1
|
Roshandel D, Semnani F, Rayati Damavandi A, Masoudi A, Baradaran-Rafii A, Watson SL, Morgan WH, McLenachan S. Genetic predisposition to ocular surface disorders and opportunities for gene-based therapies. Ocul Surf 2023; 29:150-165. [PMID: 37192706 DOI: 10.1016/j.jtos.2023.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/24/2023] [Accepted: 05/09/2023] [Indexed: 05/18/2023]
Abstract
The ocular surface, comprised of the corneal and conjunctival epithelium, innervation system, immune components, and tear-film apparatus, plays a key role in ocular integrity as well as comfort and vision. Gene defects may result in congenital ocular or systemic disorders with prominent ocular surface involvement. Examples include epithelial corneal dystrophies, aniridia, ectrodactyly-ectodermal dysplasia-clefting (EEC) syndrome, xeroderma pigmentosum (XP), and hereditary sensory and autonomic neuropathy. In addition, genetic factors may interact with environmental risk factors in the development of several multifactorial ocular surface disorders (OSDs) such as autoimmune disorders, allergies, neoplasms, and dry eye disease. Advanced gene-based technologies have already been introduced in disease modelling and proof-of-concept gene therapies for monogenic OSDs. For instance, patient-derived induced pluripotent stem cells have been used for modelling aniridia-associated keratopathy (AAK), XP, and EEC syndrome. Moreover, CRISPR/Cas9 genome editing has been used for disease modelling and/or gene therapy for AAK and Meesmann's epithelial corneal dystrophy. A better understanding of the role of genetic factors in OSDs may be helpful in designing personalized disease models and treatment approaches. Gene-based approaches in monogenic OSDs and genetic predisposition to multifactorial OSDs such as immune-mediated disorders and neoplasms with known or possible genetic risk factors has been seldom reviewed. In this narrative review, we discuss the role of genetic factors in monogenic and multifactorial OSDs and potential opportunities for gene therapy.
Collapse
Affiliation(s)
- Danial Roshandel
- Lions Eye Institute, Perth, WA, Australia; Centre for Ophthalmology and Visual Science, The University of Western Australia, Perth, WA, Australia
| | - Farbod Semnani
- School of Public Health, Tehran University of Medical Sciences (TUMS), Tehran, Iran; School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Amirmasoud Rayati Damavandi
- School of Public Health, Tehran University of Medical Sciences (TUMS), Tehran, Iran; School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Ali Masoudi
- Stein Eye Institute, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Alireza Baradaran-Rafii
- Department of Ophthalmology, Research Institute for Ophthalmology and Vision Science, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Ophthalmology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Stephanie L Watson
- The University of Sydney, Save Sight Institute, Discipline of Ophthalmology, Sydney Medical School, Sydney, New South Wales, Australia
| | - William H Morgan
- Lions Eye Institute, Perth, WA, Australia; Centre for Ophthalmology and Visual Science, The University of Western Australia, Perth, WA, Australia
| | - Samuel McLenachan
- Lions Eye Institute, Perth, WA, Australia; Centre for Ophthalmology and Visual Science, The University of Western Australia, Perth, WA, Australia.
| |
Collapse
|
2
|
McCarty JH. αvβ8 integrin adhesion and signaling pathways in development, physiology and disease. J Cell Sci 2020; 133:133/12/jcs239434. [PMID: 32540905 DOI: 10.1242/jcs.239434] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Cells must interpret a complex milieu of extracellular cues to modulate intracellular signaling events linked to proliferation, differentiation, migration and other cellular processes. Integrins are heterodimeric transmembrane proteins that link the extracellular matrix (ECM) to the cytoskeleton and control intracellular signaling events. A great deal is known about the structural and functional properties for most integrins; however, the adhesion and signaling pathways controlled by αvβ8 integrin, which was discovered nearly 30 years ago, have only recently been characterized. αvβ8 integrin is a receptor for ECM-bound forms of latent transforming growth factor β (TGFβ) proteins and promotes the activation of TGFβ signaling pathways. Studies of the brain, lung and immune system reveal that the αvβ8 integrin-TGFβ axis mediates cell-cell contact and communication within complex multicellular structures. Perturbing components of this axis results in aberrant cell-cell adhesion and signaling leading to the initiation of various pathologies, including neurodegeneration, fibrosis and cancer. As discussed in this Review, understanding the functions for αvβ8 integrin, its ECM ligands and intracellular effector proteins is not only an important topic in cell biology, but may lead to new therapeutic strategies to treat human pathologies related to integrin dysfunction.
