTE involved in treating osteoarthritis. Molecular docking analysis showed daucosterol and gigantol to have good binding affinity with BCL2, ESR1 and MMP9, and the results were further confirmed through molecular dynamics simulation analysis. The mechanism predicted by network pharmacology was validated in vitro on IL-1β-induced SW982 synovial cells. VTE did not show any cytotoxicity and inhibited the migration of SW982 cells. VTE inhibited the expression level of IL-6, IL-8, TNF-α, PGE-2, MMP-2 and MMP-9 in a dose-dependent manner. VTE inhibited nuclear translocation of NF- κβ and suppressed phosphorylation of p38, extracellular signal-regulated kinase (ERK), and c-Jun NH2-terminal kinase (JNK) of the mitogen-activated protein kinase (MAPK) signalling pathway. The results showed that VTE exerted an anti-osteoarthritic effect by a multi-target, multi-component and multi-signalling pathway approach.
Collapse
Affiliation(s)
- Sucheesmita Padhee
- Centre for Biotechnology, Siksha O Anusandhan (Deemed to be University), Kalinganagar, Ghatikia, Bhubaneswar, India
| | - Debajani Mohanty
- Centre for Biotechnology, Siksha O Anusandhan (Deemed to be University), Kalinganagar, Ghatikia, Bhubaneswar, India
| | - Ambika Sahoo
- Centre for Biotechnology, Siksha O Anusandhan (Deemed to be University), Kalinganagar, Ghatikia, Bhubaneswar, India
| | - Sudipta Jena
- Centre for Biotechnology, Siksha O Anusandhan (Deemed to be University), Kalinganagar, Ghatikia, Bhubaneswar, India
| | - Pratap Chandra Panda
- Centre for Biotechnology, Siksha O Anusandhan (Deemed to be University), Kalinganagar, Ghatikia, Bhubaneswar, India
| | - Asit Ray
- Centre for Biotechnology, Siksha O Anusandhan (Deemed to be University), Kalinganagar, Ghatikia, Bhubaneswar, India
| | - Sanghamitra Nayak
- Centre for Biotechnology, Siksha O Anusandhan (Deemed to be University), Kalinganagar, Ghatikia, Bhubaneswar, India
| |
Collapse
|
7
|
Liu K, Zhang B, Zhang X. Promoting Articular Cartilage Regeneration through Microenvironmental Regulation. J Immunol Res 2024; 2024:4751168. [PMID: 39104594 PMCID: PMC11300091 DOI: 10.1155/2024/4751168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 06/21/2024] [Accepted: 07/02/2024] [Indexed: 08/07/2024] Open
Abstract
In recent years, as the aging population continues to grow, osteoarthritis (OA) has emerged as a leading cause of disability, with its incidence rising annually. Current treatments of OA include exercise and medications in the early stages and total joint replacement in the late stages. These approaches only relieve pain and reduce inflammation; however, they have significant side effects and high costs. Therefore, there is an urgent need to identify effective treatment methods that can delay the pathological progression of this condition. The changes in the articular cartilage microenvironment, which are complex and diverse, can aggravate the pathological progression into a vicious cycle, inhibiting the repair and regeneration of articular cartilage. Understanding these intricate changes in the microenvironment is crucial for devising effective treatment modalities. By searching relevant research articles and clinical trials in PubMed according to the keywords of articular cartilage, microenvironment, OA, mechanical force, hypoxia, cytokine, and cell senescence. This study first summarizes the factors affecting articular cartilage regeneration, then proposes corresponding treatment strategies, and finally points out the future research direction. We find that regulating the opening of mechanosensitive ion channels, regulating the expression of HIF-1, delivering growth factors, and clearing senescent cells can promote the formation of articular cartilage regeneration microenvironment. This study provides a new idea for the treatment of OA in the future, which can promote the regeneration of articular cartilage through the regulation of the microenvironment so as to achieve the purpose of treating OA.
Collapse
Affiliation(s)
- Kai Liu
- Department of Orthopedic SurgeryXin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and MinistryGuangxi Medical University, Nanning, Guangxi 530021, China
| | - Bingjun Zhang
- Department of Orthopedic SurgeryXin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Xiaoling Zhang
- Department of Orthopedic SurgeryXin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and MinistryGuangxi Medical University, Nanning, Guangxi 530021, China
| |
Collapse
|
8
|
Zhou H, Lei Y, Luo J, Wang J, Peng L, Mou K, Xiang L, Luo Y. Comprehensive analysis revealed P4Hs as new biomarkers for prognosis and immunotherapy in head and neck cancer. Sci Rep 2024; 14:12234. [PMID: 38806556 PMCID: PMC11133445 DOI: 10.1038/s41598-024-62678-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 05/20/2024] [Indexed: 05/30/2024] Open
Abstract
Prolyl 4-hydroxylases (P4Hs) are a family of key modifying enzymes in collagen synthesis. P4Hs have been confirmed to be closely associated with tumor occurrence and development. However, the expression of P4Hs in head and neck cancer (HNSC) as well as its relationship with prognosis and tumor immunity infiltration has not yet been analyzed. We investigated the transcriptional expression, survival data, and immune infiltration of P4Hs in patients with HNSC from multiple databases. P4H1-3 expression was significantly higher in HNSC tumor tissues than in normal tissues. Moreover, P4HA1 and P4HA2 were associated with tumor stage, patient prognosis, and immune cell infiltration. P4HA3 was related to patient prognosis and immune cell infiltration. Correlation experiments confirmed that P4HA1 may serve as a prognosis biomarker and plays a role in the progression of nasopharyngeal carcinoma. These findings suggest that P4HA1-3 may be a novel biomarker for the prognosis and treatment of HNSC, which is expected to support the development of new therapies for patients with head and neck tumors and improve patient outcomes.
Collapse
Affiliation(s)
- Huan Zhou
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yulin Lei
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jing Luo
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jianmei Wang
- Department of Pathology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Lin Peng
- Department of Bone and Joint, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Kelin Mou
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Li Xiang
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China.
| | - Yuhao Luo
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China.
- Department of Oncology, The Affiliated Tianfu Hospital of Southwest Medical University, Meishan, China.
| |
Collapse
|
9
|
Jiang P, Liang D, Wang H, Zhou R, Che X, Cong L, Li P, Wang C, Li W, Wei X, Li P. TMT quantitative proteomics reveals key proteins relevant to microRNA-1-mediated regulation in osteoarthritis. Proteome Sci 2023; 21:21. [PMID: 37993861 PMCID: PMC10664301 DOI: 10.1186/s12953-023-00223-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 11/14/2023] [Indexed: 11/24/2023] Open
Abstract
Osteoarthritis (OA) is the second-commonest arthritis, but pathogenic and regulatory mechanisms underlying OA remain incompletely understood. Here, we aimed to identify the mechanisms associated with microRNA-1 (miR-1) treatment of OA in rodent OA models using a proteomic approach. First, N = 18 Sprague Dawley (SD) rats underwent sham surgery (n = 6) or ACL transection (n = 12), followed at an interval of one week by randomization of the ACL transection group to intra-articular administration of either 50 µL placebo (control group) or miR-1 agomir, a mimic of endogenous miR-1 (experimental group). After allowing for eight weeks of remodeling, articular cartilage tissue was harvested and immunohistochemically stained for the presence of MMP-13. Second, N = 30 Col2a1-cre-ERT2 /GFPf1/fl -RFP-miR-1 transgenic mice were randomized to intra-articular administration of either placebo (control group, N = 15) or tamoxifen, an inducer of miR-1 expression (experimental group, N = 15), before undergoing surgical disruption of the medial meniscus (DMM) after an interval of five days. After allowing for eight weeks of remodeling, articular cartilage tissue was harvested and underwent differential proteomic analysis. Specifically, tandem mass tagging (TMT) quantitative proteomic analysis was employed to identify inter-group differentially-expressed proteins (DEP), and selected DEPs were validated using real-time quantitative polymerase chain reaction (RT-qPCR) technology. Immunohistochemically-detected MMP-13 expression was significantly lower in the experimental rat group, and proteomic analyses of mouse tissue homogenate demonstrated that of 3526 identified proteins, 345 were differentially expressed (relative up- and down-regulation) in the experimental group. Proteins Fn1, P4ha1, P4ha2, Acan, F2, Col3a1, Fga, Rps29, Rpl34, and Fgg were the *top ten most-connected proteins, implying that miR-1 may regulate an expression network involving these proteins. Of these ten proteins, three were selected for further validation by RT-qPCR: the transcript of Fn1, known to be associated with OA, exhibited relative upregulation in the experimental group, whereas the transcripts of P4ha1 and Acan exhibited relative downregulation. These proteins may thus represent key miR-1 targets during OA-regulatory mechanisms, and may provide additional insights regarding therapeutic mechanisms of miR-1 in context of OA.
Collapse
Affiliation(s)
- Pinpin Jiang
- Department of Orthopaedic Surgery, the Second Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
- Key Laboratory of Bone and Soft Tissue Injury, Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Dan Liang
- Key Laboratory of Bone and Soft Tissue Injury, Second Hospital of Shanxi Medical University, Taiyuan, China
- Department of Health Statistics, School of Public Health, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Hang Wang
- College of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China
| | - Raorao Zhou
- Department of Orthopaedic Surgery, the Second Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
- Key Laboratory of Bone and Soft Tissue Injury, Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Xianda Che
- Department of Orthopaedic Surgery, the Second Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
- Key Laboratory of Bone and Soft Tissue Injury, Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Linlin Cong
- Department of Orthopaedic Surgery, the Second Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
- Key Laboratory of Bone and Soft Tissue Injury, Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Penghua Li
- Department of Laboratory Medicine, Fenyang Hospital Affiliated to Shanxi Medical University, Fenyang, China
| | - Chunfang Wang
- Laboratory Animal Center of Shanxi Medical University, Taiyuan, China
| | - Wenjin Li
- Department of Stomatology, the Second Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Xiaochun Wei
- Department of Orthopaedic Surgery, the Second Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
- Key Laboratory of Bone and Soft Tissue Injury, Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Pengcui Li
- Department of Orthopaedic Surgery, the Second Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China.
- Key Laboratory of Bone and Soft Tissue Injury, Second Hospital of Shanxi Medical University, Taiyuan, China.
| |
Collapse
|
10
|
Jain L, Bolam SM, Monk AP, Munro JT, Chen E, Tamatea J, Dalbeth N, Poulsen RC. Differential Effects of Hypoxia versus Hyperoxia or Physoxia on Phenotype and Energy Metabolism in Human Chondrocytes from Osteoarthritic Compared to Macroscopically Normal Cartilage. Int J Mol Sci 2023; 24:ijms24087532. [PMID: 37108698 PMCID: PMC10142591 DOI: 10.3390/ijms24087532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
Chondrocyte phenotype and energy metabolism are altered in osteoarthritis (OA). However, most studies characterising the change in human chondrocyte behaviour in OA have been conducted in supraphysiological oxygen concentrations. The purpose of this study was to compare phenotype and energy metabolism in chondrocytes from macroscopically normal (MN) and OA cartilage maintained in 18.9% (standard tissue culture), 6% (equivalent to superficial zone of cartilage in vivo) or 1% oxygen (equivalent to deep zone of cartilage in vivo). MMP13 production was higher in chondrocytes from OA compared to MN cartilage in hyperoxia and physoxia but not hypoxia. Hypoxia promoted SOX9, COL2A1 and ACAN protein expression in chondrocytes from MN but not OA cartilage. OA chondrocytes used higher levels of glycolysis regardless of oxygen availability. These results show that differences in phenotype and energy metabolism between chondrocytes from OA and MN cartilage differ depending on oxygen availability. OA chondrocytes show elevated synthesis of cartilage-catabolising enzymes and chondrocytes from MN cartilage show reduced cartilage anabolism in oxygenated conditions. This is relevant as a recent study has shown that oxygen levels are elevated in OA cartilage in vivo. Our findings may indicate that this elevated cartilage oxygenation may promote cartilage loss in OA.
