1
|
Phongsavanh M, Bizot F, Saoudi A, Gastaldi C, Le Coz O, Tensorer T, Brisebard E, Garcia L, Goyenvalle A. Valproic Acid Improves Antisense-Mediated Exon-Skipping Efficacy in mdx Mice. Int J Mol Sci 2025; 26:2583. [PMID: 40141224 PMCID: PMC11942597 DOI: 10.3390/ijms26062583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 03/02/2025] [Accepted: 03/11/2025] [Indexed: 03/28/2025] Open
Abstract
Duchenne muscular dystrophy (DMD) is a severe genetic disorder characterized by the progressive degeneration of skeletal and cardiac muscles due to the absence of dystrophin. Exon-skipping therapy is among the most promising approaches for treating DMD, with several antisense oligonucleotides (ASO) already approved by the FDA; however, their limited efficacy highlights substantial potential for further improvement. In this study, we evaluate the potential of combining ASO with valproic acid (VPA) to enhance dystrophin expression and improve functional outcomes in a murine model of DMD. Our results indicate that the ASO+VPA treatment significantly increases dystrophin restoration across various muscle tissues, with particularly pronounced effects observed in cardiac muscle, where levels are nearly doubled compared to ASO monotherapy. Additionally, we demonstrate significant improvements in functional outcomes in treated mdx mice. Our findings suggest that the combined ASO+VPA therapy holds promise as an effective therapeutic approach to ameliorate muscle function in DMD, warranting further exploration of its mechanistic pathways and long-term benefits.
Collapse
MESH Headings
- Animals
- Valproic Acid/pharmacology
- Valproic Acid/therapeutic use
- Mice, Inbred mdx
- Muscular Dystrophy, Duchenne/genetics
- Muscular Dystrophy, Duchenne/drug therapy
- Muscular Dystrophy, Duchenne/metabolism
- Muscular Dystrophy, Duchenne/therapy
- Exons/genetics
- Oligonucleotides, Antisense/genetics
- Oligonucleotides, Antisense/pharmacology
- Mice
- Dystrophin/genetics
- Dystrophin/metabolism
- Disease Models, Animal
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/drug effects
- Male
- Mice, Inbred C57BL
Collapse
Affiliation(s)
- Micky Phongsavanh
- Université Paris-Saclay, UVSQ, Inserm, END-ICAP, 78000 Versailles, France; (M.P.); (O.L.C.); (L.G.)
| | - Flavien Bizot
- Université Paris-Saclay, UVSQ, Inserm, END-ICAP, 78000 Versailles, France; (M.P.); (O.L.C.); (L.G.)
| | - Amel Saoudi
- Université Paris-Saclay, UVSQ, Inserm, END-ICAP, 78000 Versailles, France; (M.P.); (O.L.C.); (L.G.)
| | - Cecile Gastaldi
- Medical Biology Department, Centre Scientifique de Monaco, 98000 Monaco, Monaco;
- LIA BAHN, CSM-UVSQ, 98000 Monaco, Monaco
| | - Olivier Le Coz
- Université Paris-Saclay, UVSQ, Inserm, END-ICAP, 78000 Versailles, France; (M.P.); (O.L.C.); (L.G.)
| | - Thomas Tensorer
- SQY Therapeutics, UVSQ, 78180 Montigny le Bretonneux, France
| | | | - Luis Garcia
- Université Paris-Saclay, UVSQ, Inserm, END-ICAP, 78000 Versailles, France; (M.P.); (O.L.C.); (L.G.)
- Medical Biology Department, Centre Scientifique de Monaco, 98000 Monaco, Monaco;
| | - Aurélie Goyenvalle
- Université Paris-Saclay, UVSQ, Inserm, END-ICAP, 78000 Versailles, France; (M.P.); (O.L.C.); (L.G.)
- Medical Biology Department, Centre Scientifique de Monaco, 98000 Monaco, Monaco;
| |
Collapse
|
2
|
Hopkinson M, Pitsillides AA. Extracellular matrix: Dystroglycan interactions-Roles for the dystrophin-associated glycoprotein complex in skeletal tissue dynamics. Int J Exp Pathol 2025; 106:e12525. [PMID: 39923120 PMCID: PMC11807010 DOI: 10.1111/iep.12525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 12/23/2024] [Accepted: 12/29/2024] [Indexed: 02/10/2025] Open
Abstract
Contributions made by the dystrophin-associated glycoprotein complex (DGC) to cell-cell and cell-extracellular matrix (ECM) interactions are vital in development, homeostasis and pathobiology. This review explores how DGC functions may extend to skeletal pathophysiology by appraising the known roles of its major ECM ligands, and likely associated DGC signalling pathways, in regulating cartilage and bone cell behaviour and emergent skeletal phenotypes. These considerations will be contextualised by highlighting the potential of studies into the role of the DGC in isolated chondrocytes, osteoblasts and osteoclasts, and by fuller deliberation of skeletal phenotypes that may emerge in very young mice lacking vital, yet diverse core elements of the DGC. Our review points to roles for individual DGC components-including the glycosylation of dystroglycan itself-beyond the establishment of membrane stability which clearly accounts for severe muscle phenotypes in muscular dystrophy. It implies that the short stature, low bone mineral density, poor bone health and greater fracture risk in these patients, which has been attributed due to primary deficiencies in muscle-evoked skeletal loading, may instead arise due to primary roles for the DGC in controlling skeletal tissue (re)modelling.
Collapse
Affiliation(s)
- Mark Hopkinson
- Skeletal Biology Group, Comparative Biomedical SciencesRoyal Veterinary CollegeLondonUK
| | - Andrew A. Pitsillides
- Skeletal Biology Group, Comparative Biomedical SciencesRoyal Veterinary CollegeLondonUK
| |
Collapse
|
3
|
Wu ZJ, Li YC, Zheng Y, Zhou MQ, Li H, Wu SX, Zhao XY, Yang YH, Du L. Differential effects of EPA and DHA on aging-related sarcopenia in mice and possible mechanisms involved. Food Funct 2025; 16:601-616. [PMID: 39704327 DOI: 10.1039/d4fo04341c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
Sarcopenia frequently occurs with aging and leads to major adverse impacts in elderly individuals. The protective effects of omega-3 polyunsaturated fatty acids against aging-related sarcopenia have been demonstrated; however, the effect and underlying mechanism of EPA or DHA alone remain inconclusive. Hence, the present study was aimed to clarify the differential effects and possible mechanisms of EPA and DHA on aging-related sarcopenia. In this study, two-month-old and eighteen-month-old male C57BL/6J mice were fed with an AIN-93M diet and an AIN-93M diet containing 1% EPA or 1% DHA for 24 weeks, respectively. The results revealed that EPA and DHA supplementation effectively alleviated the decline in grip strength, skeletal muscle mass, and myofiber cross-sectional areas in aged mice, with EPA exhibiting a better effect against aging-related sarcopenia than DHA. The ROS scavenging role of EPA in aged skeletal muscle was also superior to that of DHA. Additionally, EPA showed a stronger role in improving protein turnover and myogenesis in aged skeletal muscle, as evidenced by suppressing the activation of FoxO3a and NF-κB, blunting the expression levels of muscle atrophy markers MAFbx and MuRF1, activating the PI3K/Akt/mTOR signaling pathway, and elevating MyoD expression. Moreover, EPA also revealed a better effect on inhibiting mitochondria- and endoplasmic reticulum stress-mediated apoptosis in aged skeletal muscle. Furthermore, EPA manifested a more pronounced effect on improving mitochondrial damage of aged skeletal muscle than DHA, and the reason might be due to its superior capability of regulating mitochondrial quality control, as clearly shown by enhancing mitochondrial biogenesis through the AMPK/PGC-1α-dependent pathway, restraining the loss of mitochondrial fusion and fission proteins including Opa1, Mfn2, and Fis1, and promoting mitophagy via the PINK1/Parkin-dependent pathway.
Collapse
Affiliation(s)
- Zi-Jian Wu
- Research Center of Translational Medicine, Jinan Central Hospital, Shandong University, No. 105 Jiefang Road, Jinan, Shandong, 250013, China.
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, No. 44 Wenhuaxi Road, Jinan, Shandong, 250012, China
| | - Ying-Chao Li
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, No. 44 Wenhuaxi Road, Jinan, Shandong, 250012, China
| | - Yan Zheng
- Research Center of Translational Medicine, Central Hospital Affiliated to Shandong First Medical University, No. 105 Jiefang Road, Jinan, Shandong, 250013, China
| | - Meng-Qing Zhou
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, No. 44 Wenhuaxi Road, Jinan, Shandong, 250012, China
- Suzhou Centers for Diseases Prevention and Control, No. 498 Qingyunbei Road, Suzhou, Anhui, 234000, China
| | - Hui Li
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, No. 44 Wenhuaxi Road, Jinan, Shandong, 250012, China
| | - Shi-Xiang Wu
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, No. 44 Wenhuaxi Road, Jinan, Shandong, 250012, China
| | - Xin-Yue Zhao
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, No. 44 Wenhuaxi Road, Jinan, Shandong, 250012, China
| | - Yu-Hong Yang
- School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), No. 3501 Daxue Road, Jinan, Shandong, 250353, China.
- Shandong Haizhibao Ocean Science and Technology Co., Ltd., No. 259 Pinghai East Road, Rongcheng City, Shandong, 264300, China
| | - Lei Du
- Research Center of Translational Medicine, Jinan Central Hospital, Shandong University, No. 105 Jiefang Road, Jinan, Shandong, 250013, China.
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, No. 44 Wenhuaxi Road, Jinan, Shandong, 250012, China
| |
Collapse
|
4
|
Luna-Angulo A, Landa-Solís C, Escobar-Cedillo RE, Estrada-Mena FJ, Sánchez-Chapul L, Gómez-Díaz B, Carrillo-Mora P, Avilés-Arnaut H, Jiménez-Hernández L, Jiménez-Hernández DA, Miranda-Duarte A. Pharmacological Treatments and Therapeutic Targets in Muscle Dystrophies Generated by Alterations in Dystrophin-Associated Proteins. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1060. [PMID: 39064489 PMCID: PMC11279157 DOI: 10.3390/medicina60071060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/21/2024] [Accepted: 06/24/2024] [Indexed: 07/28/2024]
Abstract
Muscular dystrophies (MDs) are a heterogeneous group of diseases of genetic origin characterized by progressive skeletal muscle degeneration and weakness. There are several types of MDs, varying in terms of age of onset, severity, and pattern of the affected muscles. However, all of them worsen over time, and many patients will eventually lose their ability to walk. In addition to skeletal muscle effects, patients with MDs may present cardiac and respiratory disorders, generating complications that could lead to death. Interdisciplinary management is required to improve the surveillance and quality of life of patients with an MD. At present, pharmacological therapy is only available for Duchene muscular dystrophy (DMD)-the most common type of MD-and is mainly based on the use of corticosteroids. Other MDs caused by alterations in dystrophin-associated proteins (DAPs) are less frequent but represent an important group within these diseases. Pharmacological alternatives with clinical potential in patients with MDs and other proteins associated with dystrophin have been scarcely explored. This review focuses on drugs and molecules that have shown beneficial effects, mainly in experimental models involving alterations in DAPs. The mechanisms associated with the effects leading to promising results regarding the recovery or maintenance of muscle strength and reduction in fibrosis in the less-common MDs (i.e., with respect to DMD) are explored, and other therapeutic targets that could contribute to maintaining the homeostasis of muscle fibers, involving different pathways, such as calcium regulation, hypertrophy, and maintenance of satellite cell function, are also examined. It is possible that some of the drugs explored here could be used to affordably improve the muscular function of patients until a definitive treatment for MDs is developed.
Collapse
Affiliation(s)
- Alexandra Luna-Angulo
- División de Neurociencias Clinicas, Instituto Nacional de Rehabilitación “Luis Guillermo Ibarra Ibarra”, Calzada México-Xochimilco, No. 289, Arenal de Guadalupe, Tlalpan, Ciudad de México 14389, Mexico
| | - Carlos Landa-Solís
- Unidad de Ingeniería de Tejidos, Terapia Celular y Medicina Regenerativa, División de Biotecnología, Instituto Nacional de Rehabilitación “Luis Guillermo Ibarra Ibarra”, Calzada México-Xochimilco, No. 289, Arenal de Guadalupe, Tlalpan, Ciudad de México 14389, Mexico
| | - Rosa Elena Escobar-Cedillo
- Departamento de Electromiografía y Distrofia Muscular, Instituto Nacional de Rehabilitación “Luis Guillermo Ibarra Ibarra”, Calzada México-Xochimilco, No. 289, Arenal de Guadalupe, Tlalpan, Ciudad de México 14389, Mexico
| | - Francisco Javier Estrada-Mena
- Laboratorio de Biología Molecular, Universidad Panamericana, Facultad de Ciencias de la Salud, Augusto Rodin 498, Ciudad de México 03920, Mexico
| | - Laura Sánchez-Chapul
- División de Neurociencias Clinicas, Instituto Nacional de Rehabilitación “Luis Guillermo Ibarra Ibarra”, Calzada México-Xochimilco, No. 289, Arenal de Guadalupe, Tlalpan, Ciudad de México 14389, Mexico
| | - Benjamín Gómez-Díaz
- Departamento de Medicina Genómica, Instituto Nacional de Rehabilitación “Luis Guillermo Ibarra Ibarra”, Calzada México-Xochimilco, No. 289, Arenal de Guadalupe, Tlalpan, Ciudad de México 14389, Mexico
| | - Paul Carrillo-Mora
- División de Neurociencias Clinicas, Instituto Nacional de Rehabilitación “Luis Guillermo Ibarra Ibarra”, Calzada México-Xochimilco, No. 289, Arenal de Guadalupe, Tlalpan, Ciudad de México 14389, Mexico
| | - Hamlet Avilés-Arnaut
- Facultad de Ciencias Biológicas de la Universidad Autónoma de Nuevo Leon, Av. Universidad s/n Ciudad Universitaria, San Nicolas de los Garza 66455, Mexico
| | | | | | - Antonio Miranda-Duarte
- Departamento de Medicina Genómica, Instituto Nacional de Rehabilitación “Luis Guillermo Ibarra Ibarra”, Calzada México-Xochimilco, No. 289, Arenal de Guadalupe, Tlalpan, Ciudad de México 14389, Mexico
| |
Collapse
|
5
|
Kiełbowski K, Bakinowska E, Procyk G, Ziętara M, Pawlik A. The Role of MicroRNA in the Pathogenesis of Duchenne Muscular Dystrophy. Int J Mol Sci 2024; 25:6108. [PMID: 38892293 PMCID: PMC11172814 DOI: 10.3390/ijms25116108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 05/29/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
Duchenne muscular dystrophy (DMD) is an X-linked progressive disorder associated with muscle wasting and degeneration. The disease is caused by mutations in the gene that encodes dystrophin, a protein that links the cytoskeleton with cell membrane proteins. The current treatment methods aim to relieve the symptoms of the disease or partially rescue muscle functionality. However, they are insufficient to suppress disease progression. In recent years, studies have uncovered an important role for non-coding RNAs (ncRNAs) in regulating the progression of numerous diseases. ncRNAs, such as micro-RNAs (miRNAs), bind to their target messenger RNAs (mRNAs) to suppress translation. Understanding the mechanisms involving dysregulated miRNAs can improve diagnosis and suggest novel treatment methods for patients with DMD. This review presents the available evidence on the role of altered expression of miRNAs in the pathogenesis of DMD. We discuss the involvement of these molecules in the processes associated with muscle physiology and DMD-associated cardiomyopathy.
