1
|
Conover CA, Oxvig C. The IGF System and Aging. Endocr Rev 2025; 46:214-223. [PMID: 39418083 PMCID: PMC11894535 DOI: 10.1210/endrev/bnae029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/20/2024] [Accepted: 10/09/2024] [Indexed: 10/19/2024]
Abstract
There is strong evidence that IGF signaling is involved in fundamental aspects of the aging process. However, the extracellular part of the IGF system is complex with various receptors, ligand effectors, high-affinity IGF-binding proteins, proteinases, and endogenous inhibitors that all, along with their biological context, must be considered. The IGF system components are evolutionarily conserved, underscoring the importance of understanding this system in physiology and pathophysiology. This review will briefly describe the different components of the IGF system and then discuss past and current literature regarding IGF and aging, with a focus on cellular senescence, model organisms of aging, centenarian genetics, and 3 age-related diseases-pulmonary fibrosis, Alzheimer disease, and macular degeneration-in appropriate murine models and in humans. Commonalities in mechanism suggest conditions where IGF system components may be disease drivers and potential targets in promoting healthy aging in humans.
Collapse
Affiliation(s)
- Cheryl A Conover
- Division of Endocrinology, Mayo Clinic, Rochester, MN 55905, USA
| | - Claus Oxvig
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark
| |
Collapse
|
2
|
Zhou W, Su P, Wang Y, Li Z, Liu L. Exploration of the molecular linkage between endometriosis and Crohn disease by bioinformatics methods. Medicine (Baltimore) 2024; 103:e38097. [PMID: 38758892 PMCID: PMC11098239 DOI: 10.1097/md.0000000000038097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 04/11/2024] [Indexed: 05/19/2024] Open
Abstract
BACKGROUND Endometriosis (EMT) is a common disease in reproductive-age woman and Crohn disease (CD) is a chronic inflammatory disorder in gastrointestinal tract. Previous studies reported that patients with EMT had an increased risk of CD. However, the linkage between EMT and CD remains unclear. In this study, we aimed to investigate the potential molecular mechanism of EMT and CD. METHODS The microarray data of EMT and CD were downloaded from Gene Expression Omnibus. Common genes of EMT and CD were obtained to perform the Gene Ontology and Kyoto Encyclopedia of Gene Genomes enrichments. The protein-protein interaction network was constructed by Cytoscape software and the hub genes were identified by CytoHubba plug-in. Finally we predicted the transcription factors (TFs) of hub genes and constructed a TFs-hub genes regulation network. RESULTS A total of 50 common genes were identified. Kyoto Encyclopedia of Gene Genomes enrichment showed that the common genes mainly enriched in MAPK pathway, VEGF pathway, Wnt pathway, TGF-beta pathway, and Ras pathway. Fifteen hub genes were collected from the protein-protein interaction network, including FMOD, FRZB, CPE, SST, ISG15, EFEMP1, KDR, ADRA2A, FZD7, AQP1, IGFBP5, NAMPT, PLUA, FGF9, and FHL2. Among them, FGF9, FZD7, IGFBP5, KDR, and NAMPT were both validated in the other 2 datasets. Finally TFs-hub genes regulation network were constructed. CONCLUSION Our findings firstly revealed the linkage between EMT and CD, including inflammation, angiogenesis, immune regulation, and cell behaviors, which may lead to the risk of CD in EMT. FGF9, FZD7, IGFBP5, KDR, and NAMPT may closely relate to the linkage.
Collapse
Affiliation(s)
- Weijie Zhou
- Department of Gastroenterology, The Six Affiliated Hospital of South China University of Technology, Foshan City, Guangdong Province, China
| | - Peizhu Su
- Department of Gastroenterology, The First People’s Hospital of Foshan, Foshan City, Guangdong Province, China
| | - Yilin Wang
- Department of Gastroenterology, The First People’s Hospital of Foshan, Foshan City, Guangdong Province, China
| | - Zhaotao Li
- Department of Gastroenterology, The First People’s Hospital of Foshan, Foshan City, Guangdong Province, China
| | - Liu Liu
- Department of Gastroenterology, The Six Affiliated Hospital of South China University of Technology, Foshan City, Guangdong Province, China
| |
Collapse
|
3
|
Liu J, Wang J, Zhang Q, Lu F, Cai J. Clinical, Histologic, and Transcriptomic Evaluation of Sequential Fat Grafting for Morphea: A Nonrandomized Controlled Trial. JAMA Dermatol 2024; 160:425-433. [PMID: 38324287 PMCID: PMC11024779 DOI: 10.1001/jamadermatol.2023.5908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 12/01/2023] [Indexed: 02/08/2024]
Abstract
Importance Morphea is a rare disease of unknown etiology without satisfactory treatment for skin sclerosis and soft tissue atrophy. Objective To provide clinical, histologic, and transcriptome evidence of the antisclerotic and regenerative effects of sequential fat grafting with fresh fat and cryopreserved stromal vascular fraction gel (SVF gel) for morphea. Design, Setting, and Participants This single-center, nonrandomized controlled trial was conducted between January 2022 and March 2023 in the Department of Plastic and Reconstructive Surgery of Nanfang Hospital, Southern Medical University and included adult participants with early-onset or late-onset morphea who presented with varying degrees of skin sclerosis and soft tissue defect. Interventions Group 1 received sequential grafting of fresh fat and cryopreserved SVF gel (at 1 and 2 months postoperation). Group 2 received single autologous fat grafting. All patients were included in a 12-month follow-up. Main Outcome and Measures The primary outcome included changes in the modified Localized Scleroderma Skin Severity Index (mLoSSI) and Localized Scleroderma Skin Damage Index (LoSDI) scores as evaluated by 2 independent blinded dermatologists. The histologic and transcriptome changes of morphea skin lesions were also evaluated. Results Of 44 patients (median [IQR] age, 26 [23-33] years; 36 women [81.8%]) enrolled, 24 (54.5%) were assigned to group 1 and 20 (45.5%) to group 2. No serious adverse events were noted. The mean (SD) mLoSSI scores at 12 months showed a 1.6 (1.50) decrease in group 1 and 0.9 (1.46) in group 2 (P = .13), whereas the mean (SD) LoSDI scores at 12 months showed a 4.3 (1.34) decrease in group 1 and 2.1 (1.07) in group 2 (P < .001), indicating that group 1 had more significant improvement in morphea skin damage but not disease activity compared with group 2. Histologic analysis showed improved skin regeneration and reduced skin sclerosis in group 1, whereas skin biopsy specimens of group 2 patients did not show significant change. Transcriptome analysis of skin biopsy specimens from group 1 patients suggested that tumor necrosis factor α signaling via NFκB might contribute to the immunosuppressive and antifibrotic effect of sequential fat grafting. A total of 15 hub genes were captured, among which many associated with morphea pathogenesis were downregulated and validated by immunohistochemistry, such as EDN1, PAI-1, and CTGF. Conclusions and Relevance The results of this nonrandomized trial suggest that sequential fat grafting with fresh fat and cryopreserved SVF gel was safe and its therapeutic effect was superior to that of single autologous fat grafting with improved mLoSSI and LoSDI scores. Histological and transcriptomic changes further support the effectiveness after treatment. Trial Registration Chinese Clinical Trial Registry identifier: ChiCTR2200058003.
Collapse
Affiliation(s)
- Juzi Liu
- Department of Plastic and Reconstructive Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jing Wang
- Department of Plastic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qian Zhang
- Department of Plastic and Reconstructive Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Feng Lu
- Department of Plastic and Reconstructive Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Junrong Cai
- Department of Plastic and Reconstructive Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
4
|
Gui R, Li W, Li Z, Wang H, Wu Y, Jiao W, Zhao G, Shen Y, Wang L, Zhang J, Chen S, Hao L, Cheng Y. Effects and potential mechanisms of IGF1/IGF1R in the liver fibrosis: A review. Int J Biol Macromol 2023; 251:126263. [PMID: 37567540 DOI: 10.1016/j.ijbiomac.2023.126263] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 08/13/2023]
Abstract
Liver fibrosis is a wound-healing response due to persistent liver damage and it may progress to cirrhosis and even liver cancer if no intervention is given. In the current cognition, liver fibrosis is reversible. So, it is of great significance to explore the related gene targets or biomarker for anti-fibrosis of liver. Insulin like growth factor 1 (IGF1) and IGF1 receptor (IGF1R) are mainly expressed in the liver tissues and play critical roles in the liver function. The present review summarized the role of IGF1/IGF1R and its signaling system in liver fibrosis and illustrated the potential mechanisms including DNA damage repair, cell senescence, lipid metabolism and oxidative stress that may be involved in this process according to the studies on the fibrosis of liver or other organs. In particular, the roles of IGF1 and IGF1R in DNA damage repair were elaborated, including membrane-localized and nucleus-localized IGF1R. In addition, for each of the potential mechanism in anti-fibrosis of liver, the signaling pathways of the IGF1/IGF1R mediated and the cell species in liver acted by IGF1 and IGF1R under different conditions were included. The data in this review will support for the study about the effect of IGF1/IGF1R on liver fibrosis induced by various factors, meanwhile, provide a basis for the study of liver fibrosis to focus on the communications between the different kinds of liver cells.
Collapse
Affiliation(s)
- Ruirui Gui
- NHC Key Laboratory of Radiobiology, College of Public Health, Jilin University, Changchun 130021, China
| | - Wanqiao Li
- NHC Key Laboratory of Radiobiology, College of Public Health, Jilin University, Changchun 130021, China
| | - Zhipeng Li
- NHC Key Laboratory of Radiobiology, College of Public Health, Jilin University, Changchun 130021, China
| | - Hongbin Wang
- NHC Key Laboratory of Radiobiology, College of Public Health, Jilin University, Changchun 130021, China
| | - Yuchen Wu
- NHC Key Laboratory of Radiobiology, College of Public Health, Jilin University, Changchun 130021, China
| | - Wenlin Jiao
- NHC Key Laboratory of Radiobiology, College of Public Health, Jilin University, Changchun 130021, China
| | - Gang Zhao
- NHC Key Laboratory of Radiobiology, College of Public Health, Jilin University, Changchun 130021, China
| | - Yannan Shen
- NHC Key Laboratory of Radiobiology, College of Public Health, Jilin University, Changchun 130021, China
| | - Luping Wang
- NHC Key Laboratory of Radiobiology, College of Public Health, Jilin University, Changchun 130021, China
| | - Jialu Zhang
- NHC Key Laboratory of Radiobiology, College of Public Health, Jilin University, Changchun 130021, China
| | - Sihan Chen
- NHC Key Laboratory of Radiobiology, College of Public Health, Jilin University, Changchun 130021, China
| | - Linlin Hao
- College of Animal Science, Jilin University, Changchun, Jilin 130062, China.
| | - Yunyun Cheng
- NHC Key Laboratory of Radiobiology, College of Public Health, Jilin University, Changchun 130021, China.
| |
Collapse
|
5
|
Li K, Ding K, Zhu Q, Han F, He X, Tan S, Wu Z, Zheng Z, Tang Z, Liu Y. Extracellular matrix stiffness aggravates urethral stricture through Igfbp3/Smad pathway. Sci Rep 2023; 13:14315. [PMID: 37653219 PMCID: PMC10471624 DOI: 10.1038/s41598-023-41584-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 08/29/2023] [Indexed: 09/02/2023] Open
Abstract
Urethral stricture refers to the narrowing of the urethral lumen. While previous studies have hinted at inflammation as the initial driver of this condition, the reasons and mechanisms behind its progression remain largely unknown. By Atomic force microscope (AFM), researchers measured the matrix stiffness of urethra to be 5.23 ± 0.37 kPa for normal tissue and 41.59 ± 2.48 kPa for stricture urethral scar. Similar results were observed in rat urethral stricture models, where the matrix stiffness of normal urethra was 4.29 ± 0.82 kPa, while 32.94 ± 7.12 kPa for urethral stricture scar. Notably, the matrix stiffness increased in rat models over time. To further investigate, polyacrylamide hydrogels were employed to mimic different levels of stiffness for normal and stricture condition. Interestingly, higher matrix stiffness led to an increased fibroblast-to-myofibroblast transition (FMT) in rat urethral fibroblasts, indicated by enhanced expression of α-SMA and Collagen I, as well as changing in the morphology of fibroblast. RNA-seq analysis suggested that Igfbp3/Smads might regulate the progressive FMT in urethral stricture. In the experiment where the expression of Igfbp3 was inhibited, increasing matrix stiffness lose the potential to stimulate FMT progression and the expression of p-Smad2/3 decreased. On the contrary, overexpression of Igfbp3 promoted the process of FMT in urethral fibroblasts. In conclusion, Igfbp3/Smad pathway appeared to be involved in the progression of urethral fibrosis. This finding suggested that Igfbp3/Smad might be an promising target for future research and treatment in this filed.
