1
|
Morgan MJ, Kim YS. RIPK3 in necroptosis and cancer. Mol Cells 2025; 48:100199. [PMID: 40010643 PMCID: PMC11938148 DOI: 10.1016/j.mocell.2025.100199] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 02/16/2025] [Accepted: 02/18/2025] [Indexed: 02/28/2025] Open
Abstract
Receptor-interacting protein kinase-3 is essential for the cell death pathway called necroptosis. Necroptosis is activated by the death receptor ligands and pattern recognition receptors of the innate immune system, leading to significant consequences in inflammation and in diseases, particularly cancer. Necroptosis is highly proinflammatory compared with other modes of cell death because cell membrane integrity is lost, resulting in releases of cytokines and damage-associated molecular patterns that potentiate inflammation and activate the immune system. We discuss various ways that necroptosis is triggered along with its potential role in cancer and therapy.
Collapse
Affiliation(s)
- Michael J Morgan
- Department of Natural Sciences, Northeastern State University, Tahlequah, OK 74464, USA.
| | - You-Sun Kim
- Department of Biochemistry, Ajou University School of Medicine, Ajou University, Suwon 16499, Korea; Department of Biomedical Sciences, Graduate School, Ajou University, Suwon 16499, Korea.
| |
Collapse
|
2
|
Ferraretti G, Rill A, Abondio P, Smith K, Ojeda-Granados C, De Fanti S, Alberti M, Izzi M, Sherpa PT, Cocco P, Tiriticco M, Di Marcello M, Dezi A, Gnecchi-Ruscone GA, Natali L, Corcelli A, Marinelli G, Garagnani P, Peluzzi D, Luiselli D, Pettener D, Sarno S, Sazzini M. Convergent evolution of complex adaptive traits modulates angiogenesis in high-altitude Andean and Himalayan human populations. Commun Biol 2025; 8:377. [PMID: 40050470 PMCID: PMC11885840 DOI: 10.1038/s42003-025-07813-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 02/25/2025] [Indexed: 03/09/2025] Open
Abstract
Convergent adaptations represent paradigmatic examples of the capacity of natural selection to influence organisms' biology. However, the possibility to investigate the genetic determinants underpinning convergent complex adaptive traits has been offered only recently by methods for inferring polygenic adaptations from genomic data. Relying on this approach, we demonstrate how high-altitude Andean human groups experienced pervasive selective events at angiogenic pathways, which resemble those previously attested for Himalayan populations despite partial convergence at the single-gene level was observed. This provides additional evidence for the drivers of convergent evolution of enhanced blood perfusion in populations exposed to hypobaric hypoxia for thousands of years.
Collapse
Affiliation(s)
- Giulia Ferraretti
- Laboratory of Molecular Anthropology & Centre for Genome Biology, Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Aina Rill
- Laboratory of Molecular Anthropology & Centre for Genome Biology, Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
- Josep Carreras Leukaemia Research Institute, PhD Programme in Biomedicine, University of Barcelona, Barcelona, Spain
| | - Paolo Abondio
- Department of Cultural Heritage, Ravenna Campus, University of Bologna, Ravenna, Italy
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Kyra Smith
- Laboratory of Molecular Anthropology & Centre for Genome Biology, Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Claudia Ojeda-Granados
- Laboratory of Molecular Anthropology & Centre for Genome Biology, Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences and Advanced Technologies "GF Ingrassia", University of Catania, Catania, Italy
| | - Sara De Fanti
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Marta Alberti
- Laboratory of Molecular Anthropology & Centre for Genome Biology, Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Massimo Izzi
- Complex Operative Unit of Endocrinology and Diabetes Care, Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | | | - Paolo Cocco
- Explora Nunaat International, Montorio al Vomano, Teramo, Italy
| | | | | | - Agnese Dezi
- Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Aldo Moro, Bari, Italy
| | - Guido Alberto Gnecchi-Ruscone
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Archaeo- and Palaeogenetics, Institute for Archaeological Sciences, Department of Geosciences & Senckenberg Centre for Human Evolution and Palaeoenvironment, University of Tübingen, Tübingen, Germany
| | - Luca Natali
- Explora Nunaat International, Montorio al Vomano, Teramo, Italy
- Italian Institute of Human Paleontology, Rome, Italy
| | - Angela Corcelli
- Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, Bari, Italy
| | | | - Paolo Garagnani
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Davide Peluzzi
- Explora Nunaat International, Montorio al Vomano, Teramo, Italy
| | - Donata Luiselli
- Department of Cultural Heritage, Ravenna Campus, University of Bologna, Ravenna, Italy
| | - Davide Pettener
- Laboratory of Molecular Anthropology & Centre for Genome Biology, Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Stefania Sarno
- Laboratory of Molecular Anthropology & Centre for Genome Biology, Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Marco Sazzini
- Laboratory of Molecular Anthropology & Centre for Genome Biology, Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy.