Collapse
Affiliation(s)
- Joseph H McCarty
- Department of Neurosurgery, Brain Tumor Center, M.D. Anderson Cancer Center, 6767 Bertner Avenue, Unit 1004, Houston, TX 77030, USA
| |
Collapse
|
3
|
Living on the Edge: Efferocytosis at the Interface of Homeostasis and Pathology. Immunity 2019; 50:1149-1162. [PMID: 31117011 DOI: 10.1016/j.immuni.2019.04.018] [Citation(s) in RCA: 248] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 04/13/2019] [Accepted: 04/29/2019] [Indexed: 01/23/2023]
Abstract
Nearly every tissue in the body undergoes routine turnover of cells as part of normal healthy living. The majority of these cells undergoing turnover die via apoptosis, and then are rapidly removed by phagocytes by the process of efferocytosis that is anti-inflammatory. However, a number of pathologies have recently been linked to defective clearance of apoptotic cells. Perturbed clearance arises for many reasons, including overwhelming of the clearance machinery, disruptions at different stages of efferocytosis, and responses of phagocytes during efferocytosis, all of which can alter the homeostatic tissue environment. This review covers linkages of molecules involved in the different phases of efferocytosis to disease pathologies that can arise due to their loss or altered function.
Collapse
|
4
|
Lee YS, Lee CH, Bae JT, Nam KT, Moon DB, Hwang OK, Choi JS, Kim TH, Jun HO, Jung YS, Hwang DY, Han SB, Yoon DY, Hong JT. Inhibition of skin carcinogenesis by suppression of NF-κB dependent ITGAV and TIMP-1 expression in IL-32γ overexpressed condition. J Exp Clin Cancer Res 2018; 37:293. [PMID: 30486830 PMCID: PMC6263970 DOI: 10.1186/s13046-018-0943-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 10/22/2018] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Interleukin-32 (IL-32) has been associated with various diseases. Previous studies have shown that IL-32 inhibited the development of several tumors. However, the role of IL-32γ, an isotype of IL-32, in skin carcinogenesis remains unknown. METHODS We compared 7,12-Dimethylbenz[a]anthracene/12-O-Tetradecanoylphorbol-13-acetate (DMBA/TPA)-induced skin carcinogenesis in wild type (WT) and IL-32γ-overexpressing mice to evaluate the role of IL-32γ. We also analyzed cancer stemness and NF-κB signaling in skin cancer cell lines with or without IL-32γ expression by western blotting, quantitative real-time PCR and immunohistochemistry analysis. RESULTS Carcinogen-induced tumor incidence in IL-32γ mice was significantly reduced in comparison to that in WT mice. Infiltration of inflammatory cells and the expression levels of pro-inflammatory mediators were decreased in the skin tumor tissues of IL-32γ mice compared with WT mice. Using a genome-wide association study analysis, we found that IL-32 was associated with integrin αV (ITGAV) and tissue inhibitor of metalloproteinase-1 (TIMP-1), which are critical factor for skin carcinogenesis. Reduced expression of ITGAV and TIMP-1 were identified in DMBA/TPA-induced skin tissues of IL-32γ mice compared to that in WT mice. NF-κB activity was also reduced in DMBA/TPA-induced skin tissues of IL-32γ mice. IL-32γ decreased cancer cell sphere formation and expression of stem cell markers, and increased chemotherapy-induced cancer cell death. IL-32γ also downregulated expression of ITGAV and TIMP-1, accompanied with the inhibition of NF-κB activity. In addition, IL-32γ expression with NF-κB inhibitor treatment further reduced skin inflammation, epidermal hyperplasia, and cancer cell sphere formation and downregulated expression levels of ITGAV and TIMP-1. CONCLUSIONS These findings indicated that IL-32γ suppressed skin carcinogenesis through the inhibition of both stemness and the inflammatory tumor microenvironment by the downregulation of TIMP-1 and ITGAV via inactivation of NF-κB signaling.