Collapse
Affiliation(s)
- Kaixuan Li
- Department of Cardiac Surgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Department of Urology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China
- Provincial Laboratory for Diagnosis and Treatment of Genitourinary System Disease, 87 Xiangya Road, Changsha, 410008, Hunan, China
| | - Ke Ding
- Department of Urology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China
- Provincial Laboratory for Diagnosis and Treatment of Genitourinary System Disease, 87 Xiangya Road, Changsha, 410008, Hunan, China
| | - Quan Zhu
- Department of Urology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China
- Provincial Laboratory for Diagnosis and Treatment of Genitourinary System Disease, 87 Xiangya Road, Changsha, 410008, Hunan, China
| | - Feng Han
- Department of Urology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China
- Provincial Laboratory for Diagnosis and Treatment of Genitourinary System Disease, 87 Xiangya Road, Changsha, 410008, Hunan, China
| | - Xi He
- Department of Orthopedics, The First Affiliated Hospital, Medical College of Zhejiang University, Hangzhou, 310003, Zhejiang, China
| | - Shuo Tan
- Provincial Laboratory for Diagnosis and Treatment of Genitourinary System Disease, 87 Xiangya Road, Changsha, 410008, Hunan, China
- Department of Urology, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Ziqiang Wu
- Department of Urology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China
- Provincial Laboratory for Diagnosis and Treatment of Genitourinary System Disease, 87 Xiangya Road, Changsha, 410008, Hunan, China
| | - Zhihuan Zheng
- Department of Urology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China
- Provincial Laboratory for Diagnosis and Treatment of Genitourinary System Disease, 87 Xiangya Road, Changsha, 410008, Hunan, China
| | - Zhengyan Tang
- Department of Urology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China.
- Provincial Laboratory for Diagnosis and Treatment of Genitourinary System Disease, 87 Xiangya Road, Changsha, 410008, Hunan, China.
| | - Yanling Liu
- Department of Urology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China.
- Provincial Laboratory for Diagnosis and Treatment of Genitourinary System Disease, 87 Xiangya Road, Changsha, 410008, Hunan, China.
| |
Collapse
|
6
|
Waldrep KM, Rodgers JI, Garrett SM, Wolf BJ, Feghali-Bostwick CA. The Role of SOX9 in IGF-II-Mediated Pulmonary Fibrosis. Int J Mol Sci 2023; 24:11234. [PMID: 37510994 PMCID: PMC10378869 DOI: 10.3390/ijms241411234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/29/2023] [Accepted: 07/02/2023] [Indexed: 07/30/2023] Open
Abstract
Pulmonary fibrosis (PF) associated with systemic sclerosis (SSc) results in significant morbidity and mortality. We previously reported that insulin-like growth factor-II (IGF-II) is overexpressed in lung tissues and fibroblasts from SSc patients, and IGF-II fosters fibrosis by upregulating collagen type I, fibronectin, and TGFβ. We now show that IGF-II augments mRNA levels of profibrotic signaling molecules TGFβ2 (p ≤ 0.01) and TGFβ3 (p ≤ 0.05), collagen type III (p ≤ 0.01), and the collagen posttranslational modification enzymes P4HA2 (p ≤ 0.05), P3H2 (p ≤ 0.05), LOX (p = 0.065), LOXL2 (p ≤ 0.05), LOXL4 (p ≤ 0.05) in primary human lung fibroblasts. IGF-II increases protein levels of TGFβ2 (p ≤ 0.01), as well as COL3A1, P4HA2, P4Hβ, and LOXL4 (p ≤ 0.05). In contrast, IGF-II decreases mRNA levels of the collagen degradation enzymes cathepsin (CTS) K, CTSB, and CTSL and protein levels of CTSK (p ≤ 0.05). The SRY-box transcription factor 9 (SOX9) is overexpressed in SSc lung tissues at the mRNA (p ≤ 0.05) and protein (p ≤ 0.01) levels compared to healthy controls. IGF-II induces SOX9 in lung fibroblasts (p ≤ 0.05) via the IGF1R/IR hybrid receptor, and SOX9 regulates TGFβ2 (p ≤ 0.05), TGFβ3 (p ≤ 0.05), COL3A1 (p ≤ 0.01), and P4HA2 (p ≤ 0.001) downstream of IGF-II. Our results identify a novel IGF-II signaling axis and downstream targets that are regulated in a SOX9-dependent and -independent manner. Our findings provide novel insights on the role of IGF-II in promoting pulmonary fibrosis.
Collapse
Affiliation(s)
- Kristy M. Waldrep
- Department of Medicine, Rheumatology, Medical University of South Carolina, Charleston, SC 29425, USA; (K.M.W.); (J.I.R.); (S.M.G.)
| | - Jessalyn I. Rodgers
- Department of Medicine, Rheumatology, Medical University of South Carolina, Charleston, SC 29425, USA; (K.M.W.); (J.I.R.); (S.M.G.)
| | - Sara M. Garrett
- Department of Medicine, Rheumatology, Medical University of South Carolina, Charleston, SC 29425, USA; (K.M.W.); (J.I.R.); (S.M.G.)
| | - Bethany J. Wolf
- Department of Public Health Sciences, Biostatistics and Bioinformatics, Medical University of South Carolina, Charleston, SC 29425, USA;
| | - Carol A. Feghali-Bostwick
- Department of Medicine, Rheumatology, Medical University of South Carolina, Charleston, SC 29425, USA; (K.M.W.); (J.I.R.); (S.M.G.)
| |
Collapse
|
7
|
Chin C, Ravichandran R, Sanborn K, Fleming T, Wheatcroft SB, Kearney MT, Tokman S, Walia R, Smith MA, Flint DJ, Mohanakumar T, Bremner RM, Sureshbabu A. Loss of IGFBP2 mediates alveolar type 2 cell senescence and promotes lung fibrosis. Cell Rep Med 2023; 4:100945. [PMID: 36787736 PMCID: PMC10040381 DOI: 10.1016/j.xcrm.2023.100945] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/01/2022] [Accepted: 01/23/2023] [Indexed: 02/15/2023]
Abstract
Accumulation of senescent cells contributes to age-related diseases including idiopathic pulmonary fibrosis (IPF). Insulin-like growth factor binding proteins (IGFBPs) regulate many biological processes; however, the functional contributions of IGFBP2 in lung fibrosis remain largely unclear. Here, we report that intranasal delivery of recombinant IGFBP2 protects aged mice from weight loss and demonstrated antifibrotic effects after bleomycin lung injury. Notably, aged human-Igfbp2 transgenic mice reveal reduced senescence and senescent-associated secretory phenotype factors in alveolar epithelial type 2 (AEC2) cells and they ameliorated bleomycin-induced lung fibrosis. Finally, we demonstrate that IGFBP2 expression is significantly suppressed in AEC2 cells isolated from fibrotic lung regions of patients with IPF and/or pulmonary hypertension compared with patients with hypersensitivity pneumonitis and/or chronic obstructive pulmonary disease. Altogether, our study provides insights into how IGFBP2 regulates AEC2-cell-specific senescence and that restoring IGFBP2 levels in fibrotic lungs can prove effective for patients with IPF.
Collapse
Affiliation(s)
- Chiahsuan Chin
- Norton Thoracic Institute, St. Joseph's Hospital and Medical Center, 124 W. Thomas Road, Ste. 100, Phoenix, AZ 85013, USA; Creighton University School of Medicine - Phoenix Regional Campus, Phoenix, AZ, USA
| | - Ranjithkumar Ravichandran
- Norton Thoracic Institute, St. Joseph's Hospital and Medical Center, 124 W. Thomas Road, Ste. 100, Phoenix, AZ 85013, USA; Creighton University School of Medicine - Phoenix Regional Campus, Phoenix, AZ, USA
| | - Kristina Sanborn
- Norton Thoracic Institute, St. Joseph's Hospital and Medical Center, 124 W. Thomas Road, Ste. 100, Phoenix, AZ 85013, USA; Creighton University School of Medicine - Phoenix Regional Campus, Phoenix, AZ, USA
| | - Timothy Fleming
- Norton Thoracic Institute, St. Joseph's Hospital and Medical Center, 124 W. Thomas Road, Ste. 100, Phoenix, AZ 85013, USA; Creighton University School of Medicine - Phoenix Regional Campus, Phoenix, AZ, USA
| | - Stephen B Wheatcroft
- Leeds Institute of Cardiovascular & Metabolic Medicine, University of Leeds, Leeds, UK
| | - Mark T Kearney
- Leeds Institute of Cardiovascular & Metabolic Medicine, University of Leeds, Leeds, UK
| | - Sofya Tokman
- Norton Thoracic Institute, St. Joseph's Hospital and Medical Center, 124 W. Thomas Road, Ste. 100, Phoenix, AZ 85013, USA; Creighton University School of Medicine - Phoenix Regional Campus, Phoenix, AZ, USA
| | - Rajat Walia
- Norton Thoracic Institute, St. Joseph's Hospital and Medical Center, 124 W. Thomas Road, Ste. 100, Phoenix, AZ 85013, USA; Creighton University School of Medicine - Phoenix Regional Campus, Phoenix, AZ, USA
| | - Michael A Smith
- Norton Thoracic Institute, St. Joseph's Hospital and Medical Center, 124 W. Thomas Road, Ste. 100, Phoenix, AZ 85013, USA; Creighton University School of Medicine - Phoenix Regional Campus, Phoenix, AZ, USA
| | - David J Flint
- Strathclyde Institute of Pharmacy & Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Thalachallour Mohanakumar
- Norton Thoracic Institute, St. Joseph's Hospital and Medical Center, 124 W. Thomas Road, Ste. 100, Phoenix, AZ 85013, USA; Creighton University School of Medicine - Phoenix Regional Campus, Phoenix, AZ, USA
| | - Ross M Bremner
- Norton Thoracic Institute, St. Joseph's Hospital and Medical Center, 124 W. Thomas Road, Ste. 100, Phoenix, AZ 85013, USA; Creighton University School of Medicine - Phoenix Regional Campus, Phoenix, AZ, USA
| | - Angara Sureshbabu
- Norton Thoracic Institute, St. Joseph's Hospital and Medical Center, 124 W. Thomas Road, Ste. 100, Phoenix, AZ 85013, USA; Creighton University School of Medicine - Phoenix Regional Campus, Phoenix, AZ, USA.
| |
Collapse
|
8
|
Flinn MA, Alvarez-Argote S, Knas MC, Almeida VA, Paddock SJ, Zhou X, Buddell T, Jamal A, Taylor R, Liu P, Drnevich J, Patterson M, Link BA, O’Meara CC. Myofibroblast Ccn3 is regulated by Yap and Wwtr1 and contributes to adverse cardiac outcomes. Front Cardiovasc Med 2023; 10:1142612. [PMID: 36998974 PMCID: PMC10043314 DOI: 10.3389/fcvm.2023.1142612] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 02/20/2023] [Indexed: 03/16/2023] Open
Abstract
Introduction While Yap and Wwtr1 regulate resident cardiac fibroblast to myofibroblast differentiation following cardiac injury, their role specifically in activated myofibroblasts remains unexplored. Methods We assessed the pathophysiological and cellular consequence of genetic depletion of Yap alone (Yap fl/fl ;Postn MCM ) or Yap and Wwtr1 (Yap fl/fl ;Wwtr1 fl/+ ;Postn MCM ) in adult mouse myofibroblasts following myocardial infarction and identify and validate novel downstream factors specifically in cardiac myofibroblasts that mediate pathological remodeling. Results Following myocardial infarction, depletion of Yap in myofibroblasts had minimal effect on heart function while depletion of Yap/Wwtr1 resulted in smaller scars, reduced interstitial fibrosis, and improved ejection fraction and fractional shortening. Single cell RNA sequencing of interstitial cardiac cells 7 days post infarction showed suppression of pro-fibrotic genes in fibroblasts derived from Yap fl/fl ,Wwtr1 fl/+ ;Postn MCM hearts. In vivo myofibroblast depletion of Yap/Wwtr1 as well in vitro knockdown of Yap/Wwtr1 dramatically decreased RNA and protein expression of the matricellular factor Ccn3. Administration of recombinant CCN3 to adult mice following myocardial infarction remarkably aggravated cardiac function and scarring. CCN3 administration drove myocardial gene expression of pro-fibrotic genes in infarcted left ventricles implicating CCN3 as a novel driver of cardiac fibrotic processes following myocardial infarction. Discussion Yap/Wwtr1 depletion in myofibroblasts attenuates fibrosis and significantly improves cardiac outcomes after myocardial infarction and we identify Ccn3 as a factor downstream of Yap/Wwtr1 that contributes to adverse cardiac remodeling post MI. Myofibroblast expression of Yap, Wwtr1, and Ccn3 could be further explored as potential therapeutic targets for modulating adverse cardiac remodeling post injury.