Collapse
Affiliation(s)
- Kajetan Kiełbowski
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (K.K.); (E.B.); (M.Z.)
| | - Estera Bakinowska
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (K.K.); (E.B.); (M.Z.)
| | - Grzegorz Procyk
- 1st Chair and Department of Cardiology, Medical University of Warsaw, Banacha 1A, 02-097 Warsaw, Poland;
- Doctoral School, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Marta Ziętara
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (K.K.); (E.B.); (M.Z.)
| | - Andrzej Pawlik
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (K.K.); (E.B.); (M.Z.)
| |
Collapse
|
6
|
Livshits G, Kalinkovich A. Restoration of epigenetic impairment in the skeletal muscle and chronic inflammation resolution as a therapeutic approach in sarcopenia. Ageing Res Rev 2024; 96:102267. [PMID: 38462046 DOI: 10.1016/j.arr.2024.102267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/17/2024] [Accepted: 03/06/2024] [Indexed: 03/12/2024]
Abstract
Sarcopenia is an age-associated loss of skeletal muscle mass, strength, and function, accompanied by severe adverse health outcomes, such as falls and fractures, functional decline, high health costs, and mortality. Hence, its prevention and treatment have become increasingly urgent. However, despite the wide prevalence and extensive research on sarcopenia, no FDA-approved disease-modifying drugs exist. This is probably due to a poor understanding of the mechanisms underlying its pathophysiology. Recent evidence demonstrate that sarcopenia development is characterized by two key elements: (i) epigenetic dysregulation of multiple molecular pathways associated with sarcopenia pathogenesis, such as protein remodeling, insulin resistance, mitochondria impairments, and (ii) the creation of a systemic, chronic, low-grade inflammation (SCLGI). In this review, we focus on the epigenetic regulators that have been implicated in skeletal muscle deterioration, their individual roles, and possible crosstalk. We also discuss epidrugs, which are the pharmaceuticals with the potential to restore the epigenetic mechanisms deregulated in sarcopenia. In addition, we discuss the mechanisms underlying failed SCLGI resolution in sarcopenia and the potential application of pro-resolving molecules, comprising specialized pro-resolving mediators (SPMs) and their stable mimetics and receptor agonists. These compounds, as well as epidrugs, reveal beneficial effects in preclinical studies related to sarcopenia. Based on these encouraging observations, we propose the combination of epidrugs with SCLI-resolving agents as a new therapeutic approach for sarcopenia that can effectively attenuate of its manifestations.
Collapse
Affiliation(s)
- Gregory Livshits
- Department of Morphological Sciences, Adelson School of Medicine, Ariel University, Ariel 4077625, Israel; Department of Anatomy and Anthropology, Faculty of Medical and Health Sciences, School of Medicine, Tel-Aviv University, Tel-Aviv 6905126, Israel.
| | - Alexander Kalinkovich
- Department of Anatomy and Anthropology, Faculty of Medical and Health Sciences, School of Medicine, Tel-Aviv University, Tel-Aviv 6905126, Israel
| |
Collapse
|
7
|
Bez Batti Angulski A, Hosny N, Cohen H, Martin AA, Hahn D, Bauer J, Metzger JM. Duchenne muscular dystrophy: disease mechanism and therapeutic strategies. Front Physiol 2023; 14:1183101. [PMID: 37435300 PMCID: PMC10330733 DOI: 10.3389/fphys.2023.1183101] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/24/2023] [Indexed: 07/13/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is a severe, progressive, and ultimately fatal disease of skeletal muscle wasting, respiratory insufficiency, and cardiomyopathy. The identification of the dystrophin gene as central to DMD pathogenesis has led to the understanding of the muscle membrane and the proteins involved in membrane stability as the focal point of the disease. The lessons learned from decades of research in human genetics, biochemistry, and physiology have culminated in establishing the myriad functionalities of dystrophin in striated muscle biology. Here, we review the pathophysiological basis of DMD and discuss recent progress toward the development of therapeutic strategies for DMD that are currently close to or are in human clinical trials. The first section of the review focuses on DMD and the mechanisms contributing to membrane instability, inflammation, and fibrosis. The second section discusses therapeutic strategies currently used to treat DMD. This includes a focus on outlining the strengths and limitations of approaches directed at correcting the genetic defect through dystrophin gene replacement, modification, repair, and/or a range of dystrophin-independent approaches. The final section highlights the different therapeutic strategies for DMD currently in clinical trials.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Joseph M. Metzger
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN, United States
| |
Collapse
|
8
|
Shnayder NA, Grechkina VV, Khasanova AK, Bochanova EN, Dontceva EA, Petrova MM, Asadullin AR, Shipulin GA, Altynbekov KS, Al-Zamil M, Nasyrova RF. Therapeutic and Toxic Effects of Valproic Acid Metabolites. Metabolites 2023; 13:metabo13010134. [PMID: 36677060 PMCID: PMC9862929 DOI: 10.3390/metabo13010134] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
Valproic acid (VPA) and its salts are psychotropic drugs that are widely used in neurological diseases (epilepsy, neuropathic pain, migraine, etc.) and psychiatric disorders (schizophrenia, bipolar affective disorder, addiction diseases, etc.). In addition, the indications for the appointment of valproate have been expanding in recent years in connection with the study of new mechanisms of action of therapeutic and toxic metabolites of VPA in the human body. Thus, VPA is considered a component of disease-modifying therapy for multiple tumors, neurodegenerative diseases (Huntington's disease, Parkinson's disease, Duchenne progressive dystrophy, etc.), and human immunodeficiency syndrome. The metabolism of VPA is complex and continues to be studied. Known pathways of VPA metabolism include: β-oxidation in the tricarboxylic acid cycle (acetylation); oxidation with the participation of cytochrome P-450 isoenzymes (P-oxidation); and glucuronidation. The complex metabolism of VPA explains the diversity of its active and inactive metabolites, which have therapeutic, neutral, or toxic effects. It is known that some active metabolites of VPA may have a stronger clinical effect than VPA itself. These reasons explain the relevance of this narrative review, which summarizes the results of studies of blood (serum, plasma) and urinary metabolites of VPA from the standpoint of the pharmacogenomics and pharmacometabolomics. In addition, a new personalized approach to assessing the cumulative risk of developing VPA-induced adverse reactions is presented and ways for their correction are proposed depending on the patient's pharmacogenetic profile and the level of therapeutic and toxic VPA metabolites in the human body fluids (blood, urine).
Collapse
Affiliation(s)
- Natalia A. Shnayder
- Institute of Personalized Psychiatry and Neurology, Shared Core Facilities, V.M. Bekhterev National Medical Research Centre for Psychiatry and Neurology, 192019 Saint Petersburg, Russia
- Shared Core Facilities “Molecular and Cell Technologies”, V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia
- Correspondence: (N.A.S.); (R.F.N.); Tel.: +7-(812)-620-0222 (N.A.S. & R.F.N.)
| | - Violetta V. Grechkina
- Institute of Personalized Psychiatry and Neurology, Shared Core Facilities, V.M. Bekhterev National Medical Research Centre for Psychiatry and Neurology, 192019 Saint Petersburg, Russia
| | - Aiperi K. Khasanova
- Department of Psychiatry, Russian Medical Academy for Continual Professional Education, 125993 Moscow, Russia
| | - Elena N. Bochanova
- Shared Core Facilities “Molecular and Cell Technologies”, V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia
| | - Evgenia A. Dontceva
- Shared Core Facilities “Molecular and Cell Technologies”, V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia
| | - Marina M. Petrova
- Shared Core Facilities “Molecular and Cell Technologies”, V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia
| | - Azat R. Asadullin
- Department of Psychiatry and Addiction, Bashkir State Medical University, 45000 Ufa, Russia
| | - German A. Shipulin
- Centre for Strategic Planning and Management of Biomedical Health Risks, 119121 Moscow, Russia
| | - Kuanysh S. Altynbekov
- Republican Scientific and Practical Center of Mental Health, Almaty 050022, Kazakhstan
- Department of Psychiatry and Narcology, S.D. Asfendiarov Kazakh National Medical University, Almaty 050022, Kazakhstan
| | - Mustafa Al-Zamil
- Department of Physiotherapy, Faculty of Continuing Medical Education, Peoples’ Friendship University of Russia, 11798 Moscow, Russia
| | - Regina F. Nasyrova
- Institute of Personalized Psychiatry and Neurology, Shared Core Facilities, V.M. Bekhterev National Medical Research Centre for Psychiatry and Neurology, 192019 Saint Petersburg, Russia
- Correspondence: (N.A.S.); (R.F.N.); Tel.: +7-(812)-620-0222 (N.A.S. & R.F.N.)
| |
Collapse
|
9
|
Histone deacetylase inhibitors improve antisense-mediated exon-skipping efficacy in mdx mice. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 30:606-620. [PMID: 36514350 PMCID: PMC9722397 DOI: 10.1016/j.omtn.2022.11.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022]
Abstract
Antisense-mediated exon skipping is one of the most promising therapeutic strategies for Duchenne muscular dystrophy (DMD), and some antisense oligonucleotide (ASO) drugs have already been approved by the US FDA despite their low efficacy. The potential of this therapy is still limited by several challenges, including the reduced expression of the dystrophin transcript and the strong 5'-3' imbalance in mutated transcripts. We therefore hypothesize that increasing histone acetylation using histone deacetylase inhibitors (HDACi) could correct the transcript imbalance, offering more available pre-mRNA target and ultimately increasing dystrophin rescue. Here, we evaluated the impact of such a combined therapy on the Dmd transcript imbalance phenomenon and on dystrophin restoration levels in mdx mice. Analysis of the Dmd transcript levels at different exon-exon junctions revealed a tendency to correct the 5'-3' imbalance phenomenon following treatment with HDACi. Significantly higher levels of dystrophin restoration (up to 74% increase) were obtained with givinostat and valproic acid compared with mice treated with ASO alone. Additionally, we demonstrate an increase in H3K9 acetylation in human myocytes after treatment with valproic acid. These findings indicate that HDACi can improve the therapeutic potential of exon-skipping approaches, offering promising perspectives for the treatment of DMD.
Collapse
|
10
|
Jin J, Li F, Fan C, Wu Y, He C. Elevated mir-145-5p is associated with skeletal muscle dysfunction and triggers apoptotic cell death in C2C12 myotubes. J Muscle Res Cell Motil 2022; 43:135-145. [PMID: 35753017 DOI: 10.1007/s10974-022-09624-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 06/06/2022] [Indexed: 11/25/2022]
Abstract
Skeletal muscle dysfunction is a common comorbidity of chronic obstructive pulmonary disease (COPD), and the molecular mechanisms regarding to the pathogenesis of this disease have not been elucidated. In this study, a novel miR-145-5p was significantly upregulated in the serum collected from patients with COPD-associated muscle atrophy, in contrast with the normal participants. Then, we evidenced that silencing of miR-145-5p suppressed cell death and elongated cell survival during cell culture process. Consistently, upregulation of miR-145-5p induced cell apoptosis and restrain cell viability in the C2C12 cells, suggesting that miR-145-5p contributes to cell death. Further experiments evidenced that miR-145-5p decreased the expression levels of phosphorylated PI3K (p-PI3K), Akt (p-Akt) and mTOR (p-mTOR) to inactivate the PI3K/Akt/mTOR pathway, and this pathway was also reactivated by miR-145-5p ablation. Finally, we proved that the protective effects of miR-145-5p ablation were abrogated by co-treating cells with PI3K inhibitor LY294002. Taken together, we concluded that miR-145-5p promoted cell death to facilitate muscle dysfunctions via inactivating the PI3K/Akt/mTOR pathway.
Collapse
Affiliation(s)
- Jing Jin
- Department of TCM, First Affiliated Hospital of Xinjiang Medical University, No. 137, Liyushan South Road, Xinshi District, Urumqi, 830011, Xinjiang, China
| | - Fanyi Li
- Department of TCM, First Affiliated Hospital of Xinjiang Medical University, No. 137, Liyushan South Road, Xinshi District, Urumqi, 830011, Xinjiang, China
| | - Caihong Fan
- Department of TCM, First Affiliated Hospital of Xinjiang Medical University, No. 137, Liyushan South Road, Xinshi District, Urumqi, 830011, Xinjiang, China
| | - Yu Wu
- Department of TCM, First Affiliated Hospital of Xinjiang Medical University, No. 137, Liyushan South Road, Xinshi District, Urumqi, 830011, Xinjiang, China
| | - Chunhui He
- Department of TCM, First Affiliated Hospital of Xinjiang Medical University, No. 137, Liyushan South Road, Xinshi District, Urumqi, 830011, Xinjiang, China.
| |
Collapse
|
11
|
Coles CA, Woodcock I, Pellicci DG, Houweling PJ. A Spotlight on T Lymphocytes in Duchenne Muscular Dystrophy-Not Just a Muscle Defect. Biomedicines 2022; 10:535. [PMID: 35327337 PMCID: PMC8945129 DOI: 10.3390/biomedicines10030535] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/25/2022] [Accepted: 02/01/2022] [Indexed: 11/16/2022] Open
Abstract
The lack of dystrophin in Duchenne muscular dystrophy (DMD) results in membrane fragility resulting in contraction-induced muscle damage and subsequent inflammation. The impact of inflammation is profound, resulting in fibrosis of skeletal muscle, the diaphragm and heart, which contributes to muscle weakness, reduced quality of life and premature death. To date, the innate immune system has been the major focus in individuals with DMD, and our understanding of the adaptive immune system, specifically T cells, is limited. Targeting the immune system has been the focus of multiple clinical trials for DMD and is considered a vital step in the development of better treatments. However, we must first have a complete picture of the involvement of the immune systems in dystrophic muscle disease to better understand how inflammation influences disease progression and severity. This review focuses on the role of T cells in DMD, highlighting the importance of looking beyond skeletal muscle when considering how the loss of dystrophin impacts disease progression. Finally, we propose that targeting T cells is a potential novel therapeutic in the treatment of DMD.