Collapse
Affiliation(s)
- Yong Sun Lee
- College of Pharmacy and Medical Research Center, Chungbuk National University, Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju, Chungbuk 28160 Republic of Korea
| | - Chung Hee Lee
- College of Pharmacy and Medical Research Center, Chungbuk National University, Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju, Chungbuk 28160 Republic of Korea
- Hanbul Co, Ltd. R&D center, 634 Eon Ju-Ro, Gangnam-gu, Seoul, Republic of Korea
| | - Jun Tae Bae
- College of Pharmacy and Medical Research Center, Chungbuk National University, Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju, Chungbuk 28160 Republic of Korea
| | - Kyung Tak Nam
- College of Pharmacy and Medical Research Center, Chungbuk National University, Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju, Chungbuk 28160 Republic of Korea
| | - Dae Bong Moon
- College of Pharmacy and Medical Research Center, Chungbuk National University, Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju, Chungbuk 28160 Republic of Korea
| | - Ok Kyung Hwang
- College of Pharmacy and Medical Research Center, Chungbuk National University, Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju, Chungbuk 28160 Republic of Korea
| | - Jeong Soon Choi
- College of Pharmacy and Medical Research Center, Chungbuk National University, Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju, Chungbuk 28160 Republic of Korea
| | - Tae Hoon Kim
- College of Pharmacy and Medical Research Center, Chungbuk National University, Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju, Chungbuk 28160 Republic of Korea
| | - Hyoung Ok Jun
- College of Pharmacy and Medical Research Center, Chungbuk National University, Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju, Chungbuk 28160 Republic of Korea
| | - Young Suk Jung
- College of Pharmacy and Medical Research Center, Chungbuk National University, Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju, Chungbuk 28160 Republic of Korea
| | - Dae Yeon Hwang
- Department of Biomaterial Science, Pusan National University, Miryang, Kyungnam 50463 Republic of Korea
| | - Sang-Bae Han
- College of Pharmacy and Medical Research Center, Chungbuk National University, Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju, Chungbuk 28160 Republic of Korea
| | - Do Young Yoon
- Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, Gwangjin-gu, Seoul, 05029 Republic of Korea
| | - Jin Tae Hong
- College of Pharmacy and Medical Research Center, Chungbuk National University, Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju, Chungbuk 28160 Republic of Korea
| |
Collapse
|
5
|
Duperret EK, Natale CA, Monteleon C, Dahal A, Ridky TW. The integrin αv-TGFβ signaling axis is necessary for epidermal proliferation during cutaneous wound healing. Cell Cycle 2016; 15:2077-86. [PMID: 27295308 DOI: 10.1080/15384101.2016.1199306] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Proliferation and migration of epidermal keratinocytes are essential for proper cutaneous wound closure after injury. αv integrins and several of their ligands-vitronectin, TGFβ and thrombospondin-are up-regulated in healing wounds. However, the role of αv integrins in wound re-epithelialization is unknown. Here, we show that genetic depletion or antibody-mediated blockade of pan-integrin αv, or the specific heterodimer αvβ6, in keratinocytes limited epidermal proliferation at the wound edge and prevented re-epithelialization of wounded human organotypic skin both in vivo and in vitro. While we did not observe a migration defect upon αv blockade in vivo, αv was necessary for keratinocyte migration over longer distances in organotypic skin. Integrin αv is required for local activation of latent TGFβ, and the wound healing defect in the setting of integrin αv loss was rescued by exogenous, active TGFβ, indicating that the αv-TGFβ signaling axis is a critical component of the normal epidermal wound healing program. As chronic wounds are associated with decreased TGFβ signaling, restoration of TGFβ activity may have therapeutic utility in some clinical settings.
Collapse
Affiliation(s)
- Elizabeth K Duperret
- a Department of Dermatology , University of Pennsylvania , Philadelphia , PA , USA
| | - Christopher A Natale
- a Department of Dermatology , University of Pennsylvania , Philadelphia , PA , USA
| | - Christine Monteleon
- a Department of Dermatology , University of Pennsylvania , Philadelphia , PA , USA
| | - Ankit Dahal
- a Department of Dermatology , University of Pennsylvania , Philadelphia , PA , USA
| | - Todd W Ridky
- a Department of Dermatology , University of Pennsylvania , Philadelphia , PA , USA
| |
Collapse
|
6
|
Eghtedari Y, Richardson A, Mai K, Heng B, Guillemin GJ, Wakefield D, Di Girolamo N. Keratin 14 Expression in Epithelial Progenitor Cells of the Developing Human Cornea. Stem Cells Dev 2016; 25:699-711. [DOI: 10.1089/scd.2016.0039] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Yas Eghtedari
- Ocular Diseases Research Group, School of Medical Sciences, University of New South Wales, Sydney, Australia
| | - Alexander Richardson
- Ocular Diseases Research Group, School of Medical Sciences, University of New South Wales, Sydney, Australia
| | - Kelly Mai
- Ocular Diseases Research Group, School of Medical Sciences, University of New South Wales, Sydney, Australia
| | - Benjamin Heng
- Neuroinflammation Group, Faculty of Medicine & Health Sciences, Macquarie University, Sydney, Australia
| | - Gilles J. Guillemin
- Neuroinflammation Group, Faculty of Medicine & Health Sciences, Macquarie University, Sydney, Australia
| | - Denis Wakefield
- Ocular Diseases Research Group, School of Medical Sciences, University of New South Wales, Sydney, Australia
| | - Nick Di Girolamo
- Ocular Diseases Research Group, School of Medical Sciences, University of New South Wales, Sydney, Australia
| |
Collapse
|
7
|
Phagocytosis of apoptotic cells in homeostasis. Nat Immunol 2015; 16:907-17. [PMID: 26287597 DOI: 10.1038/ni.3253] [Citation(s) in RCA: 622] [Impact Index Per Article: 62.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 07/17/2015] [Indexed: 02/07/2023]
Abstract
Human bodies collectively turn over about 200 billion to 300 billion cells every day. Such turnover is an integral part of embryonic and postnatal development, as well as routine tissue homeostasis. This process involves the induction of programmed cell death in specific cells within the tissues and the specific recognition and removal of dying cells by a clearance 'crew' composed of professional, non-professional and specialized phagocytes. In the past few years, considerable progress has been made in identifying many features of apoptotic cell clearance. Some of these new observations challenge the way dying cells themselves are viewed, as well as how healthy cells interact with and respond to dying cells. Here we focus on the homeostatic removal of apoptotic cells in tissues.