- Interdepartmental Centre Alma Mater Research Institute on Global Changes and Climate Change, University of Bologna, Bologna, Italy.
| |
Collapse
|
3
|
Pan T, Li J, Zhang O, Zhu Y, Zhou H, Ma M, Yu Y, Lyu J, Chen Y, Xu L. Knockdown of ribosome RNA processing protein 15 suppresses migration of hepatocellular carcinoma through inhibiting PATZ1-associated LAMC2/FAK pathway. BMC Cancer 2024; 24:334. [PMID: 38475740 DOI: 10.1186/s12885-024-12065-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND Ribosomal RNA processing protein 15 (RRP15) has been found to regulate the progression of hepatocellular carcinoma (HCC). Nevertheless, the extent to which it contributes to the spread of HCC cells remains uncertain. Thus, the objective of this research was to assess the biological function of RRP15 in the migration of HCC. METHODS The expression of RRP15 in HCC tissue microarray (TMA), tumor tissues and cell lines were determined. In vitro, the effects of RRP15 knockdown on the migration, invasion and adhesion ability of HCC cells were assessed by wound healing assay, transwell and adhesion assay, respectively. The effect of RRP15 knockdown on HCC migration was also evaluated in vivo in a mouse model. RESULTS Bioinformatics analysis showed that high expression of RRP15 was significantly associated with low survival rate of HCC. The expression level of RRP15 was strikingly upregulated in HCC tissues and cell lines compared with the corresponding controls, and TMA data also indicated that RRP15 was a pivotal prognostic factor for HCC. RRP15 knockdown in HCC cells reduced epithelial-to-mesenchymal transition (EMT) and inhibited migration in vitro and in vivo, independent of P53 expression. Mechanistically, blockade of RRP15 reduced the protein level of the transcription factor POZ/BTB and AT hook containing zinc finger 1 (PATZ1), resulting in decreased expression of the downstream genes encoding laminin 5 subunits, LAMC2 and LAMB3, eventually suppressing the integrin β4 (ITGB4)/focal adhesion kinase (FAK)/nuclear factor κB kappa-light-chain-enhancer of activated B cells (NF-κB) signaling pathway. CONCLUSIONS RRP15 promotes HCC migration by activating the LAMC2/ITGB4/FAK pathway, providing a new target for future HCC treatment.
Collapse
Affiliation(s)
- Tongtong Pan
- Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, The First Affiliated Hospital of Wenzhou Medical University, 325035, Wenzhou, Zhejiang, China
| | - Jinhai Li
- Department of Liver and Gall Surgery, The Third Affiliated Hospital of Wenzhou Medical University, 325200, Wenzhou, Zhejiang, China
| | - Ouyang Zhang
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, 325035, Wenzhou, Zhejiang, China
| | - Yuqin Zhu
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, 325035, Wenzhou, Zhejiang, China
| | - Hongfei Zhou
- Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, The First Affiliated Hospital of Wenzhou Medical University, 325035, Wenzhou, Zhejiang, China
| | - Mengchen Ma
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, 325035, Wenzhou, Zhejiang, China
| | - Yanwen Yu
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, 325035, Wenzhou, Zhejiang, China
| | - Jiaojian Lyu
- Department of Infectious Diseases, Lishui People's Hospital, 323000, Lishui, Zhejiang, China
| | - Yongping Chen
- Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, The First Affiliated Hospital of Wenzhou Medical University, 325035, Wenzhou, Zhejiang, China.
