1
|
Muñoz-González M, Aguilar R, Moreno AA, Cepeda-Plaza M. Influence of LNA modifications on the activity of the 10-23 DNAzyme. RSC Adv 2025; 15:13031-13040. [PMID: 40271416 PMCID: PMC12016023 DOI: 10.1039/d5ra00161g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 04/09/2025] [Indexed: 04/25/2025] Open
Abstract
The 10-23 DNAzyme is a catalytic DNA molecule that efficiently cleaves RNA in the presence of divalent cations such as Mg2+ or Ca2+. Following their discovery, the 10-23 DNAzymes demonstrated numerous advantages that quickly led them to be considered powerful molecular tools for the development of gene-silencing tools. In this study, we evaluate the efficiency of the 10-23 DNAzyme and an LNA-modified analog in cleaving human MALAT1, an RNA overexpressed in cancer cells. First, we perform in vitro assays using a 20 nt RNA fragment from the MALAT1 sequence, with 2 mM and 10 mM Mg2+ and Ca2+ as cofactors, to evaluate how LNA modifications influence catalytic activity. We found that the activity is increased in the LNA-modified DNAzyme compared to the unmodified version with both cofactors, in a concentration-dependent manner. Finally, the RNA-cleaving activity of the LNA-modified, catalytically active 10-23 DNAzyme was tested in MCF7 human breast cancer cells. We found that the DNAzyme persists for up to 72 h in cells and effectively silences MALAT1 RNA in a concentration-dependent manner as early as 12 h post-transfection.
Collapse
Affiliation(s)
- Marcelo Muñoz-González
- Chemical Sciences Department, Universidad Andres Bello Santiago Chile
- Institute of Biomedical Sciences, Faculty of Medicine and Faculty of Life Sciences, Universidad Andres Bello Chile
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andres Bello Santiago Chile
| | - Rodrigo Aguilar
- Institute of Biomedical Sciences, Faculty of Medicine and Faculty of Life Sciences, Universidad Andres Bello Chile
| | - Adrian A Moreno
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andres Bello Santiago Chile
| | | |
Collapse
|
2
|
Lee M, Kim M, Lee M, Kim S, Park N. Nanosized DNA Hydrogel Functionalized with a DNAzyme Tetrahedron for Highly Efficient Gene Silencing. Biomacromolecules 2024; 25:4913-4924. [PMID: 38963792 DOI: 10.1021/acs.biomac.4c00356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
DNAzymes are DNA oligonucleotides that have catalytic activity without the assistance of protein enzymes. In particular, RNA-cleaving DNAzymes were considered as ideal candidates for gene therapy due to their unique characteristics. Nevertheless, efforts to use DNAzyme as a gene therapeutic agent are limited by issues such as their low physiological stability in serum and intracellular delivery efficiency. In this study, we developed a nanosized synthetic DNA hydrogel functionalized with a DNAzyme tetrahedron (TDz Dgel) to overcome these limitations. We observed remarkable improvement in the gene-silencing effect as well as intracellular uptake without the support of gene transfection reagents using TDz Dgel. The improved catalytic activity of the DNAzyme resulted from the combination of the cell-penetrating DNA tetrahedron structure and high stability of DNA hydrogel. We envision that this approach will become a convenient and efficient strategy for gene-silencing therapy using DNAzyme in the future.
Collapse
Affiliation(s)
- Minhyuk Lee
- Department of Chemistry, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Minchul Kim
- Department of Chemistry and the Natural Science Research Institute, Myongji University, 116 Myongji-ro, Yongin-si 17058, Republic of Korea
| | - Minjae Lee
- Department of Chemistry and the Natural Science Research Institute, Myongji University, 116 Myongji-ro, Yongin-si 17058, Republic of Korea
| | - Sungjee Kim
- Department of Chemistry, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Nokyoung Park
- Department of Chemistry and the Natural Science Research Institute, Myongji University, 116 Myongji-ro, Yongin-si 17058, Republic of Korea
| |
Collapse
|
3
|
Xiao L, Zhao Y, Yang M, Luan G, Du T, Deng S, Jia X. A promising nucleic acid therapy drug: DNAzymes and its delivery system. Front Mol Biosci 2023; 10:1270101. [PMID: 37753371 PMCID: PMC10518456 DOI: 10.3389/fmolb.2023.1270101] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 08/29/2023] [Indexed: 09/28/2023] Open
Abstract
Based on the development of nucleic acid therapeutic drugs, DNAzymes obtained through in vitro selection technology in 1994 are gradually being sought. DNAzymes are single-stranded DNA molecules with catalytic function, which specifically cleave RNA under the action of metal ions. Various in vivo and in vitro models have recently demonstrated that DNAzymes can target related genes in cancer, cardiovascular disease, bacterial and viral infection, and central nervous system disease. Compared with other nucleic acid therapy drugs, DNAzymes have gained more attention due to their excellent cutting efficiency, high stability, and low cost. Here, We first briefly reviewed the development and characteristics of DNAzymes, then discussed disease-targeting inhibition model of DNAzymes, hoping to provide new insights and ways for disease treatment. Finally, DNAzymes were still subject to some restrictions in practical applications, including low cell uptake efficiency, nuclease degradation and interference from other biological matrices. We discussed the latest delivery strategy of DNAzymes, among which lipid nanoparticles have recently received widespread attention due to the successful delivery of the COVID-19 mRNA vaccine, which provides the possibility for the subsequent clinical application of DNAzymes. In addition, the future development of DNAzymes was prospected.
Collapse
Affiliation(s)
- Lang Xiao
- School of Basic Medical Sciences, Chengdu Medical College, Chengdu, Sichuan, China
- Sichuan Key Laboratory of Noncoding RNA and Drugs, Chengdu Medical College, Chengdu, Sichuan, China
| | - Yan Zhao
- Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Meng Yang
- School of Basic Medical Sciences, Chengdu Medical College, Chengdu, Sichuan, China
- Sichuan Key Laboratory of Noncoding RNA and Drugs, Chengdu Medical College, Chengdu, Sichuan, China
| | - Guangxin Luan
- School of Basic Medical Sciences, Chengdu Medical College, Chengdu, Sichuan, China
- Sichuan Key Laboratory of Noncoding RNA and Drugs, Chengdu Medical College, Chengdu, Sichuan, China
| | - Ting Du
- School of Basic Medical Sciences, Chengdu Medical College, Chengdu, Sichuan, China
- Sichuan Key Laboratory of Noncoding RNA and Drugs, Chengdu Medical College, Chengdu, Sichuan, China
| | - Shanshan Deng
- School of Basic Medical Sciences, Chengdu Medical College, Chengdu, Sichuan, China
- Sichuan Key Laboratory of Noncoding RNA and Drugs, Chengdu Medical College, Chengdu, Sichuan, China
| | - Xu Jia
- School of Basic Medical Sciences, Chengdu Medical College, Chengdu, Sichuan, China
- Sichuan Key Laboratory of Noncoding RNA and Drugs, Chengdu Medical College, Chengdu, Sichuan, China
| |
Collapse
|
4
|
Naseroleslami M, Mousavi Niri N, Hosseinian SB, Aboutaleb N. DNAzyme loaded nano-niosomes attenuate myocardial ischemia/reperfusion injury by targeting apoptosis, inflammation in a NF-κB dependent mechanism. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:2127-2136. [PMID: 36941384 DOI: 10.1007/s00210-023-02467-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 03/15/2023] [Indexed: 03/23/2023]
Abstract
Although DNAzymes have been found to reduce injury after myocardial ischemia/reperfusion (MI/R), their efficiency have been limited due to rapid degradation in vivo. Thus, this study was conducted to extend their half-life by encapsulation into nano‑niosomes and examine their cardioprotective effects in a rat model of myocardial infarction (MI). In order to synthesize nano‑niosomes, surface active agent film hydration method was used. Characterization of nano‑niosomes was performed using the atomic force microscopy (AFM). In order to establish MI/R model in rats, left anterior descending coronary artery (LAD) was ligated for 30 min. A single dose (150µL) of drug formulations was injected into the infarcted region. The cardiac function was evaluated using echocardiography. The expression of pro-inflammatory cytokines, apoptotic factors, and nuclear factor-κB (NF-κB) were evaluated using Western blot and immunohistochemistry, respectively. Particle size of only nano-niosomes was in the range of 60-90 nm, while a shift to 70-110 nm was seen after DNAzyme encapsulation. MI rats treated with DNAzyme‑loaded nano‑niosomes could markedly reduce Bax, caspase3, TNF-α, IL-1β, and NF-κB as well as increase Bcl-2 compared to only MI/R group. Collectively, our finding show that nano‑niosomes can be considered excellent drug delivery platforms to extend half-life and stability of DNAzyme, when it is used to reduce myocardial I/R injury.
Collapse
Affiliation(s)
- Maryam Naseroleslami
- Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Neda Mousavi Niri
- Department of Biotechnology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Seyede Bahar Hosseinian
- Department of Biotechnology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Nahid Aboutaleb
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran.
- Department of Physiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Paul D, Miller MH, Born J, Samaddar S, Ni H, Avila H, Krishnamurthy VR, Thirunavukkarasu K. The Promising Therapeutic Potential of Oligonucleotides for Pulmonary Fibrotic Diseases. Expert Opin Drug Discov 2023; 18:193-206. [PMID: 36562410 DOI: 10.1080/17460441.2023.2160439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Fibrotic lung diseases represent a large subset of diseases with an unmet clinical need. Oligonucleotide therapies (ONT) are a promising therapeutic approach for the treatment of pulmonary disease as they can inhibit pathways that are otherwise difficult to target. Additionally, targeting the lung specifically with ONT is advantageous because it reduces the possibilities of systemic side effects and tolerability concerns. AREAS COVERED This review presents the chemical basis of designing various ONTs currently known to treat fibrotic lung diseases. Further, the authors have also discussed the delivery vehicle, routes of administration, physiological barriers of the lung, and toxicity concerns with ONTs. EXPERT OPINION ONTs provide a promising therapeutic approach for the treatment of fibrotic diseases of the lung, particularly because ONTs directly delivered to the lung show little systemic side effects compared to current therapeutic strategies. Dry powder aerosolized inhalers may be a good strategy for getting ONTs into the lung in humans. However, as of now, no dry powder ONTs have been approved for use in the clinical setting, and this challenge must be overcome for future therapies. Various delivery methods that can aid in direct targeting may also improve the use of ONTs for lung fibrotic diseases.