Collapse
Affiliation(s)
- Michael A. Flinn
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Santiago Alvarez-Argote
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Makenna C. Knas
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Victor Alencar Almeida
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Samantha J. Paddock
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Xiaoxu Zhou
- Institute of Translational Medicine, Zhejiang University School of Medicine,Hangzhou, China
| | - Tyler Buddell
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, United States
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Ayana Jamal
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, United States
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Reiauna Taylor
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Pengyuan Liu
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States
- Institute of Translational Medicine, Zhejiang University School of Medicine,Hangzhou, China
| | - Jenny Drnevich
- High Performance Computing in Biology (HPCBio) and the Roy J. Carver Biotechnology Center, University of Illinois, Urbana-Champaign, Champaign, IL, United States
| | - Michaela Patterson
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, United States
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Brian A. Link
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, United States
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Caitlin C. O’Meara
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, United States
- Genomics Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
9
|
Waters JA, Urbano I, Robinson M, House CD. Insulin-like growth factor binding protein 5: Diverse roles in cancer. Front Oncol 2022; 12:1052457. [PMID: 36465383 PMCID: PMC9714447 DOI: 10.3389/fonc.2022.1052457] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 11/02/2022] [Indexed: 11/18/2022] Open
Abstract
Insulin-like growth factor binding proteins (IGFBPs) and the associated signaling components in the insulin-like growth factor (IGF) pathway regulate cell differentiation, proliferation, apoptosis, and adhesion. Of the IGFBPs, insulin-like growth factor binding protein 5 (IGFBP5) is the most evolutionarily conserved with a dynamic range of IGF-dependent and -independent functions, and studies on the actions of IGFBP5 in cancer have been somewhat paradoxical. In cancer, the IGFBPs respond to external stimuli to modulate disease progression and therapeutic responsiveness in a context specific manner. This review discusses the different roles of IGF signaling and IGFBP5 in disease with an emphasis on discoveries within the last twenty years, which underscore a need to clarify the IGF-independent actions of IGFBP5, the impact of its subcellular localization, the differential activities of each of the subdomains, and the response to elements of the tumor microenvironment (TME). Additionally, recent advances addressing the role of IGFBP5 in resistance to cancer therapeutics will be discussed. A better understanding of the contexts in which IGFBP5 functions will facilitate the discovery of new mechanisms of cancer progression that may lead to novel therapeutic opportunities.
Collapse
Affiliation(s)
- Jennifer A. Waters
- Biology Department, San Diego State University, San Diego, CA, United States
| | - Ixchel Urbano
- Biology Department, San Diego State University, San Diego, CA, United States
| | - Mikella Robinson
- Biology Department, San Diego State University, San Diego, CA, United States
| | - Carrie D. House
- Biology Department, San Diego State University, San Diego, CA, United States,Moore’s Cancer Center, University of California, San Diego, San Diego, CA, United States,*Correspondence: Carrie D. House,
| |
Collapse
|
10
|
Zhu M, Han H, Hu L, Cao Y, Fan Z. Insulin-binding protein-5 down-regulates the balance of Th17/Treg. Front Immunol 2022; 13:1019248. [PMID: 36389828 PMCID: PMC9664073 DOI: 10.3389/fimmu.2022.1019248] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 10/11/2022] [Indexed: 01/24/2023] Open
Abstract
The inflammatory response plays critical important role in tissue hemostasis. Our previous study showed insulin-binding protein-5 (IGFBP5) could enhance the regeneration of tissue defect under inflammation condition, but the function of IGFBP5 in controlling inflammation and regulating immune responses remains unclear. In present study, we studied the regulatory effect of IGFBP5 on T cell immune response in vitro, and the maintenance of Th17/Treg balance in vivo by using dextran sulfate sodium salt (DSS)-induced colitis in mice. The results showed that IGFBP5 inhibited the differentiation of CD4+ T cells into Th17 subset while promoted its differentiation into Treg subsets. Further results of animal experiments demonstrated that recombinant IGFBP5 reversed the imbalance of Th17/Treg and alleviated the severity of DSS-induced colitis. The percentage of Th17 cells decreased and the percentage of Treg cells increased in the inflamed colon tissue and mesenteric lymph nodes of mice with colitis after IGFBP5 treatment. Besides, pro-inflammatory cytokines such as TNF-α, IL-1β and IFN-γ in serum were suppressed after the treatment of IGFBP5. Moreover, the function of IGFBP5 in regulating Th17/Treg balance could be inhibited by the inhibitors of ERK or JNK pathway. In conclusion, all these data showed that IGFBP5 could regulate Th17/Treg balance via ERK or JNK pathways. The findings of our study provide a theoretical basis for the application of IGFBP5 in inflammatory diseases.
Collapse
Affiliation(s)
- Mengyuan Zhu
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, China
| | - Han Han
- Department of General Dentistry, Capital Medical University School of Stomatology, Beijing, China
| | - Lei Hu
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, China
| | - Yu Cao
- Department of General Dentistry, Capital Medical University School of Stomatology, Beijing, China
| | - Zhipeng Fan
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, China
- Research Unit of Tooth Development and Regeneration, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
11
|
Schwann cells contribute to keloid formation. Matrix Biol 2022; 108:55-76. [PMID: 35278628 DOI: 10.1016/j.matbio.2022.03.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 01/27/2022] [Accepted: 03/04/2022] [Indexed: 02/07/2023]
|
12
|
Crovella S, Revelant A, Muraro E, Moura RR, Brandão L, Trovò M, Steffan A, Zacchi P, Zabucchi G, Minatel E, Borelli V. Biological Pathways Associated With the Development of Pulmonary Toxicities in Mesothelioma Patients Treated With Radical Hemithoracic Radiation Therapy: A Preliminary Study. Front Oncol 2021; 11:784081. [PMID: 35004305 PMCID: PMC8728021 DOI: 10.3389/fonc.2021.784081] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 11/29/2021] [Indexed: 01/05/2023] Open
Abstract
Radical hemithoracic radiotherapy (RHR), after lung-sparing surgery, has recently become a concrete therapeutic option for malignant pleural mesothelioma (MPM), an asbestos-related, highly aggressive tumor with increasing incidence and poor prognosis. Although the toxicity associated to this treatment has been reduced, it is still not negligible and must be considered when treating patients. Genetic factors appear to play a role determining radiotherapy toxicity. The aim of this study is the identification of biological pathways, retrieved through whole exome sequencing (WES), possibly associated to the development of lung adverse effects in MPM patients treated with RHR. The study included individuals with MPM, treated with lung-sparing surgery and chemotherapy, followed by RHR with curative intent, and followed up prospectively for development of pulmonary toxicity. Due to the strong impact of grade 3 pulmonary toxicities on the quality of life, compared with less serious adverse events, for genetic analyses, patients were divided into a none or tolerable pulmonary toxicity (NoSTox) group (grade ≤2) and a severe pulmonary toxicity (STox) group (grade = 3). Variant enrichment analysis allowed us to identify different pathway signatures characterizing NoSTox and Stox patients, allowing to formulate hypotheses on the protection from side effects derived from radiotherapy as well as factors predisposing to a worst response to the treatment. Our findings, being aware of the small number of patients analyzed, could be considered a starting point for the definition of a panel of pathways, possibly helpful in the management of MPM patients.
Collapse
Affiliation(s)
- Sergio Crovella
- Department of Biological and Environmental Sciences, College of Arts and Sciences, University of Qatar, Doha, Qatar
| | - Alberto Revelant
- Department of Radiation Oncology, Centro di Riferimento Oncologico di Aviano (CRO) Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS), Aviano, Italy
| | - Elena Muraro
- Immunopathology and Biomarker Unit, Department of Translational Research, Centro di Riferimento Oncologico di Aviano (CRO) Istituti di Ricovero e Cura a Carattere Scientifico, Aviano, Italy
| | - Ronald Rodrigues Moura
- Department of Advanced Diagnostics, Institute for Maternal and Child Health – Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) “Burlo Garofolo”, Trieste, Italy
| | - Lucas Brandão
- Department of Advanced Diagnostics, Institute for Maternal and Child Health – Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) “Burlo Garofolo”, Trieste, Italy
| | - Marco Trovò
- Radiation Oncology Department, Udine Academic Hospital, Udine, Italy
| | - Agostino Steffan
- Immunopathology and Biomarker Unit, Department of Translational Research, Centro di Riferimento Oncologico di Aviano (CRO) Istituti di Ricovero e Cura a Carattere Scientifico, Aviano, Italy
| | - Paola Zacchi
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | | | - Emilio Minatel
- Department of Radiation Oncology, Centro di Riferimento Oncologico di Aviano (CRO) Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS), Aviano, Italy
| | - Violetta Borelli
- Department of Life Sciences, University of Trieste, Trieste, Italy
- *Correspondence: Violetta Borelli ,
| |
Collapse
|
13
|
Identification of Impacted Pathways and Transcriptomic Markers as Potential Mediators of Pulmonary Fibrosis in Transgenic Mice Expressing Human IGFBP5. Int J Mol Sci 2021; 22:ijms222212609. [PMID: 34830489 PMCID: PMC8619832 DOI: 10.3390/ijms222212609] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/15/2021] [Accepted: 11/18/2021] [Indexed: 11/16/2022] Open
Abstract
Pulmonary fibrosis is a serious disease characterized by extracellular matrix (ECM) component overproduction and remodeling. Insulin-like growth factor-binding protein 5 (IGFBP5) is a conserved member of the IGFBP family of proteins that is overexpressed in fibrotic tissues and promotes fibrosis. We used RNA sequencing (RNAseq) to identify differentially expressed genes (DEGs) between primary lung fibroblasts (pFBs) of homozygous (HOMO) transgenic mice expressing human IGFBP5 (hIGFBP5) and wild type mice (WT). The results of the differential expression analysis showed 2819 DEGs in hIGFBP5 pFBs. Functional enrichment analysis confirmed the pro-fibrotic character of IGFBP5 and revealed its impact on fundamental signaling pathways, including cytokine–cytokine receptor interaction, focal adhesion, AGE-RAGE signaling, calcium signaling, and neuroactive ligand-receptor interactions, to name a few. Noticeably, 7% of the DEGs in hIGFBP5-expressing pFBs are receptors and integrins. Furthermore, hub gene analysis revealed 12 hub genes including Fpr1, Bdkrb2, Mchr1, Nmur1, Cnr2, P2ry14, and Ptger3. Validation assays were performed to complement the RNAseq data. They confirmed significant differences in the levels of the corresponding proteins in cultured pFBs. Our study provides new insights into the molecular mechanism(s) of IGFBP5-associated pulmonary fibrosis through possible receptor interactions that drive fibrosis and tissue remodeling.
Collapse
|
14
|
Nguyen XX, Sanderson M, Helke K, Feghali-Bostwick C. Phenotypic Characterization of Transgenic Mice Expressing Human IGFBP-5. Int J Mol Sci 2020; 22:ijms22010335. [PMID: 33396956 PMCID: PMC7795366 DOI: 10.3390/ijms22010335] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 11/29/2020] [Accepted: 12/25/2020] [Indexed: 01/06/2023] Open
Abstract
Pulmonary fibrosis is one of the important causes of morbidity and mortality in fibroproliferative disorders such as systemic sclerosis (SSc) and idiopathic pulmonary fibrosis (IPF). Insulin-like growth factor binding protein-5 (IGFBP-5) is a conserved member of the IGFBP family of proteins that is overexpressed in SSc and IPF lung tissues. In this study, we investigated the functional role of IGFBP-5 in the development of fibrosis in vivo using a transgenic model. We generated transgenic mice ubiquitously expressing human IGFBP-5 using CRISPR/Cas9 knock-in. Our data show that the heterozygous and homozygous mice are viable and express human IGFBP-5 (hIGFBP-5). Transgenic mice had increased expression of extracellular matrix (ECM) genes, especially Col3a1, Fn, and Lox in lung and skin tissues of mice expressing higher transgene levels. Histologic analysis of the skin tissues showed increased dermal thickness, and the lung histology showed subtle changes in the heterozygous and homozygous mice as compared with the wild-type mice. These changes were more pronounced in animals expressing higher levels of hIGFBP-5. Bleomycin increased ECM gene expression in wild-type mice and accentuated an increase in ECM gene expression in transgenic mice, suggesting that transgene expression exacerbated bleomycin-induced pulmonary fibrosis. Primary lung fibroblasts cultured from lung tissues of homozygous transgenic mice showed significant increases in ECM gene expression and protein levels, further supporting the observation that IGFBP-5 resulted in a fibrotic phenotype in fibroblasts. In summary, transgenic mice expressing human IGFBP-5 could serve as a useful animal model for examining the function of IGFBP-5 in vivo.
Collapse
Affiliation(s)
- Xinh-Xinh Nguyen
- Division of Rheumatology & Immunology, Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA; (X.-X.N.); (M.S.)
| | - Matthew Sanderson
- Division of Rheumatology & Immunology, Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA; (X.-X.N.); (M.S.)
| | - Kristi Helke
- Department of Comparative Medicine, Medical University of South Carolina, Charleston, SC 29425, USA;
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Carol Feghali-Bostwick
- Division of Rheumatology & Immunology, Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA; (X.-X.N.); (M.S.)