Collapse
Affiliation(s)
- Lekha Jain
- Department of Pharmacology and Clinical Pharmacology, University of Auckland, Auckland 1023, New Zealand
| | - Scott M Bolam
- Department of Surgery, University of Auckland, Auckland 1023, New Zealand
- Department of Medicine, University of Auckland, Auckland 1023, New Zealand
| | - A Paul Monk
- Auckland Bioengineering Institute, University of Auckland, Auckland 1010, New Zealand
| | - Jacob T Munro
- Department of Surgery, University of Auckland, Auckland 1023, New Zealand
| | - Even Chen
- Department of Pharmacology and Clinical Pharmacology, University of Auckland, Auckland 1023, New Zealand
| | - Jade Tamatea
- Te Kupenga Hauora Māori, University of Auckland, Auckland 1010, New Zealand
| | - Nicola Dalbeth
- Department of Medicine, University of Auckland, Auckland 1023, New Zealand
| | - Raewyn C Poulsen
- Department of Pharmacology and Clinical Pharmacology, University of Auckland, Auckland 1023, New Zealand
| |
Collapse
|
11
|
Patel J, Chen S, Katzmeyer T, Pei YA, Pei M. Sex-dependent variation in cartilage adaptation: from degeneration to regeneration. Biol Sex Differ 2023; 14:17. [PMID: 37024929 PMCID: PMC10077643 DOI: 10.1186/s13293-023-00500-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 03/20/2023] [Indexed: 04/08/2023] Open
Abstract
Despite acknowledgement in the scientific community of sex-based differences in cartilage biology, the implications for study design remain unclear, with many studies continuing to arbitrarily assign demographics. Clinically, it has been well-established that males and females differ in cartilage degeneration, and accumulating evidence points to the importance of sex differences in the field of cartilage repair. However, a comprehensive review of the mechanisms behind this trend and the influence of sex on cartilage regeneration has not yet been presented. This paper aims to summarize current findings regarding sex-dependent variation in knee anatomy, sex hormones' effect on cartilage, and cartilaginous degeneration and regeneration, with a focus on stem cell therapies. Findings suggest that the stem cells themselves, as well as their surrounding microenvironment, contribute to sex-based differences. Accordingly, this paper underscores the contribution of both stem cell donor and recipient sex to sex-related differences in treatment efficacy. Cartilage regeneration is a field that needs more research to optimize strategies for better clinical results; taking sex into account could be a big factor in developing more effective and personalized treatments. The compilation of this information emphasizes the importance of investing further research in sex differences in cartilage biology.
Collapse
Affiliation(s)
- Jhanvee Patel
- Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics, West Virginia University, 64 Medical Center Drive, PO Box 9196, Morgantown, WV, 26506-9196, USA
| | - Song Chen
- Department of Orthopaedics, The General Hospital of Western Theater Command, Chengdu, 610083, Sichuan, China
| | - Torey Katzmeyer
- Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics, West Virginia University, 64 Medical Center Drive, PO Box 9196, Morgantown, WV, 26506-9196, USA
| | - Yixuan Amy Pei
- Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics, West Virginia University, 64 Medical Center Drive, PO Box 9196, Morgantown, WV, 26506-9196, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Ming Pei
- Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics, West Virginia University, 64 Medical Center Drive, PO Box 9196, Morgantown, WV, 26506-9196, USA.
- WVU Cancer Institute, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV, 26506, USA.
| |
Collapse
|
12
|
Serial Gene Expression Profiling of Neural Stem Cells Shows Transcriptome Switch by Long-Term Physioxia from Metabolic Adaption to Cell Signaling Profile. Stem Cells Int 2022; 2022:6718640. [PMID: 36411871 PMCID: PMC9675612 DOI: 10.1155/2022/6718640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 09/30/2022] [Accepted: 10/26/2022] [Indexed: 11/13/2022] Open
Abstract
Oxygen is an essential factor in the cellular microenvironment with pivotal effects on neural development with a particular sensitivity of midbrain neural stem cells (NSCs) to high atmospheric oxygen tension. However, most experiments are still performed at atmospheric O2 levels (21%, normoxia), whereas mammalian brain tissue is physiologically exposed to substantially lower O2 tensions around 3% (physioxia). We here performed serial Affymetrix gene array analyses to detect expression changes in mouse fetal NSCs from both midbrain and cortical tissues when kept at physioxia compared to normoxia. We identified more than 400 O2-regulated genes involved in cellular metabolism, cell proliferation/differentiation, and various signaling pathways. NSCs from both regions showed a low number but high conformity of regulated genes (9 genes in midbrain vs. 34 in cortical NSCs; 8 concordant expression changes) after short-term physioxia (2 days) with metabolic processes and cellular processes being the most prominent GO categories pointing to cellular adaption to lower oxygen levels. Gene expression profiles changed dramatically after long-term physioxia (13 days) with a higher number of regulated genes and more diverse expression patterns when comparing the two NSC types (338 genes in midbrain vs. 121 in cortical NSCs; 75 concordant changes). Most prominently, we observed a reduction of hits in metabolic processes but an increase in biological regulation and signaling pointing to a switch towards signaling processes and stem cell maintenance. Our data may serve as a basis for identifying potential signaling pathways that maintain stem cell characteristics in cortical versus midbrain physioxic stem cell niches.
Collapse
|
13
|
Zeng CY, Wang XF, Hua FZ. HIF-1α in Osteoarthritis: From Pathogenesis to Therapeutic Implications. Front Pharmacol 2022; 13:927126. [PMID: 35865944 PMCID: PMC9294386 DOI: 10.3389/fphar.2022.927126] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 06/10/2022] [Indexed: 11/13/2022] Open
Abstract
Osteoarthritis is a common age-related joint degenerative disease. Pain, swelling, brief morning stiffness, and functional limitations are its main characteristics. There are still no well-established strategies to cure osteoarthritis. Therefore, better clarification of mechanisms associated with the onset and progression of osteoarthritis is critical to provide a theoretical basis for the establishment of novel preventive and therapeutic strategies. Chondrocytes exist in a hypoxic environment, and HIF-1α plays a vital role in regulating hypoxic response. HIF-1α responds to cellular oxygenation decreases in tissue regulating survival and growth arrest of chondrocytes. The activation of HIF-1α could regulate autophagy and apoptosis of chondrocytes, decrease inflammatory cytokine synthesis, and regulate the chondrocyte extracellular matrix environment. Moreover, it could maintain the chondrogenic phenotype that regulates glycolysis and the mitochondrial function of osteoarthritis, resulting in a denser collagen matrix that delays cartilage degradation. Thus, HIF-1α is likely to be a crucial therapeutic target for osteoarthritis via regulating chondrocyte inflammation and metabolism. In this review, we summarize the mechanism of hypoxia in the pathogenic mechanisms of osteoarthritis, and focus on a series of therapeutic treatments targeting HIF-1α for osteoarthritis. Further clarification of the regulatory mechanisms of HIF-1α in osteoarthritis may provide more useful clues to developing novel osteoarthritis treatment strategies.
Collapse
Affiliation(s)
- Chu-Yang Zeng
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xi-Feng Wang
- Department of Anesthesiology, The First Affiliated Hospital of Nanchang University, Nanchang, China
- *Correspondence: Xi-Feng Wang, ; Fu-Zhou Hua,
| | - Fu-Zhou Hua
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- *Correspondence: Xi-Feng Wang, ; Fu-Zhou Hua,
| |
Collapse
|
14
|
Stromal-vascular fraction and adipose-derived stem cell therapies improve cartilage regeneration in osteoarthritis-induced rats. Sci Rep 2022; 12:2828. [PMID: 35181731 PMCID: PMC8857326 DOI: 10.1038/s41598-022-06892-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 02/01/2022] [Indexed: 11/26/2022] Open
Abstract
This study aimed to evaluate the effects of the stromal vascular fraction (SVF) and adipose-derived stem cells (ADSCs) on cartilage injury in an osteoarthritis (OA) rat model. Sodium iodoacetate (3 mg/50 μL) was used to induce OA in the left knee joint of rats. On day 14 after OA induction, 50 μL of SVF (5 × 106cells), ADSCs (1 × 106 cells), or 0.9% normal saline (NS) was injected into the left knee-joint cavity of each group. The macroscopic view and histological sections revealed that the articular cartilage in the NS group was damaged, inflamed, uneven and thin, and had hyperchromatic cell infiltration. Notably, the cartilage surface had recovered to nearly normal and appeared smooth and bright on day 14 in the SVF and ADSC groups. Additionally, the white blood cell counts in the SVF and ADSC groups were higher than those in the NS group on day 14. Plasma IL-1β levels on days 7 and 14 were reduced in the SVF and ADSC groups. These results indicated that both SVF and ADSC treatments may assist in articular cartilage regeneration after cartilage injury. Cell therapy may benefit patients with OA. However, clinical trials with humans are required before the application of SVF and ADSC treatments in patients with OA.
Collapse
|
15
|
P4HA2 Promotes Epithelial-to-Mesenchymal Transition and Glioma Malignancy through the Collagen-Dependent PI3K/AKT Pathway. JOURNAL OF ONCOLOGY 2021; 2021:1406853. [PMID: 34434233 PMCID: PMC8382519 DOI: 10.1155/2021/1406853] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 06/21/2021] [Accepted: 08/03/2021] [Indexed: 01/15/2023]
Abstract
Prolyl-4-hydroxylase subunit 2 (P4HA2) is a member of collagen modification enzymes involved in the remodeling of the extracellular matrix (ECM). Mounting evidence has suggested that deregulation of P4HA2 is common in cancer. However, the role of P4HA2 in glioma remains unknown. The present study aimed to elucidate the expression pattern, oncogenic functions, and molecular mechanisms of P4HA2 in glioblastoma cells. The TCGA datasets and paraffin samples were used for examining the expressions of P4HA2. P4HA2-specific lentivirus was generated to assess its oncogenic functions. A P4HA2 enzyme inhibitor (DHB) and an AKT agonist (SC79) were utilized to study the mechanisms. As a result, we demonstrated that P4HA2 is overexpressed in glioma and inversely correlates with patient survival. Knockdown of P4HA2 inhibited proliferation, migration, invasion, and epithelial-to-mesenchymal transition (EMT) like phenotype of glioma cells in vitro and suppressed tumor xenograft growth in vivo. Mechanistically, expressions of a series of collagen genes and of phosphorylated PI3K/AKT were downregulated by either P4HA2 silencing or inhibition of its prolyl hydroxylase. Finally, the inhibitory effects on the migration, invasion, and EMT-related molecules by P4HA2 knockdown were reversed by AKT activation with SC79. Our findings for the first time reveal that P4HA2 acts as an oncogenic molecule in glioma malignancy by regulating the expressions of collagens and the downstream PI3K/AKT signaling pathway.
Collapse
|
16
|
Kaluz S, Zhang Q, Kuranaga Y, Yang H, Osuka S, Bhattacharya D, Devi NS, Mun J, Wang W, Zhang R, Goodman MM, Grossniklaus HE, Van Meir EG. Targeting HIF-activated collagen prolyl 4-hydroxylase expression disrupts collagen deposition and blocks primary and metastatic uveal melanoma growth. Oncogene 2021; 40:5182-5191. [PMID: 34218269 PMCID: PMC8887959 DOI: 10.1038/s41388-021-01919-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 06/10/2021] [Accepted: 06/16/2021] [Indexed: 02/06/2023]
Abstract
Uveal melanoma (UM) is the most prevalent primary intraocular malignancy in adults, and patients that develop metastases (~50%) survive <1 year, highlighting the urgent need for new therapies. TCGA has recently revealed that a hypoxia gene signature is associated with poor UM patient prognosis. Here we show that expression of hypoxia-regulated collagen prolyl-4-hydroxylase genes P4HA1 and P4HA2 is significantly upregulated in UM patients with metastatic disease and correlates with poor prognosis, suggesting these enzymes might be key tumor drivers. We targeted hypoxia-induced expression of P4HA1/2 in UM with KCN1, a hypoxia inducible factor-1 (HIF-1) pathway inhibitor and found potent inhibition of primary and metastatic disease and extension of animal survival, without overt side effects. At the molecular level, KCN1 antagonized hypoxia-induced expression of P4HA1 and P4HA2, which regulate collagen maturation and deposition in the extracellular matrix. The treatment decreased prolyl hydroxylation, induced proteolytic cleavage and rendered a disordered structure to collagen VI, the main collagen produced by UM, and reduced UM cell invasion. Together, these data demonstrate that extracellular collagen matrix formation can be targeted in UM by inhibiting hypoxia-induced P4HA1 and P4HA2 expression, warranting further development of this strategy in patients with uveal melanoma.