Collapse
Affiliation(s)
| | | | - Josh Born
- Genetic Medicine, Eli Lilly and Company
| | - Shayak Samaddar
- Bioproduct Drug Development, Eli Lilly and Company, Indianapolis, IN, US
| | | | | | | | | |
Collapse
|
6
|
Wang B, Wang M, Peng F, Fu X, Wen M, Shi Y, Chen M, Ke G, Zhang XB. Construction and Application of DNAzyme-based Nanodevices. Chem Res Chin Univ 2023; 39:42-60. [PMID: 36687211 PMCID: PMC9841151 DOI: 10.1007/s40242-023-2334-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 01/02/2023] [Indexed: 01/19/2023]
Abstract
The development of stimuli-responsive nanodevices with high efficiency and specificity is very important in biosensing, drug delivery, and so on. DNAzymes are a class of DNA molecules with the specific catalytic activity. Owing to their unique catalytic activity and easy design and synthesis, the construction and application of DNAzymes-based nanodevices have attracted much attention in recent years. In this review, the classification and properties of DNAzyme are first introduced. The construction of several common kinds of DNAzyme-based nanodevices, such as DNA motors, signal amplifiers, and logic gates, is then systematically summarized. We also introduce the application of DNAzyme-based nanodevices in sensing and therapeutic fields. In addition, current limitations and future directions are discussed.
Collapse
Affiliation(s)
- Bo Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082 P. R. China
| | - Menghui Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082 P. R. China
| | - Fangqi Peng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082 P. R. China
| | - Xiaoyi Fu
- Institute of Basic Medicine and Cancer(IBMC), Chinese Academy of Sciences, Hangzhou, 310022 P. R. China
| | - Mei Wen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082 P. R. China
| | - Yuyan Shi
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082 P. R. China
| | - Mei Chen
- College of Materials Science and Engineering, Hunan University, Changsha, 410082 P. R. China
| | - Guoliang Ke
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082 P. R. China
| | - Xiao-Bing Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082 P. R. China
| |
Collapse
|
7
|
Nedorezova DD, Dubovichenko MV, Belyaeva EP, Grigorieva ED, Peresadina AV, Kolpashchikov DM. Specificity of oligonucleotide gene therapy (OGT) agents. Theranostics 2022; 12:7132-7157. [PMID: 36276652 PMCID: PMC9576606 DOI: 10.7150/thno.77830] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 09/11/2022] [Indexed: 11/24/2022] Open
Abstract
Oligonucleotide gene therapy (OGT) agents (e. g. antisense, deoxyribozymes, siRNA and CRISPR/Cas) are promising therapeutic tools. Despite extensive efforts, only few OGT drugs have been approved for clinical use. Besides the problem of efficient delivery to targeted cells, hybridization specificity is a potential limitation of OGT agents. To ensure tight binding, a typical OGT agent hybridizes to the stretch of 15-25 nucleotides of a unique targeted sequence. However, hybrids of such lengths tolerate one or more mismatches under physiological conditions, the problem known as the affinity/specificity dilemma. Here, we assess the scale of this problem by analyzing OGT hybridization-dependent off-target effects (HD OTE) in vitro, in animal models and clinical studies. All OGT agents except deoxyribozymes exhibit HD OTE in vitro, with most thorough evidence of poor specificity reported for siRNA and CRISPR/Cas9. Notably, siRNA suppress non-targeted genes due to (1) the partial complementarity to mRNA 3'-untranslated regions (3'-UTR), and (2) the antisense activity of the sense strand. CRISPR/Cas9 system can cause hundreds of non-intended dsDNA breaks due to low specificity of the guide RNA, which can limit therapeutic applications of CRISPR/Cas9 by ex-vivo formats. Contribution of this effects to the observed in vivo toxicity of OGT agents is unclear and requires further investigation. Locked or peptide nucleic acids improve OGT nuclease resistance but not specificity. Approaches that use RNA marker dependent (conditional) activation of OGT agents may improve specificity but require additional validation in cell culture and in vivo.
Collapse
Affiliation(s)
- Daria D. Nedorezova
- Laboratory of Molecular Robotics and Biosensor Materials, International Institute SCAMT, ITMO University, 9 Lomonosov Str., St. Petersburg, 191002, Russian Federation
| | - Mikhail V. Dubovichenko
- Laboratory of Molecular Robotics and Biosensor Materials, International Institute SCAMT, ITMO University, 9 Lomonosov Str., St. Petersburg, 191002, Russian Federation
| | - Ekaterina P. Belyaeva
- Laboratory of Molecular Robotics and Biosensor Materials, International Institute SCAMT, ITMO University, 9 Lomonosov Str., St. Petersburg, 191002, Russian Federation
| | - Ekaterina D. Grigorieva
- Laboratory of Molecular Robotics and Biosensor Materials, International Institute SCAMT, ITMO University, 9 Lomonosov Str., St. Petersburg, 191002, Russian Federation
| | - Arina V. Peresadina
- Laboratory of Molecular Robotics and Biosensor Materials, International Institute SCAMT, ITMO University, 9 Lomonosov Str., St. Petersburg, 191002, Russian Federation
| | - Dmitry M. Kolpashchikov
- Laboratory of Molecular Robotics and Biosensor Materials, International Institute SCAMT, ITMO University, 9 Lomonosov Str., St. Petersburg, 191002, Russian Federation
- Chemistry Department, University of Central Florida, Orlando, FL 32816-2366, USA
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL 32816, USA
| |
Collapse
|
8
|
DNAzymes, Novel Therapeutic Agents in Cancer Therapy: A Review of Concepts to Applications. J Nucleic Acids 2021; 2021:9365081. [PMID: 34760318 PMCID: PMC8575636 DOI: 10.1155/2021/9365081] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 10/06/2021] [Indexed: 11/17/2022] Open
Abstract
The past few decades have witnessed a rapid evolution in cancer drug research which is aimed at developing active biological interventions to regulate cancer-specific molecular targets. Nucleic acid-based therapeutics, including ribozymes, antisense oligonucleotides, small interference RNA (siRNA), aptamer, and DNAzymes, have emerged as promising candidates regulating cancer-specific genes at either the transcriptional or posttranscriptional level. Gene-specific catalytic DNA molecules, or DNAzymes, have shown promise as a therapeutic intervention against cancer in various in vitro and in vivo models, expediting towards clinical applications. DNAzymes are single-stranded catalytic DNA that has not been observed in nature, and they are synthesized through in vitro selection processes from a large pool of random DNA libraries. The intrinsic properties of DNAzymes like small molecular weight, higher stability, excellent programmability, diversity, and low cost have brought them to the forefront of the nucleic acid-based therapeutic arsenal available for cancers. In recent years, considerable efforts have been undertaken to assess a variety of DNAzymes against different cancers. However, their therapeutic application is constrained by the low delivery efficiency, cellular uptake, and target detection within the tumour microenvironment. Thus, there is a pursuit to identify efficient delivery methods in vivo before the full potential of DNAzymes in cancer therapy is realized. In this light, a review of the recent advances in the use of DNAzymes against cancers in preclinical and clinical settings is valuable to understand its potential as effective cancer therapy. We have thus sought to firstly provide a brief overview of construction and recent improvements in the design of DNAzymes. Secondly, this review stipulates the efficacy, safety, and tolerability of DNAzymes developed against major hallmarks of cancers tested in preclinical and clinical settings. Lastly, the recent advances in DNAzyme delivery systems along with the challenges and prospects for the clinical application of DNAzymes as cancer therapy are also discussed.
Collapse
|
9
|
Gharaibeh L, Alshaer W, Wehaibi S, Al Buqain R, Alqudah DA, Al-Kadash A, Al-Azzawi H, Awidi A, Bustanji Y. Fabrication of aptamer-guided siRNA loaded lipopolyplexes for gene silencing of notch 1 in MDA-mb-231 triple negative breast cancer cell line. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102733] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
10
|
Babaee N, Talebkhan Garoosi Y, Karimipoor M, Davami F, Bayat E, Safarpour H, Mahboudi F, Barkhordari F. DARPin Ec1-LMWP protein scaffold in targeted delivery of siRNA molecules through EpCAM cancer stem cell marker. Mol Biol Rep 2020; 47:7323-7331. [PMID: 32979162 DOI: 10.1007/s11033-020-05752-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 08/28/2020] [Indexed: 12/15/2022]
Abstract
This study is to investigate the binding ability of Designed Ankyrin Repeat Proteins type Ec1that was fused to Low Molecular Weight Protamine (DARPin Ec1-LMWP) protein scaffold to the Epithelial Cell Adhesion Molecule (EpCAM) Cancer Stem Cell (CSC) marker and its efficiency in targeted delivery of small interfering RNA (siRNA) molecules into the studied cells. Gene fragment encoding the DARPIn Ec1-LMWP fusion protein was subcloned into pET28a expression vector following molecular docking studies performed to examine the affinity of the fusion protein towards EpCAM marker. The binding of the siRNA to the expressed fusion protein was tested through native PAGE. The toxicity of the fusion protein was tested by MTT assay. Attachment of the complex to the EpCAM marker was investigated by flow cytometry and delivery of siRNA into the cells was assessed by fluorescence microscopy. The expressed 21.6 kDa DARPin Ec1-LMWP fusion protein was purified and showed no cytotoxicity on tested cells. Arginine rich LMWP was efficiently bounded to the negatively charged siRNA molecule. Successful attachment of the fusion protein:siRNA complex to the EpCAM marker and its internalization into MCF-7 breast cancer cell line were confirmed. Here for the first time the recombinant DARPin Ec1-LMWP protein scaffold was designed and tested for targeting EpCAM surface marker and successful internalization of the siRNA into MCF-7 cells.
Collapse
Affiliation(s)
- Nikta Babaee
- Biotechnology Research Center, Medical Biotechnology Department, Pasteur Institute of Iran, Tehran, Iran.,Biotechnology Research Center, Molecular Medicine Department, Pasteur Institute of Iran, Tehran, Iran
| | - Yeganeh Talebkhan Garoosi
- Biotechnology Research Center, Medical Biotechnology Department, Pasteur Institute of Iran, Tehran, Iran.
| | - Morteza Karimipoor
- Biotechnology Research Center, Molecular Medicine Department, Pasteur Institute of Iran, Tehran, Iran.
| | - Fatemeh Davami
- Biotechnology Research Center, Medical Biotechnology Department, Pasteur Institute of Iran, Tehran, Iran
| | - Elham Bayat
- Biotechnology Research Center, Medical Biotechnology Department, Pasteur Institute of Iran, Tehran, Iran
| | - Hossein Safarpour
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Fereidoun Mahboudi
- Biotechnology Research Center, Medical Biotechnology Department, Pasteur Institute of Iran, Tehran, Iran
| | - Farzaneh Barkhordari
- Biotechnology Research Center, Medical Biotechnology Department, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
11
|
Selective and sensitive detection of chronic myeloid leukemia using fluorogenic DNAzyme probes. Anal Chim Acta 2020; 1123:28-35. [DOI: 10.1016/j.aca.2020.04.069] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 04/27/2020] [Accepted: 04/28/2020] [Indexed: 12/22/2022]
|
12
|
Giudice V, Mensitieri F, Izzo V, Filippelli A, Selleri C. Aptamers and Antisense Oligonucleotides for Diagnosis and Treatment of Hematological Diseases. Int J Mol Sci 2020; 21:ijms21093252. [PMID: 32375354 PMCID: PMC7246934 DOI: 10.3390/ijms21093252] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/01/2020] [Accepted: 05/02/2020] [Indexed: 12/14/2022] Open
Abstract
Aptamers or chemical antibodies are single-stranded DNA or RNA oligonucleotides that bind proteins and small molecules with high affinity and specificity by recognizing tertiary or quaternary structures as antibodies. Aptamers can be easily produced in vitro through a process known as systemic evolution of ligands by exponential enrichment (SELEX) or a cell-based SELEX procedure. Aptamers and modified aptamers, such as slow, off-rate, modified aptamers (SOMAmers), can bind to target molecules with less polar and more hydrophobic interactions showing slower dissociation rates, higher stability, and resistance to nuclease degradation. Aptamers and SOMAmers are largely employed for multiplex high-throughput proteomics analysis with high reproducibility and reliability, for tumor cell detection by flow cytometry or microscopy for research and clinical purposes. In addition, aptamers are increasingly used for novel drug delivery systems specifically targeting tumor cells, and as new anticancer molecules. In this review, we summarize current preclinical and clinical applications of aptamers in malignant and non-malignant hematological diseases.