- Correspondence: ; Tel.: +1-843-876-2315
| |
Collapse
|
15
|
Renaud L, da Silveira WA, Takamura N, Hardiman G, Feghali-Bostwick C. Prominence of IL6, IGF, TLR, and Bioenergetics Pathway Perturbation in Lung Tissues of Scleroderma Patients With Pulmonary Fibrosis. Front Immunol 2020; 11:383. [PMID: 32210969 PMCID: PMC7075854 DOI: 10.3389/fimmu.2020.00383] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 02/18/2020] [Indexed: 12/21/2022] Open
Abstract
Scleroderma-associated pulmonary fibrosis (SSc-PF) and idiopathic pulmonary fibrosis (IPF) are two of many chronic fibroproliferative diseases that are responsible for nearly 45% of all deaths in developed countries. While sharing several pathobiological characteristics, they also have very distinct features. Currently no effective anti-fibrotic treatments exist that can halt the progression of PF or reverse it. Our goal is to uncover potential gene targets for the development of anti-fibrotic therapies efficacious in both diseases, and those specific to SSc-PF, by identifying universal pathways and molecules driving fibrosis in SSc-PF and IPF tissues as well as those unique to SSc-PF. Using DNA microarray data, a meta-analysis of the differentially expressed (DE) genes in SSc-PF and IPF lung tissues (diseased vs. normal) was performed followed by a full systems level analysis of the common and unique transcriptomic signatures obtained. Protein-protein interaction networks were generated to identify hub proteins and explore the data using the centrality principle. Our results suggest that therapeutic strategies targeting IL6 trans-signaling, IGFBP2, IGFL2, and the coagulation cascade may be efficacious in both SSc-PF and IPF. Further, our data suggest that the expression of matrikine-producing collagens is also perturbed in PF. Lastly, an overall perturbation of bioenergetics, specifically between glycolysis and fatty acid metabolism, was uncovered in SSc-PF. Our findings provide insights into potential targets for the development of anti-fibrotic therapies that could be effective in both IPF and SSc-PF.
Collapse
Affiliation(s)
- Ludivine Renaud
- Department of Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Willian A. da Silveira
- School of Biological Sciences, Institute for Global Food Security, Queens University Belfast, Belfast, United Kingdom
| | - Naoko Takamura
- Department of Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Gary Hardiman
- Department of Medicine, Medical University of South Carolina, Charleston, SC, United States
- School of Biological Sciences, Institute for Global Food Security, Queens University Belfast, Belfast, United Kingdom
| | - Carol Feghali-Bostwick
- Department of Medicine, Medical University of South Carolina, Charleston, SC, United States
| |
Collapse
|
16
|
Cell-surface translocation of annexin A2 contributes to bleomycin-induced pulmonary fibrosis by mediating inflammatory response in mice. Clin Sci (Lond) 2020; 133:789-804. [PMID: 30902828 DOI: 10.1042/cs20180687] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 03/19/2019] [Accepted: 03/22/2019] [Indexed: 02/07/2023]
Abstract
Bleomycin, a widely used anti-cancer drug, may give rise to pulmonary fibrosis, a serious side effect which is associated with significant morbidity and mortality. Despite the intensive efforts, the precise pathogenic mechanisms of pulmonary fibrosis still remain to be clarified. Our previous study showed that bleomycin bound directly to annexin A2 (ANXA2, or p36), leading to development of pulmonary fibrosis by impeding transcription factor EB (TFEB)-induced autophagic flux. Here, we demonstrated that ANXA2 also played a critical role in bleomycin-induced inflammation, which represents another major cause of bleomycin-induced pulmonary fibrosis. We found that bleomycin could induce the cell surface translocation of ANXA2 in lung epithelial cells through exosomal secretion, associated with enhanced interaction between ANXA2 and p11. Knockdown of ANXA2 or blocking membrane ANXA2 mitigated bleomycin-induced activation of nuclear factor (NF)-κB pathway and production of pro-inflammatory cytokine IL-6 in lung epithelial cells. ANXA2-deficient (ANXA2-/-) mice treated with bleomycin exhibit reduced pulmonary fibrosis along with decreased cytokine production compared with bleomycin-challenged wild-type mice. Further, the surface ANXA2 inhibitor TM601 could ameliorate fibrotic and inflammatory response in bleomycin-treated mice. Taken together, our results indicated that, in addition to disturbing autophagic flux, ANXA2 can contribute to bleomycin-induced pulmonary fibrosis by mediating inflammatory response.
Collapse
|
17
|
Garrett SM, Hsu E, Thomas JM, Pilewski JM, Feghali-Bostwick C. Insulin-like growth factor (IGF)-II- mediated fibrosis in pathogenic lung conditions. PLoS One 2019; 14:e0225422. [PMID: 31765403 PMCID: PMC6876936 DOI: 10.1371/journal.pone.0225422] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 11/05/2019] [Indexed: 12/28/2022] Open
Abstract
Type 2 insulin-like growth factor (IGF-II) levels are increased in fibrosing lung diseases such as idiopathic pulmonary fibrosis (IPF) and scleroderma/systemic sclerosis-associated pulmonary fibrosis (SSc). Our goal was to investigate the contribution of IGF receptors to IGF-II-mediated fibrosis in these diseases and identify other potential mechanisms key to the fibrotic process. Cognate receptor gene and protein expression were analyzed with qRT-PCR and immunoblot in primary fibroblasts derived from lung tissues of normal donors (NL) and patients with IPF or SSc. Compared to NL, steady-state receptor gene expression was decreased in SSc but not in IPF. IGF-II stimulation differentially decreased receptor mRNA and protein levels in NL, IPF, and SSc fibroblasts. Neutralizing antibody, siRNA, and receptor inhibition targeting endogenous IGF-II and its primary receptors, type 1 IGF receptor (IGF1R), IGF2R, and insulin receptor (IR) resulted in loss of the IGF-II response. IGF-II tipped the TIMP:MMP balance, promoting a fibrotic environment both intracellularly and extracellularly. Differentiation of fibroblasts into myofibroblasts by IGF-II was blocked with a TGFβ1 receptor inhibitor. IGF-II also increased TGFβ2 and TGFβ3 expression, with subsequent activation of canonical SMAD2/3 signaling. Therefore, IGF-II promoted fibrosis through IGF1R, IR, and IGF1R/IR, differentiated fibroblasts into myofibroblasts, decreased protease production and extracellular matrix degradation, and stimulated expression of two TGFβ isoforms, suggesting that IGF-II exerts pro-fibrotic effects via multiple mechanisms.
Collapse
Affiliation(s)
- Sara M. Garrett
- Division of Rheumatology, Department of Medicine, Medical University of South Carolina (MUSC), Charleston, South Carolina, United States of America
| | - Eileen Hsu
- Mid Atlantic Permanente Medical Group, Mclean, Virginia, United States of America
| | - Justin M. Thomas
- Eisenhower Medical Center, Rancho Mirage, California, United States of America
| | - Joseph M. Pilewski
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Carol Feghali-Bostwick
- Division of Rheumatology, Department of Medicine, Medical University of South Carolina (MUSC), Charleston, South Carolina, United States of America
- * E-mail:
| |
Collapse
|
18
|
Yasuoka H, Tam YYA, Okazaki Y, Tamura Y, Matsuo K, Feghali-Bostwick C, Takeuchi T, Kuwana M. Fos-related antigen-1 transgenic mouse as a model for systemic sclerosis: A potential role of M2 polarization. JOURNAL OF SCLERODERMA AND RELATED DISORDERS 2019; 4:137-148. [DOI: 10.1177/2397198319838140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Accepted: 02/25/2019] [Indexed: 11/15/2022]
Abstract
Objectives: To investigate the systemic sclerosis–related phenotype in fos-related antigen-1 transgenic mice and its underlying mechanisms. Methods: Lung and skin sections of constitutive fos-related antigen-1 transgenic mice and wild-type mice were examined by tissue staining and immunohistochemistry. The tricuspid regurgitation pressure gradient was measured by transthoracic echocardiography with a Doppler technique. To assess the impact of fos-related antigen-1 expression on macrophage function, bone marrow–derived mononuclear cells were derived from mice that expressed fos-related antigen-1 under the control of doxycycline and wild-type littermates. These bone marrow–derived mononuclear cells were induced to differentiate into macrophages with or without doxycycline, and analyzed for gene and protein expression. Finally, lung explants obtained from systemic sclerosis patients and control donors were subjected to immunohistochemistry. Results: The lungs of fos-related antigen-1 transgenic mice showed excessive fibrosis of the interstitium and thickening of vessel walls, with narrowing lumen, in an age-dependent manner. The tricuspid regurgitation pressure gradient was significantly elevated in fos-related antigen-1 transgenic versus control mice. Increased dermal thickness and the loss of subdermal adipose tissue were also observed in the fos-related antigen-1 transgenic mice. These changes were preceded by a perivascular infiltration of mononuclear cells, predominantly consisting of alternatively activated or M2 macrophages. Overexpressing fos-related antigen-1 in bone marrow–derived mononuclear cell cultures increased the expression of M2-related genes, such as Il10, Alox15, and Arg1. Finally, fos-related antigen-1-expressing M2 macrophages were increased in the lung tissues of systemic sclerosis patients. Conclusions: The fos-related antigen-1 transgenic mouse serves as a genetic model of systemic sclerosis that recapitulates the major vascular and fibrotic manifestations of the lungs and skin in systemic sclerosis patients. M2 polarization mediated by the up-regulation of fos-related antigen-1 may play a critical role in the development of systemic sclerosis.
Collapse
Affiliation(s)
- Hidekata Yasuoka
- Division of Rheumatology, Department of Internal Medicine, School of Medicine, Keio University, Tokyo, Japan
| | - Yuen Yu Angela Tam
- Division of Rheumatology, Department of Internal Medicine, School of Medicine, Keio University, Tokyo, Japan
| | - Yuka Okazaki
- Division of Rheumatology, Department of Internal Medicine, School of Medicine, Keio University, Tokyo, Japan
- Department of Allergy and Rheumatology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Yuichi Tamura
- International University of Health and Welfare, Mita Hospital, Tokyo, Japan
| | - Koichi Matsuo
- Laboratory of Cell and Tissue Biology, School of Medicine, Keio University, Tokyo, Japan
| | | | - Tsutomu Takeuchi
- Division of Rheumatology, Department of Internal Medicine, School of Medicine, Keio University, Tokyo, Japan
| | - Masataka Kuwana
- Division of Rheumatology, Department of Internal Medicine, School of Medicine, Keio University, Tokyo, Japan
- Department of Allergy and Rheumatology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| |
Collapse
|
19
|
Yasuoka H, Garrett SM, Nguyen XX, Artlett CM, Feghali-Bostwick CA. NADPH oxidase-mediated induction of reactive oxygen species and extracellular matrix deposition by insulin-like growth factor binding protein-5. Am J Physiol Lung Cell Mol Physiol 2019; 316:L644-L655. [PMID: 30810066 DOI: 10.1152/ajplung.00106.2018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Insulin-like growth factor binding protein-5 (IGFBP-5) induces production of the extracellular matrix (ECM) components collagen and fibronectin both in vitro and in vivo and is overexpressed in patients with fibrosing lung diseases, such as idiopathic pulmonary fibrosis (IPF) and systemic sclerosis (SSc). However, the mechanism by which IGFBP-5 exerts its fibrotic effect is incompletely understood. Recent reports have shown a substantial role of reactive oxygen species (ROS) in fibrosis; thus we hypothesized that IGFBP-5 induces production of ROS to mediate the profibrotic process. In vitro analyses revealed that ROS production was induced by recombinant and adenoviral vector-mediated IGFBP-5 (AdBP5) in a dose- and time-dependent manner, regulated through MEK/ERK and JNK signaling, and primarily mediated by NADPH oxidase (Nox). Silencing IGFBP-5 in SSc and IPF fibroblasts reduced ROS production. The antioxidants diphenyleneiodonium and N-acetylcysteine blocked IGFBP-5-stimulated ECM production in normal, SSc, and IPF human primary lung fibroblasts. In murine fibroblasts lacking critical components of the Nox machinery, AdBP5-stimulated ROS production and fibronectin expression were reduced compared with wild-type fibroblasts. IGFBP-5 stimulated transcriptional expression of Nox3 in human fibroblasts while selective knockdown of Nox3 reduced ROS production by IGFBP-5. Thus IGFBP-5 mediates fibrosis through production of ROS in a Nox-dependent manner.