Collapse
Affiliation(s)
- Stefan Kaluz
- Department of Neurosurgery, Emory University, Atlanta, GA, USA
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Qing Zhang
- Department of Ophthalmology, Emory University, Atlanta, GA, USA
- Department of Ophthalmology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yuki Kuranaga
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Hua Yang
- Department of Ophthalmology, Emory University, Atlanta, GA, USA
| | - Satoru Osuka
- Department of Neurosurgery, Emory University, Atlanta, GA, USA
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL, USA
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - Narra S Devi
- Department of Neurosurgery, Emory University, Atlanta, GA, USA
| | - Jiyoung Mun
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA, USA
| | - Wei Wang
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston, Houston, TX, USA
- Drug Discovery Institute, College of Pharmacy, University of Houston, Houston, TX, USA
| | - Ruiwen Zhang
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston, Houston, TX, USA
- Drug Discovery Institute, College of Pharmacy, University of Houston, Houston, TX, USA
| | - Mark M Goodman
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA, USA
| | - Hans E Grossniklaus
- Winship Cancer Institute, Emory University, Atlanta, GA, USA.
- Department of Ophthalmology, Emory University, Atlanta, GA, USA.
- Department of Pathology, Emory University, Atlanta, GA, USA.
| | - Erwin G Van Meir
- Department of Neurosurgery, Emory University, Atlanta, GA, USA.
- Winship Cancer Institute, Emory University, Atlanta, GA, USA.
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL, USA.
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA.
- Department of Hematology and Medical Oncology, Emory University, Atlanta, GA, USA.
| |
Collapse
|
17
|
Yao H, Xu J, Wang J, Zhang Y, Zheng N, Yue J, Mi J, Zheng L, Dai B, Huang W, Yung S, Hu P, Ruan Y, Xue Q, Ho K, Qin L. Combination of magnesium ions and vitamin C alleviates synovitis and osteophyte formation in osteoarthritis of mice. Bioact Mater 2021; 6:1341-1352. [PMID: 33210027 PMCID: PMC7658330 DOI: 10.1016/j.bioactmat.2020.10.016] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 10/20/2020] [Accepted: 10/21/2020] [Indexed: 01/15/2023] Open
Abstract
INTRODUCTION We previously demonstrated that magnesium ions (Mg2+) was a novel therapeutic alternative for osteoarthritis (OA) through promoting the hypoxia inducible factor-1α (HIF-1α)-mediated cartilage matrix synthesis. However, oxidative stress can inhibit the expression of HIF-1α, amplify the inflammation that potentially impairs the therapeutic efficacy of Mg2+ in OA. Vitamin (VC), a potent antioxidant, may enhance the efficacy of Mg2+ in OA treatment. This study aims to investigate the efficacy of combination of Mg2+ and VC on alleviating joint destruction and pain in OA. MATERIAL AND METHODS Anterior cruciate ligament transection with partial medial meniscectomy induced mice OA model were randomly received intra-articular injection of either saline, MgCl2 (0.5 mol/L), VC (3 mg/ml) or MgCl2 (0.5 mol/L) plus VC (3 mg/ml) at week 2 post-operation, twice weekly, for 2 weeks. Joint pain and pathological changes were assessed by gait analysis, histology, western blotting and micro-CT. RESULTS Mg2+ and VC showed additive effects to significantly alleviate the joint destruction and pain. The efficacy of this combined therapy could sustain for 3 months after the last injection. We demonstrated that VC enhanced the promotive effect of Mg2+ on HIF-1α expression in cartilage. Additionally, combination of Mg2+ and VC markedly promoted the M2 polarization of macrophages in synovium. Furthermore, combination of Mg2+ and VC inhibited osteophyte formation and expressions of pain-related neuropeptides. CONCLUSIONS Intra-articular administration of Mg2+ and VC additively alleviates joint destruction and pain in OA. Our current formulation may be a cost-effective alternative treatment for OA.
Collapse
Affiliation(s)
- Hao Yao
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
- Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health, The Chinese University of Hong Kong, Hong Kong, China
| | - Jiankun Xu
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
- Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health, The Chinese University of Hong Kong, Hong Kong, China
- Joint Laboratory of Chinese Academic of Science and Hong Kong for Biomaterials, The Chinese University of Hong Kong, Hong Kong, China
| | - Jiali Wang
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, PR China
| | - Yifeng Zhang
- School of Life Science and Technology, Shanghai Tech University, Shanghai, PR China
| | - Nianye Zheng
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
- Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health, The Chinese University of Hong Kong, Hong Kong, China
| | - Jiang Yue
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
- Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health, The Chinese University of Hong Kong, Hong Kong, China
| | - Jie Mi
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
- Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health, The Chinese University of Hong Kong, Hong Kong, China
| | - Lizhen Zheng
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
- Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health, The Chinese University of Hong Kong, Hong Kong, China
| | - Bingyang Dai
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
- Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health, The Chinese University of Hong Kong, Hong Kong, China
| | - Wenhan Huang
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
- Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health, The Chinese University of Hong Kong, Hong Kong, China
| | - Shuhang Yung
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Peijie Hu
- Department of Biomedical Engineering, Polytechnic University of Hong Kong, Hong Kong, China
| | - Yechun Ruan
- Department of Biomedical Engineering, Polytechnic University of Hong Kong, Hong Kong, China
| | - Qingyun Xue
- Department of Orthopedics, Beijing Hospital, No. 5th Clinical Medical Collage, Health Science Center, Peking University, Beijing, PR China
| | - Kiwai Ho
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Ling Qin
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
- Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health, The Chinese University of Hong Kong, Hong Kong, China
- Joint Laboratory of Chinese Academic of Science and Hong Kong for Biomaterials, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
18
|
Morimoto C, Takedachi M, Kawasaki K, Shimomura J, Murata M, Hirai A, Kawakami K, Sawada K, Iwayama T, Murakami S. Hypoxia stimulates collagen hydroxylation in gingival fibroblasts and periodontal ligament cells. J Periodontol 2021; 92:1635-1645. [PMID: 33660864 DOI: 10.1002/jper.20-0670] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 02/03/2021] [Accepted: 02/24/2021] [Indexed: 12/27/2022]
Abstract
BACKGROUND Cellular responses to hypoxia regulate various biological events, including angiogenesis and extracellular matrix metabolism. Collagen is a major component of the extracellular matrix in periodontal tissues and its coordinated production is essential for tissue homeostasis. In this study, we investigated the effects of hypoxia on collagen production in human gingival fibroblasts (HGFs) and human periodontal ligament cells (HPDLs). METHODS HGFs and HPDLs were cultured under either normoxic (20% O2 ) or hypoxic (1% O2 ) conditions. Nuclear expression of hypoxia-inducible factor-1α (HIF-1α) was determined by western blotting. Peri-cellular expression of type I collagen was examined by immunocytochemistry analysis. Synthesis of type I collagen was evaluated by measuring the concentration of procollagen type I C-peptide (PIP) in culture supernatant using enzyme-linked immunosorbent assay. Expression of collagen hydroxylase enzymes prolyl 4-hydroxylase alpha polypeptide 1 (P4HA1) and 2-oxoglutarate 5-dioxygenase 2 (PLOD2) was determined by RT-qPCR and western blotting. The roles of these enzymes were analyzed using siRNA transfection. RESULTS Cultivation under hypoxic conditions stimulated type I collagen production via HIF-1α in both cell types. Interestingly, hypoxic conditions did not affect collagen 1a1 or 1a2 gene expression but upregulated that of P4HA1 and PLOD2. Additionally, suppressing P4HA1 significantly decreased the levels of hypoxia-induced procollagen type I C-peptide, a product of stable triple helical collagen, in the supernatant. In contrast, PLOD2 suppression decreased cross-linked collagen expression in the pericellular region. CONCLUSION Our results suggest that hypoxia activates collagen synthesis in HGFs and HPDLs by upregulating hydroxylases P4HA1 and PLOD2 in an HIF-1α-dependent manner.
Collapse
Affiliation(s)
- Chiaki Morimoto
- Department of Periodontology, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Masahide Takedachi
- Department of Periodontology, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Kohsuke Kawasaki
- Department of Periodontology, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Junpei Shimomura
- Department of Periodontology, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Mari Murata
- Department of Periodontology, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Asae Hirai
- Department of Periodontology, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Kazuma Kawakami
- Department of Periodontology, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Keigo Sawada
- Department of Periodontology, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Tomoaki Iwayama
- Department of Periodontology, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Shinya Murakami
- Department of Periodontology, Osaka University Graduate School of Dentistry, Osaka, Japan
| |
Collapse
|
19
|
COMP and TSP-4: Functional Roles in Articular Cartilage and Relevance in Osteoarthritis. Int J Mol Sci 2021; 22:ijms22052242. [PMID: 33668140 PMCID: PMC7956748 DOI: 10.3390/ijms22052242] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/16/2021] [Accepted: 02/20/2021] [Indexed: 12/18/2022] Open
Abstract
Osteoarthritis (OA) is a slow-progressing joint disease, leading to the degradation and remodeling of the cartilage extracellular matrix (ECM). The usually quiescent chondrocytes become reactivated and accumulate in cell clusters, become hypertrophic, and intensively produce not only degrading enzymes, but also ECM proteins, like the cartilage oligomeric matrix protein (COMP) and thrombospondin-4 (TSP-4). To date, the functional roles of these newly synthesized proteins in articular cartilage are still elusive. Therefore, we analyzed the involvement of both proteins in OA specific processes in in vitro studies, using porcine chondrocytes, isolated from femoral condyles. The effect of COMP and TSP-4 on chondrocyte migration was investigated in transwell assays and their potential to modulate the chondrocyte phenotype, protein synthesis and matrix formation by immunofluorescence staining and immunoblot. Our results demonstrate that COMP could attract chondrocytes and may contribute to a repopulation of damaged cartilage areas, while TSP-4 did not affect this process. In contrast, both proteins similarly promoted the synthesis and matrix formation of collagen II, IX, XII and proteoglycans, but inhibited that of collagen I and X, resulting in a stabilized chondrocyte phenotype. These data suggest that COMP and TSP-4 activate mechanisms to protect and repair the ECM in articular cartilage.
Collapse
|
20
|
Yosef N, Xi Y, McCarty JH. Isolation and transcriptional characterization of mouse perivascular astrocytes. PLoS One 2020; 15:e0240035. [PMID: 33031376 PMCID: PMC7544046 DOI: 10.1371/journal.pone.0240035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 09/17/2020] [Indexed: 02/05/2023] Open
Abstract
In the post-natal mammalian brain perivascular astrocytes (PAs) ensheath blood vessels to regulate their unique permeability properties known as the blood-brain barrier (BBB). Very little is known about PA-expressed genes and signaling pathways that mediate contact and communication with endothelial cells (ECs) to regulate BBB physiology. This is due, in part, to lack of suitable models to distinguish PAs from other astrocyte sub-populations in the brain. To decipher the unique biology of PAs, we used in vivo gene knock-in technology to fluorescently label these cells in the adult mouse brain followed by fractionation and quantitative single cell RNA sequencing. In addition, PAs and non-PAs were also distinguished with transgenic fluorescent reporters followed by gene expression comparisons using bulk RNA sequencing. These efforts have identified several genes and pathways in PAs with potential roles in contact and communication with brain ECs. These genes encode various extracellular matrix (ECM) proteins and adhesion receptors, secreted growth factors, and intracellular signaling enzymes. Collectively, our experimental data reveal a set of genes that are expressed in PAs with putative roles in BBB physiology.