Collapse
Affiliation(s)
- Valentina Giudice
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, 84081 Salerno, Italy; (F.M.); (V.I.); (A.F.); (C.S.)
- Unit of Clinical Pharmacology, University Hospital “San Giovanni di Dio e Ruggi D’Aragona”, 84131 Salerno, Italy
- Correspondence: ; Tel.: +39-(0)-89965116
| | - Francesca Mensitieri
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, 84081 Salerno, Italy; (F.M.); (V.I.); (A.F.); (C.S.)
| | - Viviana Izzo
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, 84081 Salerno, Italy; (F.M.); (V.I.); (A.F.); (C.S.)
- Unit of Clinical Pharmacology, University Hospital “San Giovanni di Dio e Ruggi D’Aragona”, 84131 Salerno, Italy
| | - Amelia Filippelli
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, 84081 Salerno, Italy; (F.M.); (V.I.); (A.F.); (C.S.)
- Unit of Clinical Pharmacology, University Hospital “San Giovanni di Dio e Ruggi D’Aragona”, 84131 Salerno, Italy
| | - Carmine Selleri
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, 84081 Salerno, Italy; (F.M.); (V.I.); (A.F.); (C.S.)
| |
Collapse
|
13
|
Billah M, Ridiandries A, Rayner BS, Allahwala UK, Dona A, Khachigian LM, Bhindi R. Egr-1 functions as a master switch regulator of remote ischemic preconditioning-induced cardioprotection. Basic Res Cardiol 2019; 115:3. [PMID: 31823016 DOI: 10.1007/s00395-019-0763-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 11/27/2019] [Indexed: 12/15/2022]
Abstract
Despite improved treatment options myocardial infarction (MI) is still a leading cause of mortality and morbidity worldwide. Remote ischemic preconditioning (RIPC) is a mechanistic process that reduces myocardial infarction size and protects against ischemia reperfusion (I/R) injury. The zinc finger transcription factor early growth response-1 (Egr-1) is integral to the biological response to I/R, as its upregulation mediates the increased expression of inflammatory and prothrombotic processes. We aimed to determine the association and/or role of Egr-1 expression with the molecular mechanisms controlling the cardioprotective effects of RIPC. This study used H9C2 cells in vitro and a rat model of cardiac ischemia reperfusion (I/R) injury. We silenced Egr-1 with DNAzyme (ED5) in vitro and in vivo, before three cycles of RIPC consisting of alternating 5 min hypoxia and normoxia in cells or hind-limb ligation and release in the rat, followed by hypoxic challenge in vitro and I/R injury in vivo. Post-procedure, ED5 administration led to a significant increase in infarct size compared to controls (65.90 ± 2.38% vs. 41.00 ± 2.83%, p < 0.0001) following administration prior to RIPC in vivo, concurrent with decreased plasma IL-6 levels (118.30 ± 4.30 pg/ml vs. 130.50 ± 1.29 pg/ml, p < 0.05), downregulation of the cardioprotective JAK-STAT pathway, and elevated myocardial endothelial dysfunction. In vitro, ED5 administration abrogated IL-6 mRNA expression in H9C2 cells subjected to RIPC (0.95 ± 0.20 vs. 6.08 ± 1.40-fold relative to the control group, p < 0.05), resulting in increase in apoptosis (4.76 ± 0.70% vs. 2.23 ± 0.34%, p < 0.05) and loss of mitochondrial membrane potential (0.57 ± 0.11% vs. 1.0 ± 0.14%-fold relative to control, p < 0.05) in recipient cells receiving preconditioned media from the DNAzyme treated donor cells. This study suggests that Egr-1 functions as a master regulator of remote preconditioning inducing a protective effect against myocardial I/R injury through IL-6-dependent JAK-STAT signaling.
Collapse
Affiliation(s)
- M Billah
- Department of Cardiology, Kolling Institute, Northern Sydney Local Health District, Level 12, Royal North Shore Hospital, Cnr Reserve Rd and Westbourne, St Leonards, NSW, 2065, Australia.
- Sydney Medical School Northern, University of Sydney, Sydney, NSW, 2006, Australia.
- School of Life Sciences, Independent University Bangladesh, Dhaka, Bangladesh.
| | - A Ridiandries
- Department of Cardiology, Kolling Institute, Northern Sydney Local Health District, Level 12, Royal North Shore Hospital, Cnr Reserve Rd and Westbourne, St Leonards, NSW, 2065, Australia
- Sydney Medical School Northern, University of Sydney, Sydney, NSW, 2006, Australia
| | - B S Rayner
- Inflammation Group, Heart Research Institute, University of Sydney, Sydney, NSW, Australia
| | - U K Allahwala
- Department of Cardiology, Kolling Institute, Northern Sydney Local Health District, Level 12, Royal North Shore Hospital, Cnr Reserve Rd and Westbourne, St Leonards, NSW, 2065, Australia
- Sydney Medical School Northern, University of Sydney, Sydney, NSW, 2006, Australia
| | - A Dona
- Department of Cardiology, Kolling Institute, Northern Sydney Local Health District, Level 12, Royal North Shore Hospital, Cnr Reserve Rd and Westbourne, St Leonards, NSW, 2065, Australia
- Sydney Medical School Northern, University of Sydney, Sydney, NSW, 2006, Australia
| | - L M Khachigian
- Vascular Biology and Translational Research, School of Medical Sciences, University of New South Wales, Sydney, Australia
| | - R Bhindi
- Department of Cardiology, Kolling Institute, Northern Sydney Local Health District, Level 12, Royal North Shore Hospital, Cnr Reserve Rd and Westbourne, St Leonards, NSW, 2065, Australia
- Sydney Medical School Northern, University of Sydney, Sydney, NSW, 2006, Australia
| |
Collapse
|
14
|
Bartoszewski R, Sikorski AF. Editorial focus: understanding off-target effects as the key to successful RNAi therapy. Cell Mol Biol Lett 2019; 24:69. [PMID: 31867046 PMCID: PMC6902517 DOI: 10.1186/s11658-019-0196-3] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 12/03/2019] [Indexed: 12/21/2022] Open
Abstract
With the first RNA interference (RNAi) drug (ONPATTRO (patisiran)) on the market, we witness the RNAi therapy field reaching a critical turning point, when further improvements in drug candidate design and delivery pipelines should enable fast delivery of novel life changing treatments to patients. Nevertheless, ignoring parallel development of RNAi dedicated in vitro pharmacological profiling aiming to identify undesirable off-target activity may slow down or halt progress in the RNAi field. Since academic research is currently fueling the RNAi development pipeline with new therapeutic options, the objective of this article is to briefly summarize the basics of RNAi therapy, as well as to discuss how to translate basic research into better understanding of related drug candidate safety profiles early in the process.
Collapse
Affiliation(s)
- Rafal Bartoszewski
- Department of Biology and Pharmaceutical Botany, Medical University of Gdansk, Gdansk, Poland
| | - Aleksander F. Sikorski
- Department of Cytobiochemistry, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| |
Collapse
|
15
|
Nedorezova DD, Fakhardo AF, Nemirich DV, Bryushkova EA, Kolpashchikov DM. Towards DNA Nanomachines for Cancer Treatment: Achieving Selective and Efficient Cleavage of Folded RNA. Angew Chem Int Ed Engl 2019; 58:4654-4658. [PMID: 30693619 DOI: 10.1002/anie.201900829] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Indexed: 11/10/2022]
Abstract
Despite decades of effort, gene therapy (GT) has failed to deliver clinically significant anticancer treatment, owing in part to low selectivity, low efficiency, and poor accessibility of folded RNA targets. Herein, we propose to solve these common problems of GT agents by using a DNA nanotechnology approach. We designed a deoxyribozyme-based DNA machine that can i) recognize the sequence of a cancer biomarker with high selectivity, ii) tightly bind a structured fragment of a housekeeping gene mRNA, and iii) cleave it with efficiency greater than that of a traditional DZ-based cleaving agent. An important advantage of the DNA nanomachine over other gene therapy approaches (antisense, siRNA, and CRISPR/cas) is its ability to cleave a housekeeping gene mRNA after being activated by a cancer marker RNA, which can potentially increase the efficiency of anticancer gene therapy. The DNA machine could become a prototype platform for a new type of anticancer GT agent.
Collapse
Affiliation(s)
- Daria D Nedorezova
- Laboratory of Solution Chemistry of Advanced Materials and Technologies, ITMO University, 9 Lomonosova Str., St. Petersburg, 191002, Russian Federation
| | - Anna F Fakhardo
- Laboratory of Solution Chemistry of Advanced Materials and Technologies, ITMO University, 9 Lomonosova Str., St. Petersburg, 191002, Russian Federation
| | - Daria V Nemirich
- Laboratory of Solution Chemistry of Advanced Materials and Technologies, ITMO University, 9 Lomonosova Str., St. Petersburg, 191002, Russian Federation
| | - Ekaterina A Bryushkova
- Laboratory of Solution Chemistry of Advanced Materials and Technologies, ITMO University, 9 Lomonosova Str., St. Petersburg, 191002, Russian Federation
| | - Dmitry M Kolpashchikov
- Laboratory of Solution Chemistry of Advanced Materials and Technologies, ITMO University, 9 Lomonosova Str., St. Petersburg, 191002, Russian Federation.,Chemistry Department, University of Central Florida, Orlando, FL, 32816-2366, USA.,Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, 32816, USA
| |
Collapse
|
16
|
Nedorezova DD, Fakhardo AF, Nemirich DV, Bryushkova EA, Kolpashchikov DM. Towards DNA Nanomachines for Cancer Treatment: Achieving Selective and Efficient Cleavage of Folded RNA. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201900829] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Daria D. Nedorezova
- Laboratory of Solution Chemistry of Advanced Materials and Technologies ITMO University 9 Lomonosova Str. St. Petersburg 191002 Russian Federation
| | - Anna F. Fakhardo
- Laboratory of Solution Chemistry of Advanced Materials and Technologies ITMO University 9 Lomonosova Str. St. Petersburg 191002 Russian Federation
| | - Daria V. Nemirich
- Laboratory of Solution Chemistry of Advanced Materials and Technologies ITMO University 9 Lomonosova Str. St. Petersburg 191002 Russian Federation
| | - Ekaterina A. Bryushkova
- Laboratory of Solution Chemistry of Advanced Materials and Technologies ITMO University 9 Lomonosova Str. St. Petersburg 191002 Russian Federation
| | - Dmitry M. Kolpashchikov
- Laboratory of Solution Chemistry of Advanced Materials and Technologies ITMO University 9 Lomonosova Str. St. Petersburg 191002 Russian Federation
- Chemistry Department University of Central Florida Orlando FL 32816-2366 USA
- Burnett School of Biomedical Sciences University of Central Florida Orlando FL 32816 USA
| |
Collapse
|
17
|
Cai H, Cho EA, Li Y, Sockler J, Parish CR, Chong BH, Edwards J, Dodds TJ, Ferguson PM, Wilmott JS, Scolyer RA, Halliday GM, Khachigian LM. Melanoma protective antitumor immunity activated by catalytic DNA. Oncogene 2018; 37:5115-5126. [DOI: 10.1038/s41388-018-0306-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 02/26/2018] [Accepted: 04/17/2018] [Indexed: 12/19/2022]
|
18
|
Li N, Li Y, Gao X, Yu Z, Pan W, Tang B. Multiplexed gene silencing in living cells and in vivo using a DNAzymes-CoOOH nanocomposite. Chem Commun (Camb) 2018; 53:4962-4965. [PMID: 28422198 DOI: 10.1039/c7cc00822h] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We demonstrate a novel DNAzymes-based nanocomposite that can simultaneously silence three types of genes in living cells and in vivo. The synergetic strategy for silencing three different genes can significantly enhance the knockdown efficacy and effectively inhibit the cancer cells' progression.