| | - Liang Xu
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, 325035, Wenzhou, Zhejiang, China.
| |
Collapse
|
4
|
Schafer JM, Xiao T, Kwon H, Collier K, Chang Y, Abdel-Hafiz H, Bolyard C, Chung D, Yang Y, Sundi D, Ma Q, Theodorescu D, Li X, Li Z. Sex-biased adaptive immune regulation in cancer development and therapy. iScience 2022; 25:104717. [PMID: 35880048 PMCID: PMC9307950 DOI: 10.1016/j.isci.2022.104717] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The cancer research field is finally starting to unravel the mystery behind why males have a higher incidence and mortality rate than females for nearly all cancer types of the non-reproductive systems. Here, we explain how sex - specifically sex chromosomes and sex hormones - drives differential adaptive immunity across immune-related disease states including cancer, and why males are consequently more predisposed to tumor development. We highlight emerging data on the roles of cell-intrinsic androgen receptors in driving CD8+ T cell dysfunction or exhaustion in the tumor microenvironment and summarize ongoing clinical efforts to determine the impact of androgen blockade on cancer immunotherapy. Finally, we outline a framework for future research in cancer biology and immuno-oncology, underscoring the importance of a holistic research approach to understanding the mechanisms of sex dimorphisms in cancer, so sex will be considered as an imperative factor for guiding treatment decisions in the future.
Collapse
Affiliation(s)
- Johanna M. Schafer
- Pelotonia Institute for Immuno-Oncology, the Ohio State University Comprehensive Cancer Center – the James, Columbus, OH 43210, USA
| | - Tong Xiao
- Pelotonia Institute for Immuno-Oncology, the Ohio State University Comprehensive Cancer Center – the James, Columbus, OH 43210, USA
| | - Hyunwoo Kwon
- Pelotonia Institute for Immuno-Oncology, the Ohio State University Comprehensive Cancer Center – the James, Columbus, OH 43210, USA
- Medical Scientist Training Program, College of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Katharine Collier
- Division of Medical Oncology, the Ohio State University Comprehensive Cancer Center – the James, Columbus, OH 43210, USA
| | - Yuzhou Chang
- Pelotonia Institute for Immuno-Oncology, the Ohio State University Comprehensive Cancer Center – the James, Columbus, OH 43210, USA
- Department of Biomedical Informatics, the Ohio State University, Columbus, OH 43210, USA
| | - Hany Abdel-Hafiz
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Medicine and Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Chelsea Bolyard
- Pelotonia Institute for Immuno-Oncology, the Ohio State University Comprehensive Cancer Center – the James, Columbus, OH 43210, USA
| | - Dongjun Chung
- Department of Biomedical Informatics, the Ohio State University, Columbus, OH 43210, USA
| | - Yuanquan Yang
- Division of Medical Oncology, the Ohio State University Comprehensive Cancer Center – the James, Columbus, OH 43210, USA
| | - Debasish Sundi
- Department of Urology, the Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Qin Ma
- Department of Biomedical Informatics, the Ohio State University, Columbus, OH 43210, USA
| | - Dan Theodorescu
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Xue Li
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Medicine and Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Zihai Li
- Pelotonia Institute for Immuno-Oncology, the Ohio State University Comprehensive Cancer Center – the James, Columbus, OH 43210, USA
| |
Collapse
|
5
|
Animal Models in Bladder Cancer. Biomedicines 2021; 9:biomedicines9121762. [PMID: 34944577 PMCID: PMC8698361 DOI: 10.3390/biomedicines9121762] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/17/2021] [Accepted: 11/21/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Bladder cancer (urothelial cancer of the bladder) is the most common malignancy affecting the urinary system with an increasing incidence and mortality. Mouse models of bladder cancer should possess a high value of reproducibility, predictability, and translatability to allow mechanistic, chemo-preventive, and therapeutic studies that can be furthered into human clinical trials. OBJECTIVES To provide an overview and resources on the origin, molecular and pathological characteristics of commonly used animal models in bladder cancer. METHODS A PubMed and Web of Science search was performed for relevant articles published between 1980 and 2021 using words such as: "bladder" and/or "urothelial carcinoma" and animal models. Animal models of bladder cancer can be categorized as autochthonous (spontaneous) and non-autochthonous (transplantable). The first are either chemically induced models or genetically engineered models. The transplantable models can be further subclassified as syngeneic (murine bladder cancer cells implanted into immunocompetent or transgenic mice) and xenografts (human bladder cancer cells implanted into immune-deficient mice). These models can be further divided-based on the site of the tumor-as orthotopic (tumor growth occurs within the bladder) and heterotopic (tumor growth occurs outside of the bladder).