Collapse
Affiliation(s)
- Hidekata Yasuoka
- Department of Internal Medicine, Division of Rheumatology, Fujita Health University School of Medicine , Aichi , Japan
| | - Sara M Garrett
- Department of Medicine, Division of Rheumatology and Immunology, Medical University of South Carolina , Charleston, South Carolina
| | - Xinh-Xinh Nguyen
- Department of Medicine, Division of Rheumatology and Immunology, Medical University of South Carolina , Charleston, South Carolina
| | - Carol M Artlett
- Drexel University College of Medicine , Philadelphia, Pennsylvania
| | - Carol A Feghali-Bostwick
- Department of Medicine, Division of Rheumatology and Immunology, Medical University of South Carolina , Charleston, South Carolina
| |
Collapse
|
20
|
Su Y, Nishimoto T, Hoffman S, Nguyen XX, Pilewski JM, Feghali-Bostwick C. Insulin-like growth factor binding protein-4 exerts antifibrotic activity by reducing levels of connective tissue growth factor and the C-X-C chemokine receptor 4. FASEB Bioadv 2018; 1:167-179. [PMID: 31482149 PMCID: PMC6720120 DOI: 10.1096/fba.2018-00015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The Insulin-like growth factor (IGF) system plays an important role in variety cellular biological functions; we previously reported levels of IGF binding proteins (IGFBP) -3 and -5 are increased in dermal and pulmonary fibrosis associated with the prototypic fibrosing disease systemic sclerosis (SSc), induce extracellular matrix (ECM) production, and promote fibrosis. We sought to examine the effects of another member of the family, IGFBP-4, on ECM production and fibrosis using cell-based, ex vivo organ culture and in vivo mouse lung fibrosis models. IGFBP-4 mRNA levels were significantly decreased in pulmonary fibroblasts of patients with SSc. ECM components were significantly reduced by endogenous and exogenous IGFBP-4. IGFBP-4 also blocked TGFβ-induced ECM production, and inhibited ECM production ex vivo in human lung and skin in organ culture. In vivo, IGFBP-4 reduced bleomycin-induced collagen production and histologic evidence of fibrosis. Silencing IGFBP-4 expression to mimic levels observed in SSc lung fibroblasts resulted in increased ECM production. IGFBP-4 reduced mRNA and protein levels of the chemokine receptor CXCR4 and the pro-fibrotic factor CTGF. Further, CTGF silencing potentiated the anti-fibrotic effects of IGFBP-4. Reduced IGFBP-4 levels in SSc lung fibroblasts may contribute to the fibrotic phenotype via loss of IGFBP-4 anti-fibrotic activity.
Collapse
Affiliation(s)
- YunYun Su
- Division of Rheumatology & Clinical Immunology, Department of Medicine, Medical University of South Carolina, Charleston, SC, U.S.A
| | - Tetsuya Nishimoto
- Deceased, Allergy, and Critical Care, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, U.S.A
| | - Stanley Hoffman
- Division of Rheumatology & Clinical Immunology, Department of Medicine, Medical University of South Carolina, Charleston, SC, U.S.A
| | - Xinh-Xinh Nguyen
- Division of Rheumatology & Clinical Immunology, Department of Medicine, Medical University of South Carolina, Charleston, SC, U.S.A
| | - Joseph M Pilewski
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, U.S.A
| | - Carol Feghali-Bostwick
- Division of Rheumatology & Clinical Immunology, Department of Medicine, Medical University of South Carolina, Charleston, SC, U.S.A
| |
Collapse
|
21
|
Insulin-Like Growth Factor-1 Signaling in Lung Development and Inflammatory Lung Diseases. BIOMED RESEARCH INTERNATIONAL 2018; 2018:6057589. [PMID: 30018981 PMCID: PMC6029485 DOI: 10.1155/2018/6057589] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Accepted: 03/06/2018] [Indexed: 12/19/2022]
Abstract
Insulin-like growth factor-1 (IGF-1) was firstly identified as a hormone that mediates the biological effects of growth hormone. Accumulating data have indicated the role of IGF-1 signaling pathway in lung development and diseases such as congenital disorders, cancers, inflammation, and fibrosis. IGF-1 signaling modulates the development and differentiation of many types of lung cells, including airway basal cells, club cells, alveolar epithelial cells, and fibroblasts. IGF-1 signaling deficiency results in alveolar hyperplasia in humans and disrupted lung architecture in animal models. The components of IGF-1 signaling pathways are potentiated as biomarkers as they are dysregulated locally or systemically in lung diseases, whereas data may be inconsistent or even paradoxical among different studies. The usage of IGF-1-based therapeutic agents urges for more researches in developmental disorders and inflammatory lung diseases, as the majority of current data are collected from limited number of animal experiments and are generally less exuberant than those in lung cancer. Elucidation of these questions by further bench-to-bedside researches may provide us with rational clinical diagnostic approaches and agents concerning IGF-1 signaling in lung diseases.
Collapse
|
22
|
Ding H, Wu T. Insulin-Like Growth Factor Binding Proteins in Autoimmune Diseases. Front Endocrinol (Lausanne) 2018; 9:499. [PMID: 30214426 PMCID: PMC6125368 DOI: 10.3389/fendo.2018.00499] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 08/08/2018] [Indexed: 12/14/2022] Open
Abstract
Insulin-like growth factor binding proteins (IGFBPs) are a family of proteins binding to Insulin-like growth factors (IGFs), generally including IGFBP1, IGFBP2, IGFBP3, IGFBP4, IGFBP5, and IGFBP6. The biological functions of IGFBPs can be classified as IGFs-dependent actions and IGFs-independent effects. In this review, we will discuss the structure and function of various IGFBPs, particularly IGFBPs as potential emerging biomarkers and therapeutic targets in various autoimmune diseases, and the possible mechanisms by which IGFBPs act on the pathogenesis of autoimmune diseases.
Collapse
Affiliation(s)
- Huihua Ding
- Department of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tianfu Wu
- Department of Biomedical Engineering, University of Houston, Houston, TX, United States
- *Correspondence: Tianfu Wu
| |
Collapse
|
23
|
Dandachi N, Kelly NJ, Wood JP, Burton CL, Radder JE, Leme AS, Gregory AD, Shapiro SD. Macrophage Elastase Induces TRAIL-mediated Tumor Cell Death through Its Carboxy-Terminal Domain. Am J Respir Crit Care Med 2017; 196:353-363. [PMID: 28345958 DOI: 10.1164/rccm.201606-1150oc] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
RATIONALE Macrophage elastase (matrix metalloproteinase [MMP]-12) is a potent protease that contributes to the lung destruction that accompanies cigarette smoking; it simultaneously inhibits lung tumor angiogenesis and metastasis by catalyzing the formation of antiangiogenic peptides. Recent studies have revealed novel nonproteolytic functions of MMP12, including antimicrobial activity through a peptide within its C-terminal domain (CTD). OBJECTIVES To determine whether the MMP12 CTD contributes to its antitumor activity in lung cancer. METHODS We used recombinant MMP12 peptide fragments, including its catalytic domain, CTD, and a 20 amino acid peptide within the CTD (SR20), in an in vitro system to delineate their effects on non-small cell lung cancer cell proliferation and apoptosis. We translated our findings to two murine models of lung cancer, including orthotopic human xenograft and KrasLSL/G12D mouse models of lung cancer. MEASUREMENTS AND MAIN RESULTS We show that SR20 triggers tumor apoptosis by up-regulation of gene expression of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and its receptor, death receptor 4, sensitizing cells to an autocrine loop of TRAIL-mediated cell death. We then demonstrate the therapeutic efficacy of SR20 against two murine models of lung cancer. CONCLUSIONS The MMP12 CTD initiates TRAIL-mediated tumor cell death through its conserved SR20 peptide.
Collapse
Affiliation(s)
- Nadine Dandachi
- Department of Medicine, University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Neil J Kelly
- Department of Medicine, University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - John P Wood
- Department of Medicine, University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Christine L Burton
- Department of Medicine, University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Josiah E Radder
- Department of Medicine, University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Adriana S Leme
- Department of Medicine, University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Alyssa D Gregory
- Department of Medicine, University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Steven D Shapiro
- Department of Medicine, University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
24
|
Kotarkonda LK, Kulshrestha R, Ravi K. Role of insulin like growth factor axis in the bleomycin induced lung injury in rats. Exp Mol Pathol 2017; 102:86-96. [DOI: 10.1016/j.yexmp.2017.01.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 12/21/2016] [Accepted: 01/04/2017] [Indexed: 10/20/2022]
|
25
|
Modepalli V, Hinds LA, Sharp JA, Lefevre C, Nicholas KR. Marsupial tammar wallaby delivers milk bioactives to altricial pouch young to support lung development. Mech Dev 2016; 142:22-29. [PMID: 27639961 PMCID: PMC5161226 DOI: 10.1016/j.mod.2016.08.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 08/26/2016] [Accepted: 08/26/2016] [Indexed: 11/27/2022]
Abstract
Our research is exploiting the marsupial as a model to understand the signals required for lung development. Marsupials have a unique reproductive strategy, the mother gives birth to altricial neonate with an immature lung and the changes in milk composition during lactation in marsupials appears to provide bioactives that can regulate diverse aspects of lung development, including branching morphogenesis, cell proliferation and cell differentiation. These effects are seen with milk collected between 25 and 100days postpartum. To better understand the temporal effects of milk composition on postnatal lung development we used a cross-fostering technique to restrict the tammar pouch young to milk composition not extending beyond day 25 for 45days of its early postnatal life. These particular time points were selected as our previous study showed that milk protein collected prior to ~day 25 had no developmental effect on mouse embryonic lungs in culture. The comparative analysis of the foster group and control young at day 45 postpartum demonstrated that foster pouch young had significantly reduced lung size. The lungs in fostered young were comprised of large intermediate tissue, had a reduced size of airway lumen and a higher percentage of parenchymal tissue. In addition, expression of marker genes for lung development (BMP4, WNT11, AQP-4, HOPX and SPB) were significantly reduced in lungs from fostered young. Further, to identify the potential bioactive expressed by mammary gland that may have developmental effect on pouch young lungs, we performed proteomics analysis on tammar milk through mass-spectrometry and listed the potential bioactives (PDGF, IGFBP5, IGFBPL1 and EGFL6) secreted in milk that may be involved in regulating pouch young lung development. The data suggest that postnatal lung development in the tammar young is most likely regulated by maternal signalling factors supplied through milk.
Collapse
Affiliation(s)
- Vengamanaidu Modepalli
- Department of Ecology, Evolution and Behavior, Institute of Life Science, Hebrew University, Edmund J Safra Campus, Jerusalem, Israel.
| | - Lyn A Hinds
- CSIRO Ecosystem Sciences, GPO Box 1700, Canberra, ACT 2601, Australia.
| | - Julie A Sharp
- School of Medicine, Deakin University, Pigdons Road, Geelong, VIC, Australia.
| | - Christophe Lefevre
- Walter Eliza Hall Institute, 1G Royal Parade, Parkville, Victoria 3052, Australia.
| | - Kevin R Nicholas
- School of Medicine, Deakin University, Pigdons Road, Geelong, VIC, Australia.
| |
Collapse
|
26
|
Arora H, Madapusi BT, Ramamurti A, Narasimhan M, Periasamy S, Rao SR. Immunohistochemical Localization of Epithelial Mesenchymal Transition Markers in Cyclosporine A Induced Gingival Overgrowth. J Clin Diagn Res 2016; 10:ZC48-52. [PMID: 27656563 PMCID: PMC5028539 DOI: 10.7860/jcdr/2016/20808.8271] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 07/15/2016] [Indexed: 11/24/2022]
Abstract
INTRODUCTION Cyclosporine, an immunosuppressive agent used in the management of renal transplant patients is known to produce Drug Induced Gingival Overgrowth (DIGO) as a side effect. Several mechanisms have been elucidated to understand the pathogenesis of DIGO. Recently, epithelial mesenchymal transition has been proposed as a mechanism underlying fibrosis of various organs. AIM The aim of the study was to investigate if Epithelial Mesenchymal Transition (EMT) operates in Cyclosporine induced gingival overgrowth. MATERIALS AND METHODS The study involved obtaining gingival tissue samples from healthy individuals (n=17) and subjects who exhibited cyclosporine induced gingival overgrowth (n=18). Presence and distribution of E-Cadherin, S100 A4 and alpha smooth muscle actin (α-SMA) was assessed using immunohistochemistry and cell types involved in their expression were determined. The number of α- SMA positive fibroblasts were counted in the samples. RESULTS In control group, there was no loss of E-Cadherin and a pronounced staining was seen in the all layers of the epithelium in all the samples analysed (100%). S100 A4 staining was noted in langerhans cells, fibroblasts, endothelial cells and endothelial lined blood capillaries in Connective Tissue (CT) of all the samples (100%) while α - SMA staining was seen only on the endothelial lined blood capillaries in all the samples (100%). However in DIGO, there was positive staining of E-Cadherin only in the basal and suprabasal layers of the epithelium in all the samples (100%). Moreover there was focal loss of E-Cadherin in the epithelium in eight out of 18 samples (44%). A break in the continuity of the basement membrane was noted in three out of 18 samples (16%) on H & E staining. CONCLUSION Based on the analysis of differential staining of the markers, it can be concluded that EMT could be one of the mechanistic pathways underlying the pathogenesis of DIGO.