Collapse
Affiliation(s)
- Nejla Yosef
- Department of Neurosurgery, University of Texas M.D. Anderson Cancer Center, Houston, TX, United States of America
| | - Yuanxin Xi
- Department of Bioinformatics and Computational Biology, University of Texas M. D. Anderson Cancer Center, Houston, TX, United States of America
| | - Joseph H. McCarty
- Department of Neurosurgery, University of Texas M.D. Anderson Cancer Center, Houston, TX, United States of America
| |
Collapse
|
21
|
Abstract
Osteoarthritis (OA) is a multifactorial disease with huge phenotypic heterogeneity. The disease affects all tissues in the joint, and the loss of articular cartilage is its hallmark. The main biochemical components of the articular cartilage are type II collagen, aggrecan, and water. Transforming growth factor-beta (TGF-β) signaling is one of the signaling pathways that maintains the healthy cartilage. However, the two subpathways of the TGF-β signaling-TGF-β and bone morphogenetic proteins (BMP) subpathways, lose their balance in OA, resulting an increased expression of cartilage degradation enzymes including matrix metallopeptidase 13 (MMP13), cathepsin B (CTSB), and cathepsin K (CTSK) and a decreased expression of aggrecan (ACAN). Thus, restoring the balance of two subpathways might provide a new avenue for treating OA patients. Further, metabolic changes are seen in OA and can be used to distinguish different subtypes of OA patients. Metabolomics studies showed that at least three endotypes of OA can be distinguished: 11% of OA patients are characterized by an elevated blood butyryl carnitine, 33% of OA patients have significant reduced arginine concentration, and 56% with metabolic alteration in phospholipid metabolism. While these findings need to be confirmed, they are promising personalized medicine tools for OA management.
Collapse
Affiliation(s)
- Guangju Zhai
- Discipline of Genetics, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada.
| |
Collapse
|
22
|
Sadeghi Z, Kenyon JD, Richardson B, Khalifa AO, Cartwright M, Conroy B, Caplan A, Cameron MJ, Hijaz A. Transcriptomic Analysis of Human Mesenchymal Stem Cell Therapy in Incontinent Rat Injured Urethra. Tissue Eng Part A 2020; 26:792-810. [PMID: 32614683 DOI: 10.1089/ten.tea.2020.0033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Periurethral human mesenchymal stem cell (hMSC) injections are associated with functional improvement in animal models of postpartum stress urinary incontinence (SUI). However, limited data exist on the role of hMSCs in modulating gene expression in tissue repair after urethral injury. To this end, we quantified temporal gene expression modulation in hMSCs, and in injured rat urethral tissue, using RNA-seq in an animal model of SUI, over a 3-day period following urethral injury, and local hMSC injection. We injected PKH fluorescent-labeled hMSC into the periurethral space of rats following a 4 h vaginal distention (VD) (three rats per time point). Control rats underwent VD injury only, and all animals were euthanized at 12, 24, 36, 72 h postinjury. Rat urethral and vaginal tissues were frozen and sectioned. Fluorescent labeled hMSCs were distinguished from adjacent, unlabeled rat urethral tissue. RNA was prepared from hMSCs and urethral tissue obtained by laser dissection of frozen tissue sections and sequenced on an Illumina HiSeq 2500. Differentially expressed genes (DEGs) over 72 h were evaluated using a two-group t-test (p < 0.05). Our transcriptional analyses identified candidate genes involved in tissue injury that were broadly sorted by injury and exposure to hMSC throughout the first 72 h of acute phase of injury. DEGs in treated urethra, compared with untreated urethra, were functionally associated with tissue repair, angiogenesis, neurogenesis, and oxidative stress suppression. DEGs included a variety of cytokines, extracellular matrix stabilization and regeneration genes, cytokine signaling modification, cell cycle regulation, muscle differentiation, and stabilization. Moreover, our results revealed DEG changes in hMSCs (PKH-labeled) harvested from injured urethra. The expressions are related to DNA damage repair, transcription activation, stem cell regulation, cell survival, apoptosis, self-renewal, cell proliferation, migration, and injury response. Impact statement Stress urinary incontinence (SUI) affects nearly half of women over 40, resulting in reduced quality of life and increased health care cost. Development of SUI is multifactorial and strongly associated with vaginal delivery. While stem cell therapy in animal models of SUI and limited preliminary clinical trials demonstrate functional improvement of SUI, the role of stem cell therapy in modulating tissue repair is unclear impeding advanced clinical trials. Our work provides a new understanding of the transcriptional mechanisms with which human mesenchymal stem cells improve acute injury repair thus guiding the development of cell-based therapies for women with nonacute established SUI.
Collapse
Affiliation(s)
- Zhina Sadeghi
- University Hospitals Cleveland Medical Center, Urology Institute, Cleveland, Ohio, USA
| | - Jonathan D Kenyon
- Biology Department, Skeletal Research Center, Case Western Reserve University, Cleveland, Ohio, USA
| | - Brian Richardson
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, Ohio, USA
| | - Ahmad O Khalifa
- University Hospitals Cleveland Medical Center, Urology Institute, Cleveland, Ohio, USA.,Menoufia University Faculty of Medicine, Urology, Shebin El-Kom, Egypt
| | - Michael Cartwright
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, Ohio, USA
| | - Britt Conroy
- University Hospitals Cleveland Medical Center, Urology Institute, Cleveland, Ohio, USA
| | - Arnold Caplan
- Biology Department, Skeletal Research Center, Case Western Reserve University, Cleveland, Ohio, USA
| | - Mark J Cameron
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, Ohio, USA
| | - Adonis Hijaz
- University Hospitals Cleveland Medical Center, Urology Institute, Cleveland, Ohio, USA
| |
Collapse
|
23
|
Stabilization of HIF-1α alleviates osteoarthritis via enhancing mitophagy. Cell Death Dis 2020; 11:481. [PMID: 32587244 PMCID: PMC7316774 DOI: 10.1038/s41419-020-2680-0] [Citation(s) in RCA: 131] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 06/04/2020] [Accepted: 06/08/2020] [Indexed: 12/23/2022]
Abstract
Mitochondrial dysfunction leads to osteoarthritis (OA) and disc degeneration. Hypoxia inducible factor-1α (HIF-1α) mediated mitophagy has a protective role in several diseases. However, the underlying mechanism of HIF-1α mediated mitophagy in OA remains largely unknown. This current study was performed to determine the effect of HIF-1α mediated mitophagy on OA. Therefore, X-ray and tissue staining including HE staining, safranin O-fast green (S-O) and Alcian Blue were used to assess imageology and histomorphology differences of mouse knee joint. Transcriptional analysis was used to find the possible targets in osteoarthritis. Western blot analysis, RT-qPCR and immunofluorescence staining were used to detect the changes in gene and protein levels in the vitro experiment. The expression of HIF-1α was increased in human and mouse OA cartilage. HIF-1α knockdown by siRNA further impair the hypoxia-induced mitochondrial dysfunction; In contrast, HIF-1α mediated protective role was reinforced by prolylhydroxylase (PHD) inhibitor dimethyloxalylglycine (DMOG). In addition, HIF-1α stabilization could alleviate apoptosis and senescence via mitophagy in chondrocytes under hypoxia condition, which could also ameliorate surgery-induced cartilage degradation in mice OA model. In conclusion, HIF-1α mediated mitophagy could alleviate OA, which may serve as a promising strategy for OA treatment.
Collapse
|
24
|
Yang K, Chen G, Wang X. Promotion of G1/S Transition and Inhibition of Inflammatory Cytokine Production by Hydroxypyridinone-Coumarin in Osteoarthritis Rats. Med Sci Monit 2020; 26:e920784. [PMID: 32124869 PMCID: PMC7069328 DOI: 10.12659/msm.920784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Osteoarthritis is a joint disorder characterized by articular cartilage degradation leading to joint stiffness and pain. The present study investigated the effect of hydroxypyridinone-coumarin on proliferation of chondrocytes. MATERIAL AND METHODS Chondrocyte proliferation was assessed by MTT assay, and distribution of cells in various phases of the cell cycle was determined using flow cytometry. RT-PCR and Western blot assays were used for assessment of mRNA and protein levels, respectively. Osteoarthritis was induced in the rats by injecting monosodium iodoacetate (5 mg/kg) by the intra-articular route. The rats in the treatment groups were intraperitoneally injected with 5, 10, or 15 mg/kg doses of hydroxypyridinone-coumarin alternately for 1 month. RESULTS The proliferation of chondrocytes was increased significantly (P<0.05) by treatment with hydroxypyridinone-coumarin in a concentration-based manner. The increase in chondrocyte proliferation by hydroxypyridinone-coumarin was maximum at 50 µM. Treatment with hydroxypyridinone-coumarin markedly increased chondrocyte population in S and G2/M phases, with subsequent reduction in G0/G1 phase. The cyclin D1, CDK4, and CDK6 levels in the chondrocytes were increased by treatment with hydroxypyridinone-coumarin. The production of IL-6, TNF-alpha, and IL-1ß in the osteoarthritis rats was markedly suppressed by hydroxypyridinone-coumarin. Treatment of the OA rats with hydroxypyridinone-coumarin markedly reduced the expression of IkappaB-alpha and NF-kappaB p65. CONCLUSIONS The present study revealed that the proliferative potential of chondrocytes is increased by hydroxypyridinone-coumarin through acceleration of G1/S transition. Moreover, hydroxypyridinone-coumarin treatment reduced inflammatory cytokine production in the osteoarthritis rats. Therefore, hydroxypyridinone-coumarin should be evaluated further for possible use in the treatment of osteoarthritis.
Collapse
Affiliation(s)
- Kai Yang
- Department of Orthopedics, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan, China (mainland)
| | - Gang Chen
- Department of Orthopedics, Binzhou People's Hospital, Binzhou, Shandong, China (mainland)
| | - Xiongxun Wang
- Department of Spine Surgery, Xi'an International Medical Center Hospital, Xi'an, Shaanxi, China (mainland)
| |
Collapse
|
25
|
Pathomechanisms of Posttraumatic Osteoarthritis: Chondrocyte Behavior and Fate in a Precarious Environment. Int J Mol Sci 2020; 21:ijms21051560. [PMID: 32106481 PMCID: PMC7084733 DOI: 10.3390/ijms21051560] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 02/18/2020] [Accepted: 02/21/2020] [Indexed: 02/07/2023] Open
Abstract
Traumatic injuries of the knee joint result in a wide variety of pathomechanisms, which contribute to the development of so-called posttraumatic osteoarthritis (PTOA). These pathogenetic processes include oxidative stress, excessive expression of catabolic enzymes, release of damage-associated molecular patterns (DAMPs), and synovial inflammation. The present review focuses on the underlying pathomechanisms of PTOA and in particular the behavior and fate of the surviving chondrocytes, comprising chondrocyte metabolism, regulated cell death, and phenotypical changes comprising hypertrophy and senescence. Moreover, possible therapeutic strategies, such as chondroanabolic stimulation, anti-oxidative and anti-inflammatory treatment, as well as novel therapeutic targets are discussed.
Collapse
|
26
|
Wei H, Lian W, Wang C. 3,6-diazabicyclo[3.3.1]heptanes Induces Apoptosis and Arrests Cell Cycle in Prostate Cancer Cells. Med Sci Monit 2020; 26:e920266. [PMID: 31919338 PMCID: PMC6977617 DOI: 10.12659/msm.920266] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Background Prostate cancer, non-cutaneous malignant tumor, is the second common cause of cancer related mortalities in American men and is responsible for 13% of deaths related to cancer. The present study investigated the anti-cancer effects of 3,6-diazabicyclo[3.3.1]heptane on LNCaP and PC3 prostate cancer cells in vitro and on tumor growth in vivo in BALB/C nude mice. Material/Methods Reduction of cell viability by 3,6-diazabicyclo[3.3.1]heptane was evaluated by sulphorhodamine-B staining and apoptosis onset using annexin V and propidium iodide (PI) staining. The 2′,7′-dichlorofluorescein-diacetate stain was used for assessment of reactive oxygen species (ROS) formation while as western blotting for analysis of protein expression. Results The viability of LNCaP and PC3 cells was reduced significantly (P<0.05) by 3,6-diazabicyclo[3.3.1]heptane in dose-based manner. At 30 μM of 3,6-diazabicyclo[3.3.1]heptane the viability of LNCaP and PC3 cells was reduced to 32 and 28%, respectively. The 3,6-diazabicyclo[3.3.1]heptane treatment increased apoptosis in LNCaP cells to 43.31% at 30 μM. The cell cycle in LNCaP cells was arrested in G1 phase on treatment with 3,6-diazabicyclo[3.3.1]heptane. The expression of cyclin D1 and p21 proteins was significantly increased by 3,6-diazabicyclo[3.3.1]heptane in LNCaP and PC3 cells. The growth of prostate tumor was also suppressed in vivo in mice by 3,6-diazabicyclo[3.3.1]heptane treatment. Conclusions In summary, the study demonstrated that LNCaP and PC3 prostate cancer cell viability is suppressed by 3,6-diazabicyclo[3.3.1]heptane treatment. The suppression of prostate cancer cell viability by 3,6-diazabicyclo[3.3.1]heptane involves apoptosis induction, cell cycle arrest and upregulation of p21 expression. Therefore, 3,6-diazabicyclo[3.3.1]heptane can be a potential chemotherapeutic agent for prostate cancer.