Collapse
Affiliation(s)
- Chantal A. Coles
- Murdoch Children’s Research Institute (MCRI), Melbourne, VIC 3052, Australia; (I.W.); (D.G.P.); (P.J.H.)
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, VIC 3052, Australia
| | - Ian Woodcock
- Murdoch Children’s Research Institute (MCRI), Melbourne, VIC 3052, Australia; (I.W.); (D.G.P.); (P.J.H.)
- Royal Children’s Hospital, Melbourne, VIC 3052, Australia
| | - Daniel G. Pellicci
- Murdoch Children’s Research Institute (MCRI), Melbourne, VIC 3052, Australia; (I.W.); (D.G.P.); (P.J.H.)
- Department of Paediatrics, The University of Melbourne, Melbourne, VIC 3052, Australia
| | - Peter J. Houweling
- Murdoch Children’s Research Institute (MCRI), Melbourne, VIC 3052, Australia; (I.W.); (D.G.P.); (P.J.H.)
- Department of Paediatrics, The University of Melbourne, Melbourne, VIC 3052, Australia
| |
Collapse
|
12
|
Sato A, Kotajima-Murakami H, Tanaka M, Katoh Y, Ikeda K. Influence of Prenatal Drug Exposure, Maternal Inflammation, and Parental Aging on the Development of Autism Spectrum Disorder. Front Psychiatry 2022; 13:821455. [PMID: 35222122 PMCID: PMC8863673 DOI: 10.3389/fpsyt.2022.821455] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 01/12/2022] [Indexed: 12/17/2022] Open
Abstract
Autism spectrum disorder (ASD) affects reciprocal social interaction and produces abnormal repetitive, restrictive behaviors and interests. The diverse causes of ASD are divided into genetic alterations and environmental risks. The prevalence of ASD has been rising for several decades, which might be related to environmental risks as it is difficult to consider that the prevalence of genetic disorders related to ASD would increase suddenly. The latter includes (1) exposure to medications, such as valproic acid (VPA) and selective serotonin reuptake inhibitors (SSRIs) (2), maternal complications during pregnancy, including infection and hypertensive disorders of pregnancy, and (3) high parental age. Epidemiological studies have indicated a pathogenetic role of prenatal exposure to VPA and maternal inflammation in the development of ASD. VPA is considered to exert its deleterious effects on the fetal brain through several distinct mechanisms, such as alterations of γ-aminobutyric acid signaling, the inhibition of histone deacetylase, the disruption of folic acid metabolism, and the activation of mammalian target of rapamycin. Maternal inflammation that is caused by different stimuli converges on a higher load of proinflammatory cytokines in the fetal brain. Rodent models of maternal exposure to SSRIs generate ASD-like behavior in offspring, but clinical correlations with these preclinical findings are inconclusive. Hypertensive disorders of pregnancy and advanced parental age increase the risk of ASD in humans, but the mechanisms have been poorly investigated in animal models. Evidence of the mechanisms by which environmental factors are related to ASD is discussed, which may contribute to the development of preventive and therapeutic interventions for ASD.
Collapse
Affiliation(s)
- Atsushi Sato
- Department of Pediatrics, The University of Tokyo Hospital, Tokyo, Japan.,Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | | | - Miho Tanaka
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan.,Department of Psychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yoshihisa Katoh
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan.,Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kazutaka Ikeda
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| |
Collapse
|
13
|
Sato A, Ikeda K. Genetic and Environmental Contributions to Autism Spectrum Disorder Through Mechanistic Target of Rapamycin. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2021; 2:95-105. [PMID: 36325164 PMCID: PMC9616270 DOI: 10.1016/j.bpsgos.2021.08.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 08/17/2021] [Accepted: 08/18/2021] [Indexed: 02/06/2023] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder that affects an individual’s reciprocal social interaction and communication ability. Numerous genetic and environmental conditions are associated with ASD, including tuberous sclerosis complex, phosphatase and tensin homolog hamartoma tumor syndrome, fragile X syndrome, and neurofibromatosis 1. The pathogenic molecular mechanisms of these diseases are integrated into the hyperactivation of mTORC1 (mechanistic target of rapamycin complex 1). Rodent models of these diseases have shown high mTORC1 activity in the brain and ASD-related behavioral deficits, which were reversed by the mTORC1 inhibitor rapamycin. Environmental stress can also affect this signaling pathway. In utero exposure to valproate caused ASD in offspring and enhanced mTORC1 activity in the brain, which was sensitive to mTORC1 inhibition. mTORC1 is a signaling hub for diverse cellular functions, including protein synthesis, through the phosphorylation of its targets, such as ribosomal protein S6 kinases. Metabotropic glutamate receptor 5–mediated synaptic function is also affected by the dysregulation of mTORC1 activity, such as in fragile X syndrome and tuberous sclerosis complex. Reversing these downstream changes that are associated with mTORC1 activation normalizes behavioral defects in rodents. Despite abundant preclinical evidence, few clinical studies have investigated the treatment of ASD and cognitive deficits. Therapeutics other than mTORC1 inhibitors failed to show efficacy in fragile X syndrome and neurofibromatosis 1. mTORC1 inhibitors have been tested mainly in tuberous sclerosis complex, and their effects on ASD and neuropsychological deficits are promising. mTORC1 is a promising target for the pharmacological treatment of ASD associated with mTORC1 activation.
Collapse
|
14
|
Singh D, Gupta S, Verma I, Morsy MA, Nair AB, Ahmed ASF. Hidden pharmacological activities of valproic acid: A new insight. Biomed Pharmacother 2021; 142:112021. [PMID: 34463268 DOI: 10.1016/j.biopha.2021.112021] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 07/28/2021] [Accepted: 08/07/2021] [Indexed: 12/24/2022] Open
Abstract
Valproic acid (VPA) is an approved drug for managing epileptic seizures, bipolar disorders, and migraine. VPA has been shown to elevate the level of gamma-aminobutyric acid (GABA) in the brain through competitive inhibition of GABA transaminase, thus promoting the availability of synaptic GABA and facilitating GABA-mediated responses. VPA, which is a small chain of fatty acids, prevents histone deacetylases (HDACs). HDACs play a crucial role in chromatin remodeling and gene expression through posttranslational changes of chromatin-associated histones. Recent studies reported a possible effect of VPA against particular types of cancers. This effect was partially attributed to its role in regulating epigenetic modifications through the inhibition of HDACs, which affect the expression of genes associated with cell cycle control, cellular differentiation, and apoptosis. In this review, we summarize the current information on the actions of VPA in diseases such as diabetes mellitus, kidney disorders, neurodegenerative diseases, muscular dystrophy, and cardiovascular disorders.
Collapse
Affiliation(s)
- Dhirendra Singh
- Department of Pharmacology, M.M. College of Pharmacy, M.M. (Deemed to be University), Mullana, Ambala, Haryana, India
| | - Sumeet Gupta
- Department of Pharmacology, M.M. College of Pharmacy, M.M. (Deemed to be University), Mullana, Ambala, Haryana, India.
| | - Inderjeet Verma
- Department of Pharmacology, M.M. College of Pharmacy, M.M. (Deemed to be University), Mullana, Ambala, Haryana, India
| | - Mohamed A Morsy
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, Saudi Arabia; Department of Pharmacology, Faculty of Medicine, Minia University, El-Minia, Egypt
| | - Anroop B Nair
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Al-Shaimaa F Ahmed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, El-Minia, Egypt
| |
Collapse
|
15
|
Pedro Ferreira J, Pitt B, Zannad F. Histone deacetylase inhibitors for cardiovascular conditions and healthy longevity. THE LANCET. HEALTHY LONGEVITY 2021; 2:e371-e379. [DOI: 10.1016/s2666-7568(21)00061-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/19/2021] [Accepted: 03/11/2021] [Indexed: 10/21/2022] Open
|
16
|
Anti-Inflammatory and General Glucocorticoid Physiology in Skeletal Muscles Affected by Duchenne Muscular Dystrophy: Exploration of Steroid-Sparing Agents. Int J Mol Sci 2020; 21:ijms21134596. [PMID: 32605223 PMCID: PMC7369834 DOI: 10.3390/ijms21134596] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/22/2020] [Accepted: 06/27/2020] [Indexed: 12/13/2022] Open
Abstract
In Duchenne muscular dystrophy (DMD), the activation of proinflammatory and metabolic cellular pathways in skeletal muscle cells is an inherent characteristic. Synthetic glucocorticoid intake counteracts the majority of these mechanisms. However, glucocorticoids induce burdensome secondary effects, including hypertension, arrhythmias, hyperglycemia, osteoporosis, weight gain, growth delay, skin thinning, cushingoid appearance, and tissue-specific glucocorticoid resistance. Hence, lowering the glucocorticoid dosage could be beneficial for DMD patients. A more profound insight into the major cellular pathways that are stabilized after synthetic glucocorticoid administration in DMD is needed when searching for the molecules able to achieve similar pathway stabilization. This review provides a concise overview of the major anti-inflammatory pathways, as well as the metabolic effects of glucocorticoids in the skeletal muscle affected in DMD. The known drugs able to stabilize these pathways, and which could potentially be combined with glucocorticoid therapy as steroid-sparing agents, are described. This could create new opportunities for testing in DMD animal models and/or clinical trials, possibly leading to smaller glucocorticoids dosage regimens for DMD patients.
Collapse
|
17
|
Duan Q, Li S, Wen X, Sunnassee G, Chen J, Tan S, Guo Y. Valproic Acid Enhances Reprogramming Efficiency and Neuronal Differentiation on Small Molecules Staged-Induction Neural Stem Cells: Suggested Role of mTOR Signaling. Front Neurosci 2019; 13:867. [PMID: 31551670 PMCID: PMC6737087 DOI: 10.3389/fnins.2019.00867] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 08/02/2019] [Indexed: 12/21/2022] Open
Abstract
Inducing somatic cells into neural stem cells (iNSCs) in specific ways provides a new cell therapy in a variety of neurological diseases. In the past, iNSCs were generated by transcription factors which increased the risk of mutagenesis, tumor formations, and immune reactions by viral transduction vectors. Therefore, in this study, different small molecules were used to induce mouse embryonic fibroblasts (MEFs) into iNSCs in different reprogramming stages, which showed high reprogramming efficiency without altering the genome. We demonstrated that the small molecules staged-induction neural stem cells (SMSINS) have the characteristics of neural stem cells (NSCs) in morphology, gene expression, self-renewal and differentiation potential. Furthermore, valproic acid (VPA), one of small molecules, was showed to enhance neural induction with highest efficiency compared with six other small molecules, which were also investigated in the present study. Moreover, our results suggested that activating the mammalian target of rapamycin (mTOR) signaling enhanced the induction efficiency and neuronal differentiation. Collectively, our findings indicated that using this induction program allowed us to obtain safe and efficient iNSCs which were free of genetic manipulation. The VPA-mediated mTOR signaling pathway may enhance reprogramming efficiency and neuronal differentiation. So we suggested that this program could be a new method of obtaining iNSCs for the treatment of neurological diseases by cell replacement therapy in the future.
Collapse
Affiliation(s)
- Qingrui Duan
- Department of Neurology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Siyi Li
- Department of Neurology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xinrui Wen
- Department of Neurology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Gavin Sunnassee
- Department of Neurology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jian Chen
- Department of Neurology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Sheng Tan
- Department of Neurology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yang Guo
- Department of Neurology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
18
|
Kotajima-Murakami H, Kobayashi T, Kashii H, Sato A, Hagino Y, Tanaka M, Nishito Y, Takamatsu Y, Uchino S, Ikeda K. Effects of rapamycin on social interaction deficits and gene expression in mice exposed to valproic acid in utero. Mol Brain 2019; 12:3. [PMID: 30621732 PMCID: PMC6325753 DOI: 10.1186/s13041-018-0423-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 12/25/2018] [Indexed: 12/27/2022] Open
Abstract
The mammalian target of rapamycin (mTOR) signaling pathway plays a crucial role in cell metabolism, growth, and proliferation. The overactivation of mTOR has been implicated in the pathogenesis of syndromic autism spectrum disorder (ASD), such as tuberous sclerosis complex (TSC). Treatment with the mTOR inhibitor rapamycin improved social interaction deficits in mouse models of TSC. Prenatal exposure to valproic acid (VPA) increases the incidence of ASD. Rodent pups that are exposed to VPA in utero have been used as an animal model of ASD. Activation of the mTOR signaling pathway was recently observed in rodents that were exposed to VPA in utero, and rapamycin ameliorated social interaction deficits. The present study investigated the effect of rapamycin on social interaction deficits in both adolescence and adulthood, and gene expressions in mice that were exposed to VPA in utero. We subcutaneously injected 600 mg/kg VPA in pregnant mice on gestational day 12.5 and used the pups as a model of ASD. The pups were intraperitoneally injected with rapamycin or an equal volume of vehicle once daily for 2 consecutive days. The social interaction test was conducted in the offspring after the last rapamycin administration at 5-6 weeks of ages (adolescence) or 10-11 weeks of age (adulthood). Whole brains were collected after the social interaction test in the adulthood, and microarray and Western blot analyses were performed. Mice that were exposed to VPA and treated with vehicle exhibited a decrease in social interaction compared with control mice that were treated with vehicle. Rapamycin treatment in VPA-exposed mice improved social deficits. Mice that were exposed to VPA and treated with vehicle exhibited the aberrant expression of genes in the mTOR signaling pathway, and rapamycin treatment recovered changes in the expression of some genes, including Fyb and A330094K24Rik. Rapamycin treatment suppressed S6 phosphorylation in VPA-exposed mice. Aberrant gene expression was associated with social interaction deficits in VPA-exposed mice. Rapamycin may be an effective treatment for non-syndromic ASD in adolescent and adult patients who present impairments in the mTOR signaling pathway.