Collapse
Affiliation(s)
- Na Li
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China.
| | | | | | | | | | | |
Collapse
|
19
|
Thai HBD, Levi-Acobas F, Yum SY, Jang G, Hollenstein M, Ahn DR. Tetrahedral DNAzymes for enhanced intracellular gene-silencing activity. Chem Commun (Camb) 2018; 54:9410-9413. [DOI: 10.1039/c8cc05721d] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We prepared tetrahedral DNAzymes (TDzs) to overcome potential limitations such as insufficient serum stability and poor cellular uptake of single-stranded DNAzymes (ssDzs).
Collapse
Affiliation(s)
- Hien Bao Dieu Thai
- Center for Theragnosis
- Biomedical Research Institute
- Korea Institute of Science and Technology (KIST)
- Seoul 02792
- Korea
| | - Fabienne Levi-Acobas
- Laboratory for Bioorganic Chemistry of Nucleic Acids
- Department of Structural Biology and Chemistry
- Institut Pasteur
- CNRS UMR3523
- 75724 Paris Cedex 15
| | - Soo-Young Yum
- Department of Veterinary Clinical Science
- College of Veterinary Medicine and BK21 PLUS Program for Creative Veterinary Science Research
- Seoul National University
- Gwanak-gu
- Korea
| | - Goo Jang
- Department of Veterinary Clinical Science
- College of Veterinary Medicine and BK21 PLUS Program for Creative Veterinary Science Research
- Seoul National University
- Gwanak-gu
- Korea
| | - Marcel Hollenstein
- Laboratory for Bioorganic Chemistry of Nucleic Acids
- Department of Structural Biology and Chemistry
- Institut Pasteur
- CNRS UMR3523
- 75724 Paris Cedex 15
| | - Dae-Ro Ahn
- Center for Theragnosis
- Biomedical Research Institute
- Korea Institute of Science and Technology (KIST)
- Seoul 02792
- Korea
| |
Collapse
|
20
|
Wang J, Holmes MC. Engineering hematopoietic stem cells toward a functional cure of human immunodeficiency virus infection. Cytotherapy 2017; 18:1370-1381. [PMID: 27745602 DOI: 10.1016/j.jcyt.2016.07.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 07/05/2016] [Accepted: 07/21/2016] [Indexed: 12/23/2022]
Abstract
The battle with human immunodeficiency virus (HIV) has been ongoing for more than 30 years, and although progress has been made, there are still significant challenges remaining. A few unique features render HIV to be one of the toughest viruses to conquer in the modern medicine era, such as the ability to target the host immune system, persist by integrating into the host genome and adapt to a hostile environment such as a single anti-HIV medication by continuously evolving. The finding of combination anti-retroviral therapy (cART) about 2 decades ago has transformed the treatment options for HIV-infected patients and significantly improved patient outcomes. However, finding an HIV cure has proven to be extremely challenging with the only known exception being the so-called "Berlin patient," whose immune system was replaced by stem cell transplants from a donor missing one of HIV's key co-receptors (CCR5). The broad application of this approach is limited by the requirement of an HLA-matched donor who is also homozygous for the rare CCR5 delta32 deletion. On the other hand, the Berlin patient provided the proof of concept of a potential cure for HIV using HIV-resistant hematopoietic stem cells (HSCs), revitalizing the hope to find an HIV cure that is broadly applicable. Here we will review strategies and recent attempts to engineer HIV-resistant HSCs as a path to an HIV cure.
Collapse
Affiliation(s)
- Jianbin Wang
- Sangamo BioSciences Inc., Richmond, California, USA.
| | | |
Collapse
|
21
|
Yang X, Li Z, Zhang L, He J, Sun LQ. Selection and antitumor activity of anti-Bcl-2 DNAzymes. Biochem Biophys Res Commun 2016; 479:544-550. [PMID: 27666476 DOI: 10.1016/j.bbrc.2016.09.107] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 09/21/2016] [Indexed: 11/19/2022]
Abstract
Apoptosis pathway has become one of the important targets for therapeutic exploration for cancer therapy. The increased Bcl-2 protein level and phosphorylation is implicated in a decreased chemotherapeutic response in many cancers. BCL-2 inhibitors have been developed as direct inducers of apoptosis. However, resistance to BCL2 inhibitors has been emerging and thus considerable effort has been made to seek novel approaches to BCL2 suppression. In this report we describe an in vitro DNAzyme selection strategy resulting in molecules that are effective in suppressing expression of the target gene BCL-2 in vitro. A 3'-inverted modification was shown to significantly increase the DNAzyme stability in serum and the modified DNAzyme delivered by an osmotic pump chemosensitized human prostate cancer to Taxol in vivo. Thus this study provides an alternative strategy for potential BCL-2-targetd therapy.
Collapse
Affiliation(s)
- Xinhui Yang
- Center for Molecular Medicine, Xiangya Hospital, Collaborative Innovation Center for Cancer Medicine, Central South University, Changsha, 410078, China
| | - Zhi Li
- Center for Molecular Medicine, Xiangya Hospital, Collaborative Innovation Center for Cancer Medicine, Central South University, Changsha, 410078, China; Key Laboratory of Molecular Radiation Oncology, Hunan Province, China
| | - Lu Zhang
- Center for Molecular Medicine, Xiangya Hospital, Collaborative Innovation Center for Cancer Medicine, Central South University, Changsha, 410078, China; Key Laboratory of Molecular Radiation Oncology, Hunan Province, China
| | - Jiang He
- Center for Molecular Medicine, Xiangya Hospital, Collaborative Innovation Center for Cancer Medicine, Central South University, Changsha, 410078, China; Key Laboratory of Molecular Radiation Oncology, Hunan Province, China
| | - Lun-Quan Sun
- Center for Molecular Medicine, Xiangya Hospital, Collaborative Innovation Center for Cancer Medicine, Central South University, Changsha, 410078, China; Key Laboratory of Molecular Radiation Oncology, Hunan Province, China.
| |
Collapse
|
22
|
Yang X, Xiao Z, Zhu J, Li Z, He J, Zhang L, Yang Z. Spatial conservation studies of nucleobases in 10–23 DNAzyme by 2′-positioned isonucleotides and enantiomers for increased activity. Org Biomol Chem 2016; 14:4032-8. [DOI: 10.1039/c6ob00390g] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
d-/l-Isonucleotides were used to modify the catalytic core and recognition arms of 10–23 DNAzyme and prominently improved its bioactivity.
Collapse
Affiliation(s)
- Xiantao Yang
- State Key Laboratory of Natural and Biomimetic Drugs
- School of Pharmaceutical Sciences
- Peking University
- Beijing
- China
| | - Zhangping Xiao
- State Key Laboratory of Natural and Biomimetic Drugs
- School of Pharmaceutical Sciences
- Peking University
- Beijing
- China
| | - Junfei Zhu
- College of Life Sciences
- Guizhou University
- Guiyang 550025
- China
| | - Zhiwen Li
- College of Life Sciences
- Guizhou University
- Guiyang 550025
- China
| | - Junlin He
- Beijing Institute of Pharmacology and Toxicology
- Beijing 100850
- China
| | - Lihe Zhang
- State Key Laboratory of Natural and Biomimetic Drugs
- School of Pharmaceutical Sciences
- Peking University
- Beijing
- China
| | - Zhenjun Yang
- State Key Laboratory of Natural and Biomimetic Drugs
- School of Pharmaceutical Sciences
- Peking University
- Beijing
- China
| |
Collapse
|
23
|
Abstract
Gene-silencing strategies based on catalytic nucleic acids have been rapidly developed in the past decades. Ribozymes, antisense oligonucleotides and RNA interference have been actively pursued for years due to their potential application in gene inactivation. Pioneered by Joyce et al., a new class of catalytic nucleic acid composed of deoxyribonucleotides has emerged via an in vitro selection system. The therapeutic potential of these RNA-cleaving DNAzymes have been shown both in vitro and in vivo. Although they rival the activity and stability of synthetic ribozymes, they are limited by inefficient delivery to the intracellular targets. Recent successes in clinical testing of the DNAzymes in cancer patients have revitalized the potential clinical utility of DNAzymes.
Collapse
|
24
|
Yu X, Yang L, Cairns MJ, Dass C, Saravolac E, Li X, Sun LQ. Chemosensitization of solid tumors by inhibition of Bcl-xL expression using DNAzyme. Oncotarget 2015; 5:9039-48. [PMID: 25344863 PMCID: PMC4253417 DOI: 10.18632/oncotarget.1996] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
DNAzymes are a novel class of gene suppressors that selectively bind to an RNA substrate by Watson-Crick base pairing and cleave phosphodiester bonds. To explore the potential for therapeutic use of catalytic DNA molecules, active DNAzymes targeting the bcl-xL gene were generated through a multiplex in vitro selection. The DNAzyme-mediated down-regulation of the bcl-xL expression was demonstrated in various cancer cell lines by Western blots. Treatment of the cells with the active DNAzyme led to increases in percentage of apoptotic cells and cytochrome c release from mitochondria, a hall marker of apoptosis. When combined with chemotherapeutics such as Taxol, the DNAzyme significantly sensitised a panel of cancer cells to apoptosis as measured by cell survival assay. In Taxol-resistant cells, down-regulation of bcl-xL expression by the DNAzyme reversed the chemo-resistant phenotype of the cancer cells. In a xenograft mouse model, the DNAzyme was delivered into the tumors via an ALZET osmotic pump and shown to chemosensitize PC3 tumor when treating with Taxol. The results from the present study demonstrate that bcl-xL DNAzyme treatment facilitates apoptosis in solid tumors and suggest the potential use of bcl-xL DNAzyme in combination with chemotherapeutics for cancer therapy.