Collapse
Affiliation(s)
- Hongjian Wei
- Second Department of Urology, Baoding First Central Hospital, Baoding, Hebei, China (mainland)
| | - Wenfeng Lian
- Second Department of Urology, Baoding First Central Hospital, Baoding, Hebei, China (mainland)
| | - Chong Wang
- First Department of Urology, Baoding First Central Hospital, Baoding, Hebei, China (mainland)
| |
Collapse
|
27
|
Mieloch AA, Richter M, Trzeciak T, Giersig M, Rybka JD. Osteoarthritis Severely Decreases the Elasticity and Hardness of Knee Joint Cartilage: A Nanoindentation Study. J Clin Med 2019; 8:jcm8111865. [PMID: 31684201 PMCID: PMC6912408 DOI: 10.3390/jcm8111865] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/30/2019] [Accepted: 11/01/2019] [Indexed: 01/19/2023] Open
Abstract
The nanoindentation method was applied to determine the elastic modulus and hardness of knee articular cartilage. Cartilage samples from both high weight bearing (HWB) and low weight bearing (LWB) femoral condyles were collected from patients diagnosed with osteoarthritis (OA). The mean elastic modulus of HWB cartilage was 4.46 ± 4.44 MPa in comparison to that of the LWB region (9.81 ± 8.88 MPa, p < 0.001). Similarly, the hardness was significantly lower in HWB tissue (0.317 ± 0.397 MPa) than in LWB cartilage (0.455 ± 0.434 MPa, p < 0.001). When adjusted to patients’ ages, the mean elastic modulus and hardness were both significantly lower in the age group over 70 years (p < 0.001). A statistically significant difference in mechanical parameters was also found in grade 3 and 4 OA. This study provides an insight into the nanomechanical properties of the knee articular cartilage and provides a starting point for personalized cartilage grafts that are compatible with the mechanical properties of the native tissue.
Collapse
Affiliation(s)
- Adam Aron Mieloch
- Center for Advanced Technology, Adam Mickiewicz University in Poznan, Uniwersytetu Poznańskiego 10 Street, 61-614 Poznan, Poland.
- Faculty of Chemistry, Adam Mickiewicz University in Poznan, Uniwersytetu Poznańskiego 8 Street, 61-614 Poznan, Poland.
| | - Magdalena Richter
- Center for Advanced Technology, Adam Mickiewicz University in Poznan, Uniwersytetu Poznańskiego 10 Street, 61-614 Poznan, Poland.
| | - Tomasz Trzeciak
- Department of Orthopedics and Traumatology, Poznan University of Medical Sciences, 28 czerwca 1956r. Street No. 135/147, 61-545 Poznan, Poland.
| | - Michael Giersig
- Center for Advanced Technology, Adam Mickiewicz University in Poznan, Uniwersytetu Poznańskiego 10 Street, 61-614 Poznan, Poland.
- Department of Physics, Institute of Experimental Physics, Freie Universität, Arnimallee 14, 14195 Berlin, Germany.
| | - Jakub Dalibor Rybka
- Center for Advanced Technology, Adam Mickiewicz University in Poznan, Uniwersytetu Poznańskiego 10 Street, 61-614 Poznan, Poland.
| |
Collapse
|
28
|
Paraskevaidi M, Hook PD, Morais CLM, Anderson JR, White R, Martin-Hirsch PL, Peffers MJ, Martin FL. Attenuated total reflection Fourier-transform infrared (ATR-FTIR) spectroscopy to diagnose osteoarthritis in equine serum. Equine Vet J 2019; 52:46-51. [PMID: 30900769 DOI: 10.1111/evj.13115] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 03/15/2019] [Indexed: 12/19/2022]
Abstract
BACKGROUND Reliable and validated biomarkers for osteoarthritis (OA) are currently lacking. OBJECTIVES To develop an accurate and minimally invasive method to assess OA-affected horses and provide potential spectral markers indicative of disease. STUDY DESIGN Observational, cross-sectional study. METHODS Our cohort consisted of 15 horses with OA and 48 without clinical signs of the disease, which were used as controls. Attenuated total reflection Fourier-transform infrared (ATR-FTIR) spectroscopy was used to investigate serum samples (50 μL) collected from these horses. Spectral processing and multivariate analysis revealed differences and similarities, allowing for detection of spectral biomarkers that discriminated between the two cohorts. A supervised classification algorithm, namely principal component analysis coupled with quadratic discriminant analysis (PCA-QDA), was applied to evaluate the diagnostic accuracy. RESULTS Segregation between the two different cohorts, OA-affected and controls, was achieved with 100% sensitivity and specificity. The six most discriminatory peaks were attributed to proteins and lipids. Four of the spectral peaks were elevated in OA horses, which could be potentially due to an increase in lipids, protein expression levels and collagen, all of which have been previously reported in OA. Two peaks were found decreased and were tentatively assigned to the reduction of proteoglycan content that is observed during OA. MAIN LIMITATIONS The control group had a wide range of ages and breeds. Presymptomatic OA cases were not included. Therefore, it remains unknown whether this test could also be used as an early diagnostic tool. CONCLUSIONS This spectrochemical approach could provide an accurate and cost-effective blood test, facilitating point-of-care diagnosis of equine OA.
Collapse
Affiliation(s)
- M Paraskevaidi
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston, UK
| | - P D Hook
- Lancaster Environment Centre, Lancaster University, Lancaster, UK
| | - C L M Morais
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston, UK
| | - J R Anderson
- Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, UK
| | - R White
- Myerscough College, Preston, UK
| | - P L Martin-Hirsch
- Sharoe Green Unit, Lancashire Teaching Hospitals NHS Foundation, Preston, UK
| | - M J Peffers
- Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, UK
| | - F L Martin
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston, UK
| |
Collapse
|
29
|
Wang X, Yu J, Shao F, Zhang Y, Li Y, Lu X, Gong D, Gu Z. microRNA-122 targets the P4HA1 mRNA and regulates its expression in chicken hepatocytes. ITALIAN JOURNAL OF ANIMAL SCIENCE 2019. [DOI: 10.1080/1828051x.2018.1548912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Xingguo Wang
- School of Biology and Food Engineering, Changshu Institute of Technology, Changshu, China
- Jiangsu Institute of Poultry Science, Yangzhou, China
| | - Jianfeng Yu
- School of Biology and Food Engineering, Changshu Institute of Technology, Changshu, China
| | - Fang Shao
- Department of Oncology, the Affiliated Changzhou No.2 People’s Hospital, Nanjing Medical University, Changzhou, China
| | - Yanping Zhang
- School of Biology and Food Engineering, Changshu Institute of Technology, Changshu, China
| | - Yanyan Li
- School of Biology and Food Engineering, Changshu Institute of Technology, Changshu, China
| | - Xiangyun Lu
- School of Biology and Food Engineering, Changshu Institute of Technology, Changshu, China
| | - Daoqing Gong
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Zhiliang Gu
- School of Biology and Food Engineering, Changshu Institute of Technology, Changshu, China
| |
Collapse
|
30
|
Islam A, Fossum V, Hansen AK, Urbarova I, Knutsen G, Martinez-Zubiaurre I. In vitro chondrogenic potency of surplus chondrocytes from autologous transplantation procedures does not predict short-term clinical outcomes. BMC Musculoskelet Disord 2019; 20:19. [PMID: 30630436 PMCID: PMC6329094 DOI: 10.1186/s12891-018-2380-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Accepted: 12/12/2018] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Autologous chondrocyte implantation (ACI) has been used over the last two decades to treat focal cartilage lesions aiming to delay or prevent the onset of osteoarthritis; however, some patients do not respond adequately to the procedure. A number of biomarkers that can forecast the clinical potency of the cells have been proposed, but evidence for the relationship between in vitro chondrogenic potential and clinical outcomes is missing. In this study, we explored if the ability of cells to make cartilage in vitro correlates with ACI clinical outcomes. Additionally, we evaluated previously proposed chondrogenic biomarkers and searched for new biomarkers in the chondrocyte proteome capable of predicting clinical success or failure after ACI. METHODS The chondrogenic capacity of chondrocytes derived from 14 different donors was defined based on proteoglycans staining and visual histological grading of tissues generated using the pellet culture system. A Lysholm score of 65 two years post-ACI was used as a cut-off to categorise "success" and "failure" clinical groups. A set of predefined biomarkers were investigated in the chondrogenic and clinical outcomes groups using flow cytometry and qPCR. High-throughput proteomics of cell lysates was used to search for putative biomarkers to predict chondrogenesis and clinical outcomes. RESULTS Visual histological grading of pellets categorised donors into "high" and "low" chondrogenic groups. Direct comparison between donor-matched in vitro chondrogenic potential and clinical outcomes revealed no significant associations. Comparative analyses of selected biomarkers revealed that expression of CD106 and TGF-β-receptor-3 was enhanced in the low chondrogenic group, while expression of integrin-α1 and integrin-β1 was significantly upregulated in the high chondrogenic group. Additionally, increased surface expression of CD166 was observed in the clinical success group, while the gene expression of cartilage oligomeric matrix protein was downregulated. High throughput proteomics revealed no differentially expressed proteins from success and failure clinical groups, whereas seven proteins including prolyl-4-hydroxylase 1 were differentially expressed when comparing chondrogenic groups. CONCLUSION In our limited material, we found no correlation between in vitro cartilage-forming capacity and clinical outcomes, and argue on the limitations of using the chondrogenic potential of cells or markers for chondrogenesis as predictors of clinical outcomes.
Collapse
Affiliation(s)
- Ashraful Islam
- Department of Clinical Medicine, UiT The Arctic University of Norway, Tromsø, Norway.
| | - Vegard Fossum
- Department of Orthopaedic Surgery, University Hospital of Northern Norway, Tromsø, Norway
| | - Ann Kristin Hansen
- Department of Clinical Medicine, UiT The Arctic University of Norway, Tromsø, Norway.,Department of Orthopaedic Surgery, University Hospital of Northern Norway, Tromsø, Norway
| | - Ilona Urbarova
- Department of Medical Biology, Tromsø University Proteomics Platform, UiT The Arctic University of Norway, Tromsø, Norway
| | - Gunnar Knutsen
- Department of Orthopaedic Surgery, University Hospital of Northern Norway, Tromsø, Norway
| | | |
Collapse
|
31
|
Piltti J, Bygdell J, Qu C, Lammi MJ. Effects of long-term low oxygen tension in human chondrosarcoma cells. J Cell Biochem 2017; 119:2320-2332. [PMID: 28865129 DOI: 10.1002/jcb.26394] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 08/30/2017] [Indexed: 12/21/2022]
Abstract
The cell-based therapies could be potential methods to treat damaged cartilage tissues. Instead of native hyaline cartilage, the current therapies generate mainly weaker fibrocartilage-type of repair tissue. A correct microenvironment influences the cellular phenotype, and together with external factors it can be used, for example, to aid the differentiation of mesenchymal stem cells to defined types of differentiated adult cells. In this study, we investigated the effect of long-term exposure to 5% low oxygen atmosphere on human chondrosarcoma HCS-2/8 cells. This atmosphere is close to normal oxygen tension of cartilage tissue. The proteome was analyzed with label-free mass spectrometric method and further bioinformatic analysis. The qRT-PCR method was used to gene expression analysis, and ELISA and dimethylmethylene blue assays for type II collagen and sulfated glycosaminoglycan measurements. The 5% oxygen atmosphere did not influence cell proliferation, but enhanced slightly ACAN and COL2A1 gene expression. Proteomic screening revealed a number of low oxygen-induced protein level responses. Increased ones included NDUFA4L2, P4HA1, NDRG1, MIF, LDHA, PYGL, while TXNRD1, BAG2, TXN2, AQSTM1, TNFRSF1B, and EPHX1 decreased during the long-term low oxygen atmosphere. Also a number of proteins previously not related to low oxygen tension changed during the treatment. Of those S100P, RPSS26, NDUFB11, CDV3, and TUBB8 had elevated levels, while ALCAM, HLA-B, EIF1, and ACOT9 were lower in the samples cultured at low oxygen tension. In conclusion, low oxygen condition causes changes in the cellular amounts of several proteins.