Collapse
|
6
|
Zheng R, Du M, Ge Y, Gao F, Xin J, Lv Q, Qin C, Zhu Y, Gu C, Wang M, Zhu Q, Guo Z, Ben S, Chu H, Ye D, Zhang Z, Wang M. Identification of low-frequency variants of UGT1A3 associated with bladder cancer risk by next-generation sequencing. Oncogene 2021; 40:2382-2394. [PMID: 33658628 DOI: 10.1038/s41388-021-01672-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 01/11/2021] [Accepted: 01/20/2021] [Indexed: 12/31/2022]
Abstract
Although genome-wide association studies (GWASs) have successfully revealed many common risk variants for bladder cancer, the heritability is still largely unexplained. We hypothesized that low-frequency variants involved in bladder cancer risk could reveal the unexplained heritability. Next-generation sequencing of 113 patients and 118 controls was conducted on 81 genes/regions of known bladder cancer GWAS loci. A two-stage validation comprising 3,350 cases and 4,005 controls was performed to evaluate the effects of low-frequency variants on bladder cancer risk. Biological experiments and techniques, including electrophoretic mobility shift assays, CRISPR/Cas9, RNA-Seq, and bioinformatics approaches, were performed to assess the potential functions of low-frequency variants. The low-frequency variant rs28898617 was located in the first exon of UGT1A3 and was significantly associated with increased bladder cancer risk (odds ratio = 1.50, P = 3.10 × 10-6). Intriguingly, rs28898617 was only observed in the Asian population, but monomorphism was observed in the European population. The risk-associated G allele of rs28898617 increased UGT1A3 expression, facilitated UGT1A3 transcriptional activity, and enhanced the binding activity. In addition, UGT1A3 deletion significantly inhibited the proliferation, invasion, and migration of bladder cancer cells and xenograft tumor growth. Mechanistically, UGT1A3 induced LAMC2 expression by binding CBP and promoting histone acetylation, which remarkably promoted the progression of bladder cancer. This is the first targeted sequencing study to reveal that the novel low-frequency variant rs28898617 and its associated gene UGT1A3 are involved in bladder cancer development, providing new insights into the genetic architecture of bladder cancer.
Collapse
Affiliation(s)
- Rui Zheng
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.,Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Mulong Du
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.,Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yuqiu Ge
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.,Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Fang Gao
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.,Key Laboratory of Environmental Medicine Engineering, Ministry of Education of China, School of Public Health, Southeast University, Nanjing, China
| | - Junyi Xin
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.,Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Qiang Lv
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chao Qin
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yao Zhu
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Chengyuan Gu
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Mengyun Wang
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Qiuyuan Zhu
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.,Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Zheng Guo
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.,Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Shuai Ben
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.,Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Haiyan Chu
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.,Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Dingwei Ye
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Zhengdong Zhang
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China. .,Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.