Collapse
Affiliation(s)
- Xiaohui Yu
- Center for Molecular Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Lifang Yang
- Center for Molecular Medicine, Xiangya Hospital, Central South University, Changsha, China. Cancer Research Institute, Central South University, Changsha, China
| | - Murray J Cairns
- Schizophrenia Research Institute, Sydney, NSW, Australia and School of Biomedical Sciences, Faculty of Health and Medicine, University of Newcastle, NSW, Australia
| | - Crispin Dass
- Health Science, School of Pharmacy, Curtin University, WA, Australia
| | | | - Xiong Li
- Center for Molecular Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Lun-Quan Sun
- Center for Molecular Medicine, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
25
|
Zhu J, Li Z, Yang Z, He J. Studies on the preferred uracil-adenine base pair at the cleavage site of 10-23 DNAzyme by functional group modifications on adenine. Bioorg Med Chem 2015; 23:4256-4263. [PMID: 26145822 DOI: 10.1016/j.bmc.2015.06.041] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 06/14/2015] [Accepted: 06/16/2015] [Indexed: 12/15/2022]
Abstract
10-23 DNAzyme is capable of catalytically cleaving RNA substrates with the preferred cleavage sites rAU and rGU, in which the common base pair U-dA0 forms between the substrate and the DNAzyme in the cleavage reaction. Here its conservation was studied with base modifications on dA and extra functional groups introduced. The nitrogen atom at 7- or 8-position of adenine was demonstrated to be equally important for the cleavage reaction, although it is not related to the thermal stability of the base pair. Deletion of 6-amino group led to decreased stability of the base pair and a slight slower reaction rate. Extra functional groups through 6-amino group were not favorably accommodated in the cleavage site. From these modifications at the level of functional groups, it demonstrated that the base pair U-dA0 not only contributes to the recognition and binding stability, but also it is involved in the active catalytic center by its functional groups and base stacking. This kind of chemical modifications with 7-substituted 8-aza-7-deaza-2'-deoxyadenosine at dA0 is favorable for the introduction of signal molecules for mechanistic studies and biological applications, without significant loss of the catalytic function and structural destruction.
Collapse
Affiliation(s)
- Junfei Zhu
- College of Life Science, Guizhou University, Guiyang 550025, China
| | - Zhiwen Li
- College of Life Science, Guizhou University, Guiyang 550025, China
| | - Zhenjun Yang
- The State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China.
| | - Junlin He
- College of Life Science, Guizhou University, Guiyang 550025, China; Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China.
| |
Collapse
|
26
|
Stuppia G, Rizzo F, Riboldi G, Del Bo R, Nizzardo M, Simone C, Comi GP, Bresolin N, Corti S. MFN2-related neuropathies: Clinical features, molecular pathogenesis and therapeutic perspectives. J Neurol Sci 2015; 356:7-18. [PMID: 26143526 DOI: 10.1016/j.jns.2015.05.033] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 05/18/2015] [Accepted: 05/26/2015] [Indexed: 12/16/2022]
Abstract
Mitofusin 2 (MFN2) is a GTPase dynamin-like protein of the outer mitochondrial membrane, encoded in the nuclear genome by the MFN2 gene located on the short (p) arm of chromosome 1. MFN2 protein is involved in several intracellular pathways, but is mainly involved in a network that has an essential role in several mitochondrial functions, including fusion, axonal transport, interorganellar communication and mitophagy. Mutations in the gene encoding MFN2 are associated with Charcot-Marie-Tooth disease type 2A (CMT2A), a neurological disorder characterized by a wide clinical phenotype that involves the central and peripheral nervous system. Here, we present the clinical, genetic and neuropathological features of human diseases associated with MFN2 mutations. We also report proposed pathogenic mechanisms through which MFN2 mutations likely contribute to the development of neurodegeneration. MFN2-related disorders may occur more frequently than previously considered, and they may represent a paradigm for the study of the defective mitochondrial dynamics that seem to play a significant role in the molecular and cellular pathogenesis of common neurodegenerative diseases; thus they may also lead to the identification of related therapeutic targets.
Collapse
Affiliation(s)
- Giulia Stuppia
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122, Milan, Italy
| | - Federica Rizzo
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122, Milan, Italy
| | - Giulietta Riboldi
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122, Milan, Italy
| | - Roberto Del Bo
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122, Milan, Italy
| | - Monica Nizzardo
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122, Milan, Italy
| | - Chiara Simone
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122, Milan, Italy
| | - Giacomo P Comi
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122, Milan, Italy
| | - Nereo Bresolin
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122, Milan, Italy
| | - Stefania Corti
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122, Milan, Italy.
| |
Collapse
|
27
|
Wang X, Zhang L, Ding N, Yang X, Zhang J, He J, Li Z, Sun LQ. Identification and characterization of DNAzymes targeting DNA methyltransferase I for suppressing bladder cancer proliferation. Biochem Biophys Res Commun 2015; 461:329-33. [DOI: 10.1016/j.bbrc.2015.04.033] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 04/07/2015] [Indexed: 10/23/2022]
|
28
|
Lorenzer C, Dirin M, Winkler AM, Baumann V, Winkler J. Going beyond the liver: progress and challenges of targeted delivery of siRNA therapeutics. J Control Release 2015; 203:1-15. [PMID: 25660205 DOI: 10.1016/j.jconrel.2015.02.003] [Citation(s) in RCA: 225] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 01/29/2015] [Accepted: 02/02/2015] [Indexed: 12/25/2022]
Abstract
Therapeutic gene silencing promises significant progress in pharmacotherapy, including considerable expansion of the druggable target space and the possibility for treating orphan diseases. Technological hurdles have complicated the efficient use of therapeutic oligonucleotides, and siRNA agents suffer particularly from insufficient pharmacokinetic properties and poor cellular uptake. Intense development and evolution of delivery systems have resulted in efficient uptake predominantly in liver tissue, in which practically all nanoparticulate and liposomal delivery systems show the highest accumulation. The most efficacious strategies include liposomes and bioconjugations with N-acetylgalactosamine. Both are in early clinical evaluation stages for treatment of liver-associated diseases. Approaches for achieving knockdown in other tissues and tumors have been proven to be more complicated. Selective targeting to tumors may be enabled through careful modulation of physical properties, such as particle size, or by taking advantage of specific targeting ligands. Significant barriers stand between sufficient accumulation in other organs, including endothelial barriers, cellular membranes, and the endosome. The brain, which is shielded by the blood-brain barrier, is of particular interest to facilitate efficient oligonucleotide therapy of neurological diseases. Transcytosis of the blood-brain barrier through receptor-specific docking is investigated to increase accumulation in the central nervous system. In this review, the current clinical status of siRNA therapeutics is summarized, as well as innovative and promising preclinical concepts employing tissue- and tumor-targeted ligands. The requirements and the respective advantages and drawbacks of bioconjugates and ligand-decorated lipid or polymeric particles are discussed.
Collapse
Affiliation(s)
- Cornelia Lorenzer
- University of Vienna, Department of Pharmaceutical Chemistry, Althanstraße 14, 1090 Vienna, Austria
| | - Mehrdad Dirin
- University of Vienna, Department of Pharmaceutical Chemistry, Althanstraße 14, 1090 Vienna, Austria
| | - Anna-Maria Winkler
- University of Vienna, Department of Pharmaceutical Chemistry, Althanstraße 14, 1090 Vienna, Austria
| | - Volker Baumann
- University of Vienna, Department of Pharmaceutical Chemistry, Althanstraße 14, 1090 Vienna, Austria
| | - Johannes Winkler
- University of Vienna, Department of Pharmaceutical Chemistry, Althanstraße 14, 1090 Vienna, Austria.
| |
Collapse
|
29
|
Tan CYR, Weier Q, Zhang Y, Cox AJ, Kelly DJ, Langham RG. Thioredoxin-interacting protein: a potential therapeutic target for treatment of progressive fibrosis in diabetic nephropathy. Nephron Clin Pract 2015; 129:109-27. [PMID: 25662516 DOI: 10.1159/000368238] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 09/04/2014] [Indexed: 11/19/2022] Open
Abstract
Thioredoxin-interacting protein (TXNIP) is an endogenous inhibitor of the antioxidant thioredoxin, and a critical agent in the in vivo regulation of glucose. The well-described induction of TXNIP by high glucose may represent an important pathogenic trigger of complications arising in the diabetic environment, with sustained overexpression of TXNIP triggering the increased production of reactive oxygen species and collagen, both major contributors to the development of diabetic nephropathy (DN). To examine a possible therapeutic role for targeted TXNIP inhibition in DN, transgenic (mRen-2)27 rats were rendered diabetic with streptozotocin and then treated with 20 μM TXNIP deoxyribozyme (DNAzyme) delivered continuously over 12 weeks by an implanted osmotic mini-pump. Renal injury was measured using biochemical parameters of kidney function along with histological markers of damage. Catalytic activity of TXNIP DNAzyme was determined by TXNIP gene and peptide expression in the rat kidneys. TXNIP DNAzyme localization was demonstrated with a fluorescent-labelled TXNIP DNAzyme. A panel of markers was used to assess the extent of oxidative stress and renal fibrosis including superoxide level, nitrotyrosine staining, TGF-β1, NLRP3 and collagen IV expression. Fluorescent-labelled TXNIP DNAzyme was localized to tubulo-epithelial cells, but was not identified in glomeruli or endothelial cells. Elevated renal cortical TXNIP gene and protein expression seen in kidneys of DN animals were significantly attenuated by TXNIP DNAzyme (p < 0.05). Downstream markers of TXNIP activity, particularly oxidative stress, inflammasome signalling, tubulo-interstitial fibrosis and collagen deposition, were also attenuated in the tubulo-interstitium of DN rats treated with TXNIP DNAzyme. Consistent with the identified site of action of the DNAzyme, the effects of the TXNIP inhibition were limited to the tubulo-interstitial compartment. This study supports the role of TXNIP as an important mediator of progressive tubulo-interstitial fibrosis in DN, and also supports the notion of TXNIP inhibition as a potential new therapeutic target for DN.