Collapse
|
8
|
Duperret EK, Dahal A, Ridky TW. Focal-adhesion-independent integrin-αv regulation of FAK and c-Myc is necessary for 3D skin formation and tumor invasion. J Cell Sci 2015; 128:3997-4013. [PMID: 26359297 DOI: 10.1242/jcs.175539] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 09/08/2015] [Indexed: 12/25/2022] Open
Abstract
Integrins play crucial roles in epithelial adhesion, proliferation, wound healing and cancer. In the epidermis, the roles of many integrin subunits are incompletely defined and mechanistic details regarding their functions are lacking. We performed a multiplexed small hairpin (sh)RNA screen to define roles for each subunit in human organotypic skin. We show that integrin-αv (also known as ITGAV) heterodimers are essential for epidermal generation, with integrin-αv loss driving a keratinocyte G1-S cell cycle block. Surprisingly, integrin αv is not localized within keratinocyte focal adhesions, and instead maintains proliferation by controlling cellular (c)-Myc translation through FAK, p38β and p90RSK1. These phenotypes depend only on the binding partners of integrin-αv--integrin β5 and integrin β6 (also known as ITGB5 and ITGB6, respectively). Through inducible depletion of integrin αv in both normal organotypic epidermis and Ras-driven invasive neoplasia, we show that integrin αv is required for de novo tissue generation and neoplastic invasion but that it is dispensable for epidermal maintenance. Heterodimers of integrin αv with integrin β5 (integrin αvβ5) or integrin β6 (integrin αvβ6) are required to similar extents for neoplastic invasion, thus identifying integrin αvβ5 and integrin αvβ6 heterodimers as potential therapeutic targets for epidermal squamous cell carcinoma.
Collapse
Affiliation(s)
- Elizabeth K Duperret
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, BRB 1010, 421 Curie Blvd, Philadelphia, PA 19104, USA
| | - Ankit Dahal
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, BRB 1010, 421 Curie Blvd, Philadelphia, PA 19104, USA
| | - Todd W Ridky
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, BRB 1010, 421 Curie Blvd, Philadelphia, PA 19104, USA
| |
Collapse
|
9
|
Savar A, Acin S, Gonzalez CL, El-Sawy T, Mejia O, Li Z, Esmaeli B, Lacy-Hulbert A, El-Naggar A, McCarty JH, Caulin C. Loss of epithelial p53 and αv integrin cooperate through Akt to induce squamous cell carcinoma yet prevent remodeling of the tumor microenvironment. Oncogene 2015; 34:516-24. [PMID: 24469034 PMCID: PMC4303549 DOI: 10.1038/onc.2013.585] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Revised: 11/26/2013] [Accepted: 12/07/2013] [Indexed: 12/12/2022]
Abstract
Most of the squamous cell carcinomas (SCCs) of the skin and head and neck contain p53 mutations. The presence of p53 mutations in premalignant lesions suggests that they represent early events during tumor progression and additional alterations may be required for SCC development. Here we show that codeletion of the p53 and αv integrin genes in mouse stratified epithelia induced SCCs in 100% of the mice, more frequently and with much shorter latency than deletion of either gene alone. The SCCs that lacked p53 and αv in the epithelial tumor cells exhibited high Akt activity, lacked multiple types of infiltrating immune cells, contained a defective vasculature and grew slower than tumors that expressed p53 or αv. These results reveal that loss of αv in epithelial cells that lack p53 promotes SCC development, but also prevents remodeling of the tumor microenvironment and delays tumor growth. We observed that Akt inactivation in SCC cells that lack p53 and αv promoted anoikis. Thus, tumors may arise in these mice as a result of the increased cell survival induced by Akt activation triggered by loss of αv and p53, and by the defective recruitment of immune cells to these tumors, which may allow immune evasion. However, the defective vasculature and lack of a supportive stroma create a restrictive microenvironment in these SCCs that slows their growth. These mechanisms may underlie the rapid onset and slow growth of SCCs that lack p53 and αv.