| | - Meilin Wang
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China. .,Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China. .,The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Nanjing, China. .,Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
7
|
Identification of GSN and LAMC2 as Key Prognostic Genes of Bladder Cancer by Integrated Bioinformatics Analysis. Cancers (Basel) 2020; 12:cancers12071809. [PMID: 32640634 PMCID: PMC7408759 DOI: 10.3390/cancers12071809] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 06/26/2020] [Accepted: 07/03/2020] [Indexed: 12/14/2022] Open
Abstract
Bladder cancer is a common malignancy with mechanisms of pathogenesis and progression. This study aimed to identify the prognostic hub genes, which are the central modulators to regulate the progression and proliferation in the specific subtype of bladder cancer. The identification of the candidate hub gene was performed by weighted gene co-expression network analysis to construct a free-scale gene co-expression network. The gene expression profile of GSE97768 from the Gene Expression Omnibus database was used. The association between prognosis and hub gene was evaluated by The Cancer Genome Atlas database. Four gene-expression modules were significantly related to bladder cancer disease: the red module (human adenocarcinoma lymph node metastasis), the darkturquioise module (grade 2 carcinoma), the lightgreen module (grade 3 carcinoma), and the royalblue module (transitional cell carcinoma lymphatic metastasis). Based on betweenness centrality and survival analysis, we identified laminin subunit gamma-2 (LAMC2) in the grade 2 carcinoma, gelsolin (GSN) in the grade 3 carcinoma, and homeodomain-interacting protein kinase 2 (HIPK2) in the transitional cell carcinoma lymphatic metastasis. Subsequently, the protein levels of LAMC2 and GSN were respectively down-regulated and up-regulated in tumor tissue with the Human Protein Atlas (HPA) database. Our results suggested that LAMC2 and GSN are the central modulators to transfer information in the specific subtype of the disease.
Collapse
|
8
|
Qian S, Zhan X, Lu M, Li N, Long Y, Li X, Desiderio DM, Zhan X. Quantitative Analysis of Ubiquitinated Proteins in Human Pituitary and Pituitary Adenoma Tissues. Front Endocrinol (Lausanne) 2019; 10:328. [PMID: 31191455 PMCID: PMC6540463 DOI: 10.3389/fendo.2019.00328] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 05/07/2019] [Indexed: 12/30/2022] Open
Abstract
Protein ubiquitination is an important post-translational modification that is associated with multiple diseases, including pituitary adenomas (PAs). Protein ubiquitination profiling in human pituitary and PAs remains unknown. Here, we performed the first ubiquitination analysis with an anti-ubiquitin antibody (specific to K-ε-GG)-based label-free quantitative proteomics method and bioinformatics to investigate protein ubiquitination profiling between PA and control tissues. A total of 158 ubiquitinated sites and 142 ubiquitinated peptides in 108 proteins were identified, and five ubiquitination motifs were found. KEGG pathway network analysis of 108 ubiquitinated proteins identified four statistically significant signaling pathways, including PI3K-AKT signaling pathway, hippo signaling pathway, ribosome, and nucleotide excision repair. R software Gene Ontology (GO) analysis of 108 ubiquitinated proteins revealed that protein ubiquitination was involved in multiple biological processes, cellular components, and molecule functions. The randomly selected ubiquitinated 14-3-3 zeta/delta protein was further analyzed with Western blot, and it was found that upregulated 14-3-3 zeta/delta protein in nonfunctional PAs might be derived from the significantly decreased level of its ubiquitination compared to control pituitaries, which indicated a contribution of 14-3-3 zeta/delta protein to pituitary tumorigenesis. These findings provided the first ubiquitinated proteomic profiling and ubiquitination-involved signaling pathway networks in human PAs. This study offers new scientific evidence and basic data to elucidate the biological functions of ubiquitination in PAs, insights into its novel molecular mechanisms of pituitary tumorigenesis, and discovery of novel biomarkers and therapeutic targets for effective treatment of PAs.