Collapse
Affiliation(s)
- Hitesh Arora
- Post Graduate Student, Department of Periodontics, Faculty of Dental Sciences, Sri Ramachandra University, Porur, Chennai, India
| | - Balaji Thodur Madapusi
- Associate Professor, Department of Periodontics, Faculty of Dental Sciences, Sri Ramachandra University, Porur, Chennai, India
| | - Anjana Ramamurti
- Reader, Department of Periodontics, Faculty of Dental Sciences, Sri Ramachandra University, Porur, Chennai, India
| | - Malathi Narasimhan
- Professor and Head of Department, Department of Oral Pathology, Faculty of Dental Sciences, Sri Ramachandra University, Porur, Chennai, India
| | - Soundararajan Periasamy
- Professor, Department of Nephrology, Sri Ramachandra Medical College, Sri Ramachandra University, Porur, Chennai, India
| | - Suresh Ranga Rao
- Professor and Head of Department, Department of Periodontics, Faculty of Dental Sciences, Sri Ramachandra University, Porur, Chennai, India
| |
Collapse
|
27
|
Su Y, Nishimoto T, Feghali-Bostwick C. IGFBP-5 Promotes Fibrosis Independently of Its Translocation to the Nucleus and Its Interaction with Nucleolin and IGF. PLoS One 2015; 10:e0130546. [PMID: 26103640 PMCID: PMC4478026 DOI: 10.1371/journal.pone.0130546] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 05/21/2015] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Insulin-like growth factor binding protein (IGFBP)-5 levels are increased in systemic sclerosis (SSc) skin and lung. We previously reported that IGFBP-5 is a pro-fibrotic factor that induces extracellular matrix (ECM) production and deposition. Since IGFBP-5 contains a nuclear localization signal (NLS) that facilitates its nuclear translocation, we sought to examine the role of nuclear translocation on the fibrotic activity of IGFBP-5 and identify IGFBP-5 binding partners relevant for its nuclear compartmentalization. METHODS We generated functional wild type IGFBP-5 and IGFBP-5 with a mutated NLS or a mutated IGF binding site. Abrogation of nuclear translocation in the NLS mutant was confirmed using immunofluorescence and immunoblotting of nuclear and cytoplasmic cellular extracts. Abrogation of IGF binding was confirmed using western ligand blot. The fibrotic activity of wild type and mutant IGFBP-5 was examined in vitro in primary human fibroblasts and ex vivo in human skin. We identified IGFBP-5 binding partners using immunoprecipitation and mass spectrometry. We examined the effect of nucleolin on IGFBP-5 localization and function via sequence-specific silencing in primary human fibroblasts. RESULTS Our results show that IGFBP-5-induced ECM production in vitro in primary human fibroblasts is independent of its nuclear translocation. The NLS-mutant also induced fibrosis ex vivo in human skin, thus confirming and extending the in vitro findings. Similar findings were obtained with the IGF-binding mutant. Nucleolin, a nucleolar protein that can serve as a nuclear receptor, was identified as an IGFBP-5 binding partner. Silencing nucleolin reduced IGFBP-5 translocation to the nucleus but did not block the ability of IGFBP-5 to induce ECM production and a fibrotic phenotype. CONCLUSIONS IGFBP-5 transport to the nucleus requires an intact NLS and nucleolin. However, nuclear translocation is not necessary for IGFBP-5 fibrotic activity; neither is IGF binding. Our data provide further insights into the role of cellular compartmentalization in IGFBP-5-induced fibrosis.
Collapse
Affiliation(s)
- Yunyun Su
- Department of Medicine, Division of Rheumatology & Immunology, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Tetsuya Nishimoto
- Department of Medicine, Division of Rheumatology & Immunology, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Carol Feghali-Bostwick
- Department of Medicine, Division of Rheumatology & Immunology, Medical University of South Carolina, Charleston, South Carolina, United States of America
| |
Collapse
|
28
|
|
29
|
Yasuoka H, Yamaguchi Y, Feghali-Bostwick CA. The membrane-associated adaptor protein DOK5 is upregulated in systemic sclerosis and associated with IGFBP-5-induced fibrosis. PLoS One 2014; 9:e87754. [PMID: 24551065 PMCID: PMC3923757 DOI: 10.1371/journal.pone.0087754] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 01/02/2014] [Indexed: 01/12/2023] Open
Abstract
Systemic sclerosis (SSc) is characterized by excessive fibrosis of the skin and internal organs due to fibroblast proliferation and excessive production of extracellular matrix (ECM). We have shown that insulin-like growth factor binding protein (IGFBP)-5 plays an important role in the development of fibrosis in vitro, ex vivo, and in vivo. We identified a membrane-associated adaptor protein, downstream of tyrosine kinase/docking protein (DOK)5, as an IGFBP-5-regulated target gene using gene expression profiling of primary fibroblasts expressing IGFBP-5. DOK5 is a tyrosine kinase substrate associated with intracellular signaling. Our objective was to determine the role of DOK5 in the pathogenesis of SSc and specifically in IGFBP-5-induced fibrosis. DOK5 mRNA and protein levels were increased in vitro by endogenous and exogenous IGFBP-5 in primary human fibroblasts. DOK5 upregulation required activation of the mitogen-activated protein kinase (MAPK) signaling cascade. Further, IGFBP-5 triggered nuclear translocation of DOK5. DOK5 protein levels were also increased in vivo in mouse skin and lung by IGFBP-5. To determine the effect of DOK5 on fibrosis, DOK5 was expressed ex vivo in human skin in organ culture. Expression of DOK5 in human skin resulted in a significant increase in dermal thickness. Lastly, levels of DOK5 were compared in primary fibroblasts and lung tissues of patients with SSc and healthy donors. Both DOK5 mRNA and protein levels were significantly increased in fibroblasts and skin tissues of patients with SSc compared with those of healthy controls, as well as in lung tissues of SSc patients. Our findings suggest that IGFBP-5 induces its pro-fibrotic effects, at least in part, via DOK5. Furthermore, IGFBP-5 and DOK5 are both increased in SSc fibroblasts and tissues and may thus be acting in concert to promote fibrosis.
Collapse
Affiliation(s)
- Hidekata Yasuoka
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Yukie Yamaguchi
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Carol A. Feghali-Bostwick
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- Division of Rheumatology & Immunology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States of America
- * E-mail:
| |
Collapse
|
30
|
Vijayan A, Guha D, Ameer F, Kaziri I, Mooney C, Bennett L, Sureshbabu A, Tonner E, Beattie J, Allan G, Edwards J, Flint D. IGFBP-5 enhances epithelial cell adhesion and protects epithelial cells from TGFβ1-induced mesenchymal invasion. Int J Biochem Cell Biol 2013; 45:2774-85. [DOI: 10.1016/j.biocel.2013.10.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 09/12/2013] [Accepted: 10/01/2013] [Indexed: 12/16/2022]
|
31
|
Sampson N, Zenzmaier C, Heitz M, Hermann M, Plas E, Schäfer G, Klocker H, Berger P. Stromal insulin-like growth factor binding protein 3 (IGFBP3) is elevated in the diseased human prostate and promotes ex vivo fibroblast-to-myofibroblast differentiation. Endocrinology 2013; 154:2586-99. [PMID: 23720424 DOI: 10.1210/en.2012-2259] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Dysregulation of the IGF axis is implicated in the development of benign prostatic hyperplasia (BPH) and prostate cancer (PCa), 2 of the most common diseases affecting elderly males. PCa is the second leading cause of male-related cancer death in Western societies. Although distinct pathologies, BPH and PCa are both characterized by extensive stromal remodeling, in particular fibroblast-to-myofibroblast differentiation, thought to be induced by elevated local production of TGFβ1. We previously showed that TGFβ1-mediated fibroblast-to-myofibroblast differentiation of primary human prostatic stromal cells resulted in the dsyregulation of several components of the IGF axis, including the induction of IGF binding protein 3 (IGFBP3). Using isoform-specific lentiviral-mediated knockdown, we demonstrate herein that IGFBP3 is essential for TGFβ1-mediated differentiation. Although recombinant human IGFBP3 alone was not sufficient to induce differentiation, IGFBP3 synergistically potentiated TGFβ1-mediated stromal remodeling predominantly via an IGF-independent mechanism. Consistent with these in vitro findings, IGFBP3 immunohistochemistry revealed elevated levels of IGFBP3 in the hyperplastic fibromuscular stroma of BPH specimens and in the tumor-adjacent stroma of high-grade PCa. Collectively these data indicate that the dysregulation of the stromal IGF axis, in particular elevated IGFBP3, plays a crucial role in fibroblast-to-myofibroblast differentiation in the diseased prostatic stroma and indicate the therapeutic potential of inhibiting stromal remodeling and the resulting dysregulation of the stromal IGF axis as a novel strategy for the treatment of advanced PCa and BPH.
Collapse
|
32
|
Masuda A, Yasuoka H, Satoh T, Okazaki Y, Yamaguchi Y, Kuwana M. Versican is upregulated in circulating monocytes in patients with systemic sclerosis and amplifies a CCL2-mediated pathogenic loop. Arthritis Res Ther 2013; 15:R74. [PMID: 23845159 PMCID: PMC3979134 DOI: 10.1186/ar4251] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Accepted: 07/11/2013] [Indexed: 12/16/2022] Open
Abstract
Introduction Altered phenotypes of circulating monocytes of patients with systemic sclerosis (SSc) have been reported, but the role of these alterations in the pathogenesis of SSc remains unclear. This study was undertaken to identify molecules that are preferentially expressed by SSc monocytes, and to investigate the roles of these molecules in the pathogenic process of SSc. Methods We analyzed circulating CD14+ monocytes isolated from 36 patients with SSc and 32 healthy control subjects. The monocytes' gene expression profiles were assessed by Oligo GEArray® (SABiosciences, Frederic, MA, USA) and semiquantitative or quantitative PCR; their protein expression was evaluated in culture supernatants of unstimulated monocytes by immunoblotting or ELISA, and by immunocytostaining. Monocyte chemoattractant activity of CCL2 was assessed in a TransWell® system (Corning Incorporated, Corning, NY, USA) in the presence or absence of chondroitin sulfate (CS). Results A step-wise approach to profiling gene expression identified that versican and CCL2 were upregulated in SSc monocytes. Subsequent analysis of proteins expressed in monocyte culture supernatants confirmed enhanced production of versican and CCL2 in SSc monocytes compared with control monocytes. CCL2 bound to CS chains of versican and colocalized with versican in the monocytes' Golgi apparatus. Finally, CCL2 had a greater ability to mediate monocyte migration when bound to CS chains, because this binding provided efficient formation of CCL2 gradients and protection from protease attack. Conclusion Circulating monocytes with elevated versican and CCL2 levels may contribute to the fibrotic process in a subset of SSc patients by amplifying a positive feedback loop consisting of versican, CCL2, and the influx of monocytes.
Collapse
|
33
|
Song SE, Kim YW, Kim JY, Lee DH, Kim JR, Park SY. IGFBP5 mediates high glucose-induced cardiac fibroblast activation. J Mol Endocrinol 2013; 50:291-303. [PMID: 23417767 DOI: 10.1530/jme-12-0194] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
This study examined whether IGF-binding protein 5 (IGFBP5) is involved in the high glucose-induced deteriorating effects in cardiac cells. Cardiac fibroblasts and cardiomyocytes were isolated from the hearts of 1- to 3-day-old Sprague Dawley rats. Treatment of fibroblasts with 25 mM glucose increased the number of cells and the mRNA levels of collagen III, matrix metalloproteinase 2 (MMP2), and MMP9. High glucose increased ERK1/2 activity, and the ERK1/2 inhibitor PD98059 suppressed high glucose-mediated fibroblast proliferation and increased collagen III mRNA levels. Whereas high glucose increased both mRNA and protein levels of IGFBP5 in fibroblasts, high glucose did not affect IGFBP5 protein levels in cardiomyocytes. The high glucose-induced increase in IGFBP5 protein levels was inhibited by PD98059 in fibroblasts. While recombinant IGFBP5 increased ERK phosphorylation, cell proliferation, and the mRNA levels of collagen III, MMP2, and MMP9 in fibroblasts, IGFBP5 increased c-Jun N-terminal kinase phosphorylation and induced apoptosis in cardiomyocytes. The knockdown of IGFBP5 inhibited high glucose-induced cell proliferation and collagen III mRNA levels in fibroblasts. Although high glucose increased IGF1 levels, IGF1 did not increase IGFBP5 levels in fibroblasts. The hearts of Otsuka Long-Evans Tokushima Fatty rats and the cardiac fibroblasts of streptozotocin-induced diabetic rats showed increased IGFBP5 expression. These results suggest that IGFBP5 mediates high glucose-induced profibrotic effects in cardiac fibroblasts.