Collapse
Affiliation(s)
- Aaron Savar
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Sergio Acin
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Cassandra L. Gonzalez
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Tarek El-Sawy
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Olga Mejia
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Zhongyou Li
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Bita Esmaeli
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Adam Lacy-Hulbert
- Department of Pediatrics, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Adel El-Naggar
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Joseph H. McCarty
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Carlos Caulin
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
10
|
Abstract
In 2007, three scientists, Drs. Mario R. Capecchi, Martin J. Evans, and Oliver Smithies, received the Nobel Prize in Physiology or Medicine for their contributions of introducing specific gene modifications into mice. This technology, commonly referred to as gene targeting or knockout, has proven to be a powerful means for precisely manipulating the mammalian genome and has generated great impacts on virtually all phases of mammalian biology and basic biomedical research. Of note, germline mutations of many genes, especially tumor suppressors, often result in lethality during embryonic development or at developmental stages before tumor formation. This obstacle has been effectively overcome by the use of conditional knockout technology in conjunction with Cre-LoxP- or Flp-Frt-mediated temporal and/or spatial systems to generate genetic switches for precise DNA recombination. Currently, numerous conditional knockout mouse models have been successfully generated and applied in studying tumor initiation, progression, and metastasis. This review summarizes some conditional mutant mouse models that are widely used in cancer research and our understanding of the possible mechanisms underlying tumorigenesis.
Collapse
Affiliation(s)
- Chu-Xia Deng
- Genetics of Development and Disease Branch, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
11
|
McCauley HA, Liu CY, Attia AC, Wikenheiser-Brokamp KA, Zhang Y, Whitsett JA, Guasch G. TGFβ signaling inhibits goblet cell differentiation via SPDEF in conjunctival epithelium. Development 2014; 141:4628-39. [PMID: 25377551 DOI: 10.1242/dev.117804] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The ocular surface epithelia, including the stratified but non-keratinized corneal, limbal and conjunctival epithelium, in concert with the epidermal keratinized eyelid epithelium, function together to maintain eye health and vision. Abnormalities in cellular proliferation or differentiation in any of these surface epithelia are central in the pathogenesis of many ocular surface disorders. Goblet cells are important secretory cell components of various epithelia, including the conjunctiva; however, mechanisms that regulate goblet cell differentiation in the conjunctiva are not well understood. Herein, we report that conditional deletion of transforming growth factor β receptor II (Tgfbr2) in keratin 14-positive stratified epithelia causes ocular surface epithelial hyperplasia and conjunctival goblet cell expansion that invaginates into the subconjunctival stroma in the mouse eye. We found that, in the absence of an external phenotype, the ocular surface epithelium develops properly, but young mice displayed conjunctival goblet cell expansion, demonstrating that TGFβ signaling is required for normal restriction of goblet cells within the conjunctiva. We observed increased expression of SAM-pointed domain containing ETS transcription factor (SPDEF) in stratified conjunctival epithelial cells in Tgfbr2 cKO mice, suggesting that TGFβ restricted goblet cell differentiation directly by repressing Spdef transcription. Gain of function of Spdef in keratin 14-positive epithelia resulted in the ectopic formation of goblet cells in the eyelid and peripheral cornea in adult mice. We found that Smad3 bound two distinct sites on the Spdef promoter and that treatment of keratin 14-positive cells with TGFβ inhibited SPDEF activation, thereby identifying a novel mechanistic role for TGFβ in regulating goblet cell differentiation.
Collapse
Affiliation(s)
- Heather A McCauley
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnett Avenue, Cincinnati, OH 45229, USA
| | - Chia-Yang Liu
- Department of Ophthalmology, Edith J. Crawley Vision Research Center, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Aria C Attia
- Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnett Avenue, Cincinnati, OH 45229, USA
| | - Kathryn A Wikenheiser-Brokamp
- Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnett Avenue, Cincinnati, OH 45229, USA Pathology and Laboratory Medicine, Cincinnati Children's Hospital Medical Center and University of Cincinnati, 3333 Burnett Avenue, Cincinnati, OH 45229, USA
| | - Yujin Zhang
- Department of Ophthalmology, Edith J. Crawley Vision Research Center, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Jeffrey A Whitsett
- Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnett Avenue, Cincinnati, OH 45229, USA
| | - Géraldine Guasch
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnett Avenue, Cincinnati, OH 45229, USA
| |
Collapse
|
12
|
Hegde S, Raghavan S. A Skin-depth Analysis of Integrins: Role of the Integrin Network in Health and Disease. ACTA ACUST UNITED AC 2013; 20:155-69. [DOI: 10.3109/15419061.2013.854334] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
13
|
Crim N, Forniés-Paz ME, Monti R, Espósito E, Maccio JP, Urrets-Zavalía JA. In situ carcinoma of the conjunctiva: surgical excision associated with cryotherapy. Clin Ophthalmol 2013; 7:1889-93. [PMID: 24092968 PMCID: PMC3788814 DOI: 10.2147/opth.s50762] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background Although frequently underdiagnosed, squamous cell carcinoma is the most commonly observed malignancy of the conjunctiva. Multiple different treatments have been proposed to date. The purpose of this paper is to report our experience in the treatment of In situ carcinoma of the conjunctiva by surgical excision associated with cryotherapy. Methods Four eyes in four consecutive patients (two men and two women) of average age 53.2 (range 39–71) years at the time of diagnosis of ocular surface squamous neoplasia were treated by simple surgical excision and cryotherapy of the resulting surgical bed margins. In all cases, the diagnosis of in situ carcinoma was confirmed histopathologically. Results On histopathology, the edges of the surgical specimens were free of malignant cells in three of four patients. All patients showed excellent evolution without recurrence. Mean follow-up was 6.5 (range 2–14) years. Conclusion In situ carcinoma of the conjunctiva may be simply and successfully treated with surgical excision and cryotherapy.