Collapse
Affiliation(s)
- Shehua Qian
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, China
- Hunan Engineering Laboratory for Structural Biology and Drug Design, Xiangya Hospital, Central South University, Changsha, China
- State Local Joint Engineering Laboratory for Anticancer Drugs, Xiangya Hospital, Central South University, Changsha, China
| | - Xiaohan Zhan
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, China
- Hunan Engineering Laboratory for Structural Biology and Drug Design, Xiangya Hospital, Central South University, Changsha, China
- State Local Joint Engineering Laboratory for Anticancer Drugs, Xiangya Hospital, Central South University, Changsha, China
| | - Miaolong Lu
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, China
- Hunan Engineering Laboratory for Structural Biology and Drug Design, Xiangya Hospital, Central South University, Changsha, China
- State Local Joint Engineering Laboratory for Anticancer Drugs, Xiangya Hospital, Central South University, Changsha, China
| | - Na Li
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, China
- Hunan Engineering Laboratory for Structural Biology and Drug Design, Xiangya Hospital, Central South University, Changsha, China
- State Local Joint Engineering Laboratory for Anticancer Drugs, Xiangya Hospital, Central South University, Changsha, China
| | - Ying Long
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, China
- Hunan Engineering Laboratory for Structural Biology and Drug Design, Xiangya Hospital, Central South University, Changsha, China
- State Local Joint Engineering Laboratory for Anticancer Drugs, Xiangya Hospital, Central South University, Changsha, China
| | - Xuejun Li
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Dominic M. Desiderio
- The Charles B. Stout Neuroscience Mass Spectrometry Laboratory, Department of Neurology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Xianquan Zhan
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, China
- Hunan Engineering Laboratory for Structural Biology and Drug Design, Xiangya Hospital, Central South University, Changsha, China
- State Local Joint Engineering Laboratory for Anticancer Drugs, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
9
|
Morgan MJ, Fitzwalter BE, Owens CR, Powers RK, Sottnik JL, Gamez G, Costello JC, Theodorescu D, Thorburn A. Metastatic cells are preferentially vulnerable to lysosomal inhibition. Proc Natl Acad Sci U S A 2018; 115:E8479-E8488. [PMID: 30127018 PMCID: PMC6130375 DOI: 10.1073/pnas.1706526115] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Molecular alterations that confer phenotypic advantages to tumors can also expose specific therapeutic vulnerabilities. To search for potential treatments that would selectively affect metastatic cells, we examined the sensitivity of lineage-related human bladder cancer cell lines with different lung colonization abilities to chloroquine (CQ) or bafilomycin A1, which are inhibitors of lysosome function and autophagy. Both CQ and bafilomycin A1 were more cytotoxic in vitro to highly metastatic cells compared with their less metastatic counterparts. Genetic inactivation of macroautophagy regulators and lysosomal proteins indicated that this was due to greater reliance on the lysosome but not upon macroautophagy. To identify the mechanism underlying these effects, we generated cells resistant to CQ in vitro. Surprisingly, selection for in vitro CQ resistance was sufficient to alter gene expression patterns such that unsupervised cluster analysis of whole-transcriptome data indicated that selection for CQ resistance alone created tumor cells that were more similar to the poorly metastatic parental cells from which the metastatic cells were derived; importantly, these tumor cells also had diminished metastatic ability in vivo. These effects were mediated in part by differential expression of the transcriptional regulator ID4 (inhibitor of DNA binding 4); depletion of ID4 both promoted in vitro CQ sensitivity and restored lung colonization and metastasis of CQ-resistant cells. These data demonstrate that selection for metastasis ability confers selective vulnerability to lysosomal inhibitors and identify ID4 as a potential biomarker for the use of lysosomal inhibitors to reduce metastasis in patients.