Collapse
Affiliation(s)
- Hiroko Kotajima-Murakami
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo, Japan.,Department of Biosciences, School of Science and Engineering, Teikyo University, 1-1 Toyosatodai, Utsunomiya-shi, Tochigi, Japan
| | - Toshiyuki Kobayashi
- Department of Molecular Pathogenesis, Graduate School of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo, Japan
| | - Hirofumi Kashii
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo, Japan.,Department of Pediatrics, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
| | - Atsushi Sato
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo, Japan.,Department of Pediatrics, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
| | - Yoko Hagino
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo, Japan
| | - Miho Tanaka
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo, Japan.,Department of Developmental Disorders, National Institute of Mental Health, National Center of Neurology and Psychiatry, 4-1-1 Higashimachi, Kodaira-shi, Tokyo, Japan
| | - Yasumasa Nishito
- Center for Basic Technology Research, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo, Japan
| | - Yukio Takamatsu
- Center for Basic Technology Research, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo, Japan
| | - Shigeo Uchino
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo, Japan.,Department of Biosciences, School of Science and Engineering, Teikyo University, 1-1 Toyosatodai, Utsunomiya-shi, Tochigi, Japan
| | - Kazutaka Ikeda
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo, Japan.
| |
Collapse
|
19
|
|
20
|
Abu-Baker A, Parker A, Ramalingam S, Laganiere J, Brais B, Neri C, Dion P, Rouleau G. Valproic acid is protective in cellular and worm models of oculopharyngeal muscular dystrophy. Neurology 2018; 91:e551-e561. [PMID: 30006409 PMCID: PMC6105050 DOI: 10.1212/wnl.0000000000005942] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 05/08/2018] [Indexed: 02/01/2023] Open
Abstract
OBJECTIVE To explore valproic acid (VPA) as a potentially beneficial drug in cellular and worm models of oculopharyngeal muscular dystrophy (OPMD). METHODS Using a combination of live cell imaging and biochemical measures, we evaluated the potential protective effect of VPA in a stable C2C12 muscle cell model of OPMD, in lymphoblastoid cell lines derived from patients with OPMD and in a transgenic Caenorhabditis elegans OPMD model expressing human mutant PABPN1. RESULTS We demonstrated that VPA protects against the toxicity of mutant PABPN1. Of note, we found that VPA confers its long-term protective effects on C2C12 cell survival, proliferation, and differentiation by increasing the acetylated level of histones. Furthermore, VPA enhances the level of histone acetylation in lymphoblastoid cell lines derived from patients with OPMD. Moreover, treatment of nematodes with moderate concentrations of VPA significantly improved the motility of the PABPN-13 Alanines worms. CONCLUSIONS Our results suggest that VPA helps to counteract OPMD-related phenotypes in the cellular and C elegans disease models.
Collapse
Affiliation(s)
- Aida Abu-Baker
- From the Montreal Neurological Institute and Hospital (A.A.-B., P.D., G.R.), Ingram School of Nursing, Faculty of Medicine (S.R.), and Department of Neurology and Neurosurgery (G.R.), McGill University, Montreal; CHUM Research Center (A.P.), Montreal; Department of Neuroscience (A.P.), and Ophthalmology Research Hôpital Maisonneuve Rosemont, Laboratoire de Isabelle Brunette (J.L.), University of Montreal; Neuromuscular Group (B.B.), Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada; and Brain C-lab (C.N.), Institute of Biology Paris-Seine, CNRS UMR 8256 Biology of Adaptation & Aging, University Pierre and Marie Curie, Paris, France
| | - Alex Parker
- From the Montreal Neurological Institute and Hospital (A.A.-B., P.D., G.R.), Ingram School of Nursing, Faculty of Medicine (S.R.), and Department of Neurology and Neurosurgery (G.R.), McGill University, Montreal; CHUM Research Center (A.P.), Montreal; Department of Neuroscience (A.P.), and Ophthalmology Research Hôpital Maisonneuve Rosemont, Laboratoire de Isabelle Brunette (J.L.), University of Montreal; Neuromuscular Group (B.B.), Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada; and Brain C-lab (C.N.), Institute of Biology Paris-Seine, CNRS UMR 8256 Biology of Adaptation & Aging, University Pierre and Marie Curie, Paris, France
| | - Siriram Ramalingam
- From the Montreal Neurological Institute and Hospital (A.A.-B., P.D., G.R.), Ingram School of Nursing, Faculty of Medicine (S.R.), and Department of Neurology and Neurosurgery (G.R.), McGill University, Montreal; CHUM Research Center (A.P.), Montreal; Department of Neuroscience (A.P.), and Ophthalmology Research Hôpital Maisonneuve Rosemont, Laboratoire de Isabelle Brunette (J.L.), University of Montreal; Neuromuscular Group (B.B.), Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada; and Brain C-lab (C.N.), Institute of Biology Paris-Seine, CNRS UMR 8256 Biology of Adaptation & Aging, University Pierre and Marie Curie, Paris, France
| | - Janet Laganiere
- From the Montreal Neurological Institute and Hospital (A.A.-B., P.D., G.R.), Ingram School of Nursing, Faculty of Medicine (S.R.), and Department of Neurology and Neurosurgery (G.R.), McGill University, Montreal; CHUM Research Center (A.P.), Montreal; Department of Neuroscience (A.P.), and Ophthalmology Research Hôpital Maisonneuve Rosemont, Laboratoire de Isabelle Brunette (J.L.), University of Montreal; Neuromuscular Group (B.B.), Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada; and Brain C-lab (C.N.), Institute of Biology Paris-Seine, CNRS UMR 8256 Biology of Adaptation & Aging, University Pierre and Marie Curie, Paris, France
| | - Bernard Brais
- From the Montreal Neurological Institute and Hospital (A.A.-B., P.D., G.R.), Ingram School of Nursing, Faculty of Medicine (S.R.), and Department of Neurology and Neurosurgery (G.R.), McGill University, Montreal; CHUM Research Center (A.P.), Montreal; Department of Neuroscience (A.P.), and Ophthalmology Research Hôpital Maisonneuve Rosemont, Laboratoire de Isabelle Brunette (J.L.), University of Montreal; Neuromuscular Group (B.B.), Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada; and Brain C-lab (C.N.), Institute of Biology Paris-Seine, CNRS UMR 8256 Biology of Adaptation & Aging, University Pierre and Marie Curie, Paris, France
| | - Christian Neri
- From the Montreal Neurological Institute and Hospital (A.A.-B., P.D., G.R.), Ingram School of Nursing, Faculty of Medicine (S.R.), and Department of Neurology and Neurosurgery (G.R.), McGill University, Montreal; CHUM Research Center (A.P.), Montreal; Department of Neuroscience (A.P.), and Ophthalmology Research Hôpital Maisonneuve Rosemont, Laboratoire de Isabelle Brunette (J.L.), University of Montreal; Neuromuscular Group (B.B.), Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada; and Brain C-lab (C.N.), Institute of Biology Paris-Seine, CNRS UMR 8256 Biology of Adaptation & Aging, University Pierre and Marie Curie, Paris, France
| | - Patrick Dion
- From the Montreal Neurological Institute and Hospital (A.A.-B., P.D., G.R.), Ingram School of Nursing, Faculty of Medicine (S.R.), and Department of Neurology and Neurosurgery (G.R.), McGill University, Montreal; CHUM Research Center (A.P.), Montreal; Department of Neuroscience (A.P.), and Ophthalmology Research Hôpital Maisonneuve Rosemont, Laboratoire de Isabelle Brunette (J.L.), University of Montreal; Neuromuscular Group (B.B.), Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada; and Brain C-lab (C.N.), Institute of Biology Paris-Seine, CNRS UMR 8256 Biology of Adaptation & Aging, University Pierre and Marie Curie, Paris, France
| | - Guy Rouleau
- From the Montreal Neurological Institute and Hospital (A.A.-B., P.D., G.R.), Ingram School of Nursing, Faculty of Medicine (S.R.), and Department of Neurology and Neurosurgery (G.R.), McGill University, Montreal; CHUM Research Center (A.P.), Montreal; Department of Neuroscience (A.P.), and Ophthalmology Research Hôpital Maisonneuve Rosemont, Laboratoire de Isabelle Brunette (J.L.), University of Montreal; Neuromuscular Group (B.B.), Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada; and Brain C-lab (C.N.), Institute of Biology Paris-Seine, CNRS UMR 8256 Biology of Adaptation & Aging, University Pierre and Marie Curie, Paris, France.
| |
Collapse
|
21
|
Merino H, Singla DK. Secreted Frizzled-Related Protein-2 Inhibits Doxorubicin-Induced Apoptosis Mediated through the Akt-mTOR Pathway in Soleus Muscle. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:6043064. [PMID: 30151071 PMCID: PMC6093014 DOI: 10.1155/2018/6043064] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 06/04/2018] [Indexed: 02/06/2023]
Abstract
Doxorubicin (Dox) is a potent chemotherapeutic drug known for its dose-dependent and serious adverse effects, such as cardiotoxicity and myotoxicity. Dox-induced cardiotoxicity (DIC) and muscle toxicity (DIMT) have been studied; however, the mechanisms of Dox-induced apoptosis in soleus muscle are not well defined. Our data shows that with Dox treatment, there is a significant increase in oxidative stress, apoptosis, proapoptotic protein BAX, pPTEN levels, and wnt3a and β-catenin activity (p < 0.05). Moreover, Dox treatment also resulted in decreased antioxidant levels, antiapoptotic BCL2, pAKT, p-mTOR, and endogenous levels of sFRP2 in the soleus muscle tissue (p < 0.05). Secreted frizzled-related protein 2 (sFRP2) treatment attenuated the adverse effects of DIMT and apoptosis in the soleus muscle, evidenced by a decrease in oxidative stress, apoptosis, BAX, pPTEN, and wnt3a and β-catenin activity, as well as an increase in antioxidants, BCL2, pAKT, p-MTOR, and sFRP2 levels (p < 0.05). This data suggests that Dox-induced oxidative stress and apoptosis is mediated through both the Akt-mTOR and wnt/β-catenin pathways. Moreover, the data also shows that sFRP2 modulates these two pathways by increasing signaling of Akt-mTOR and decreased signaling of the wnt/β-catenin pathway. Therefore, our data suggests that sFRP2 has valuable therapeutic potential in reversing Dox-induced oxidative stress and apoptosis in soleus muscle mediated through the Akt-mTOR pathway.
Collapse
Affiliation(s)
- Hilda Merino
- Department of Internal Medicine, College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Dinender K. Singla
- Division of Metabolic and Cardiovascular Sciences, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32816, USA
| |
Collapse
|
22
|
Omolekulo TE, Areola ED, Badmus OO, Michael OS, Kim I, Olatunji LA. Inhibition of adenosine deaminase and xanthine oxidase by valproic acid abates hepatic triglyceride accumulation independent of corticosteroids in female rats treated with estrogen-progestin. Can J Physiol Pharmacol 2018; 96:1092-1103. [PMID: 30001502 DOI: 10.1139/cjpp-2018-0231] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Elevated circulating uric acid has been postulated to play an important pathophysiological role in estrogen-progestin combined oral contraceptive (COC)-induced hypertension and endothelial dysfunction. We hypothesized that disruption of glucoregulation and liver triglyceride (TG) accumulation induced by COC use would be abated by valproic acid (VPA) treatment through suppression of adenosine deaminase (ADA) and xanthine oxidase (XO) activities. Female Wistar rats aged 9-10 weeks were treated with a combination of estrogen-progestin COC steroids (1.0 μg ethinylestradiol and 5.0 μg levonorgestrel; p.o.) with or without VPA (100.0 mg/kg; p.o.) daily for 6 weeks. The result shows that the disrupted glucoregulation and associated elevated hepatic ADA activity, plasma and hepatic XO activity, uric acid (UA), TG/HDL-cholesterol, total cholesterol, and malondialdehyde induced by COC treatment were attenuated by VPA treatment. However, VPA did not have any effect on plasma aldosterone, corticosterone, ADA, circulating and hepatic free fatty acid. Our results demonstrate that suppression of plasma and hepatic XO activities, along with hepatic ADA activity and UA by VPA treatment, protects against disrupted glucoregulation and increased liver TG by COC independent of elevated corticosteroids. The findings imply that VPA would provide protection against the development of cardiometabolic disorder via inhibition of the ADA/XO/UA-mediated pathway.
Collapse
Affiliation(s)
- Tolulope Eniola Omolekulo
- a HOPE Cardiometabolic Research Team, Department of Physiology, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
| | - Emmanuel Damilare Areola
- a HOPE Cardiometabolic Research Team, Department of Physiology, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
| | - Olufunto Olayinka Badmus
- a HOPE Cardiometabolic Research Team, Department of Physiology, College of Health Sciences, University of Ilorin, Ilorin, Nigeria.,b Department of Public Health, Kwara State University, Malete, Nigeria
| | - Olugbenga Samuel Michael
- a HOPE Cardiometabolic Research Team, Department of Physiology, College of Health Sciences, University of Ilorin, Ilorin, Nigeria.,c Cardiometabolic Research Unit, Department of Physiology, College of Health Sciences, Bowen University, Iwo, Nigeria
| | - Inkyeom Kim
- d Cardiovascular Research Institute and Department of Pharmacology, Kyungpook National University School of Medicine, Daegu, Republic of Korea
| | - Lawrence Aderemi Olatunji
- a HOPE Cardiometabolic Research Team, Department of Physiology, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
| |
Collapse
|
23
|
Stoughton WB, Li J, Balog-Alvarez C, Kornegay JN. Impaired autophagy correlates with golden retriever muscular dystrophy phenotype. Muscle Nerve 2018. [DOI: 10.1002/mus.26121] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- William B. Stoughton
- Department of Veterinary Integrative Biosciences; Texas A&M University College of Veterinary Medicine and Biomedical Sciences; College Station Texas 77843 USA
| | - Jianrong Li
- Department of Veterinary Integrative Biosciences; Texas A&M University College of Veterinary Medicine and Biomedical Sciences; College Station Texas 77843 USA
| | - Cindy Balog-Alvarez
- Department of Veterinary Integrative Biosciences; Texas A&M University College of Veterinary Medicine and Biomedical Sciences; College Station Texas 77843 USA
| | - Joe N. Kornegay
- Department of Veterinary Integrative Biosciences; Texas A&M University College of Veterinary Medicine and Biomedical Sciences; College Station Texas 77843 USA
| |
Collapse
|
24
|
Castets P, Frank S, Sinnreich M, Rüegg MA. "Get the Balance Right": Pathological Significance of Autophagy Perturbation in Neuromuscular Disorders. J Neuromuscul Dis 2018; 3:127-155. [PMID: 27854220 PMCID: PMC5271579 DOI: 10.3233/jnd-160153] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Recent research has revealed that autophagy, a major catabolic process in cells, is dysregulated in several neuromuscular diseases and contributes to the muscle wasting caused by non-muscle disorders (e.g. cancer cachexia) or during aging (i.e. sarcopenia). From there, the idea arose to interfere with autophagy or manipulate its regulatory signalling to help restore muscle homeostasis and attenuate disease progression. The major difficulty for the development of therapeutic strategies is to restore a balanced autophagic flux, due to the dynamic nature of autophagy. Thus, it is essential to better understand the mechanisms and identify the signalling pathways at play in the control of autophagy in skeletal muscle. A comprehensive analysis of the autophagic flux and of the causes of its dysregulation is required to assess the pathogenic role of autophagy in diseased muscle. Furthermore, it is essential that experiments distinguish between primary dysregulation of autophagy (prior to disease onset) and impairments as a consequence of the pathology. Of note, in most muscle disorders, autophagy perturbation is not caused by genetic modification of an autophagy-related protein, but rather through indirect alteration of regulatory signalling or lysosomal function. In this review, we will present the mechanisms involved in autophagy, and those ensuring its tight regulation in skeletal muscle. We will then discuss as to how autophagy dysregulation contributes to the pathogenesis of neuromuscular disorders and possible ways to interfere with this process to limit disease progression.