Collapse
Affiliation(s)
- Christina Y R Tan
- Department of Medicine, St. Vincent's Hospital, University of Melbourne, Fitzroy, Vic., Australia
| | | | | | | | | | | |
Collapse
|
30
|
Regulatory roles of c-jun in H5N1 influenza virus replication and host inflammation. Biochim Biophys Acta Mol Basis Dis 2014; 1842:2479-88. [DOI: 10.1016/j.bbadis.2014.04.017] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 04/16/2014] [Accepted: 04/18/2014] [Indexed: 11/22/2022]
|
31
|
Liao WH, Yang LF, Liu XY, Zhou GF, Jiang WZ, Hou BL, Sun LQ, Cao Y, Wang XY. DCE-MRI assessment of the effect of Epstein-Barr virus-encoded latent membrane protein-1 targeted DNAzyme on tumor vasculature in patients with nasopharyngeal carcinomas. BMC Cancer 2014; 14:835. [PMID: 25407966 PMCID: PMC4246516 DOI: 10.1186/1471-2407-14-835] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 10/30/2014] [Indexed: 12/13/2022] Open
Abstract
Background EBV-encoded latent membrane protein 1 (EBV-LMP1) is an important oncogenic protein for nasopharyngeal carcinoma (NPC) and has been shown to engage a plethora of signaling pathways. Correspondingly, an LMP1-targeted DNAzyme was found to inhibit the growth of NPC cells both in vivo and in vitro by suppressing cell proliferation and inducing apoptosis. However, it remains unknown whether an LMP1-targeted DNAzyme would affect the vasculature of NPC. Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) has been applied in the clinical trials of anti-angiogenic drugs for more than ten years, and Ktrans has been recommended as a primary endpoint. Therefore, the objective of the current study was to use DCE-MRI to longitudinally study the effect of an EBV-LMP1-targeted DNAzyme on the vasculature of patients with NPC. Methods Twenty-four patients were randomly divided into two groups: a combined treatment group (radiotherapy + LMP1-targeted DNAzyme) and a radiotherapy alone group (radiotherapy + normal saline). DCE-MRI scans were conducted 1 ~ 2 days before radiotherapy (Pre-RT), during radiotherapy (RT 50 Gy), upon completion of radiotherapy (RT 70 Gy), and three months after radiotherapy (3 months post-RT). Parameters of vascular permeability and intra- and extravascular volumes were subsequently obtained (e.g., Ktrans, kep, ve) using nordicICE software. Results Both Ktrans and kep values for NPC tumor tissues decreased for both groups after treatment. Moreover, a statistically significant difference in Ktrans values at the pre-therapy and post-therapy timepoints emerged earlier for the combined treatment group (RT 50 Gy, P =0.045) compared to the radiotherapy alone group (3 months post-RT, P = 0.032). For the kep values, the downward trend observed for both the combined treatment group and the radiotherapy alone group were similar. In contrast, ve values for all of the tumor tissues increased following therapy. Conclusions The EBV-LMP1-targeted DNAzyme that was tested was found to accelerate the decline of Ktrans values for patients with NPC. Correspondingly, the LMP1-targeted DNAzyme treatments were found to affect the angiogenesis and microvascular permeability of NPC. Trial registration ClinicalTrials.gov: NCT01449942. Registered 6 October 2011.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Ya Cao
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | | |
Collapse
|
32
|
Dickinson MG, Kowalski PS, Bartelds B, Borgdorff MAJ, van der Feen D, Sietsma H, Molema G, Kamps JAAM, Berger RMF. A critical role for Egr-1 during vascular remodelling in pulmonary arterial hypertension. Cardiovasc Res 2014; 103:573-84. [PMID: 25028387 DOI: 10.1093/cvr/cvu169] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIMS Pulmonary arterial hypertension (PAH) is characterized by the development of unique neointimal lesions in the small pulmonary arteries, leading to increased right ventricular (RV) afterload and failure. Novel therapeutic strategies are needed that target these neointimal lesions. Recently, the transcription factor Egr-1 (early growth response protein 1) was demonstrated to be up-regulated early in experimental neointimal PAH. Its effect on disease development, however, is unknown. We aimed to uncover a novel role for Egr-1 as a molecular inductor for disease development in PAH. METHODS AND RESULTS In experimental flow-associated PAH in rats, we investigated the effects of Egr-1 down-regulation on pulmonary vascular remodelling, including neointimal development, and disease progression. Intravenous administration of catalytic oligodeoxynucleotides (DNA enzymes, DNAzymes) resulted in down-regulation of pulmonary vascular Egr-1 expression. Compared with vehicle or scrambled DNAzymes, DNAzymes attenuated pulmonary vascular remodelling, including the development of occlusive neointimal lesions. Selective down-regulation of Egr-1 in vivo led to reduced expression of vascular PDGF-B, TGF-β, IL-6, and p53, resulting in a reduction of vascular proliferation and increased apoptosis. DNAzyme treatment further attenuated pulmonary vascular resistance, RV systolic pressure, and RV hypertrophy. In contrast, in non-neointimal PH rodents, DNAzyme treatment had no effect on pulmonary vascular and RV remodelling. Finally, pharmacological inhibition of Egr-1 with pioglitazone, a peroxisome proliferator activated receptor-γ ligand, attenuated vascular remodelling including the development of neointimal lesions. CONCLUSIONS These results indicate that Egr-1 governs pulmonary vascular remodelling and the development of characteristic vascular neointimal lesions in flow-associated PAH. Egr-1 is therefore a potential target for future PAH treatment.
Collapse
Affiliation(s)
- Michael G Dickinson
- Center for Congenital Heart Diseases, Department of Pediatric Cardiology, Beatrix Children's Hospital and Laboratory CardioVascular Center, GUIDE, University Medical Center Groningen, University of Groningen, PO Box 30001, 9700 RB Groningen, The Netherlands
| | - Piotr S Kowalski
- Department of Pathology and Medical Biology, Medical Biology Section, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Beatrijs Bartelds
- Center for Congenital Heart Diseases, Department of Pediatric Cardiology, Beatrix Children's Hospital and Laboratory CardioVascular Center, GUIDE, University Medical Center Groningen, University of Groningen, PO Box 30001, 9700 RB Groningen, The Netherlands
| | - Marinus A J Borgdorff
- Center for Congenital Heart Diseases, Department of Pediatric Cardiology, Beatrix Children's Hospital and Laboratory CardioVascular Center, GUIDE, University Medical Center Groningen, University of Groningen, PO Box 30001, 9700 RB Groningen, The Netherlands
| | - Diederik van der Feen
- Center for Congenital Heart Diseases, Department of Pediatric Cardiology, Beatrix Children's Hospital and Laboratory CardioVascular Center, GUIDE, University Medical Center Groningen, University of Groningen, PO Box 30001, 9700 RB Groningen, The Netherlands
| | - Hannie Sietsma
- Department of Pathology and Medical Biology, Pathology Section, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Grietje Molema
- Department of Pathology and Medical Biology, Medical Biology Section, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Jan A A M Kamps
- Department of Pathology and Medical Biology, Medical Biology Section, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Rolf M F Berger
- Center for Congenital Heart Diseases, Department of Pediatric Cardiology, Beatrix Children's Hospital and Laboratory CardioVascular Center, GUIDE, University Medical Center Groningen, University of Groningen, PO Box 30001, 9700 RB Groningen, The Netherlands
| |
Collapse
|
33
|
Gomes-da-Silva LC, Simões S, Moreira JN. Challenging the future of siRNA therapeutics against cancer: the crucial role of nanotechnology. Cell Mol Life Sci 2014; 71:1417-38. [PMID: 24221135 PMCID: PMC11113222 DOI: 10.1007/s00018-013-1502-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Revised: 10/12/2013] [Accepted: 10/15/2013] [Indexed: 11/27/2022]
Abstract
The identification of numerous deregulated signaling pathways on cancer cells and supportive stromal cells has revealed several molecular targets whose downregulation can elicit significant benefits for cancer treatment. In this respect, gene downregulation can be efficiently achieved by exploiting the RNA interference mechanism, particularly by the delivery of chemical synthesized small-interfering RNAs (siRNAs), which have the ability to mediate, in a specific manner, the degradation of any mRNA with complementary nucleotide sequence. However, several concerns regarding off-target effects and immune stimulation have been raised. Depending on their sequence, siRNAs can trigger an innate immune response, which might mediate undesirable side effects that ultimately compromise their clinical utility. This is a very relevant effect that will be discussed in the present manuscript. Moreover, the major drawback in the translation of siRNAs into the clinical practice is undoubtedly their inability to accumulate in tumor sites, particularly in organs other than the liver. In fact, upon systemic administration, owing to siRNAs physico-chemical features, they are rapidly cleared from the blood stream. Therefore, the development of a proper drug delivery system is of utmost importance. In this review, some of the latest advances on different nanotechnological platforms for siRNA delivery under clinical evaluation will be discussed. Along with this, targeting approaches towards cancer and/or endothelial cells will also be addressed, as these are some of the most promising strategies to enhance specific tumor accumulation while avoiding healthy tissues. Finally, clinical information on ongoing studies in patients with advanced solid tumors will be also provided.
Collapse
Affiliation(s)
- Lígia Catarina Gomes-da-Silva
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- FFUC - Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Sérgio Simões
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- FFUC - Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - João Nuno Moreira
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- FFUC - Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
34
|
Shen L, Zhou Q, Wang Y, Liao W, Chen Y, Xu Z, Yang L, Sun LQ. Antiangiogenic and antitumoral effects mediated by a vascular endothelial growth factor receptor 1 (VEGFR-1)-targeted DNAzyme. Mol Med 2013; 19:377-386. [PMID: 24306423 PMCID: PMC3883960 DOI: 10.2119/molmed.2013.00090] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 10/29/2013] [Indexed: 02/05/2023] Open
Abstract
Antiangiogenesis is a promising antitumor strategy that inhibits tumor vascular formation to suppress tumor growth. DNAzymes are synthetic single-strand deoxyribonucleic acid (DNA) molecules that can cleave ribonucleic acids (RNAs). Here, we conducted a comprehensive in vitro selection of active DNAzymes for their activity to cleave the vascular endothelial growth factor receptor (VEGFR-1) mRNA and screened for their biological activity in a matrigel tube-formation assay. Among the selected DNAzymes, DT18 was defined as a lead molecule that was further investigated in several model systems. In a rat corneal vascularization model, DT18 demonstrated significant and specific antiangiogenic activity, as evidenced by the reduced area and vessel number in VEGF-induced corneal angiogenesis. In a mouse melanoma model, DT18 was shown to inhibit B16 tumor growth, whereas it did not affect B16 cell proliferation. We further assessed the DT18 effect in mice with established human nasopharyngeal carcinoma (NPC). A significant inhibition of tumor growth was observed, which accompanied downregulation of VEGFR-1 expression in NPC tumor tissues. To evaluate DT18 effect on vasculature, we performed dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) on the human NPC xenograft mice treated with DT18 and showed a reduction of the parameter of K(trans) (volume constant for transfer of contrast agent), which reflects the condition of tumor microvascular permeability. When examining the safety and tolerability of DT18, intravenous administration of Dz18 to healthy mice caused no substantial toxicities, as shown by parameters such as body weight, liver/kidney function, and histological and biochemical analyses. Taken together, our data suggest that the anti-VEGFR-1 DNAzyme may be used as a therapeutic agent for the treatment of cancer, such as NPC.