Collapse
Affiliation(s)
- Seung Eun Song
- Department of Physiology, College of Medicine, Yeungnam University, Daegu 705-717, South Korea
| | | | | | | | | | | |
Collapse
|
34
|
Zhang Q, Jiang Y, Toutounchian JJ, Soderland C, Yates CR, Steinle JJ. Insulin-like growth factor binding protein-3 inhibits monocyte adhesion to retinal endothelial cells in high glucose conditions. Mol Vis 2013; 19:796-803. [PMID: 23592916 PMCID: PMC3626378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Accepted: 04/03/2013] [Indexed: 12/03/2022] Open
Abstract
PURPOSE Insulin-like growth factor binding protein-3 (IGFBP-3) is cytoprotective in the retina. The goal of this study was to investigate whether IGFBP-3 inhibits monocyte-endothelial cell adhesion associated with hyperglycemia. METHODS Human retinal vascular endothelial cells (RECs) were grown in normal (5 mM), medium (15 mM), or high glucose medium (25 mM) for 72 h. After 48 h, cells were transfected with endothelial-cell-specific, non-IGF binding IGFBP-3 plasmid DNA (IGFBP-3NB) at 1 μg/ml for 24 h. Cells were serum starved for 16 h and treated with tumor necrosis factor-alpha (TNF-α; 10 ng/ml) for 4 h. Cell proteins were extracted and analyzed for intercellular adhesion molecule-1 (ICAM-1) expression with enzyme-linked immunosorbent assay. Additional RECs were plated onto attachment factor-coated slides, grown to 90% confluence in high glucose medium, and transfected with IGFBP-3 NB plasmid DNA or ICAM-1 small interfering RNA before treatment with or without TNF-α (10 ng/ml) for 4 h. Slides were then mounted in a parallel-plate flow chamber and subjected to a continuous flow of U937 human monocytes (10(5)/ml) in culture medium at shear stresses of 2 dynes/cm(2), with continual exposure to TNF-α. RESULTS In high ambient glucose, overexpression of IGFBP-3 in RECs significantly decreased ICAM-1 expression when compared to the TNF-α-treated samples, whereas TNF-α increased monocyte-endothelial cell adhesion. IGFBP-3 significantly decreased monocyte adhesion to RECs in the high glucose condition. RECs transfected with ICAM-1 siRNA also had a decreased number of monocytes attached compared with the scrambled siRNA control. CONCLUSIONS Data suggest that IGFBP-3 reduces monocyte-endothelial cell adhesion through decreased ICAM-1 levels in a hyperglycemic environment. This is the first demonstration of the role of IGFBP-3 in inhibiting monocyte-endothelial cell adhesion.
Collapse
Affiliation(s)
- Qiuhua Zhang
- Department of Ophthalmology, University of Tennessee Health Science Center, Memphis, TN
| | - Youde Jiang
- Department of Ophthalmology, University of Tennessee Health Science Center, Memphis, TN
| | - Jordan J. Toutounchian
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN
| | | | - C. Ryan Yates
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN
| | - Jena J. Steinle
- Department of Ophthalmology, University of Tennessee Health Science Center, Memphis, TN,Department of Anatomy & Neurobiology, University of Tennessee Health Science Center, Memphis, TN
| |
Collapse
|
35
|
Cell motility in models of wounded human skin is improved by Gap27 despite raised glucose, insulin and IGFBP-5. Exp Cell Res 2012; 319:390-401. [PMID: 23262023 DOI: 10.1016/j.yexcr.2012.12.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Revised: 12/12/2012] [Accepted: 12/13/2012] [Indexed: 11/21/2022]
Abstract
Reducing Cx43 expression stimulates skin wound healing. This is mimicked in models when Cx43 function is blocked by the connexin mimetic peptide Gap27. IGF-I also stimulates wound healing with IGFBP-5 attenuating its actions. Further, the IGF-I to IGFBP-5 ratio is altered in diabetic skin, where wound closure is impaired. We investigated whether Gap27 remains effective in augmenting scrape-wound closure in human skin wound models simulating diabetes-induced changes, using culture conditions with raised glucose, insulin and IGFBP-5. Gap27 increased scrape-wound closure in normal glucose and insulin (NGI) and to a lesser extent in high glucose and insulin (HGI). IGF-I enhanced scrape-wound closure in keratinocytes whereas IGFBP-5 inhibited this response. Gap27 overcame the inhibitory effects of IGFBP-5 on IGF-I activity. Connexin-mediated communication (CMC) was reduced in HGI, despite raised Cx43, and Gap27 significantly decreased CMC in NGI and HGI. IGF-I and IGFBP-5 did not affect CMC. IGF-I increased keratinocyte proliferation in NGI, and Gap27 increased proliferation in NGI to a greater extent than in HGI. We conclude that IGF-I and Gap27 stimulate scrape-wound closure by independent mechanisms with Gap27 inhibiting Cx43 function. Gap27 can enhance wound closure in diabetic conditions, irrespective of the IGF-I:IGFBP-5 balance.
Collapse
|
36
|
|
37
|
Lagares D, Busnadiego O, García-Fernández RA, Kapoor M, Liu S, Carter DE, Abraham D, Shi-Wen X, Carreira P, Fontaine BA, Shea BS, Tager AM, Leask A, Lamas S, Rodríguez-Pascual F. Inhibition of focal adhesion kinase prevents experimental lung fibrosis and myofibroblast formation. ACTA ACUST UNITED AC 2012; 64:1653-64. [PMID: 22492165 DOI: 10.1002/art.33482] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Enhanced adhesive signaling, including activation of focal adhesion kinase (FAK), is a hallmark of fibroblasts from lung fibrosis patients, and FAK has therefore been hypothesized to be a key mediator of this disease. This study was undertaken to characterize the contribution of FAK to the development of pulmonary fibrosis both in vivo and in vitro. METHODS FAK expression and activity were analyzed in lung tissue samples from lung fibrosis patients by immunohistochemistry. Mice orally treated with the FAK inhibitor PF-562,271, or with small interfering RNA (siRNA)-mediated silencing of FAK were exposed to intratracheally instilled bleomycin to induce lung fibrosis, and lungs were harvested for histologic and biochemical analysis. Using endothelin 1 (ET-1) as a stimulus, cell adhesion and contraction, as well as profibrotic gene expression, were studied in fibroblasts isolated from wild-type and FAK-deficient mouse embryos. ET-1-mediated FAK activation and gene expression were studied in primary mouse lung fibroblasts, as well as in wild-type and β1 integrin-deficient mouse fibroblasts. RESULTS FAK expression and activity were up-regulated in fibroblast foci and remodeled vessels from lung fibrosis patients. Pharmacologic or siRNA-mediated targeting of FAK resulted in marked abrogation of bleomycin-induced lung fibrosis in mice. Loss of FAK impaired the acquisition of a profibrotic phenotype in response to ET-1. Profibrotic gene expression leading to myofibroblast differentiation required cell adhesion, and was driven by JNK activation through β1 integrin/FAK signaling. CONCLUSION These results implicate FAK as a central mediator of fibrogenesis, and highlight this kinase as a potential therapeutic target in fibrotic diseases.
Collapse
Affiliation(s)
- David Lagares
- Centro de Biología Molecular Severo Ochoa, CSIC and Fundación Renal Iñigo Alvarez de Toledo, Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Shen JQ, Shen J, Wang XP. Expression of insulin-like growth factor binding protein-4 (IGFBP-4) in acute pancreatitis induced by L-arginine in mice. Acta Histochem 2012; 114:379-85. [PMID: 21839495 DOI: 10.1016/j.acthis.2011.07.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Revised: 07/13/2011] [Accepted: 07/17/2011] [Indexed: 01/01/2023]
Abstract
The mechanisms of injury and regeneration after acute pancreatitis are still incompletely understood. Insulin-like growth factor binding proteins (IGFBPs) have been reported to play roles in various pancreatic diseases, but the involvement of insulin-like growth factor binding protein-4 (IGFBP-4) in acute pancreatitis is unknown. The aim of the study was to examine the expression of IGFBP-4 in mice with acute pancreatitis induced by two doses of L-arginine. IGFBP-4 expression was assayed by microarray test, real-time RT-PCR, Western blotting, ELISA and by an immunohistochemical assay. Microarray test of pancreatic mRNA showed that IGFBP-4 mRNA increased significantly after L-arginine treatment and the increase was confirmed by real-time RT-PCR. Western blotting and ELISA assay showed similar patterns of increase of IGFBP-4 in pancreatic tissues and serum. In the control pancreas, IGFBP-4 was mainly immunolocalized in the pancreatic islets. In the pancreatic tissues of mice with pancreatitis induced by L-arginine, the immunolocalization of IGFBP-4 was detected in both acinar cells and pancreatic islets. In conclusion, our results suggest that IGFBP-4 may play a potential role in pancreatic injury and regeneration in a murine model of acute pancreatitis induced by L-arginine.
Collapse
|
39
|
Veraldi KL, Feghali-Bostwick CA. Insulin-like growth factor binding proteins-3 and -5: central mediators of fibrosis and promising new therapeutic targets. Open Rheumatol J 2012; 6:140-5. [PMID: 22802912 PMCID: PMC3395973 DOI: 10.2174/1874312901206010140] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2012] [Revised: 03/27/2012] [Accepted: 04/04/2012] [Indexed: 12/22/2022] Open
Abstract
Fibrosis involves an orchestrated cascade of events including activation of fibroblasts, increased production and deposition of extracellular matrix components, and differentiation of fibroblasts into myofibroblasts. Epithelial-mesenchymal cross-talk plays an important role in this process, and current hypotheses of organ fibrosis liken it to an aberrant wound healing response in which epithelial-mesenchymal transition (EMT) and cellular senescence may also contribute to disease pathogenesis. The fibrotic response is associated with altered expression of growth factors and cytokines, including increased levels of transforming growth factor-β1 (TGF-β1) and the more recent observation that increased levels of several insulin-like growth factor binding proteins (IGFBPs) are associated with a number of fibrotic conditions. IGFBPs have been implicated in virtually every cell type and process associated with the fibrotic response, making the IGFBPs attractive targets for the development of novel anti-fibrotic therapies. In this review, the current state of knowledge regarding the classical IGFBP family in organ fibrosis will be summarized and the clinical implications considered.
Collapse
Affiliation(s)
- Kristen L Veraldi
- The Division of Pulmonary, Allergy, and Critical Care Medicine, and Pittsburgh Scleroderma Center, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | | |
Collapse
|
40
|
Serum concentrations of human insulin-like growth factor-1 and levels of insulin-like growth factor-binding protein-5 in patients with nonalcoholic fatty liver disease: association with liver histology. Eur J Gastroenterol Hepatol 2012; 24:255-61. [PMID: 22157234 DOI: 10.1097/meg.0b013e32834e8041] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
OBJECTIVE In this study, we aimed to investigate the relationship between the histological features of nonalcoholic fatty liver disease (NAFLD) and serum insulin-like growth factor-1 (IGF-1) and insulin-like growth factor-binding protein-5 (IGFBP-5) to determine the usefulness of this relationship in clinical practice. MATERIALS AND METHODS Serum samples were collected from 92 patients with biopsy-proven NAFLD and 51 healthy controls and serum levels of IGF-1 and IGFBP-5 were assayed by enzyme-linked immunosorbent assay. RESULT Serum IGFBP-5 levels were correlated with liver steatosis, fibrosis, and nonalcoholic steatohepatitis scores. IGF-1 levels were significantly decreased in patients with moderate-to-severe fibrosis compared with patients with no or mild fibrosis. CONCLUSION Serum IGFBP-5 levels may be useful to differentiate both advanced fibrosis and definite nonalcoholic steatohepatitis from other NAFLD groups. Also, serum IGF-1 levels may be useful to differentiate advanced fibrosis in patients with NAFLD.