Collapse
Affiliation(s)
| | - Stephan Frank
- Institute of Pathology, Division of Neuropathology Basel University Hospital, Basel, Switzerland
| | - Michael Sinnreich
- Neuromuscular Research Center, Departments of Neurology and Biomedicine, Pharmazentrum, Basel, Switzerland
| | | |
Collapse
|
25
|
Zhang X, He X, Li Q, Kong X, Ou Z, Zhang L, Gong Z, Long D, Li J, Zhang M, Ji W, Zhang W, Xu L, Xuan A. PI3K/AKT/mTOR Signaling Mediates Valproic Acid-Induced Neuronal Differentiation of Neural Stem Cells through Epigenetic Modifications. Stem Cell Reports 2018; 8:1256-1269. [PMID: 28494938 PMCID: PMC5425725 DOI: 10.1016/j.stemcr.2017.04.006] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Revised: 04/04/2017] [Accepted: 04/06/2017] [Indexed: 12/18/2022] Open
Abstract
Although valproic acid (VPA), has been shown to induce neuronal differentiation of neural stem cells (NSCs), the underlying mechanisms remain poorly understood. Here we investigated if and how mammalian target of rapamycin (mTOR) signaling is involved in the neuronal differentiation of VPA-induced NSCs. Our data demonstrated that mTOR activation not only promoted but also was necessary for the neuronal differentiation of NSCs induced by VPA. We further found that inhibition of mTOR signaling blocked demethylation of neuron-specific gene neurogenin 1 (Ngn1) regulatory element in induced cells. These are correlated with the significant alterations of passive DNA demethylation and the active DNA demethylation pathway in the Ngn1 promoter, but not the suppression of lysine-specific histone methylation and acetylation in the promoter region of Ngn1. These findings highlight a potentially important role for mTOR signaling, by working together with DNA demethylation, to influence the fate of NSCs via regulating the expression of Ngn1 in VPA-induced neuronal differentiation of NSCs.
Collapse
Affiliation(s)
- Xi Zhang
- Key Laboratory of Neuroscience, Key Laboratory of Protein Modification and Degradation, Department of Anatomy, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, China; Department of Neurology, Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou 510260, China
| | - Xiaosong He
- Key Laboratory of Neuroscience, Key Laboratory of Protein Modification and Degradation, Department of Anatomy, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, China; Department of Neurology, Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou 510260, China
| | - Qingqing Li
- Key Laboratory of Neuroscience, Key Laboratory of Protein Modification and Degradation, Department of Anatomy, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, China; Department of Neurology, Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou 510260, China
| | - Xuejian Kong
- Key Laboratory of Neuroscience, Key Laboratory of Protein Modification and Degradation, Department of Anatomy, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, China; Department of Neurology, Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou 510260, China
| | - Zhenri Ou
- Key Laboratory of Neuroscience, Key Laboratory of Protein Modification and Degradation, Department of Anatomy, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, China; Department of Neurology, Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou 510260, China
| | - Le Zhang
- Key Laboratory of Neuroscience, Key Laboratory of Protein Modification and Degradation, Department of Anatomy, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, China; Department of Neurology, Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou 510260, China
| | - Zhuo Gong
- Key Laboratory of Neuroscience, Key Laboratory of Protein Modification and Degradation, Department of Anatomy, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, China; Department of Neurology, Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou 510260, China
| | - Dahong Long
- Key Laboratory of Neuroscience, Key Laboratory of Protein Modification and Degradation, Department of Anatomy, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, China; Department of Neurology, Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou 510260, China
| | - Jianhua Li
- Department of Physiology, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Meng Zhang
- Department of Physiology, Augusta University, Augusta 30912, USA
| | - Weidong Ji
- The First Affiliated Hospital, Center for Translational Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Wenjuan Zhang
- Department of Preventive Medicine, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Liping Xu
- Key Laboratory of Neuroscience, Key Laboratory of Protein Modification and Degradation, Department of Anatomy, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, China; Department of Neurology, Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou 510260, China
| | - Aiguo Xuan
- Key Laboratory of Neuroscience, Key Laboratory of Protein Modification and Degradation, Department of Anatomy, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, China; Department of Neurology, Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou 510260, China.
| |
Collapse
|
26
|
Repression of phosphatidylinositol transfer protein α ameliorates the pathology of Duchenne muscular dystrophy. Proc Natl Acad Sci U S A 2017; 114:6080-6085. [PMID: 28533404 DOI: 10.1073/pnas.1703556114] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is a progressive muscle wasting disease caused by X-linked inherited mutations in the DYSTROPHIN (DMD) gene. Absence of dystrophin protein from the sarcolemma causes severe muscle degeneration, fibrosis, and inflammation, ultimately leading to cardiorespiratory failure and premature death. Although there are several promising strategies under investigation to restore dystrophin protein expression, there is currently no cure for DMD, and identification of genetic modifiers as potential targets represents an alternative therapeutic strategy. In a Brazilian golden retriever muscular dystrophy (GRMD) dog colony, two related dogs demonstrated strikingly mild dystrophic phenotypes compared with those typically observed in severely affected GRMD dogs despite lacking dystrophin. Microarray analysis of these "escaper" dogs revealed reduced expression of phosphatidylinositol transfer protein-α (PITPNA) in escaper versus severely affected GRMD dogs. Based on these findings, we decided to pursue investigation of modulation of PITPNA expression on dystrophic pathology in GRMD dogs, dystrophin-deficient sapje zebrafish, and human DMD myogenic cells. In GRMD dogs, decreased expression of Pitpna was associated with increased phosphorylated Akt (pAkt) expression and decreased PTEN levels. PITPNA knockdown by injection of morpholino oligonucleotides in sapje zebrafish also increased pAkt, rescued the abnormal muscle phenotype, and improved long-term sapje mutant survival. In DMD myotubes, PITPNA knockdown by lentiviral shRNA increased pAkt and increased myoblast fusion index. Overall, our findings suggest PIPTNA as a disease modifier that accords benefits to the abnormal signaling, morphology, and function of dystrophic skeletal muscle, and may be a target for DMD and related neuromuscular diseases.
Collapse
|
27
|
Farrelly-Rosch A, Lau CL, Patil N, Turner BJ, Shabanpoor F. Combination of valproic acid and morpholino splice-switching oligonucleotide produces improved outcomes in spinal muscular atrophy patient-derived fibroblasts. Neurochem Int 2017; 108:213-221. [PMID: 28389270 DOI: 10.1016/j.neuint.2017.02.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 02/22/2017] [Accepted: 02/24/2017] [Indexed: 12/16/2022]
Abstract
Spinal muscular atrophy (SMA), the leading genetic cause of infant mortality worldwide, is characterised by the homozygous loss of the survival motor neuron 1 (SMN1) gene. The consequent degeneration of spinal motor neurons and progressive atrophy of voluntary muscle groups results in paralysis and eventually premature infantile death. Humans possess a second nearly identical copy of SMN1, known as SMN2. However, SMN2 produces only 10-20% functional SMN protein due to aberrant splicing of its pre-mRNA that leads to the exclusion of exon 7. This level of SMN is insufficient to rescue the phenotype. Recently developed splice-switching antisense oligonuclotides (SSO) have shown great promise in correcting the aberrant splicing of SMN2 towards producing functional SMN protein. Several FDA approved drugs are being repurposed for SMA treatment including valproic acid (VPA), a histone deacetylase inhibitor, which has been shown to increase overall SMN2 expression. In this study, we have characterised the effects of single and combined treatment of VPA and a SSO based on phosphorodiamidate morpholino oligomer (PMO) chemistry. We conjugated both VPA and PMO to a single cell-penetrating peptide (Apolipoprotein E (ApoE)) for their simultaneous intracellular delivery. Treatment of SMA Type I patient-derived fibroblasts with the conjugates showed no additive increase in the level of full-length SMN2 mRNA expression over both 4 and 16 h treatments indicating that conjugation of VPA to ApoE-PMO has limited benefit. However, treatment with a combination of VPA and ApoE-PMO induced more favourable splice switching activity than either agent alone, promoting exon 7 inclusion in SMN2 transcripts. Our results suggest that combination therapy of VPA and ApoE-PMO is superior in upregulating SMN2 production in vitro, as compared to singular treatment of each compound at both transcriptional and protein levels. This study provides the first indication of a novel dual therapy approach for the potential treatment of SMA.
Collapse
Affiliation(s)
- Anna Farrelly-Rosch
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Victoria 3052, Australia
| | - Chew Ling Lau
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Victoria 3052, Australia
| | - Nitin Patil
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Victoria 3052, Australia
| | - Bradley J Turner
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Victoria 3052, Australia
| | - Fazel Shabanpoor
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Victoria 3052, Australia; School of Chemistry, University of Melbourne, Victoria 3052, Australia.
| |
Collapse
|
28
|
Sun R, Zhang S, Hu W, Lu X, Lou N, Yang Z, Chen S, Zhang X, Yang H. Valproic acid attenuates skeletal muscle wasting by inhibiting C/EBPβ-regulated atrogin1 expression in cancer cachexia. Am J Physiol Cell Physiol 2016; 311:C101-15. [DOI: 10.1152/ajpcell.00344.2015] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 04/13/2016] [Indexed: 12/15/2022]
Abstract
Muscle wasting is the hallmark of cancer cachexia and is associated with poor quality of life and increased mortality. Valproic acid (VPA), a histone deacetylase (HDAC) inhibitor, has important biological effects in the treatment of muscular dystrophy. To verify whether VPA could ameliorate muscle wasting induced by cancer cachexia, we explored the role of VPA in two cancer cachectic mouse models [induced by colon-26 (C26) adenocarcinoma or Lewis lung carcinoma (LLC)] and atrophied C2C12 myotubes [induced by C26 cell conditioned medium (CCM) or LLC cell conditioned medium (LCM)]. Our data demonstrated that treatment with VPA increased the mass and cross-sectional area of skeletal muscles in tumor-bearing mice. Furthermore, treatment with VPA also increased the diameter of myotubes cultured in conditioned medium. The skeletal muscles in cachectic mice or atrophied myotubes treated with VPA exhibited reduced levels of CCAAT/enhancer binding protein beta (C/EBPβ), resulting in atrogin1 downregulation and the eventual alleviation of muscle wasting and myotube atrophy. Moreover, atrogin1 promoter activity in myotubes was stimulated by CCM via activating the C/EBPβ-responsive cis-element and subsequently inhibited by VPA. In contrast to the effect of VPA on the levels of C/EBPβ, the levels of inactivating forkhead box O3 (FoxO3a) were unaffected. In summary, VPA attenuated muscle wasting and myotube atrophy and reduced C/EBPβ binding to atrogin1 promoter locus in the myotubes. Our discoveries indicate that HDAC inhibition by VPA might be a promising new approach for the preservation of skeletal muscle in cancer cachexia.
Collapse
Affiliation(s)
- Rulin Sun
- Department of Pathogenic Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Hubei Province, China
| | - Santao Zhang
- Department of Pathogenic Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Hubei Province, China
| | - Wenjun Hu
- Department of Pathogenic Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Hubei Province, China
| | - Xing Lu
- Department of Pathogenic Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Hubei Province, China
| | - Ning Lou
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Province, China; and
| | - Zhende Yang
- Department of Pathogenic Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Hubei Province, China
| | - Shaoyong Chen
- Hematology-Oncology Division, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Xiaoping Zhang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Province, China; and
| | - Hongmei Yang
- Department of Pathogenic Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Hubei Province, China
| |
Collapse
|
29
|
Qin L, Dai X, Yin Y. Valproic acid exposure sequentially activates Wnt and mTOR pathways in rats. Mol Cell Neurosci 2016; 75:27-35. [PMID: 27343825 DOI: 10.1016/j.mcn.2016.06.004] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2015] [Revised: 05/11/2016] [Accepted: 06/21/2016] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by impaired social interaction, limited verbal communication and repetitive behaviors. Recent studies have demonstrated that Wnt signaling and mTOR signaling play important roles in the pathogenesis of ASD. However, the relationship of these two signaling pathways in ASD remains unclear. RESULTS We assessed this question using the valproic acid (VPA) rat model of autism. Our results demonstrated that VPA exposure activated mTOR signaling and suppressed autophagy in the prefrontal cortex, hippocampus and cerebellum of autistic model rats, characterized by enhanced phospho-mTOR and phospho-S6 and decreased Beclin1, Atg5, Atg10, LC3-II and autophagosome formation. Rapamycin treatment suppressed the effect of VPA on mTOR signaling and ameliorated the autistic-like behaviors of rats in our autism model. The administration of VPA also activated Wnt signaling through up-regulating beta-catenin and phospho-GSK3beta. Suppression of the Wnt pathway by sulindac relieved autistic-like behaviors and attenuated VPA-induced mTOR signaling activation in autistic model rats. CONCLUSIONS Our results demonstrate that VPA exposure sequentially activates Wnt signaling and mTOR signaling in rats. Suppression of the Wnt signaling pathway relieves autistic-like behaviors partially by deactivating the mTOR signaling pathway in VPA-exposed rats.