Collapse
Affiliation(s)
- Liangfang Shen
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qin Zhou
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ying Wang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Weihua Liao
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yan Chen
- Center for Molecular Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhijie Xu
- Cancer Research Institute, Central South University, Hunan, China
| | - Lifang Yang
- Cancer Research Institute, Central South University, Hunan, China
- Center for Molecular Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lun-Quan Sun
- Center for Molecular Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
35
|
Cao Y, Yang L, Jiang W, Wang X, Liao W, Tan G, Liao Y, Qiu Y, Feng D, Tang F, Hou BL, Zhang L, Fu J, He F, Liu X, Jiang W, Yang T, Sun LQ. Therapeutic evaluation of Epstein-Barr virus-encoded latent membrane protein-1 targeted DNAzyme for treating of nasopharyngeal carcinomas. Mol Ther 2013; 22:371-377. [PMID: 24322331 PMCID: PMC3916047 DOI: 10.1038/mt.2013.257] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Accepted: 10/15/2013] [Indexed: 11/24/2022] Open
Abstract
The ability of the 10–23 DNAzyme to specifically cleave RNA with high efficiency has fuelled expectation that this agent may have useful applications for targeted therapy. Here, we, for the first time, investigated the antitumor and radiosensitizing effects of a DNAzyme (DZ1) targeted to the Epstein-Barr virus (EBV)-LMP1 mRNA of nasopharyngeal carcinoma (NPC) in patients. Preclinical studies indicated that the DNAzyme was safe and well tolerated. A randomized and double-blind clinical study was conducted in 40 NPC patients who received DZ1 or saline intratumorally, in conjunction with radiation therapy. Tumor regression, patient survival, EBV DNA copy number and tumor microvascular permeability were assessed in a 3-month follow-up. The mean tumor regression rate at week 12 was significantly higher in DZ1 treated group than in the saline control group. Molecular imaging analysis showed that DZ1 impacted on tumor microvascular permeability as evidenced by a faster decline of the Ktrans in DZ1-treated patients. The percentage of the samples with undetectable level of EBV DNA copy in the DZ1 group was significantly higher than that in the control group. No adverse events that could be attributed to the DZ1 injection were observed in patients.
Collapse
Affiliation(s)
- Ya Cao
- Cancer Research Institute and Key laboratory of Ministry of Education, Central South University, Changsha, China.
| | - Lifang Yang
- Cancer Research Institute and Key laboratory of Ministry of Education, Central South University, Changsha, China
| | - Wuzhong Jiang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - Xiaoyi Wang
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
| | - Weihua Liao
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
| | - Guolin Tan
- Department of ENT, Xiangya Third Hospital, Central South University, Changsha, China
| | - Yuping Liao
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - Yuanzheng Qiu
- Department of ENT, Xiangya Hospital, Central South University, Changsha, China
| | - Deyun Feng
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| | - Faqing Tang
- Department of Clinical Chemistry, Xiangya Hospital, Central South University, Changsha, China
| | - Bob L Hou
- Department of Radiology, West Virginia University, Morgantown, West Virginia, USA
| | - Ling Zhang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - Jia Fu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - Fengjiao He
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - Xiaoyu Liu
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
| | - Wenjuan Jiang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - Tubao Yang
- School of Public Health, Central South University, Changsha, China
| | - Lun-Quan Sun
- Center for Molecular Medicine, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
36
|
Cho EA, Moloney FJ, Cai H, Au-Yeung A, China C, Scolyer RA, Yosufi B, Raftery MJ, Deng JZ, Morton SW, Hammond PT, Arkenau HT, Damian DL, Francis DJ, Chesterman CN, Barnetson RS, Halliday GM, Khachigian LM. Safety and tolerability of an intratumorally injected DNAzyme, Dz13, in patients with nodular basal-cell carcinoma: a phase 1 first-in-human trial (DISCOVER). Lancet 2013; 381:1835-43. [PMID: 23660123 PMCID: PMC3951714 DOI: 10.1016/s0140-6736(12)62166-7] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND The nuclear transcription factor c-Jun is preferentially expressed in basal-cell carcinoma. Dz13 is a deoxyribozyme that targets JUN messenger RNA and has inhibited the growth of a range of tumours in mice. We did a phase 1 study to assess safety and tolerability in human beings. METHODS Adults with nodular basal-cell carcinoma were recruited from Royal Prince Alfred Hospital, Sydney, Australia, between September, 2010, and October, 2011. Patients were assigned to receive one intratumoral injected dose of 10, 30, or 100 μg Dz13, in a 50 μL volume of lipid carrier, and were assessed for adverse effects in the first 24 h then at 7, 14, and 28 days after injection. Treated tumours were surgically excised 14 days after injection and compared with the baseline biopsy samples for expression of c-Jun and tumorigenesis markers. FINDINGS Nine patients were recruited, of whom three received each dose of Dz13. All patients completed the study with no drug-related serious adverse events. No systemic Dz13 exposure was detected. c-Jun expression was reduced in the excised tumours of all nine (100%) patients, compared with baseline, and histological tumour depth had decreased in five (56%) of nine. Proportions of cells positive for caspases 3, 8, and 9 and P53 were increased, but those of cells positive for Bcl-2 and MMP-9 were decreased. Infiltration by inflammatory and immune cells was stimulated. INTERPRETATION Dz13 was safe and well tolerated after single intratumoral injections at all doses. FUNDING Cancer Institute NSW, Cancer Council Australia, and National Health and Medical Research Council.
Collapse
Affiliation(s)
- Eun-Ae Cho
- Dermatology, Sydney Medical School, Bosch Institute, Royal Prince Alfred Hospital at University of Sydney, Sydney NSW, Australia
| | - Fergal J. Moloney
- Dermatology, Sydney Medical School, Bosch Institute, Royal Prince Alfred Hospital at University of Sydney, Sydney NSW, Australia
| | - Hong Cai
- Centre for Vascular Research, University of New South Wales, Sydney NSW, Australia
| | - Annie Au-Yeung
- Centre for Vascular Research, University of New South Wales, Sydney NSW, Australia
| | - Carlos China
- Woolcock Institute of Medical Research, Sydney NSW, Australia
| | - Richard A. Scolyer
- Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital, Sydney NSW, Australia
| | | | - Mark J. Raftery
- Mark Wainwright Analytical Centre, University of New South Wales, Sydney NSW, Australia
| | - Jason Z. Deng
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge MA, USA
| | - Stephen W. Morton
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge MA, USA
| | - Paula T. Hammond
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge MA, USA
| | | | - Diona L. Damian
- Dermatology, Sydney Medical School, Bosch Institute, Royal Prince Alfred Hospital at University of Sydney, Sydney NSW, Australia
| | | | - Colin N. Chesterman
- Centre for Vascular Research, University of New South Wales, Sydney NSW, Australia
| | - Ross St.C Barnetson
- Dermatology, Sydney Medical School, Bosch Institute, Royal Prince Alfred Hospital at University of Sydney, Sydney NSW, Australia
| | - Gary M. Halliday
- Dermatology, Sydney Medical School, Bosch Institute, Royal Prince Alfred Hospital at University of Sydney, Sydney NSW, Australia
| | - Levon M. Khachigian
- Centre for Vascular Research, University of New South Wales, Sydney NSW, Australia
| |
Collapse
|
37
|
Design and analysis of effects of triplet repeat oligonucleotides in cell models for myotonic dystrophy. MOLECULAR THERAPY-NUCLEIC ACIDS 2013; 2:e81. [PMID: 23511335 PMCID: PMC3615819 DOI: 10.1038/mtna.2013.9] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Myotonic dystrophy type 1 (DM1) is caused by DM protein kinase (DMPK) transcripts containing an expanded (CUG)n repeat. Antisense oligonucleotide (AON)-mediated suppression of these mutant RNAs is considered a promising therapeutic strategy for this severe disorder. Earlier, we identified a 2'-O-methyl (2'-OMe) phosphorothioate (PT)-modified (CAG)7 oligo (PS58), which selectively silences mutant DMPK transcripts through recognition of the abnormally long (CUG)n tract. We present here a comprehensive collection of triplet repeat AONs and found that oligo length and nucleotide chemistry are important determinants for activity. For significant reduction of expanded DMPK mRNAs, a minimal length of five triplets was required. 2'-O,4'-C-ethylene-bridged nucleic acid (ENA)-modified AONs appeared not effective, probably due to lack of nuclear internalization. Selectivity for products from the expanded DMPK allele in patient myoblasts, an important requirement to minimize unwanted side effects, appeared also dependent on AON chemistry. In particular, RNase-H-dependent (CAG)n AONs did not show (CUG)n length specificity. We provide evidence that degradation of long DMPK transcripts induced by PS58-type AONs is an RNase-H independent process, does not involve oligo-intrinsic RNase activity nor does it interfere with splicing of DMPK transcripts. Our collection of triplet repeat AONs forms an important resource for further development of a safe therapy for DM1 and other unstable microsatellite diseases.Molecular Therapy-Nucleic Acids (2013) 2, e81; doi:10.1038/mtna.2013.9; published online 19 March 2013.
Collapse
|
38
|
Evdokimov AA, Mazurkova NA, Malygin EG, Zarytova VF, Levina AS, Repkova MN, Zagrebelnyi SN, Netesova NA. Design of deoxyribozymes for inhibition of influenza a virus reproduction. Mol Biol 2013. [DOI: 10.1134/s0026893312060040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
39
|
Recent Advances in Ribonucleic Acid Interference (RNAi). NATIONAL ACADEMY SCIENCE LETTERS 2013. [DOI: 10.1007/s40009-012-0102-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
40
|
Xiang Y, Wu P, Tan LH, Lu Y. DNAzyme-functionalized gold nanoparticles for biosensing. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2013; 140:93-120. [PMID: 24026635 DOI: 10.1007/10_2013_242] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Recent progress in using DNAzyme-functionalized gold nanoparticles (AuNPs) for biosensing is summarized in this chapter. A variety of methods, including those for attaching DNA on AuNPs, detecting metal ions and small molecules by DNAzyme-functionalized AuNPs, and intracellular applications of DNAzyme-functionalized AuNPs are discussed. DNAzyme-functionalized AuNPs will increasingly play more important roles in biosensing and many other multidisciplinary applications. This chapter covers the recent advancement in biosensing applications of DNAzyme-functionalized gold nanoparticles, including the detection of metal ions, small molecules, and intracellular imaging.
Collapse
Affiliation(s)
- Yu Xiang
- Department of Chemistry and Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | | | | | | |
Collapse
|
41
|
Levina AS, Repkova MN, Ismagilov ZR, Shikina NV, Malygin EG, Mazurkova NA, Zinov'ev VV, Evdokimov AA, Baiborodin SI, Zarytova VF. High-performance method for specific effect on nucleic acids in cells using TiO2~DNA nanocomposites. Sci Rep 2012; 2:756. [PMID: 23091696 PMCID: PMC3477653 DOI: 10.1038/srep00756] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Accepted: 09/27/2012] [Indexed: 11/11/2022] Open
Abstract
Nanoparticles are used to solve the current drug delivery problem. We present a high-performance method for efficient and selective action on nucleic acid target in cells using unique TiO2·PL-DNA nanocomposites (polylysine-containing DNA fragments noncovalently immobilized onto TiO2 nanoparticles capable of transferring DNA). These nanocomposites were used for inhibition of human influenza A (H3N2) virus replication in infected MDCK cells. They showed a low toxicity (TC50 ≈ 1800 μg/ml) and a high antiviral activity (>99.9% inhibition of the virus replication). The specificity factor (antisense effect) appeared to depend on the delivery system of DNA fragments. This factor for nanocomposites is ten-times higher than for DNA in the presence of lipofectamine. IC50 for nanocomposites was estimated to be 1.5 μg/ml (30 nM for DNA), so its selectivity index was calculated as ~1200. Thus, the proposed nanocomposites are prospective for therapeutic application.