Collapse
|
41
|
Large EM, Pryde A, Plevris JN, Flint DJ, Grant MH. Insulin-like growth factor binding protein-5 as a biomarker for the detection of early liver disease. Toxicology 2011. [DOI: 10.1016/j.tox.2011.09.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
42
|
Yamaguchi Y, Yasuoka H, Stolz DB, Feghali-Bostwick CA. Decreased caveolin-1 levels contribute to fibrosis and deposition of extracellular IGFBP-5. J Cell Mol Med 2011; 15:957-69. [PMID: 20345844 PMCID: PMC2995014 DOI: 10.1111/j.1582-4934.2010.01063.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Our previous studies have demonstrated increased expression of insulin-like growth factor binding protein-5 (IGFBP-5) in fibrotic tissues and IGFBP-5 induction of extracellular matrix (ECM) components. The mechanism resulting in increased IGFBP-5 in the extracellular milieu of fibrotic fibroblasts is unknown. Since Caveolin-1 (Cav-1) has been implicated to play a role in membrane trafficking and signal transduction in tissue fibrosis, we examined the effect of Cav-1 on IGFBP-5 internalization, trafficking and secretion. We demonstrated that IGFBP-5 localized to lipid rafts in human lung fibroblasts and bound Cav-1. Cav-1 was detected in the nucleus in IGFBP-5-expressing fibroblasts, within aggregates enriched with IGFBP-5, suggesting a coordinate trafficking of IGFBP-5 and Cav-1 from the plasma membrane to the nucleus. This trafficking was dependent on Cav-1 as fibroblasts from Cav-1 null mice had increased extracellular IGFBP-5, and as fibroblasts in which Cav-1 was silenced or lipid raft structure was disrupted through cholesterol depletion also had defective IGFBP-5 internalization. Restoration of Cav-1 function through administration of Cav-1 scaffolding peptide dramatically increased IGFBP-5 uptake. Finally, we demonstrated that IGFBP-5 in the ECM protects fibronectin from proteolytic degradation. Taken together, our findings identify a novel role for Cav-1 in the internalization and nuclear trafficking of IGFBP-5. Decreased Cav-1 expression in fibrotic diseases likely leads to increased deposition of IGFBP-5 in the ECM with subsequent reduction in ECM degradation, thus identifying a mechanism by which reduced Cav-1 and increased IGFBP-5 concomitantly contribute to the perpetuation of fibrosis.
Collapse
Affiliation(s)
- Yukie Yamaguchi
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | | | | | | |
Collapse
|
43
|
Borchers AT, Chang C, Keen CL, Gershwin ME. Idiopathic pulmonary fibrosis-an epidemiological and pathological review. Clin Rev Allergy Immunol 2011; 40:117-34. [PMID: 20838937 DOI: 10.1007/s12016-010-8211-5] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is an interstitial lung disease (ILD) affecting the pulmonary interstitium. Other forms of interstitial lung disease exist, and in some cases, an environmental etiology can be delineated. The diagnosis of IPF is typically established by high-resolution CT scan. IPF tends to have a worse prognosis than other forms of ILD. Familial cases of IPF also exist, suggesting a genetic predisposition; telomerase mutations have been observed to occur in familial IPF, which may also explain the increase in IPF with advancing age. Alveolar epithelial cells are believed to be the primary target of environmental agents that have been putatively associated with IPF. These agents may include toxins, viruses, or the autoantibodies found in collagen vascular diseases. The mechanism of disease is still unclear in IPF, but aberrations in fibroblast differentiation, activation, and proliferation may play a role. Epithelial-mesenchymal transition may also be an important factor in the pathogenesis, as it may lead to accumulation of fibroblasts in the lung and a disruption of normal tissue structure. Abnormalities in other components of the immune system, including T cells, B cells, and dendritic cells, as well as the development of ectopic lymphoid tissue, have also been observed to occur in IPF and may play a role in the stimulation of fibrosis that is a hallmark of the disease. It is becoming increasingly clear that the pathogenesis of IPF is indeed a complex and convoluted process that involves numerous cell types and humoral factors.
Collapse
Affiliation(s)
- Andrea T Borchers
- Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis School of Medicine, 95616, USA
| | | | | | | |
Collapse
|
44
|
Roet KCD, Bossers K, Franssen EHP, Ruitenberg MJ, Verhaagen J. A meta-analysis of microarray-based gene expression studies of olfactory bulb-derived olfactory ensheathing cells. Exp Neurol 2011; 229:10-45. [PMID: 21396936 DOI: 10.1016/j.expneurol.2011.03.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2010] [Revised: 12/28/2010] [Accepted: 03/02/2011] [Indexed: 12/23/2022]
Abstract
Genome wide transcriptional profiling and large scale proteomics have emerged as two powerful methods to dissect the molecular properties of specific neural tissues or cell types on a global scale. Several genome-wide transcriptional profiling and proteomics studies have been published on cultured olfactory ensheathing cells (OEC). In this article we present a meta-analysis of all five published and publicly available micro-array gene expression datasets of cultured early-passage-OB-OEC with other cell types (Schwann cells, late-passage-OB-OEC, mucosa-OEC, an OEC cell line, and acutely dissected OEC). The aim of this meta-analysis is to identify genes and molecular pathways that are found in multiple instead of one isolated study. 454 Genes were detected in at least three out of five microarray datasets. In this "Top-list", genes involved in the biological processes "growth of neurites", "blood vessel development", "migration of cells" and "immune response" were strongly overrepresented. By applying network analysis tools, molecular networks were constructed and Hub-genes were identified that may function as key genes in the above mentioned interrelated processes. We also identified 7 genes (ENTPD2, MATN2, CTSC, PTHLH, GLRX1, COL27A1 and ID2) with uniformly higher or lower expression in early-passage-OB-OEC in all five microarray comparisons. These genes have diverse but intriguing roles in neuroprotection, neurite extension and/or tissue repair. Our meta-analysis provides novel insights into the molecular basis of OB-OEC-mediated neural repair and can serve as a repository for investigators interested in the molecular biology of OEC. This article is part of a Special Issue entitled: Understanding olfactory ensheathing glia and their prospect for nervous system repair.
Collapse
Affiliation(s)
- Kasper C D Roet
- Department of Neuroregeneration, Netherlands Institute for Neuroscience, Meibergdreef 47, Amsterdam, The Netherlands.
| | | | | | | | | |
Collapse
|
45
|
Sureshbabu A, Tonner E, Allan GJ, Flint DJ. Relative Roles of TGF-β and IGFBP-5 in Idiopathic Pulmonary Fibrosis. Pulm Med 2011; 2011:517687. [PMID: 21637366 PMCID: PMC3100084 DOI: 10.1155/2011/517687] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Accepted: 01/05/2011] [Indexed: 11/07/2022] Open
Abstract
Although most evident in the skin, the process of scarring, or fibrosis, occurs in all major organs because of impaired epithelial self-renewal. No current therapy exists for Idiopathic pulmonary fibrosis. The major profibrotic factor is TGF-β1 and developing inhibitors is an area of active research. Recently, IGFBP-5 has also been identified as a profibrotic factor, and studies suggest that, while both TGF-β1 and IGFBP-5 activate mesenchymal cells to increase collagen and fibronectin production, their effects on epithelial cells are distinct. TGF-β1 induces cell death and/or EMT in the epithelial cells, exacerbating the disruption of tissue architecture. In contrast, IGFBP-5 induces epithelial cell spreading over collagen or fibronectin matrices, increases secretion of laminin, the epithelial basement membrane, and enhances the survival of epithelial cells in nutrient-poor conditions, as exists in scar tissue. Thus, IGFBP-5 may enhance repair and may be an important target for antifibrotic therapies.
Collapse
Affiliation(s)
- A. Sureshbabu
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, SIPBS Building, 161 Cathedral Street, Glasgow G4 0RE, UK
| | - E. Tonner
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, SIPBS Building, 161 Cathedral Street, Glasgow G4 0RE, UK
| | - G. J. Allan
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, SIPBS Building, 161 Cathedral Street, Glasgow G4 0RE, UK
| | - D. J. Flint
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, SIPBS Building, 161 Cathedral Street, Glasgow G4 0RE, UK
| |
Collapse
|
46
|
Pathogenesis of systemic sclerosis. Rheumatology (Oxford) 2011. [DOI: 10.1016/b978-0-323-06551-1.00139-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
47
|
Oxidative stress via hydrogen peroxide and Menadione does not induce the secretion of IGFBP-5 in primary rat hepatocytes. Toxicology 2010. [DOI: 10.1016/j.tox.2010.08.107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
48
|
Perl AKT, Riethmacher D, Whitsett JA. Conditional depletion of airway progenitor cells induces peribronchiolar fibrosis. Am J Respir Crit Care Med 2010; 183:511-21. [PMID: 20870756 DOI: 10.1164/rccm.201005-0744oc] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
RATIONALE The respiratory epithelium has a remarkable capacity to respond to acute injury. In contrast, repeated epithelial injury is often associated with abnormal repair, inflammation, and fibrosis. There is increasing evidence that nonciliated epithelial cells play important roles in the repair of the bronchiolar epithelium after acute injury. Cellular processes underlying the repair and remodeling of the lung after chronic epithelial injury are poorly understood. OBJECTIVES To identify cell processes mediating epithelial regeneration and remodeling after acute and chronic Clara cell depletion. METHODS A transgenic mouse model was generated to conditionally express diphtheria toxin A to ablate Clara cells in the adult lung. Epithelial regeneration and peribronchiolar fibrosis were assessed after acute and chronic Clara cell depletion. MEASUREMENTS AND MAIN RESULTS Acute Clara cell ablation caused squamous metaplasia of ciliated cells and induced proliferation of residual progenitor cells. Ciliated cells in the bronchioles and pro-surfactant protein C-expressing cells in the bronchiolar alveolar duct junctions did not proliferate. Epithelial cell proliferation occurred at multiple sites along the airways and was not selectively associated with regions around neuroepithelial bodies. Chronic Clara cell depletion resulted in ineffective repair and caused peribronchiolar fibrosis. CONCLUSIONS Colocalization of proliferation and cell type-specific markers demonstrate that Clara cells are critical airway progenitor cells. Continuous depletion of Clara cells resulted in persistent squamous metaplasia, lack of normal reepithelialization, and peribronchiolar fibrosis. Induction of proliferation in subepithelial fibroblasts supports the concept that chronic epithelial depletion caused peribronchiolar fibrosis.
Collapse
Affiliation(s)
- Anne-Karina T Perl
- Division of Pulmonary Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.
| | | | | |
Collapse
|
49
|
Beattie J, McIntosh L, van der Walle CF. Cross-talk between the insulin-like growth factor (IGF) axis and membrane integrins to regulate cell physiology. J Cell Physiol 2010; 224:605-11. [PMID: 20432472 DOI: 10.1002/jcp.22183] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The biology of cross-talk between activated growth factor receptors and cell-surface integrins is an area which has attracted much interest in recent years (Schwartz and Ginsberg, 2002). This review discusses the relationship between the insulin-like growth factor (IGF) axis and cell-surface integrin receptors in the regulation of various aspects of cell physiology. Key to these interactions are signals transmitted between integrins and the IGF-I receptor (IGF-IR) when either or both are bound to their cognate ligands and we will review the current state of knowledge in this area. The IGF axis comprises many molecular components and we will also discuss the potential role of these species in cross-talk with the integrin receptor. With respect to integrin ligands, we will mainly focus on the well-characterized interactions of the two extracellular matrix (ECM) glycoproteins fibronectin (FN) and vitronectin (VN) with cell-surface ligands, and, how this affects activity through the IGF axis. However, we will also highlight the importance of other integrin activation mechanisms and their impact on IGF activity.
Collapse
Affiliation(s)
- James Beattie
- Department of Oral Biology, Leeds Dental Institute, University of Leeds, Leeds, UK.
| | | | | |
Collapse
|
50
|
Ruan W, Ying K. Abnormal expression of IGF-binding proteins, an initiating event in idiopathic pulmonary fibrosis? Pathol Res Pract 2010; 206:537-43. [PMID: 20452131 DOI: 10.1016/j.prp.2010.03.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Revised: 02/21/2010] [Accepted: 03/25/2010] [Indexed: 02/06/2023]
Abstract
For significant improvements to occur in the survival of patients with idiopathic pulmonary fibrosis (IPF), it is necessary to develop novel and more precisely targeted therapies. The selection of future appropriate regimens must critically depend on improved characterization of the molecules driving the pathogenesis of IPF. It is well defined that IPF is characterized by the expression of genes indicating an active tissue remodeling program, including extracellular matrix (ECM) and basement membrane components, as well as myofibroblast-associated and epithelial cell-related genes. A few recent advances are worth mentioning. Pulmonary research demonstrates abnormal expression of insulin-like growth factor (IGF) binding proteins (IGFBPs) in IPF, including human IPF bronchoalveolar lavage (BAL) cells and BAL fluids, human IPF fibroblasts, as well as fibrotic lung tissues of bleomycin-induced mice and IPF patients, analyzed by microarray, reverse transcription-polymerase chain reaction (RT-PCR), ribonuclease protection assay (RPA), Western blot, immunohistochemistry, or enzyme-linked immunosorbent assay (ELISA). Simultaneously, in vitro and in vivo studies indicate the involvement of IGFBPs in the initiation and development of the fibrosis process, including fibroblast activation and transdifferentiation to a myofibroblast phenotype, epithelial-mesenchymal transition (EMT), increased ECM production, and decreased ECM degradation, possibly contributing to the final lung fibrosis. These observations suggest that dysregulation of IGFBPs may be a key factor responsible for the initiation and perpetuation of IPF. Such efforts could lead to potential candidate molecules being exploited for therapeutic manipulation.
Collapse
Affiliation(s)
- Wenjing Ruan
- Department of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University, 3 East Qingchun Road, Hangzhou 310016, China
| | | |
Collapse
|