Collapse
Affiliation(s)
- Liyan Qin
- Chongqing Key Laboratory of Psychological Diagnosis and Educational Technology for Children with Special Needs, Chongqing 400047, China; Department of Blood Transfusion, Southwest Hospital of Third Military Medical University,Chongqing 400038, China
| | - Xufang Dai
- Chongqing Key Laboratory of Psychological Diagnosis and Educational Technology for Children with Special Needs, Chongqing 400047, China; College of Education Science, Chongqing Normal University, Chongqing 400047, China.
| | - Yunhou Yin
- Guizhou Minzu University, Guiyang 550025, China
| |
Collapse
|
30
|
Oxidative Stress-Mediated Skeletal Muscle Degeneration: Molecules, Mechanisms, and Therapies. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2016:6842568. [PMID: 26798425 PMCID: PMC4700198 DOI: 10.1155/2016/6842568] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 10/08/2015] [Accepted: 10/08/2015] [Indexed: 11/25/2022]
Abstract
Oxidative stress is a loss of balance between the production of reactive oxygen species during cellular metabolism and the mechanisms that clear these species to maintain cellular redox homeostasis. Increased oxidative stress has been associated with muscular dystrophy, and many studies have proposed mechanisms that bridge these two pathological conditions at the molecular level. In this review, the evidence indicating a causal role of oxidative stress in the pathogenesis of various muscular dystrophies is revisited. In particular, the mediation of cellular redox status in dystrophic muscle by NF-κB pathway, autophagy, telomere shortening, and epigenetic regulation are discussed. Lastly, the current stance of targeting these pathways using antioxidant therapies in preclinical and clinical trials is examined.
Collapse
|
31
|
Young CNJ, Sinadinos A, Lefebvre A, Chan P, Arkle S, Vaudry D, Gorecki DC. A novel mechanism of autophagic cell death in dystrophic muscle regulated by P2RX7 receptor large-pore formation and HSP90. Autophagy 2015; 11:113-30. [PMID: 25700737 PMCID: PMC4502824 DOI: 10.4161/15548627.2014.994402] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
P2RX7 is an ATP-gated ion channel, which can also exhibit an open state with a considerably wider permeation. However, the functional significance of the movement of molecules through the large pore (LP) and the intracellular signaling events involved are not known. Here, analyzing the consequences of P2RX7 activation in primary myoblasts and myotubes from the Dmdmdx mouse model of Duchenne muscular dystrophy, we found ATP-induced P2RX7-dependent autophagic flux, leading to CASP3-CASP7-independent cell death. P2RX7-evoked autophagy was triggered by LP formation but not Ca2+ influx or MAPK1-MAPK3 phosphorylation, 2 canonical P2RX7-evoked signals. Phosphoproteomics, protein expression inference and signaling pathway prediction analysis of P2RX7 signaling mediators pointed to HSPA2 and HSP90 proteins. Indeed, specific HSP90 inhibitors prevented LP formation, LC3-II accumulation, and cell death in myoblasts and myotubes but not in macrophages. Pharmacological blockade or genetic ablation of p2rx7 also proved protective against ATP-induced death of muscle cells, as did inhibition of autophagy with 3-MA. The functional significance of the P2RX7 LP is one of the great unknowns of purinergic signaling. Our data demonstrate a novel outcome—autophagy—and show that molecules entering through the LP can be targeted to phagophores. Moreover, we show that in muscles but not in macrophages, autophagy is needed for the formation of this LP. Given that P2RX7-dependent LP and HSP90 are critically interacting in the ATP-evoked autophagic death of dystrophic muscles, treatments targeting this axis could be of therapeutic benefit in this debilitating and incurable form of muscular dystrophy.
Collapse
Key Words
- 3-MA, 3-methyladenine
- ACTB, actin, β
- ATP
- BECN1, Beclin 1, autophagy-related
- BzATP, 2′(3′)-O-(4-benzoylbenzoyl)adenosine 5′-triphosphate
- CASP, caspase
- DAPC, dystrophin associated protein complex
- DMD
- DMD, Duchenne muscular dystrophy
- Dmdmdx p2rx7−/− double-mutant mouse model
- Dmdmdx, C57BL/10ScSn-Dmdmdx/J mouse model of DMD
- EtBr, ethidium bromide
- GA, geldanamycin
- HSP70
- HSP90
- HSP90, heat shock protein 90
- HSPA2/HSP70, heat shock protein 2
- LC3
- LDH, lactate dehydrogenase
- LP, large pore, P2RX7-dependent
- LY, Lucifer Yellow
- MAP1LC3B/LC3, microtubule-associated protein 1 light chain 3 β
- MAPK, mitogen-activated protein kinase
- P2RX7
- P2RX7, purinergic receptor P2X, ligand-gated ion channel, 7
- PtdIns3K, phosphatidylinositol 3-kinase, class III
- Wt, C57BL/10ScSn wild-type mouse
- autophagy
- cell death
- eATP, extracellular ATP
- purinoceptors
Collapse
Affiliation(s)
- Christopher N J Young
- a Molecular Medicine Laboratory; Institute of Biomedical and Biomolecular Sciences; School of Pharmacy and Biomedical Sciences ; University of Portsmouth ; Portsmouth , UK
| | | | | | | | | | | | | |
Collapse
|
32
|
Seet LF, Toh LZ, Finger SN, Chu SWL, Stefanovic B, Wong TT. Valproic acid suppresses collagen by selective regulation of Smads in conjunctival fibrosis. J Mol Med (Berl) 2015; 94:321-34. [PMID: 26507880 PMCID: PMC4803820 DOI: 10.1007/s00109-015-1358-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 09/28/2015] [Accepted: 10/20/2015] [Indexed: 04/17/2023]
Abstract
Overproduction of type I collagen is associated with a wide range of fibrotic diseases as well as surgical failure such as in glaucoma filtration surgery (GFS). Its modulation is therefore of clinical importance. Valproic acid (VPA) is known to reduce collagen in a variety of tissues with unclear mechanism of action. In this report, we demonstrate that VPA inhibited collagen production in both conjunctival fibroblasts and the mouse model of GFS. In fibroblasts, VPA decreased type I collagen expression which intensified with longer drug exposure and suppressed steady-state type I collagen promoter activity. Moreover, VPA decreased Smad2, Smad3 and Smad4 but increased Smad6 expression with a similar intensity-exposure profile. Reduction of Smad3 using small hairpin RNA and/or overexpression of Smad6 resulted in decreased collagen expression which was exacerbated when VPA was simultaneously present. Furthermore, fibrogenic TGF-β2 failed to induce collagen when VPA was present, as opposed to the myofibroblast markers, beta-actin, alpha-smooth muscle actin and tenascin-C, which were elevated by TGF-β2. VPA suppressed p3TP-Lux luciferase activity and selectively rescued Smad6 expression from suppression by TGF-β2. Notably, SMAD6 overexpression reduced the effectiveness of TGF-β2 in inducing collagen expression. In corroboration, VPA inhibited type I collagen but increased Smad6 expression in the late phase of wound healing in the mouse model of GFS. Taken together, our data indicate that VPA has the capacity to effectively suppress both steady-state and fibrogenic activation of type I collagen expression by modulating Smad expression. Hence, VPA is potentially applicable as an anti-fibrotic therapeutic by targeting collagen. Key message: • VPA modulates type I collagen expression via members of the Smad family. • VPA suppresses Smad2, Smad3 and Smad4 but upregulates Smad6. • Smad3 and Smad6 are involved in VPA regulation of steady-state collagen expression. • Smad6 is involved in VPA modulation of TGF-β-stimulated collagen expression. • VPA reduces collagen and upregulates Smad6 in the mouse model of glaucoma filtration surgery.
Collapse
Affiliation(s)
- Li-Fong Seet
- Ocular Therapeutics and Drug Delivery, Singapore Eye Research Institute, Singapore, Singapore. .,Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore. .,Duke-NUS Graduate Medical School Singapore, Singapore, Singapore.
| | - Li Zhen Toh
- Ocular Therapeutics and Drug Delivery, Singapore Eye Research Institute, Singapore, Singapore
| | - Sharon N Finger
- Ocular Therapeutics and Drug Delivery, Singapore Eye Research Institute, Singapore, Singapore
| | - Stephanie W L Chu
- Ocular Therapeutics and Drug Delivery, Singapore Eye Research Institute, Singapore, Singapore
| | - Branko Stefanovic
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL, USA
| | - Tina T Wong
- Ocular Therapeutics and Drug Delivery, Singapore Eye Research Institute, Singapore, Singapore. .,Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore. .,Duke-NUS Graduate Medical School Singapore, Singapore, Singapore. .,Glaucoma Service, Singapore National Eye Center, 11 Third Hospital Avenue, Singapore, 168751, Singapore. .,School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore.
| |
Collapse
|
33
|
Guiraud S, Aartsma-Rus A, Vieira NM, Davies KE, van Ommen GJB, Kunkel LM. The Pathogenesis and Therapy of Muscular Dystrophies. Annu Rev Genomics Hum Genet 2015; 16:281-308. [DOI: 10.1146/annurev-genom-090314-025003] [Citation(s) in RCA: 207] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Simon Guiraud
- Medical Research Council Functional Genomics Unit, Department of Physiology, Anatomy, and Genetics, University of Oxford, OX1 3PT Oxford, United Kingdom; ,
| | - Annemieke Aartsma-Rus
- Department of Human Genetics, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; ,
| | - Natassia M. Vieira
- Division of Genetics and Genomics and Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, Massachusetts 02115
- Departments of Pediatrics and Genetics, Harvard Medical School, Boston, Massachusetts 02115; ,
| | - Kay E. Davies
- Medical Research Council Functional Genomics Unit, Department of Physiology, Anatomy, and Genetics, University of Oxford, OX1 3PT Oxford, United Kingdom; ,
| | - Gert-Jan B. van Ommen
- Department of Human Genetics, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; ,
| | - Louis M. Kunkel
- Division of Genetics and Genomics and Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, Massachusetts 02115
- Departments of Pediatrics and Genetics, Harvard Medical School, Boston, Massachusetts 02115; ,
| |
Collapse
|
34
|
Kutlu O, Karaguzel E, Gurgen SG, Okatan AE, Kutlu S, Bayraktar C, Kazaz IO, Eren H. Antifibrogenic role of valproic acid in streptozotocin induced diabetic rat penis. Andrologia 2015; 48:453-63. [DOI: 10.1111/and.12465] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/21/2015] [Indexed: 01/10/2023] Open
Affiliation(s)
- O. Kutlu
- Department of Urology; School of Medicine; Karadeniz Technical University; Trabzon Turkey
| | - E. Karaguzel
- Department of Urology; School of Medicine; Karadeniz Technical University; Trabzon Turkey
| | - S. G. Gurgen
- School of Vocational Health Service; Celal Bayar University; Manisa Turkey
| | - A. E. Okatan
- Department of Urology; School of Medicine; Karadeniz Technical University; Trabzon Turkey
| | - S. Kutlu
- Department of Urology; Aydin State Hospital; Aydin Turkey
| | - C. Bayraktar
- Department of Urology; School of Medicine; Karadeniz Technical University; Trabzon Turkey
| | - I. O. Kazaz
- Department of Urology; School of Medicine; Karadeniz Technical University; Trabzon Turkey
| | - H. Eren
- Department of Urology; School of Medicine; Karadeniz Technical University; Trabzon Turkey
| |
Collapse
|
35
|
de Luna N, Brull A, Guiu JM, Lucia A, Martin MA, Arenas J, Martí R, Andreu AL, Pinós T. Sodium valproate increases the brain isoform of glycogen phosphorylase: looking for a compensation mechanism in McArdle disease using a mouse primary skeletal-muscle culture in vitro. Dis Model Mech 2015; 8:467-72. [PMID: 25762569 PMCID: PMC4415898 DOI: 10.1242/dmm.020230] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 03/07/2015] [Indexed: 11/30/2022] Open
Abstract
McArdle disease, also termed ‘glycogen storage disease type V’, is a disorder of skeletal muscle carbohydrate metabolism caused by inherited deficiency of the muscle-specific isoform of glycogen phosphorylase (GP-MM). It is an autosomic recessive disorder that is caused by mutations in the PYGM gene and typically presents with exercise intolerance, i.e. episodes of early exertional fatigue frequently accompanied by rhabdomyolysis and myoglobinuria. Muscle biopsies from affected individuals contain subsarcolemmal deposits of glycogen. Besides GP-MM, two other GP isoforms have been described: the liver (GP-LL) and brain (GP-BB) isoforms, which are encoded by the PYGL and PYGB genes, respectively; GP-BB is the main GP isoform found in human and rat foetal tissues, including the muscle, although its postnatal expression is dramatically reduced in the vast majority of differentiated tissues with the exception of brain and heart, where it remains as the major isoform. We developed a cell culture model from knock-in McArdle mice that mimics the glycogen accumulation and GP-MM deficiency observed in skeletal muscle from individuals with McArdle disease. We treated mouse primary skeletal muscle cultures in vitro with sodium valproate (VPA), a histone deacetylase inhibitor. After VPA treatment, myotubes expressed GP-BB and a dose-dependent decrease in glycogen accumulation was also observed. Thus, this in vitro model could be useful for high-throughput screening of new drugs to treat this disease. The immortalization of these primary skeletal muscle cultures could provide a never-ending source of cells for this experimental model. Furthermore, VPA could be considered as a gene-expression modulator, allowing compensatory expression of GP-BB and decreased glycogen accumulation in skeletal muscle of individuals with McArdle disease. Summary: Use of this in vitro model showed that sodium valproate (VPA) can reverse the muscle phenotype from a McArdle-like to a normal histological and biochemical profile.