Collapse
Affiliation(s)
- Nicolás Crim
- Department of Ophthalmology, University Clinic Reina Fabiola, Universidad Católica de Córdoba, Argentina
| | | | | | | | | | | |
Collapse
|
14
|
Di Girolamo N, Atik A, McCluskey PJ, Wakefield D. Matrix Metalloproteinases and Their Inhibitors in Squamous Cell Carcinoma of the Conjunctiva. Ocul Surf 2013; 11:193-205. [DOI: 10.1016/j.jtos.2013.01.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Revised: 01/17/2013] [Accepted: 01/01/2013] [Indexed: 10/27/2022]
|
15
|
Human limbal epithelial progenitor cells express αvβ5-integrin and the interferon-inducible chemokine CXCL10/IP-10. Stem Cell Res 2013; 11:888-901. [PMID: 23838123 DOI: 10.1016/j.scr.2013.05.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2013] [Revised: 05/29/2013] [Accepted: 05/29/2013] [Indexed: 02/08/2023] Open
Abstract
Stem cell (SC) therapy is the main treatment modality for patients with limbal stem cell deficiency. If limbal epithelial stem cells (LESC) can be more readily identified, isolated and maintained ex vivo, patients could be treated with better quality grafts. With prior knowledge that vitronectin (VN) is present within the LESC niche and that it supports LESC in vitro, we postulated that VN receptors (integrins αvβ3/5) are expressed by, and can be used to identify and isolate LESC. Immunolocalization studies were conducted on human corneas. Corneas were also used to expand limbal epithelial cells from either biopsies or enzyme-dissociated tissue and αvβ3/5 expression determined by flow cytometry. Integrin expressing cells were isolated by magnetic activated cell sorting then assessed by immunocytology, colony forming efficiency, RT-PCR and microarray analysis. Integrin αvβ5(+) cells co-localized to N-cadherin(+)/CK-15(+) putative LESC. αvβ5 was restricted to less than 4% of the total limbal epithelial cells, which expressed higher levels of CK-15 and formed more colonies compared to αvβ5(-) cells. Transcriptional profiling of αvβ5(+/-) cells by microarray identified several highly expressed interferon-inducible genes, which localize to putative LESC. Integrin αvβ5 is a candidate LESC marker since its expression is restricted to the limbus and αvβ5(+) limbal epithelial cells have phenotypic and functional properties of LESC. Knowledge of the niche's molecular composition and the genes expressed by its SC will facilitate isolation and maintenance of these cells for therapeutic purposes.
Collapse
|
16
|
Ordonez P, Di Girolamo N. Limbal epithelial stem cells: role of the niche microenvironment. Stem Cells 2012; 30:100-7. [PMID: 22131201 DOI: 10.1002/stem.794] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The cornea contains a reservoir of self-regenerating epithelial cells that are essential for maintaining its transparency and good vision. The study of stem cells in this functionally important organ has grown over the past four decades, partly due to the ease with which this tissue is visualized, its accessibility with minimally invasive instruments, and the fact that its stem cells are segregated within a transitional zone between two functionally diverse epithelia. While human, animal, and ex vivo models have been instrumental in progressing the corneal stem cell field, there is still much to be discovered about this exquisitely sensitive window for sight. This review will provide an overview of the human cornea, where its stem cells reside and how components of the microenvironment including extracellular matrix proteins and their integrin receptors are thought to govern corneal stem cell homeostasis.
Collapse
Affiliation(s)
- Paula Ordonez
- Inflammation and Infection Research Centre, School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | | |
Collapse
|
17
|
Tchaicha JH, Reyes SB, Shin J, Hossain MG, Lang FF, McCarty JH. Glioblastoma angiogenesis and tumor cell invasiveness are differentially regulated by β8 integrin. Cancer Res 2011; 71:6371-81. [PMID: 21859829 DOI: 10.1158/0008-5472.can-11-0991] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Glioblastoma multiforme (GBM) is a highly invasive brain tumor that develops florid microvascular proliferation and hemorrhage. However, mechanisms that favor invasion versus angiogenesis in this setting remain largely uncharacterized. Here, we show that integrin β8 is an essential regulator of both GBM-induced angiogenesis and tumor cell invasiveness. Highly angiogenic and poorly invasive tumors expressed low levels of β8 integrin, whereas highly invasive tumors with limited neovascularization expressed high levels of β8 integrin. Manipulating β8 integrin protein levels altered the angiogenic and invasive growth properties of GBMs, in part, reflected by a diminished activation of latent TGFβs, which are extracellular matrix protein ligands for β8 integrin. Taken together, these results establish a role for β8 integrin in differential control of angiogenesis versus tumor cell invasion in GBM. Our findings suggest that inhibiting β8 integrin or TGFβ signaling may diminish tumor cell invasiveness during malignant progression and following antivascular therapies.