Collapse
Affiliation(s)
- Juha Piltti
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
| | | | - Chengjuan Qu
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
| | - Mikko J Lammi
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden.,School of Public Health, Health Science Center, Xi'an Jiaotong University, Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Xi'an, Shaanxi, P.R. China
| |
Collapse
|
32
|
Kappler M, Kotrba J, Kaune T, Bache M, Rot S, Bethmann D, Wichmann H, Güttler A, Bilkenroth U, Horter S, Gallwitz L, Kessler J, Greither T, Taubert H, Eckert AW, Vordermark D. P4HA1: A single-gene surrogate of hypoxia signatures in oral squamous cell carcinoma patients. Clin Transl Radiat Oncol 2017; 5:6-11. [PMID: 29594211 PMCID: PMC5833914 DOI: 10.1016/j.ctro.2017.05.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 05/24/2017] [Accepted: 05/24/2017] [Indexed: 12/20/2022] Open
Abstract
Background and purpose Hypoxia gene expression signatures are of high prognostic value for head and neck cancer patients. Recently, the prognostic information of a multiple-gene hypoxia signature was found to be provided by the mRNA level of P4HA1 alone (Tawk et al., 2016). Therefore, we studied the prognostic value of P4HA1 in an independent cohort of oral squamous cell carcinoma (OSCC) patients. Material and methods Frozen tumor samples of 118 adult OSCC patients were analysed for P4HA1 mRNA level by quantitative real-time TaqMan™ PCR analysis. Kaplan-Meier analysis and Cox’s regression analysis were performed to characterize the prognostic impact of P4HA1 mRNA level in OSCC patients. Results The analyzed patient cohort was divided into four subgroups according to the quartiles of the P4HA1 mRNA levels. The highest intratumoral P4HA1 mRNA level was significantly correlated with a poor overall survival (RR = 2.2; P = 0.04) and an increased risk of locoregional recurrence (RR = 4.8; P = 0.02). In patients who received radiotherapy (n = 82) highest intratumoral P4HA1 mRNA level was significantly correlated with a poor overall survival (RR = 3.4; P = 0.01) and an increased risk of locoregional recurrence (RR = 10.3; P = 0.005). Moreover, significant correlations between the P4HA1 mRNA level and the mRNA level of several EMT and stem cell markers were found. Conclusions A high P4HA1 mRNA level, as a single-gene surrogate of hypoxia, is an independent prognostic marker for the overall survival and locoregional recurrence of OSCC patients.
Collapse
Affiliation(s)
- Matthias Kappler
- Department of Oral and Maxillofacial Plastic Surgery, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Johanna Kotrba
- Department of Oral and Maxillofacial Plastic Surgery, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Tom Kaune
- Department of Oral and Maxillofacial Plastic Surgery, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Matthias Bache
- Department of Radiotherapy, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Swetlana Rot
- Department of Oral and Maxillofacial Plastic Surgery, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Daniel Bethmann
- Institute of Pathology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Henri Wichmann
- Department of Oral and Maxillofacial Plastic Surgery, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Antje Güttler
- Department of Radiotherapy, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | | | - Susanne Horter
- Department of Oral and Maxillofacial Plastic Surgery, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Lisa Gallwitz
- Center for Reproductive Medicine and Andrology, Martin Luther University Halle-Wittenberg, Germany
| | - Jacqueline Kessler
- Department of Radiotherapy, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Thomas Greither
- Center for Reproductive Medicine and Andrology, Martin Luther University Halle-Wittenberg, Germany
| | - Helge Taubert
- Clinic of Urology and Pediatric Urology, University Hospital Erlangen, Erlangen, Germany
| | - Alexander W Eckert
- Department of Oral and Maxillofacial Plastic Surgery, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Dirk Vordermark
- Department of Radiotherapy, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
33
|
Szoka L, Karna E, Hlebowicz-Sarat K, Karaszewski J, Palka JA. Exogenous proline stimulates type I collagen and HIF-1α expression and the process is attenuated by glutamine in human skin fibroblasts. Mol Cell Biochem 2017; 435:197-206. [PMID: 28526934 PMCID: PMC5632346 DOI: 10.1007/s11010-017-3069-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 05/13/2017] [Indexed: 12/19/2022]
Abstract
Abundance of proline (Pro) in collagen molecule led us to investigate whether Pro supply affects collagen biosynthesis in human skin fibroblasts. Treatment of the cells with milimolar concentrations (5 and 10 mM) of Pro for 24 and 48 h contributed to increase in α1 subunit of collagen type I (COL1A1) expression in both cells and culture medium. However, the effect was more pronounced in glutamine-free medium. In such condition, Pro induced collagen expression by about twofold in the cells, while in the medium only by about 30% during 24 h incubation, compared to control. In the presence of glutamine (Gln), exogenous Pro stimulated intracellular collagen expression only by about 30% during 24 h of fibroblasts incubation, and it was not accompanied by adequate increase of collagen secretion into medium. Gln alone stimulated the processes by about 2–3 fold during the course of the experiment. Pro-dependent increase in collagen expression in Gln-free medium was accompanied by increase in prolidase activity and expression of pAkt. In both Gln-free medium and Gln-supplemented medium, Pro induced expression of p53 and HIF-1α. The data suggest that availability of Gln, as a substrate for Pro biosynthesis, determine the utilization of exogenous Pro for the collagen biosynthesis.
Collapse
Affiliation(s)
- Lukasz Szoka
- Department of Medicinal Chemistry, Medical University of Bialystok, Mickiewicza 2 D, 15-222, Bialystok, Poland
| | - Ewa Karna
- Department of Medicinal Chemistry, Medical University of Bialystok, Mickiewicza 2 D, 15-222, Bialystok, Poland
| | - Kornelia Hlebowicz-Sarat
- Laboratory of Cosmetology, Medical University of Bialystok, Akademicka 3, 15-267, Bialystok, Poland
| | - Jacek Karaszewski
- Department of Urology, Medical University of Bialystok, M. Skłodowskiej-Curie 24A, 15-276, Bialystok, Poland
| | - Jerzy A Palka
- Department of Medicinal Chemistry, Medical University of Bialystok, Mickiewicza 2 D, 15-222, Bialystok, Poland.
| |
Collapse
|
34
|
Fernández‐Torres J, Martínez‐Nava GA, Gutiérrez‐Ruíz MC, Gomez‐Quiroz LE, Gutiérrez M. Papel da via de sinalização do HIF‐1α na osteoartrite: revisão sistemática. REVISTA BRASILEIRA DE REUMATOLOGIA 2017. [DOI: 10.1016/j.rbr.2016.04.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
35
|
Gjaltema RAF, Bank RA. Molecular insights into prolyl and lysyl hydroxylation of fibrillar collagens in health and disease. Crit Rev Biochem Mol Biol 2016; 52:74-95. [PMID: 28006962 DOI: 10.1080/10409238.2016.1269716] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Collagen is a macromolecule that has versatile roles in physiology, ranging from structural support to mediating cell signaling. Formation of mature collagen fibrils out of procollagen α-chains requires a variety of enzymes and chaperones in a complex process spanning both intracellular and extracellular post-translational modifications. These processes include modifications of amino acids, folding of procollagen α-chains into a triple-helical configuration and subsequent stabilization, facilitation of transportation out of the cell, cleavage of propeptides, aggregation, cross-link formation, and finally the formation of mature fibrils. Disruption of any of the proteins involved in these biosynthesis steps potentially result in a variety of connective tissue diseases because of a destabilized extracellular matrix. In this review, we give a revised overview of the enzymes and chaperones currently known to be relevant to the conversion of lysine and proline into hydroxyproline and hydroxylysine, respectively, and the O-glycosylation of hydroxylysine and give insights into the consequences when these steps are disrupted.
Collapse
Affiliation(s)
- Rutger A F Gjaltema
- a MATRIX Research Group, Department of Pathology and Medical Biology , University Medical Center Groningen, University of Groningen , Groningen , the Netherlands
| | - Ruud A Bank
- a MATRIX Research Group, Department of Pathology and Medical Biology , University Medical Center Groningen, University of Groningen , Groningen , the Netherlands
| |
Collapse
|
36
|
Qing L, Lei P, Liu H, Xie J, Wang L, Wen T, Hu Y. Expression of hypoxia-inducible factor-1α in synovial fluid and articular cartilage is associated with disease severity in knee osteoarthritis. Exp Ther Med 2016; 13:63-68. [PMID: 28123469 PMCID: PMC5244982 DOI: 10.3892/etm.2016.3940] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 09/09/2016] [Indexed: 12/16/2022] Open
Abstract
The aim of the present study was to examine hypoxia-inducible factor 1α (HIF-1α) levels in the synovial fluid and articular cartilage of patients with primary knee osteoarthritis (OA) and to investigate their association with the severity of disease. A total of 36 patients with knee OA and ten healthy controls were enrolled. Anteroposterior knee radiographs and/or Mankin scores were assessed to determine the disease severity of the affected knee. Radiographic grading of OA in the knee was performed according to Kellgren-Lawrence criteria. HIF-1α levels in synovial fluid were measured using enzyme-linked immunosorbent assay, whereas HIF-1α levels in articular cartilage were assessed with immunohistochemical methods. Compared with healthy controls, OA patients exhibited an increased HIF-1α concentration in synovial fluid (218.17±25.12 vs. 156.66±7.74 pg/ml; P<0.001) and articular cartilage (P<0.05). Furthermore, synovial fluid HIF-1α levels demonstrated a positive correlation with articular cartilage HIF-1α levels (Pearson's P=0.815; P<0.001). Subsequent analysis showed that synovial fluid HIF-1α levels were significantly correlated with the severity of disease (Spearman's ρ=0.933; P<0.001). Furthermore, articular cartilage levels of HIF-1α also correlated with disease severity (Spearman's ρ=-0.967; P<0.001). The findings of the present study suggested that HIF-1α in synovial fluid and articular cartilage is associated with progressive joint damage and is likely to be a useful biomarker for determining disease severity and progression in knee OA.
Collapse
Affiliation(s)
- Liming Qing
- Department of Orthopedic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Pengfei Lei
- Department of Orthopedic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Hao Liu
- Program of Biology and Biomedical Sciences, Division of Medical Sciences, Harvard Medical School, Harvard University, Boston, MA 02115, USA
| | - Jie Xie
- Department of Orthopedic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Long Wang
- Department of Orthopedic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Ting Wen
- Department of Orthopedic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Yihe Hu
- Department of Orthopedic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| |
Collapse
|
37
|
Deferoxamine Suppresses Collagen Cleavage and Protease, Cytokine, and COL10A1 Expression and Upregulates AMPK and Krebs Cycle Genes in Human Osteoarthritic Cartilage. Int J Rheumatol 2016; 2016:6432867. [PMID: 28042296 PMCID: PMC5155111 DOI: 10.1155/2016/6432867] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 10/19/2016] [Accepted: 10/25/2016] [Indexed: 12/27/2022] Open
Abstract
This study reports the effects of the iron chelator deferoxamine (DFO) on collagen cleavage, inflammation, and chondrocyte hypertrophy in relation to energy metabolism-related gene expression in osteoarthritic (OA) articular cartilage. Full-depth explants of human OA knee articular cartilage from arthroplasty were cultured with exogenous DFO (1–50 μM). Type II collagen cleavage and phospho-adenosine monophosphate-activated protein kinase (pAMPK) concentrations were measured using ELISAs. Gene expression studies employed real-time PCR and included AMPK analyses in PBMCs. In OA explants collagen cleavage was frequently downregulated by 10–50 μM DFO. PCR analysis of 7 OA patient cartilages revealed that 10 μM DFO suppressed expression of MMP-1, MMP-13, IL-1β, and TNFα and a marker of chondrocyte hypertrophy, COL10A1. No changes were observed in the expression of glycolysis-related genes. In contrast, expressions of genes associated with the mitochondrial Krebs cycle (TCA), AMPK, HIF1α, and COL2A1 were upregulated. AMPK gene expression was reduced in OA cartilage and increased in PBMCs from the same patients compared to healthy controls. Our studies demonstrate that DFO is capable of suppressing excessive collagenase-mediated type II collagen cleavage in OA cartilage and reversing phenotypic changes. The concomitant upregulation of proanabolic TCA-related gene expressions points to a potential for availability of energy generating substrates required for matrix repair by end-stage OA chondrocytes. This might normally be prevented by high whole-body energy requirements indicated by elevated AMPK expression in PBMCs of OA patients.