Collapse
Affiliation(s)
- Asya S Levina
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Wang Q, Zhang D, Liu Y, Cheng M, He J, Liu K. A structure-activity relationship study for 2'-deoxyadenosine analogs at A9 position in the catalytic core of 10-23 DNAzyme for rate enhancement. Nucleic Acid Ther 2012; 22:423-7. [PMID: 23083213 DOI: 10.1089/nat.2012.0365] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Modification on the catalytic core of 10-23 DNAzyme with protein-like functional groups is a potential approach to obtain its more efficient analogs. In our efforts for this purpose, a lead structure (DZ-2-9) with 8-aza-7-deaza-2'-deoxyadenosine at the A9 position in its catalytic core was obtained. Here we report our structure-activity relationship studies on this lead structure. Various functional groups of different chemical properties were introduced through the 7-substituents of 8-aza-7-deaza-2'-deoxyadenosine to DZ-2-9. The functional groups capable of forming hydrogen bonds, like amino and hydroxyl groups, are more favorable for catalytic rate enhancement than the large groups with spacial occupation, like phenyl and tert-butylphenyl groups, and the flexible alkyl linkage was the more preferred choice for optimizing their positive effect. Furthermore, they exerted positive effect cooperatively with the N8 atom. These results give us a clear hint in the design of compounds for A9 substitution of 10-23 DNAzyme for more efficient DNAzymes.
Collapse
Affiliation(s)
- Qi Wang
- Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | | | | | | | | | | |
Collapse
|
43
|
Zhang L, Yang L, Li JJ, Sun L. Potential use of nucleic acid-based agents in the sensitization of nasopharyngeal carcinoma to radiotherapy. Cancer Lett 2012; 323:1-10. [DOI: 10.1016/j.canlet.2012.03.030] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Revised: 03/26/2012] [Accepted: 03/26/2012] [Indexed: 11/27/2022]
|
44
|
Xu Z, Yang L, Sun L, Cao Y. Use of DNAzymes for cancer research and therapy. CHINESE SCIENCE BULLETIN-CHINESE 2012; 57:3404-3408. [DOI: 10.1007/s11434-012-5380-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
45
|
Khachigian LM, Cai H, Moloney FJ, Parish CR, Chong BH, Stocker R, Barnetson RSC, Halliday GM. Destroying c-jun Messenger: new insights into biological mechanisms of DNAzyme function. Oncotarget 2012; 3:594-5. [PMID: 22805148 PMCID: PMC3442292 DOI: 10.18632/oncotarget.549] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
46
|
Chan CWS, Kaplan W, Parish CR, Khachigian LM. Reduced retinal microvascular density, improved forepaw reach, comparative microarray and gene set enrichment analysis with c-jun targeting DNA enzyme. PLoS One 2012; 7:e39160. [PMID: 22815700 PMCID: PMC3398922 DOI: 10.1371/journal.pone.0039160] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Accepted: 05/21/2012] [Indexed: 12/16/2022] Open
Abstract
Retinal neovascularization is a critical component in the pathogenesis of common ocular disorders that cause blindness, and treatment options are limited. We evaluated the therapeutic effect of a DNA enzyme targeting c-jun mRNA in mice with pre-existing retinal neovascularization. A single injection of Dz13 in a lipid formulation containing N-[1-(2,3-dioleoyloxy)propyl]-N,N,N-trimethylammonium methyl-sulfate and 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine inhibited c-Jun expression and reduced retinal microvascular density. The DNAzyme inhibited retinal microvascular density as effectively as VEGF-A antibodies. Comparative microarray and gene expression analysis determined that Dz13 suppressed not only c-jun but a range of growth factors and matrix-degrading enzymes. Dz13 in this formulation inhibited microvascular endothelial cell proliferation, migration and tubule formation in vitro. Moreover, animals treated with Dz13 sensed the top of the cage in a modified forepaw reach model, unlike mice given a DNAzyme with scrambled RNA-binding arms that did not affect c-Jun expression. These findings demonstrate reduction of microvascular density and improvement in forepaw reach in mice administered catalytic DNA.
Collapse
Affiliation(s)
- Cecilia W. S. Chan
- Centre for Vascular Research, University of New South Wales, Sydney, Australia
| | - Warren Kaplan
- Peter Wills Bioinformatics Centre, Garvan Institute of Medical Research, Sydney, Australia
| | - Christopher R. Parish
- Centre for Vascular Research, John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | - Levon M. Khachigian
- Centre for Vascular Research, University of New South Wales, Sydney, Australia
| |
Collapse
|
47
|
Lande C, Boccardi C, Citti L, Mercatanti A, Rizzo M, Rocchiccioli S, Tedeschi L, Trivella MG, Cecchettini A. Ribozyme-mediated gene knock down strategy to dissect the consequences of PDGF stimulation in vascular smooth muscle cells. BMC Res Notes 2012; 5:268. [PMID: 22676333 PMCID: PMC3393606 DOI: 10.1186/1756-0500-5-268] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2012] [Accepted: 06/07/2012] [Indexed: 11/10/2022] Open
Abstract
Background Vascular Smooth Muscle Cells (VSMCs), due to their plasticity and ability to shift from a physiological contractile-quiescent phenotype to a pathological proliferating-activated status, play a central role in the onset and progression of atherosclerosis and cardiovascular diseases. PDGF-BB, among a series of cytokines and growth factors, has been identified as the critical factor in this phenotypic switch. In order to obtain new insights on the molecular effects triggered by PDGF-BB, a hammerhead ribozyme targeting the membrane receptor PDGFR-β was applied to inhibit PDGF pathway in porcine VSMCs. Findings Ribozymes, loaded on a cationic polymer-based vehicle, were delivered into cultured VSMCs. A significant impairment of the activation mechanisms triggered by PDGF-BB was demonstrated since cell migration decreased after treatments. In order to functionally validate the effects of PDGFR-β partial knock down we focused on the phosphorylation status of two proteins, protein disulfide isomerase-A3 (PDI-A3) and heat shock protein-60 (HSP-60), previously identified as indicative of VSMC phenotypic switch after PDGF-BB stimulation. Interestingly, while PDI-A3 phosphorylation was counteracted by the ribozyme administration indicating that PDI-A3 is a factor downstream the receptor signalling cascade, the HSP-60 phosphorylation status was greatly increased by the ribozyme administration. Conclusion These contradictory observations suggested that PDGF-BB might trigger different parallel pathways that could be modulated by alternative isoforms of the receptors for the growth factor. In conclusion the knock down strategy here described enables to discriminate between two tightly intermingled pathways. Moreover it opens new attractive perspectives in functional investigations where combined gene knock down and proteomic technologies would allow the identification of key factors and pathways involved in VSMC-linked pathological disorders.
Collapse
|
48
|
Sanchez-Guerrero E, Chen E, Kockx M, An SW, Chong BH, Khachigian LM. IL-1beta signals through the EGF receptor and activates Egr-1 through MMP-ADAM. PLoS One 2012; 7:e39811. [PMID: 22792188 PMCID: PMC3391205 DOI: 10.1371/journal.pone.0039811] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Accepted: 05/27/2012] [Indexed: 01/22/2023] Open
Abstract
The immediate-early gene Egr-1 controls the inducible expression of many genes implicated in the pathogenesis of a range of vascular disorders, yet our understanding of the mechanisms controlling the rapid expression of this prototypic zinc finger transcription factor is poor. Here we show that Egr-1 expression induced by IL-1beta is dependent on metalloproteinases (MMP) and a disintegrin and a metalloproteinase (ADAM). Pharmacologic MMP/ADAM inhibitors and siRNA knockdown prevent IL-1beta induction of Egr-1. Further, IL-1beta activates Egr-1 via the epidermal growth factor receptor (EGFR). This is blocked by EGFR tyrosine kinase inhibition and EGFR knockdown. IL-1beta induction of Egr-1 expression is reduced in murine embryonic fibroblasts (mEFs) deficient in ADAM17 despite unbiased expression of EGFR and IL-1RI in ADAM17-deficient and wild-type mEFs. Finally, we show that IL-1beta-inducible wound repair after mechanical injury requires both EGFR and MMP/ADAM. This study reports for the first time that Egr-1 induction by IL-1beta involves EGFR and MMP/ADAM-dependent EGFR phosphorylation.
Collapse
Affiliation(s)
| | - Elya Chen
- Centre for Vascular Research, University of New South Wales, Sydney, Australia
| | - Maaike Kockx
- Centre for Vascular Research, University of New South Wales, Sydney, Australia
| | - Si-Wei An
- Centre for Vascular Research, University of New South Wales, Sydney, Australia
| | - Beng H. Chong
- Centre for Vascular Research, University of New South Wales, Sydney, Australia
| | - Levon M. Khachigian
- Centre for Vascular Research, University of New South Wales, Sydney, Australia
- * E-mail:
| |
Collapse
|
49
|
Cai H, Santiago FS, Prado-Lourenco L, Wang B, Patrikakis M, Davenport MP, Maghzal GJ, Stocker R, Parish CR, Chong BH, Lieschke GJ, Wong TW, Chesterman CN, Francis DJ, Moloney FJ, Barnetson RSC, Halliday GM, Khachigian LM. DNAzyme Targeting c-jun Suppresses Skin Cancer Growth. Sci Transl Med 2012; 4:139ra82. [DOI: 10.1126/scitranslmed.3003960] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
50
|
RNA-Cleaving DNA Enzymes and Their Potential Therapeutic Applications as Antibacterial and Antiviral Agents. FROM NUCLEIC ACIDS SEQUENCES TO MOLECULAR MEDICINE 2012. [PMCID: PMC7119987 DOI: 10.1007/978-3-642-27426-8_15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
DNA catalysts are synthetic single-stranded DNA molecules that have been identified by in vitro selection from random sequence DNA pools. The most prominent representatives of DNA catalysts (also known as DNA enzymes, deoxyribozymes, or DNAzymes) catalyze the site-specific cleavage of RNA substrates. Two distinct groups of RNA-cleaving DNA enzymes are the 10-23 and 8-17 enzymes. A typical RNA-cleaving DNA enzyme consists of a catalytic core and two short binding arms which form Watson–Crick base pairs with the RNA targets. RNA cleavage is usually achieved with the assistance of metal ions such as Mg2+, Ca2+, Mn2+, Pb2+, or Zn2+, but several chemically modified DNA enzymes can cleave RNA in the absence of divalent metal ions. A number of studies have shown the use of 10-23 DNA enzymes for modest downregulation of therapeutically relevant RNA targets in cultured cells and in whole mammals. Here we focus on mechanistic aspects of RNA-cleaving DNA enzymes and their potential to silence therapeutically appealing viral and bacterial gene targets. We also discuss delivery options and challenges involved in DNA enzyme-based therapeutic strategies.
Collapse
|