Collapse
Affiliation(s)
- Jeremy H Tchaicha
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | | | | | | | |
Collapse
|
18
|
Sun H, Hu K, Wu M, Xiong J, Yuan L, Tang Y, Yang Y, Liu H. Contact by melanoma cells causes malignant transformation of human epithelial-like stem cells via alpha V integrin activation of transforming growth factor β1 signaling. Exp Biol Med (Maywood) 2011; 236:352-65. [PMID: 21427239 DOI: 10.1258/ebm.2010.010106] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The embryonic microenvironment is known to suppress the tumorigenic phenotype of aggressive cancer cells; however, the effects of tumorigenic microenvironments on stem cells have not been sufficiently explored due to the lack of suitable model systems. In order to study the tumorigenic microenviornment, we developed a novel in vitro model system for induction of malignant transformation of human epithelial-like stem cells (hEpSCs), involving co-cultivation and close contact of hEpSCs with the A375 melanoma cell line, together with mutagen treatment of hEpSCs with dimethylbenzanthracene (DMBA). Both factors (close contact and mutagen treatment) were required to transform hEpSCs in vitro and cause phenotypic changes characteristic of epithelial to mesenchymal transition (EMT), including colony formation, decreased E-cadherin and increased N-cadherin and vimentin expression. Direct contact between tumor cells and hEpSCs treated with DMBA increased integrin alpha V (ITGAV gene) expression and caused local activation of the transforming growth factor (TGF)-β1/Smad signaling pathways in hEpSCs. The novel model system described here is being used to elucidate the microenvironmental factors and biological mechanisms involved in the induction of neoplastic progression in hEpSCs in vitro by A375 melanoma cells. A better understanding of the molecular mechanisms by which melanoma cells exert these effects on hEpSCs may open up new avenues for therapeutic and preventive cancer interventions.
Collapse
Affiliation(s)
- Hongyu Sun
- Research Center of Developmental Biology and Department of Histology and Embryology, Second Military Medical University, Shanghai, China
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Hsu A, Esmaeli B, Hayek B, Hossain MG, Shinder R, Lazar AJ, McCarty JH. Analysis of αv integrin protein expression in human eyelid and periorbital squamous cell carcinomas. J Cutan Pathol 2011; 38:570-5. [PMID: 21375561 DOI: 10.1111/j.1600-0560.2011.01687.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND Alpha v integrins are receptors for many extracellular matrix (ECM) protein ligands, including latent transforming growth factor betas (TGFβs). Various studies in mice have shown that ablation of genes encoding αv integrin or TGFβ signaling pathway components leads to spontaneous squamous cell carcinomas (SCCs) in the conjunctiva and periocular skin. Here, we have analyzed patterns of αv integrin protein expression and TGFβ signaling in human eyelid and periorbital SCC samples. METHODS An anti-αv integrin antibody was used to immunostain 19 eyelid and periorbital SCC samples. Additionally, tissue lysates from resected normal eyelid and SCC samples were analyzed by immunoblotting for αv integrin protein. Tumor sections were also immunostained with an antibody directed against Smad2, an intracellular signaling protein that is phosphorylated by TGFβ receptors. RESULTS Alpha v integrin protein was highly expressed in the invasive and less-differentiated components of human SCCs. Lower levels of αv integrin protein were detected in more differentiated components of tumors, as well as in SCC in situ. Patterns of phosphorylated Smad2 immunoreactivity correlated with levels αv integrin expression. CONCLUSIONS Alpha v integrin was expressed at robust levels in tumor cells representing less differentiated, more invasive components of SCC; by contrast, well-differentiated cells as well as SCC in situ expressed low levels of αv integrin protein.