Collapse
|
38
|
Fernández-Torres J, Martínez-Nava GA, Gutiérrez-Ruíz MC, Gómez-Quiroz LE, Gutiérrez M. Role of HIF-1α signaling pathway in osteoarthritis: a systematic review. REVISTA BRASILEIRA DE REUMATOLOGIA 2016; 57:162-173. [PMID: 28343622 DOI: 10.1016/j.rbre.2016.07.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 04/28/2016] [Indexed: 12/20/2022] Open
Abstract
Osteoarthritis (OA) is the most common form of arthritis and is frequently diagnosed and managed in primary care; it is characterized by loss of articular hyaline cartilage, which is a unique connective tissue that physiologically lacks blood vessels. Articular cartilage survives in a microenvironment devoid of oxygen, which is regulated by hypoxia inducible factor (HIF-1α). HIF-1α is considered the main transcriptional regulator of cellular and developmental response to hypoxia. To date, the relevance of HIF-1α in the assessment of cartilage has increased since its participation is essential in the homeostasis of this tissue. Taking into account the new emerging insights of HIF-1α in the scientific literature in the last years, we focused the present review on the potential role of HIF-1α signaling pathway in OA development, especially in how some genetic factors may influence the maintenance or breakdown of articular cartilage.
Collapse
Affiliation(s)
- Javier Fernández-Torres
- Instituto Nacional de Rehabilitación "Luis Guillermo Ibarra Ibarra", Laboratorio de Líquido Sinovial, Mexico City, Mexico; Universidad Autónoma Metropolitana Iztapalapa, Programa de Doctorado de Ciencias Biológicas y de la Salud, Mexico City, Mexico.
| | | | - María Concepción Gutiérrez-Ruíz
- Universidad Autónoma Metropolitana Iztapalapa, Programa de Doctorado de Ciencias Biológicas y de la Salud, Mexico City, Mexico
| | - Luis Enrique Gómez-Quiroz
- Universidad Autónoma Metropolitana Iztapalapa, Programa de Doctorado de Ciencias Biológicas y de la Salud, Mexico City, Mexico
| | - Marwin Gutiérrez
- Instituto Nacional de Rehabilitación "Luis Guillermo Ibarra Ibarra", Laboratorio de Líquido Sinovial, Mexico City, Mexico; Universidad Autónoma Metropolitana Iztapalapa, Programa de Doctorado de Ciencias Biológicas y de la Salud, Mexico City, Mexico
| |
Collapse
|
39
|
Signaling pathways effecting crosstalk between cartilage and adjacent tissues: Seminars in cell and developmental biology: The biology and pathology of cartilage. Semin Cell Dev Biol 2016; 62:16-33. [PMID: 27180955 DOI: 10.1016/j.semcdb.2016.05.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 05/07/2016] [Indexed: 12/14/2022]
Abstract
Endochondral ossification, the mechanism responsible for the development of the long bones, is dependent on an extremely stringent coordination between the processes of chondrocyte maturation in the growth plate, vascular expansion in the surrounding tissues, and osteoblast differentiation and osteogenesis in the perichondrium and the developing bone center. The synchronization of these processes occurring in adjacent tissues is regulated through vigorous crosstalk between chondrocytes, endothelial cells and osteoblast lineage cells. Our knowledge about the molecular constituents of these bidirectional communications is undoubtedly incomplete, but certainly some signaling pathways effective in cartilage have been recognized to play key roles in steering vascularization and osteogenesis in the perichondrial tissues. These include hypoxia-driven signaling pathways, governed by the hypoxia-inducible factors (HIFs) and vascular endothelial growth factor (VEGF), which are absolutely essential for the survival and functioning of chondrocytes in the avascular growth plate, at least in part by regulating the oxygenation of developing cartilage through the stimulation of angiogenesis in the surrounding tissues. A second coordinating signal emanating from cartilage and regulating developmental processes in the adjacent perichondrium is Indian Hedgehog (IHH). IHH, produced by pre-hypertrophic and early hypertrophic chondrocytes in the growth plate, induces the differentiation of adjacent perichondrial progenitor cells into osteoblasts, thereby harmonizing the site and time of bone formation with the developmental progression of chondrogenesis. Both signaling pathways represent vital mediators of the tightly organized conversion of avascular cartilage into vascularized and mineralized bone during endochondral ossification.
Collapse
|
40
|
Sun C, Shang J, Yao Y, Yin X, Liu M, Liu H, Zhou Y. O-GlcNAcylation: a bridge between glucose and cell differentiation. J Cell Mol Med 2016; 20:769-81. [PMID: 26929182 PMCID: PMC4831356 DOI: 10.1111/jcmm.12807] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 01/08/2016] [Indexed: 12/12/2022] Open
Abstract
Glucose is the major energy supply and a critical metabolite for most cells and is especially important when cell is differentiating. High or low concentrations of glucose enhances or inhibits the osteogenic, chondrogenic and adipogenic differentiation of cell via the insulin, transforming growth factor‐β and peroxisome proliferator‐activated receptor γ pathways, among others. New evidence implicates the hexosamine biosynthetic pathway as a mediator of crosstalk between glucose flux, cellular signalling and epigenetic regulation of cell differentiation. Extracellular glucose flux alters intracellular O‐GlcNAcylation levels through the hexosamine biosynthetic pathway. Signalling molecules that are important for cell differentiation, including protein kinase C, extracellular signal‐regulated kinase, Runx2, CCAAT/enhancer‐binding proteins, are modified by O‐GlcNAcylation. Thus, O‐GlcNAcylation markedly alters cell fate during differentiation via the post‐transcriptional modification of proteins. Furthermore, O‐GlcNAcylation and phosphorylation show complex interactions during cell differentiation: they can either non‐competitively occupy different sites on a substrate or competitively occupy a single site or proximal sites. Therefore, the influence of glucose on cell differentiation via O‐GlcNAcylation offers a potential target for controlling tissue homoeostasis and regeneration in ageing and disease. Here, we review recent progress establishing an emerging relationship among glucose concentration, O‐GlcNAcylation levels and cell differentiation.
Collapse
Affiliation(s)
- Chao Sun
- Department of Orthopedics, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Jin Shang
- Department of Orthopedics, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Yuan Yao
- Department of Orthopedics, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Xiaohong Yin
- Center for Evidence-based and Translational Medicine, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Minghan Liu
- Department of Orthopedics, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Huan Liu
- Department of Orthopedics, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Yue Zhou
- Department of Orthopedics, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| |
Collapse
|
41
|
Nagao M, Cheong CW, Olsen BR. Col2-Cre and tamoxifen-inducible Col2-CreER target different cell populations in the knee joint. Osteoarthritis Cartilage 2016; 24:188-91. [PMID: 26256767 PMCID: PMC4695246 DOI: 10.1016/j.joca.2015.07.025] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 07/23/2015] [Accepted: 07/30/2015] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Collagen type 2 (Col2)-Cre or tamoxifen-inducible Col2-CreER transgenic mouse lines have been used for studies to explore the cellular and molecular pathogenesis of osteoarthritis (OA). The purpose of this study is to investigate whether the targeted cells are the same or different in the two mouse lines. METHODS We crossed tamoxifen inducible Col2-CreER and Col2-Cre mice with Rosa tdTomato reporter mice and analyzed the labeling patterns at different time points. RESULTS In the Col2-CreER mice, 90.8 [95% confidence interval (CI) (88.3, 93.2)] and 82.8 (77.4, 88.3) % of the articular surface cells are Tomato positive when tamoxifen was administered at 2 and 2.5 weeks of age and strong activity was observed even 4.5 months after injection. However, 46.0 (32.8, 59.1) and 22.2 (11.7, 32.6) % of the surface cells were Tomato positive when tamoxifen was administered at 3 and 4 weeks of age, respectively. Little to no Tomato activity in the articular surface cells was observed when tamoxifen was administered at 8 weeks of age. At any stage of tamoxifen injection, the Tomato activity was detected in growth plate and epiphyseal bone in addition to articular chondrocytes, but little in endosteum and not in the synovium and ligament. In contrast, the targeted tissues in the Col2-Cre mouse line were articular cartilage, growth plate, meniscus, endosteum, ligament, bone and synovium. CONCLUSIONS This study demonstrates that the pattern of targeted cells in the inducible Col2-CreER mice are partially overlapping with but different from that of targeted cells in Col2-Cre mice and the pattern varies dependent on when tamoxifen is administered.
Collapse
Affiliation(s)
- M Nagao
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA 02115, USA.
| | - C W Cheong
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA 02115, USA
| | - B R Olsen
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA 02115, USA.
| |
Collapse
|
42
|
Tekari A, Luginbuehl R, Hofstetter W, Egli RJ. Chondrocytes expressing intracellular collagen type II enter the cell cycle and co-express collagen type I in monolayer culture. J Orthop Res 2014; 32:1503-11. [PMID: 25043137 DOI: 10.1002/jor.22690] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 06/17/2014] [Indexed: 02/04/2023]
Abstract
For autologous chondrocyte transplantation, articular chondrocytes are harvested from cartilage tissue and expanded in vitro in monolayer culture. We aimed to characterize with a cellular resolution the synthesis of collagen type II (COL2) and collagen type I (COL1) during expansion in order to further understand why these cells lose the potential to form cartilage tissue when re-introduced into a microenvironment that supports chondrogenesis. During expansion for six passages, levels of transcripts encoding COL2 decreased to <0.1%, whereas transcript levels encoding COL1 increased 370-fold as compared to primary chondrocytes. Flow cytometry for intracellular proteins revealed that chondrocytes acquired a COL2/COL1-double positive phenotype during expansion, and the COL2 positive cells were able to enter the cell cycle. While the fraction of COL2 positive cells decreased from 70% to <2% in primary chondrocytes to passage six cells, the fraction of COL1 positive cells increased from <1% to >95%. In parallel to the decrease of the fraction of COL2 positive cells, the cells' potential to form cartilage-like tissue in pellet cultures steadily decreased. Intracellular staining for COL2 enables for characterization of chondrocyte lineage cells in more detail with a cellular resolution, and it may allow predicting the effectiveness of expanded chondrocytes to form cartilage-like tissue.
Collapse
Affiliation(s)
- Adel Tekari
- Group for Bone Biology and Orthopaedic Research, Department Clinical Research, University of Bern, Bern, Switzerland; Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | | | | | | |
Collapse
|
43
|
Warnock JJ, Bobe G, Duesterdieck-Zellmer KF. Fibrochondrogenic potential of synoviocytes from osteoarthritic and normal joints cultured as tensioned bioscaffolds for meniscal tissue engineering in dogs. PeerJ 2014; 2:e581. [PMID: 25289180 PMCID: PMC4183955 DOI: 10.7717/peerj.581] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 08/26/2014] [Indexed: 12/11/2022] Open
Abstract
Meniscal tears are a common cause of stifle lameness in dogs. Use of autologous synoviocytes from the affected stifle is an attractive cell source for tissue engineering replacement fibrocartilage. However, the diseased state of these cells may impede in vitro fibrocartilage formation. Synoviocytes from 12 osteoarthritic (“oaTSB”) and 6 normal joints (“nTSB”) were cultured as tensioned bioscaffolds and compared for their ability to synthesize fibrocartilage sheets. Gene expression of collagens type I and II were higher and expression of interleukin-6 was lower in oaTSB versus nTSB. Compared with nTSB, oaTSB had more glycosaminoglycan and alpha smooth muscle staining and less collagen I and II staining on histologic analysis, whereas collagen and glycosaminoglycan quantities were similar. In conclusion, osteoarthritic joint—origin synoviocytes can produce extracellular matrix components of meniscal fibrocartilage at similar levels to normal joint—origin synoviocytes, which makes them a potential cell source for canine meniscal tissue engineering.