Collapse
Affiliation(s)
- Noemí de Luna
- Mitochondrial Pathology and Neuromuscular Disorders Laboratory, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona 08035, Spain Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid 28029, Spain
| | - Astrid Brull
- Mitochondrial Pathology and Neuromuscular Disorders Laboratory, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona 08035, Spain Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid 28029, Spain
| | - Josep Maria Guiu
- Mitochondrial Pathology and Neuromuscular Disorders Laboratory, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona 08035, Spain Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid 28029, Spain
| | - Alejandro Lucia
- Universidad Europea, Madrid 28670, Spain Instituto de Investigación 'i+12', Madrid 28041, Spain
| | | | | | - Ramon Martí
- Mitochondrial Pathology and Neuromuscular Disorders Laboratory, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona 08035, Spain Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid 28029, Spain
| | - Antoni L Andreu
- Mitochondrial Pathology and Neuromuscular Disorders Laboratory, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona 08035, Spain Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid 28029, Spain
| | - Tomàs Pinós
- Mitochondrial Pathology and Neuromuscular Disorders Laboratory, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona 08035, Spain Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid 28029, Spain
| |
Collapse
|
36
|
Sakuma K, Aoi W, Yamaguchi A. The intriguing regulators of muscle mass in sarcopenia and muscular dystrophy. Front Aging Neurosci 2014; 6:230. [PMID: 25221510 PMCID: PMC4148637 DOI: 10.3389/fnagi.2014.00230] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 08/10/2014] [Indexed: 12/25/2022] Open
Abstract
Recent advances in our understanding of the biology of muscle have led to new interest in the pharmacological treatment of muscle wasting. Loss of muscle mass and increased intramuscular fibrosis occur in both sarcopenia and muscular dystrophy. Several regulators (mammalian target of rapamycin, serum response factor, atrogin-1, myostatin, etc.) seem to modulate protein synthesis and degradation or transcription of muscle-specific genes during both sarcopenia and muscular dystrophy. This review provides an overview of the adaptive changes in several regulators of muscle mass in both sarcopenia and muscular dystrophy.
Collapse
Affiliation(s)
- Kunihiro Sakuma
- Research Center for Physical Fitness, Sports and Health, Toyohashi University of Technology, Toyohashi, Japan
| | - Wataru Aoi
- Laboratory of Health Science, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, Japan
| | - Akihiko Yamaguchi
- Department of Physical Therapy, Health Sciences University of Hokkaido, Kanazawa, Japan
| |
Collapse
|
37
|
Vianello S, Bouyon S, Benoit E, Sebrié C, Boerio D, Herbin M, Roulot M, Fromes Y, de la Porte S. Arginine butyrate per os protects mdx mice against cardiomyopathy, kyphosis and changes in axonal excitability. Neurobiol Dis 2014; 71:325-33. [PMID: 25167832 DOI: 10.1016/j.nbd.2014.08.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 08/08/2014] [Accepted: 08/16/2014] [Indexed: 11/30/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a progressive neuromuscular disease caused by lack of dystrophin, a sub-sarcolemmal protein, which leads to dramatic muscle deterioration. We studied in mdx mice, the effects of oral administration of arginine butyrate (AB), a compound currently used for the treatment of sickle cell anemia in children, on cardiomyopathy, vertebral column deformation and electromyographic abnormalities. Monthly follow-up by echocardiography from the 8th month to the 14th month showed that AB treatment protected the mdx mice against drastic reduction (20-23%) of ejection fraction and fractional shortening, and also against the ≈20% ventricular dilatation and 25% cardiac hypertrophy observed in saline-treated mdx mice. The phenotypic improvement was corroborated by the decrease in serum CK level and by better fatigue resistance. Moreover, AB treatment protected against the progressive spinal deformity observed in mdx mice, another similarity with DMD patients. The value of the kyphosis index in AB-treated mice reached 94% of the value in C57BL/10 mice. Finally, axonal excitability parameters such as the membrane resting potential, the threshold and amplitude of the action potential, the absolute and relative refractory periods and the supernormal and subnormal periods, recorded from caudal and plantar muscles in response to excitability tests, that were modified in saline-treated mdx mice were not significantly changed, compared with wild-type animals, in AB-treated mdx mice. All of these results suggest that AB could be a potential treatment for DMD patients.
Collapse
Affiliation(s)
- Sara Vianello
- CNRS, Institut de Neurobiologie Alfred Fessard, FRC2118, Neurobiologie & Développement, UPR 3294, Gif sur Yvette, F-91198, France.
| | - Sophie Bouyon
- UPMC, Université Paris 6, UMR 974, Institut de Myologie, F-75013 Paris, France.
| | - Evelyne Benoit
- CNRS, Institut de Neurobiologie Alfred Fessard, FRC2118, Neurobiologie & Développement, UPR 3294, Gif sur Yvette, F-91198, France.
| | | | - Delphine Boerio
- CNRS, Institut de Neurobiologie Alfred Fessard, FRC2118, Neurobiologie & Développement, UPR 3294, Gif sur Yvette, F-91198, France.
| | - Marc Herbin
- CNRS, Muséum National d'Histoire Naturelle, CNRS, UMR7179, Pavillon d'anatomie comparée, BP 55, 52 Rue Cuvier, 75231 Paris Cedex 05, France.
| | - Morgane Roulot
- CNRS, Institut de Neurobiologie Alfred Fessard, FRC2118, Neurobiologie & Développement, UPR 3294, Gif sur Yvette, F-91198, France.
| | - Yves Fromes
- UPMC, Université Paris 6, UMR 974, Institut de Myologie, F-75013 Paris, France; ONIRIS, Centre de Boisbonne, Nantes F-44307, France.
| | - Sabine de la Porte
- CNRS, Institut de Neurobiologie Alfred Fessard, FRC2118, Neurobiologie & Développement, UPR 3294, Gif sur Yvette, F-91198, France.
| |
Collapse
|
38
|
Vianello S, Consolaro F, Bich C, Cancela JM, Roulot M, Lanchec E, Touboul D, Brunelle A, Israël M, Benoit E, de la Porte S. Low doses of arginine butyrate derivatives improve dystrophic phenotype and restore membrane integrity in DMD models. FASEB J 2014; 28:2603-19. [PMID: 24604079 DOI: 10.1096/fj.13-244798] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
A new approach to treating Duchenne muscular dystrophy was investigated by using the ester or amide covalent association of arginine [nitric oxide (NO) pathway] and butyrate [histone deacetylase (HDAC) inhibition] in mdx mice and patient myotubes. Two prodrugs were synthesized, and the beneficial effects on dystrophic phenotype were studied. Nerve excitability abnormalities detected in saline-treated mice were almost totally rescued in animals treated at low doses (50-100 mg/kg/d). Force and fatigue resistance were improved ≈60% and 3.5-fold, respectively, and the percentage of necrosis in heart sections was reduced ≈90% in the treated mice. A decrease of >50% in serum creatine kinase indicated an overall improvement in the muscles. Restoration of membrane integrity was studied directly by measuring the reduction (≈74%) of Evans blue incorporation in the limb muscles of the treated animals, the increase in utrophin level, and the normalization of lipid composition of the heart. In cultures of human myotubes (primary cells and cell line), both prodrugs and HDAC inhibitors increased by 2- to 4-fold the utrophin level, which was correctly localized at the membrane. β-Dystroglycan and embryonic myosin protein levels were also increased. Finally, a 50% reduction in the number of spontaneous Ca(2+) spikes was observed after treatment with NO synthase substrate and HDAC inhibitors. Overall, the beneficial effects were obtained with doses 10 (in vivo) and 5 (in vitro) times lower than those of the salt formulation. Altogether, these data constitute proof of principle of the beneficial effects of low doses of arginine butyrate derivatives on muscular dystrophy, enhancing the NO pathway and inhibiting HDAC.
Collapse
Affiliation(s)
- Sara Vianello
- Neurobiologie and Développement, Institut de Neurobiologie Alfred Fessard-Fédération pour la Recherche sur le Cerveau (FRC) 2118, Unité Propres de Recherche (UPR) 3294, and
| | - Francesca Consolaro
- Neurobiologie and Développement, Institut de Neurobiologie Alfred Fessard-Fédération pour la Recherche sur le Cerveau (FRC) 2118, Unité Propres de Recherche (UPR) 3294, and
| | - Claudia Bich
- Institut de Chimie des Substances Naturelles, Centre de Recherche de Gif, UPR 2301, Centre National de la Recherche Scientifique (CNRS), Gif sur Yvette, France; and
| | - José-Manuel Cancela
- Centre de Neurosciences Paris-Sud, Université Paris Sud, Unité Mixte de Recherche (UMR) 8195, CNRS, Orsay, France
| | - Morgane Roulot
- Neurobiologie and Développement, Institut de Neurobiologie Alfred Fessard-Fédération pour la Recherche sur le Cerveau (FRC) 2118, Unité Propres de Recherche (UPR) 3294, and
| | - Erwan Lanchec
- Centre de Neurosciences Paris-Sud, Université Paris Sud, Unité Mixte de Recherche (UMR) 8195, CNRS, Orsay, France
| | - David Touboul
- Institut de Chimie des Substances Naturelles, Centre de Recherche de Gif, UPR 2301, Centre National de la Recherche Scientifique (CNRS), Gif sur Yvette, France; and
| | - Alain Brunelle
- Institut de Chimie des Substances Naturelles, Centre de Recherche de Gif, UPR 2301, Centre National de la Recherche Scientifique (CNRS), Gif sur Yvette, France; and
| | - Maurice Israël
- Neurobiologie and Développement, Institut de Neurobiologie Alfred Fessard-Fédération pour la Recherche sur le Cerveau (FRC) 2118, Unité Propres de Recherche (UPR) 3294, and
| | - Evelyne Benoit
- Neurobiologie and Développement, Institut de Neurobiologie Alfred Fessard-Fédération pour la Recherche sur le Cerveau (FRC) 2118, Unité Propres de Recherche (UPR) 3294, and
| | - Sabine de la Porte
- Neurobiologie and Développement, Institut de Neurobiologie Alfred Fessard-Fédération pour la Recherche sur le Cerveau (FRC) 2118, Unité Propres de Recherche (UPR) 3294, and
| |
Collapse
|
39
|
Teng HF, Li PN, Hou DR, Liu SW, Lin CT, Loo MR, Kao CH, Lin KH, Chen SL. Valproic acid enhances Oct4 promoter activity through PI3K/Akt/mTOR pathway activated nuclear receptors. Mol Cell Endocrinol 2014; 383:147-58. [PMID: 24361750 DOI: 10.1016/j.mce.2013.12.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 11/24/2013] [Accepted: 12/13/2013] [Indexed: 12/21/2022]
Abstract
Valproic acid (VPA) has been shown to increase the reprogramming efficiency of induced pluripotent stem cells (iPSC) from somatic cells, but the mechanism by which VPA enhances iPSC induction has not been defined. Here we demonstrated that VPA directly activated Oct4 promoter activity through activation of the PI3K/Akt/mTOR signaling pathway that targeted the proximal hormone response element (HRE, -41∼-22) in this promoter. The activating effect of VPA is highly specific as similar compounds or constitutional isomers failed to instigate Oct4 promoter activity. We further demonstrated that the upstream 2 half-sites in this HRE were essential to the activating effect of VPA and they were targeted by a subset of nuclear receptors, such as COUP-TFII and TR2. These findings show the first time that NRs are implicated in the VPA stimulated expression of stem cell-specific factors and should invite more investigation on the cooperation between VPA and NRs on iPSC induction.
Collapse
Affiliation(s)
- Han Fang Teng
- Department of Life Sciences, National Central University, Jhongli 32001, Taiwan
| | - Pei Ning Li
- Department of Life Sciences, National Central University, Jhongli 32001, Taiwan
| | - Duen Ren Hou
- Department of Chemistry, National Central University, Jhongli 32001, Taiwan
| | - Sin Wei Liu
- Department of Chemistry, National Central University, Jhongli 32001, Taiwan
| | - Cheng Tao Lin
- Department of Life Sciences, National Central University, Jhongli 32001, Taiwan
| | - Moo Rung Loo
- Department of Life Sciences, National Central University, Jhongli 32001, Taiwan
| | - Chien Han Kao
- Department of Life Sciences, National Central University, Jhongli 32001, Taiwan
| | - Kwang Huei Lin
- Department of Biochemistry, Chang Gung University, Taoyuan 333, Taiwan
| | - Shen Liang Chen
- Department of Life Sciences, National Central University, Jhongli 32001, Taiwan.
| |
Collapse
|
40
|
Divergent dysregulation of gene expression in murine models of fragile X syndrome and tuberous sclerosis. Mol Autism 2014; 5:16. [PMID: 24564913 PMCID: PMC3940253 DOI: 10.1186/2040-2392-5-16] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2013] [Accepted: 02/04/2014] [Indexed: 12/31/2022] Open
Abstract
Background Fragile X syndrome and tuberous sclerosis are genetic syndromes that both have a high rate of comorbidity with autism spectrum disorder (ASD). Several lines of evidence suggest that these two monogenic disorders may converge at a molecular level through the dysfunction of activity-dependent synaptic plasticity. Methods To explore the characteristics of transcriptomic changes in these monogenic disorders, we profiled genome-wide gene expression levels in cerebellum and blood from murine models of fragile X syndrome and tuberous sclerosis. Results Differentially expressed genes and enriched pathways were distinct for the two murine models examined, with the exception of immune response-related pathways. In the cerebellum of the Fmr1 knockout (Fmr1-KO) model, the neuroactive ligand receptor interaction pathway and gene sets associated with synaptic plasticity such as long-term potentiation, gap junction, and axon guidance were the most significantly perturbed pathways. The phosphatidylinositol signaling pathway was significantly dysregulated in both cerebellum and blood of Fmr1-KO mice. In Tsc2 heterozygous (+/−) mice, immune system-related pathways, genes encoding ribosomal proteins, and glycolipid metabolism pathways were significantly changed in both tissues. Conclusions Our data suggest that distinct molecular pathways may be involved in ASD with known but different genetic causes and that blood gene expression profiles of Fmr1-KO and Tsc2+/− mice mirror some, but not all, of the perturbed molecular pathways in the brain.