Collapse
Affiliation(s)
- Adam Hsu
- Section of Ophthalmology, Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Squamous Neoplasms of the Conjunctiva. Cornea 2011. [DOI: 10.1016/b978-0-323-06387-6.00046-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
21
|
A mosaic mouse model of astrocytoma identifies alphavbeta8 integrin as a negative regulator of tumor angiogenesis. Oncogene 2010; 29:4460-72. [PMID: 20531304 PMCID: PMC3037767 DOI: 10.1038/onc.2010.199] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The process of angiogenesis involves a complex set of cell-cell and cell-extracellular matrix (ECM) interactions that coordinately regulate new blood vessel growth and maturation. Although many factors that promote angiogenesis have been characterized, the identities and mechanisms of action of many endogenous inhibitors of angiogenesis remain unclear. Furthermore, little is known about how tumor cells selectively circumvent the actions of these inhibitors to drive pathological angiogenesis, a requisite event for tumor progression. Using mosaic mouse models of the malignant brain cancer, astrocytoma, we report that tumor cells induce pathological angiogenesis by suppressing expression of the ECM protein receptor αvβ8 integrin. Diminished integrin expression in astrocytomas cells leads to reduced activation of latent TGFβs, resulting in impaired TGFβ receptor signaling events in tumor-associated endothelial cells. These data reveal that astrocytoma cells manipulate their angiogenic balance by selectively suppressing αvβ8 integrin expression/function, and also demonstrate that an adhesion and signaling axis normally involved in developmental brain angiogenesis is pathologically exploited in adult brain tumors.
Collapse
|
22
|
Minea RO, Helchowski CM, Zidovetzki SJ, Costa FK, Swenson SD, Markland FS. Vicrostatin - an anti-invasive multi-integrin targeting chimeric disintegrin with tumor anti-angiogenic and pro-apoptotic activities. PLoS One 2010; 5:e10929. [PMID: 20532165 PMCID: PMC2880590 DOI: 10.1371/journal.pone.0010929] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2009] [Accepted: 05/06/2010] [Indexed: 02/01/2023] Open
Abstract
Similar to other integrin-targeting strategies, disintegrins have previously shown good efficacy in animal cancer models with favorable pharmacological attributes and translational potential. Nonetheless, these polypeptides are notoriously difficult to produce recombinantly due to their particular structure requiring the correct pairing of multiple disulfide bonds for biological activity. Here, we show that a sequence-engineered disintegrin (called vicrostatin or VCN) can be reliably produced in large scale amounts directly in the oxidative cytoplasm of Origami B E. coli. Through multiple integrin ligation (i.e., alphavbeta3, alphavbeta5, and alpha5beta1), VCN targets both endothelial and cancer cells significantly inhibiting their motility through a reconstituted basement membrane. Interestingly, in a manner distinct from other integrin ligands but reminiscent of some ECM-derived endogenous anti-angiogenic fragments previously described in the literature, VCN profoundly disrupts the actin cytoskeleton of endothelial cells (EC) inducing a rapid disassembly of stress fibers and actin reorganization, ultimately interfering with EC's ability to invade and form tubes (tubulogenesis). Moreover, here we show for the first time that the addition of a disintegrin to tubulogenic EC sandwiched in vitro between two Matrigel layers negatively impacts their survival despite the presence of abundant haptotactic cues. A liposomal formulation of VCN (LVCN) was further evaluated in vivo in two animal cancer models with different growth characteristics. Our data demonstrate that LVCN is well tolerated while exerting a significant delay in tumor growth and an increase in the survival of treated animals. These results can be partially explained by potent tumor anti-angiogenic and pro-apoptotic effects induced by LVCN.
Collapse
Affiliation(s)
- Radu O. Minea
- Department of Biochemistry and Molecular Biology and Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Corey M. Helchowski
- Department of Biochemistry and Molecular Biology and Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Samuel J. Zidovetzki
- Department of Biochemistry and Molecular Biology and Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Fritz K. Costa
- Department of Biochemistry and Molecular Biology and Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Stephen D. Swenson
- Department of Biochemistry and Molecular Biology and Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Francis S. Markland
- Department of Biochemistry and Molecular Biology and Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| |
Collapse
|
23
|
Bailey JM, Creamer BA, Hollingsworth MA. What a fish can learn from a mouse: principles and strategies for modeling human cancer in mice. Zebrafish 2010; 6:329-37. [PMID: 20047466 DOI: 10.1089/zeb.2009.0626] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
This review highlights the current techniques used to generate transgenic mouse models of cancer, with an emphasis on recent advances in the use of ubiquitous promoters, models that use Cre-loxP and Flip-FRT recombinase technology, inducible systems, RNAi to target genes, and transposon mutagenesis. A concluding section discusses new imaging systems that visualize tumor progression and the microenvironment in vivo. In this review, these techniques and strategies used in mouse models of cancer are highlighted, as they are pertinent and relevant to the development of zebrafish models of cancer.
Collapse
Affiliation(s)
- Jennifer M Bailey
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | | | | |
Collapse
|
24
|
Abstract
In this issue of Clinical Cancer Research, Conti et al. identify a crucial cell adhesion and signaling axis that promotes the proliferation, survival, and drug-resistant properties of metastatic colorectal cancer cells in the liver. The components of this pathway may be effective targets for therapeutically treating established metastatic tumors in patients with colorectal adenocarcinomas.
Collapse
Affiliation(s)
- Joseph H McCarty
- Department of Cancer Biology, University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030, USA.
| |
Collapse
|