Collapse
Affiliation(s)
- Jennifer J Warnock
- College of Veterinary Medicine, Oregon State University , Corvallis, OR , United States
| | - Gerd Bobe
- Linus Pauling Institute, Oregon State University , Corvallis, OR , United States
| | | |
Collapse
|
44
|
Involvement of mitochondrial dysfunction and ER-stress in the physiopathology of equine osteochondritis dissecans (OCD). Exp Mol Pathol 2014; 96:328-38. [DOI: 10.1016/j.yexmp.2014.03.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 03/12/2014] [Accepted: 03/13/2014] [Indexed: 12/21/2022]
|
45
|
Amplified and selective assay of collagens by enzymatic and fluorescent reactions. Sci Rep 2014; 4:4950. [PMID: 24821501 PMCID: PMC4018762 DOI: 10.1038/srep04950] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 04/25/2014] [Indexed: 02/07/2023] Open
Abstract
Sensitive and selective assay of collagen is of substantial importance to the diagnostic study of health- and aging-related failures. In this paper, we describe a highly specific and sensitive method for the assay of whole collagens in biological samples using a novel fluorogenic reagent, 3,4-dihydroxyphenylacetic acid (3,4-DHPAA). The 3,4-DHPAA reagent can selectively detect N-terminal Gly-containing peptides (NGPs) in the presence of sodium borate and NaIO4. Under conditions optimized, this assay format for collagen, termed 3,4-DHPAA assay method showed a good linear relationship between the amplified FL signals and the collagen concentrations from 0.18 to 12 μg/ml. Therefore the sensitive determination of intracellular collagens in cheek tissue and HeLa cells was individually possible without any separation protocol. The dual recognitions of the collagens in the samples could be performed by the enzymatic digestion and the FL reaction. The proposed assay method enables the determination facile, specific, sensitive and quantitative for biogenic collagens.
Collapse
|
46
|
Nasi S, Ea HK, Chobaz V, van Lent P, Lioté F, So A, Busso N. Dispensable role of myeloid differentiation primary response gene 88 (MyD88) and MyD88-dependent toll-like receptors (TLRs) in a murine model of osteoarthritis. Joint Bone Spine 2014; 81:320-4. [PMID: 24703622 DOI: 10.1016/j.jbspin.2014.01.018] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 01/25/2014] [Indexed: 10/25/2022]
Abstract
OBJECTIVES The aim of our study was to evaluate the role of cell-membrane expressed TLRs and the signaling molecule MyD88 in a murine model of OA induced by knee menisectomy (surgical partial removal of the medial meniscus [MNX]). METHODS OA was induced in 8-10weeks old C57Bl/6 wild-type (WT) female (n=7) mice and in knockout (KO) TLR-1 (n=7), -2 (n=8), -4 (n=9) -6 (n=5), MyD88 (n=8) mice by medial menisectomy, using the sham-operated contralateral knee as a control. Cartilage destruction and synovial inflammation were evaluated by knee joint histology using the OARSI scoring method. Apoptotic chondrocytes and cartilage metabolism (collagen II synthesis and MMP-mediated aggrecan degradation) were analyzed using immunohistochemistry. RESULTS Operated knees exhibited OA features at 8weeks post-surgery compared to sham-operated ones. In menisectomized TLR-1, -2, -4, and -6 deficient mice, cartilage lesions, synovial inflammation and cartilage metabolism were similar to that in operated WT mice. Accordingly, using the same approach, we found no significant protection in MyD88-deficient mice in terms of OA progression as compared to WT littermates. CONCLUSIONS Deficiency of TLRs or their signalling molecule MyD88 did not impact on the severity of experimental OA. Our results demonstrate that MyD88-dependent TLRs are not involved in this murine OA model. Moreover, the dispensable role of MyD88, which is also an adaptor for IL-1 receptor signaling, suggests that IL-1 is not a key mediator in the development of OA. This latter hypothesis is strengthened by the lack of efficiency of IL-1β antagonist in the treatment of OA.
Collapse
Affiliation(s)
- Sonia Nasi
- DAL, Service of Rheumatology, Laboratory of Rheumatology, University of Lausanne, CHUV, Nestlé 05-5029, 1011 Lausanne, Switzerland
| | - Hang-Korng Ea
- INSERM, UMR-S 606, Hospital Lariboisière, 75010 Paris, France; University Paris Diderot (UFR de Médecine), Sorbonne Paris Cité, 75205 Paris, France
| | - Véronique Chobaz
- DAL, Service of Rheumatology, Laboratory of Rheumatology, University of Lausanne, CHUV, Nestlé 05-5029, 1011 Lausanne, Switzerland
| | | | - Frédéric Lioté
- INSERM, UMR-S 606, Hospital Lariboisière, 75010 Paris, France; University Paris Diderot (UFR de Médecine), Sorbonne Paris Cité, 75205 Paris, France
| | - Alexander So
- DAL, Service of Rheumatology, Laboratory of Rheumatology, University of Lausanne, CHUV, Nestlé 05-5029, 1011 Lausanne, Switzerland
| | - Nathalie Busso
- DAL, Service of Rheumatology, Laboratory of Rheumatology, University of Lausanne, CHUV, Nestlé 05-5029, 1011 Lausanne, Switzerland.
| |
Collapse
|
47
|
Xiong G, Deng L, Zhu J, Rychahou PG, Xu R. Prolyl-4-hydroxylase α subunit 2 promotes breast cancer progression and metastasis by regulating collagen deposition. BMC Cancer 2014; 14:1. [PMID: 24383403 PMCID: PMC3880410 DOI: 10.1186/1471-2407-14-1] [Citation(s) in RCA: 319] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Accepted: 12/26/2013] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Increased collagen deposition provides physical and biochemical signals to support tumor growth and invasion during breast cancer development. Therefore, inhibition of collagen synthesis and deposition has been considered a strategy to suppress breast cancer progression. Collagen prolyl-4-hydroxylase α subunit 2 (P4HA2), an enzyme hydroxylating proline residues in -X-Pro-Gly- sequences, is a potential therapeutic target for the disorders associated with increased collagen deposition. However, expression and function of P4HA2 in breast cancer progression are not well investigated. METHODS Gene co-expression analysis was performed in the published microarray datasets to identify potential regulators of collagen I, III, and IV in human breast cancer tissue. Expression of P4HA2 was silenced by shRNAs, and its activity was inhibited by 1, 4-DPCA, a prolyl-4-hydroxylase inhibitor. Three-dimensional culture assay was used to analyze roles of P4HA2 in regulating malignant phenotypes of breast cancer cells. Reduced deposition of collagen I and IV was detected by Western blotting and immunofluorescence. Control and P4HA2-silenced breast cancer cells were injected into fat pad and tail vein of SCID mice to examine effect of P4HA2 on tumor growth and lung metastasis. RESULTS Using gene co-expression analysis, we showed that P4HA2 was associated with expression of Col1A1, Col3A1, and Col4A1 during breast cancer development and progression. P4HA2 mRNA levels were significantly upregulated in breast cancer compared to normal mammary tissue. Increased mRNA levels of P4HA2 correlated with poor clinical outcome in breast cancer patients, which is independent of estrogen receptor status. Silencing P4HA2 expression or treatment with the P4HA inhibitor significantly inhibited cell proliferation and suppressed aggressive phenotypes of breast cancer cells in 3D culture, accompanied by reduced deposition of collagen I and IV. We also found that knockdown of P4HA2 inhibited mammary tumor growth and metastasis to lungs in xenograft models. CONCLUSION These results suggest the critical role of P4HA2 in breast cancer progression and identify P4HA2 as a potential therapeutic target and biomarker for breast cancer progression.
Collapse
Affiliation(s)
| | | | | | | | - Ren Xu
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA.
| |
Collapse
|
48
|
Wang L, Gala M, Yamamoto M, Pino MS, Kikuchi H, Shue DS, Shirasawa S, Austin TR, Lynch MP, Rueda BR, Zukerberg LR, Chung DC. Adrenomedullin is a therapeutic target in colorectal cancer. Int J Cancer 2013; 134:2041-50. [PMID: 24519534 DOI: 10.1002/ijc.28542] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 09/27/2013] [Indexed: 12/17/2022]
Abstract
The KRAS oncogene influences angiogenesis, metastasis and chemoresistance in colorectal cancers (CRCs), and these processes are all enhanced in hypoxic conditions. To define functional activities of mutant KRAS in a hypoxic microenvironment, we first performed cDNA microarray experiments in isogenic DKs5 and DKO3 colon cancer cell lines that differ only by their expression of mutant KRAS (K-ras(D13)). Adrenomedullin (ADM) was identified as one of the most significantly upregulated genes in DKs5 cells that express the KRAS oncogene in hypoxia (3.2-fold, p = 1.47 × 10(-5)). Ectopic expression of mutant KRAS (K-ras(V12)) in Caco-2 cells (K-ras(WT)) induced ADM, whereas selective knockdown of mutant KRAS alleles (K-ras(D13) or K-ras(V12)) in HCT116, DLD1 and SW480 colon cancer cells suppressed the expression of ADM in hypoxia. Knockdown of ADM in colon tumor xenografts blocked angiogenesis and stimulated apoptosis, resulting in tumor suppression. Furthermore, ADM also regulated colon cancer cell invasion in vitro. Among 56 patients with CRC, significantly higher expression levels of ADM were observed in samples harboring a KRAS mutation. Collectively, ADM is a new target of oncogenic KRAS in the setting of hypoxia. This observation suggests that therapeutic targets may differ depending upon the specific tumor microenvironment.
Collapse
Affiliation(s)
- Liangjing Wang
- Gastrointestinal Unit Massachusetts General Hospital, Harvard Medical School, Boston, MA; Department of Gastroenterology Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
CAI LIANGLIANG, YE HONGZHI, YU FANGRONG, LI HUITING, CHEN JIASHOU, LIU XIANXIANG. Effects of Bauhinia championii (Benth.) Benth. polysaccharides on the proliferation and cell cycle of chondrocytes. Mol Med Rep 2013; 7:1624-30. [DOI: 10.3892/mmr.2013.1368] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Accepted: 02/08/2013] [Indexed: 11/05/2022] Open
|
50
|
Bentovim L, Amarilio R, Zelzer E. HIF1α is a central regulator of collagen hydroxylation and secretion under hypoxia during bone development. Development 2012; 139:4473-83. [PMID: 23095889 DOI: 10.1242/dev.083881] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Collagen production is fundamental for the ontogeny and the phylogeny of all multicellular organisms. It depends on hydroxylation of proline residues, a reaction that uses molecular oxygen as a substrate. This dependency is expected to limit collagen production to oxygenated cells. However, during embryogenesis, cells in different tissues that develop under low oxygen levels must produce this essential protein. In this study, using the growth plate of developing bones as a model system, we identify the transcription factor hypoxia-inducible factor 1 α (HIF1α) as a central component in a mechanism that underlies collagen hydroxylation and secretion by hypoxic cells. We show that Hif1a loss of function in growth plate chondrocytes arrests the secretion of extracellular matrix proteins, including collagen type II. Reduced collagen hydroxylation and endoplasmic reticulum stress induction in Hif1a-depleted cells suggests that HIF1α regulates collagen secretion by mediating its hydroxylation and consequently its folding. We demonstrate in vivo the ability of Hif1α to drive the transcription of collagen prolyl 4-hydroxylase, which catalyzes collagen hydroxylation. We also show that, concurrently, HIF1α maintains cellular levels of oxygen, most likely by controlling the expression of pyruvate dehydrogenase kinase 1, an inhibitor of the tricarboxylic acid cycle. Through this two-armed mechanism, HIF1α acts as a central regulator of collagen production that allows chondrocytes to maintain their function as professional secretory cells in the hypoxic growth plate. As hypoxic conditions occur also during pathological conditions such as cancer, our findings may promote the understanding not only of embryogenesis, but also of pathological processes.
Collapse
Affiliation(s)
- Lital Bentovim
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | |
Collapse
|