Collapse
|
41
|
Spitali P, Grumati P, Hiller M, Chrisam M, Aartsma-Rus A, Bonaldo P. Autophagy is Impaired in the Tibialis Anterior of Dystrophin Null Mice. PLOS CURRENTS 2013; 5. [PMID: 24292657 PMCID: PMC3839594 DOI: 10.1371/currents.md.e1226cefa851a2f079bbc406c0a21e80] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Background Duchenne muscular dystrophy is a lethal, progressive, muscle-wasting disease caused by mutations in the DMD gene. Structural remodelling processes are responsible for muscle atrophy and replacement of myofibers by fibrotic and adipose tissues. Molecular interventions modulating catabolic pathways, such as the ubiquitin-proteasome and the autophagy-lysosome systems, are under development for Duchenne and other muscular dystrophies. The Akt signaling cascade is one of the main pathways involved in protein synthesis and autophagy repression and is known to be up-regulated in dystrophin null mdx mice. Results We report that autophagy is triggered by fasting in the tibialis anterior muscle of control mice but not in mdx mice. Mdx mice show persistent Akt activation upon fasting and failure to increase the expression of FoxO3 regulated autophagy and atrophy genes, such as Bnip3 and Atrogin1. We also provide evidence that autophagy is differentially regulated in mdx tibialis anterior and diaphragm muscles. Conclusions Our data support the concept that autophagy is impaired in the tibialis anterior muscle of mdx mice and that the regulation of autophagy is muscle type dependent. Differences between muscle groups should be considered during the pre-clinical development of therapeutic strategies addressing muscle metabolism.
Collapse
Affiliation(s)
- Pietro Spitali
- Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands
| | | | | | | | | | | |
Collapse
|
42
|
Wuebbles RD, Sarathy A, Kornegay JN, Burkin DJ. Levels of α7 integrin and laminin-α2 are increased following prednisone treatment in the mdx mouse and GRMD dog models of Duchenne muscular dystrophy. Dis Model Mech 2013; 6:1175-84. [PMID: 23846963 PMCID: PMC3759337 DOI: 10.1242/dmm.012211] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a fatal neuromuscular disease for which there is no cure and limited treatment options. Prednisone is currently the first line treatment option for DMD and studies have demonstrated that it improves muscle strength. Although prednisone has been used for the treatment of DMD for decades, the mechanism of action of this drug remains unclear. Recent studies have shown that the α7β1 integrin is a major modifier of disease progression in mouse models of DMD and is therefore a target for drug-based therapies. In this study we examined whether prednisone increased α7β1 integrin levels in mdx mouse and GRMD dog models and myogenic cells from humans with DMD. Our results show that prednisone promotes an increase in α7 integrin protein in cultured myogenic cells and in the muscle of mdx and GRMD animal models of DMD. The prednisone-mediated increase in α7 integrin was associated with increased laminin-α2 in prednisone-treated dystrophin-deficient muscle. Together, our results suggest that prednisone acts in part through increased merosin in the muscle basal lamina and through sarcolemmal stabilization of α7β1 integrin in dystrophin-deficient muscle. These results indicate that therapies that target an increase in muscle α7β1 integrin, its signaling pathways and/or laminin could be therapeutic in DMD.
Collapse
Affiliation(s)
- Ryan D Wuebbles
- Department of Pharmacology, University of Nevada School of Medicine, Reno, NV 89557, USA
| | | | | | | |
Collapse
|
43
|
Vianello S, Yu H, Voisin V, Haddad H, He X, Foutz AS, Sebrié C, Gillet B, Roulot M, Fougerousse F, Perronnet C, Vaillend C, Matecki S, Escolar D, Bossi L, Israël M, de la Porte S. Arginine butyrate: a therapeutic candidate for Duchenne muscular dystrophy. FASEB J 2013; 27:2256-69. [PMID: 23430975 DOI: 10.1096/fj.12-215723] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
As a strategy to treat Duchenne muscular dystrophy, we used arginine butyrate, which combines two pharmacological activities: nitric oxide pathway activation, and histone deacetylase inhibition. Continuous intraperitoneal administration to dystrophin-deficient mdx mice resulted in a near 2-fold increase in utrophin (protein homologous to dystrophin) in skeletal muscle, heart, and brain, accompanied by an improvement of the dystrophic phenotype in both adult and newborn mice (45 and 70% decrease in creatine kinase level, respectively; 14% increase in tidal volume, 30% decrease in necrotic area in limb and 23% increase in isometric force). Intermittent administration, as performed in clinical trials, was then used to reduce the frequency of injections and to improve safety. This also enhanced utrophin level around 2-fold (EC50=284 mg/ml) and alleviated the dystrophic phenotype (inverted grid and grip test performance near to wild-type values, creatine kinase level decreased by 50%). Skin biopsies were used to monitor treatment efficacy, instead of invasive muscle biopsies, and this could be done a few days after the start of treatment. A 2-fold increase in utrophin expression was also shown in cultured human myotubes. In vivo and in vitro experiments demonstrated that the drug combination acts synergistically. Together, these data constitute a proof of principle of the beneficial effects of arginine butyrate on muscular dystrophy.
Collapse
Affiliation(s)
- Sara Vianello
- Neurobiologie & Développement-Unité Propres de Recherche 3294, Centre National de la Recherche Scientifique, Institut de Neurobiologie Alfred Fessard-FRC2118, Gif sur Yvette, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Lee SH, Zahoor M, Hwang JK, Min DS, Choi KY. Valproic acid induces cutaneous wound healing in vivo and enhances keratinocyte motility. PLoS One 2012; 7:e48791. [PMID: 23144972 PMCID: PMC3492241 DOI: 10.1371/journal.pone.0048791] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Accepted: 10/01/2012] [Indexed: 11/19/2022] Open
Abstract
Background Cutaneous wound healing is a complex process involving several signaling pathways such as the Wnt and extracellular signal-regulated kinase (ERK) signaling pathways. Valproic acid (VPA) is a commonly used antiepileptic drug that acts on these signaling pathways; however, the effect of VPA on cutaneous wound healing is unknown. Methods and Findings We created full-thickness wounds on the backs of C3H mice and then applied VPA. After 7 d, we observed marked healing and reduced wound size in VPA-treated mice. In the neo-epidermis of the wounds, β-catenin and markers for keratinocyte terminal differentiation were increased after VPA treatment. In addition, α-smooth muscle actin (α-SMA), collagen I and collagen III in the wounds were significantly increased. VPA induced proliferation and suppressed apoptosis of cells in the wounds, as determined by Ki67 and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining analyses, respectively. In vitro, VPA enhanced the motility of HaCaT keratinocytes by activating Wnt/β-catenin, ERK and phosphatidylinositol 3-kinase (PI3-kinase)/Akt signaling pathways. Conclusions VPA enhances cutaneous wound healing in a murine model and induces migration of HaCaT keratinocytes.
Collapse
Affiliation(s)
- Soung-Hoon Lee
- Translational Research Center for Protein Function Control, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | - Muhammad Zahoor
- Translational Research Center for Protein Function Control, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | - Jae-Kwan Hwang
- Translational Research Center for Protein Function Control, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | - Do Sik Min
- Department of Molecular Biology, College of Natural Science, Pusan National University, Busan, Korea
| | - Kang-Yell Choi
- Translational Research Center for Protein Function Control, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
- * E-mail:
| |
Collapse
|
45
|
Perkins KJ, Davies KE. Recent advances in Duchenne muscular dystrophy. Degener Neurol Neuromuscul Dis 2012; 2:141-164. [PMID: 30890885 DOI: 10.2147/dnnd.s26637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Duchenne muscular dystrophy (DMD), an allelic X-linked progressive muscle-wasting disease, is one of the most common single-gene disorders in the developed world. Despite knowledge of the underlying genetic causation and resultant pathophysiology from lack of dystrophin protein at the muscle sarcolemma, clinical intervention is currently restricted to symptom management. In recent years, however, unprecedented advances in strategies devised to correct the primary defect through gene- and cell-based therapeutics hold particular promise for treating dystrophic muscle. Conventional gene replacement and endogenous modification strategies have greatly benefited from continued improvements in encapsidation capacity, transduction efficiency, and systemic delivery. In particular, RNA-based modifying approaches such as exon skipping enable expression of a shorter but functional dystrophin protein and rapid progress toward clinical application. Emerging combined gene- and cell-therapy strategies also illustrate particular promise in enabling ex vivo genetic correction and autologous transplantation to circumvent a number of immune challenges. These approaches are complemented by a vast array of pharmacological approaches, in particular the successful identification of molecules that enable functional replacement or ameliorate secondary DMD pathology. Animal models have been instrumental in providing proof of principle for many of these strategies, leading to several recent trials that have investigated their efficacy in DMD patients. Although none has reached the point of clinical use, rapid improvements in experimental technology and design draw this goal ever closer. Here, we review therapeutic approaches to DMD, with particular emphasis on recent progress in strategic development, preclinical evaluation and establishment of clinical efficacy. Further, we discuss the numerous challenges faced and synergistic approaches being devised to combat dystrophic pathology effectively.
Collapse
Affiliation(s)
- Kelly J Perkins
- Sir William Dunn School of Pathology.,MRC Functional Genomics Unit, University of Oxford, Oxford, UK,
| | - Kay E Davies
- MRC Functional Genomics Unit, University of Oxford, Oxford, UK,
| |
Collapse
|
46
|
Local injections of adipose-derived mesenchymal stem cells modulate inflammation and increase angiogenesis ameliorating the dystrophic phenotype in dystrophin-deficient skeletal muscle. Stem Cell Rev Rep 2012; 8:363-74. [PMID: 21874281 DOI: 10.1007/s12015-011-9304-0] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The effects of adipose-derived mesenchymal stem cells (ADMSC) transplantation on degeneration, regeneration and skeletal muscle function were investigated in dystrophin-deficient mice (24-week-old). ADMSC transplantation improved muscle strength and, resistance to fatigue. An increase in fiber cross-sectional area and in the number of fibers with centralized nuclei and augment of myogenin content were observed. In ADMSC-treated muscles a decrease in muscle content of TNF-α, IL-6 and oxidative stress measured by Amplex(®) reagent were observed. The level of TGF-β1 was lowered whereas that of VEGF, IL-10 and IL-4 were increased by ADMSC treatment. An increase in markers of macrophage M1 (CD11 and F4-80) and a decrease in T lymphocyte marker (CD3) and arginase-1 were also observed in ADMSCs-treated dystrophic muscle. No change was observed in iNOS expression. Increased phosphorylation of Akt, p70S6k and 4E-BP1 was found in dystrophic muscles treated with ADMSC. These results suggest that ADMSC transplantation modulates inflammation and improves muscle tissue regeneration, ameliorating the dystrophic phenotype in dystrophin-deficient mice.
Collapse
|
47
|
Fanzani A, Conraads VM, Penna F, Martinet W. Molecular and cellular mechanisms of skeletal muscle atrophy: an update. J Cachexia Sarcopenia Muscle 2012; 3:163-79. [PMID: 22673968 PMCID: PMC3424188 DOI: 10.1007/s13539-012-0074-6] [Citation(s) in RCA: 247] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Accepted: 05/13/2012] [Indexed: 02/06/2023] Open
Abstract
Skeletal muscle atrophy is defined as a decrease in muscle mass and it occurs when protein degradation exceeds protein synthesis. Potential triggers of muscle wasting are long-term immobilization, malnutrition, severe burns, aging as well as various serious and often chronic diseases, such as chronic heart failure, obstructive lung disease, renal failure, AIDS, sepsis, immune disorders, cancer, and dystrophies. Interestingly, a cooperation between several pathophysiological factors, including inappropriately adapted anabolic (e.g., growth hormone, insulin-like growth factor 1) and catabolic proteins (e.g., tumor necrosis factor alpha, myostatin), may tip the balance towards muscle-specific protein degradation through activation of the proteasomal and autophagic systems or the apoptotic pathway. Based on the current literature, we present an overview of the molecular and cellular mechanisms that contribute to muscle wasting. We also focus on the multifacetted therapeutic approach that is currently employed to prevent the development of muscle wasting and to counteract its progression. This approach includes adequate nutritional support, implementation of exercise training, and possible pharmacological compounds.
Collapse
Affiliation(s)
- Alessandro Fanzani
- Department of Biomedical Sciences and Biotechnologies and Interuniversitary Institute of Myology (IIM), University of Brescia, viale Europa 11, 25123, Brescia, Italy,
| | | | | | | |
Collapse
|
48
|
Abstract
The extracellular matrix (ECM) provides a solid scaffold and signals to cells through ECM receptors. The cell-matrix interactions are crucial for normal biological processes and when disrupted they may lead to pathological processes. In particular, the biological importance of ECM-cell membrane-cytoskeleton interactions in skeletal muscle is accentuated by the number of inherited muscle diseases caused by mutations in proteins conferring these interactions. In this review we introduce laminins, collagens, dystroglycan, integrins, dystrophin and sarcoglycans. Mutations in corresponding genes cause various forms of muscular dystrophy. The muscle disorders are presented as well as advances toward the development of treatment.
Collapse
Affiliation(s)
- Virginie Carmignac
- Muscle Biology Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | | |
Collapse
|
49
|
|
50
|
Razidlo GL, Katafiasz D, Taylor GS. Myotubularin regulates Akt-dependent survival signaling via phosphatidylinositol 3-phosphate. J Biol Chem 2011; 286:20005-19. [PMID: 21478156 DOI: 10.1074/jbc.m110.197749] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Myotubularin is a 3-phosphoinositide phosphatase that is mutated in X-linked myotubular myopathy, a severe neonatal disorder in which skeletal muscle development and/or regeneration is impaired. In this report we provide evidence that siRNA-mediated silencing of myotubularin expression markedly inhibits growth factor-stimulated Akt phosphorylation, leading to activation of caspase-dependent pro-apoptotic signaling in HeLa cells and primary human skeletal muscle myotubes. Myotubularin silencing also inhibits Akt-dependent signaling through the mammalian target of rapamycin complex 1 as assessed by p70 S6-kinase and 4E-BP1 phosphorylation. Similarly, phosphorylation of FoxO transcription factors is also significantly reduced in myotubularin-deficient cells. Our data further suggest that inhibition of Akt activation and downstream survival signaling in myotubularin-deficient cells is caused by accumulation of the MTMR substrate lipid phosphatidylinositol 3-phosphate generated from the type II phosphatidylinositol 3-kinase PIK3C2B. Our findings are significant because they suggest that myotubularin regulates Akt activation via a cellular pool of phosphatidylinositol 3-phosphate that is distinct from that generated by the type III phosphatidylinositol 3-kinase hVps34. Because impaired Akt signaling has been tightly linked to skeletal muscle atrophy, we hypothesize that loss of Akt-dependent growth/survival cues due to impaired myotubularin function may be a critical factor underlying the severe skeletal muscle atrophy characteristic of muscle fibers in patients with X-linked myotubular myopathy.
Collapse
Affiliation(s)
- Gina L Razidlo
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska 68198-5870, USA
| | | | | |
Collapse
|