Collapse
Affiliation(s)
- Michael J Morgan
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045;
- University of Colorado Comprehensive Cancer Center, Aurora, CO 80045
| | - Brent E Fitzwalter
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045
| | - Charles R Owens
- University of Colorado Comprehensive Cancer Center, Aurora, CO 80045
| | - Rani K Powers
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045
- Computational Bioscience Program, University of Colorado School of Medicine, Aurora, CO 80045
| | - Joseph L Sottnik
- University of Colorado Comprehensive Cancer Center, Aurora, CO 80045
| | - Graciela Gamez
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045
| | - James C Costello
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045
- University of Colorado Comprehensive Cancer Center, Aurora, CO 80045
- Computational Bioscience Program, University of Colorado School of Medicine, Aurora, CO 80045
| | - Dan Theodorescu
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045;
- University of Colorado Comprehensive Cancer Center, Aurora, CO 80045
| | - Andrew Thorburn
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045
- University of Colorado Comprehensive Cancer Center, Aurora, CO 80045
| |
Collapse
|
10
|
Zhou QH, Deng CZ, Chen JP, Huang KB, Liu TY, Yao K, Liu ZW, Qin ZK, Li YH, Guo SJ, Ye YL, Zhou FJ, Huang W, Liu RY, Han H. Elevated serum LAMC2 is associated with lymph node metastasis and predicts poor prognosis in penile squamous cell carcinoma. Cancer Manag Res 2018; 10:2983-2995. [PMID: 30214293 PMCID: PMC6118283 DOI: 10.2147/cmar.s171912] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Purpose Molecular biomarkers, especially serologic factors, have been widely applied in cancer diagnosis and patient follow-up. However, there are few valuable prognostic factors in penile squamous cell carcinoma (PSCC). Here, the authors investigated whether laminin gamma 2 (LAMC2) expression, especially serum LAMC2 (sLAMC2) level, was a suitable prognostic factor that could aid in the prediction of survival in PSCC. Patients and methods This study included 114 PSCC patients. Reverse transcription-quantitative polymerase chain reaction, Western blotting, and immunohistochemistry were performed to detect LAMC2 expression; enzyme-linked immunosorbent assays were used to test sLAMC2 concentration; and a Transwell assay and an in vivo experiment in nude mice were used to test PSCC cell migration, invasion, and metastasis. The chi-squared test was used to analyze the association between LAMC2 level and clinical parameters, the Cox proportional hazards regression model was used to evaluate the hazard ratio for death, and Kaplan–Meier analysis with a log-rank test was used for the survival analysis. Results LAMC2 was overexpressed in PSCC tissues, and the LAMC2 expression level was higher in metastatic lymph node (LN) tissues than in primary cancer tissues; moreover, the LAMC2 levels in primary cancer tissues and sLAMC2 were higher in patients with LN metastasis than in those without LN metastasis. Upregulated LAMC2 facilitated the migration, invasion, and epithelial-to-mesenchymal transition of PSCC cells in vitro and promoted LN metastasis of PSCC cells in nude mice. Elevated LAMC2 levels were strongly correlated with advanced clinicopathologic parameters, especially LN metastasis, in PSCC patients and predicted shorter disease-specific survival. The predictive value of sLAMC2 is superior to that of C-reactive protein and squamous cell carcinoma antigen previously reported in PSCC patients, and a stratification analysis revealed that the level of sLAMC2 had a higher predictive value for disease-specific survival in early penile cancer (especially at the N0/X stage) than in later-stage penile cancer. Conclusion These findings suggest that sLAMC2 is a potential serologic prognostic marker in PSCC and could aid in risk stratification in early-stage PSCC patients.
Collapse
Affiliation(s)
- Qiang-Hua Zhou
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China, ; .,Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou, China,
| | - Chuang-Zhong Deng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China, ;
| | - Jie-Ping Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China, ;
| | - Kang-Bo Huang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China, ; .,Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou, China,
| | - Ting-Yu Liu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China, ; .,Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou, China,
| | - Kai Yao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China, ; .,Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou, China,
| | - Zhuo-Wei Liu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China, ; .,Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou, China,
| | - Zi-Ke Qin
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China, ; .,Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou, China,
| | - Yong-Hong Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China, ; .,Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou, China,
| | - Sheng-Jie Guo
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China, ; .,Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou, China,
| | - Yun-Lin Ye
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China, ; .,Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou, China,
| | - Fang-Jian Zhou
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China, ; .,Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou, China,
| | - Wenlin Huang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China, ; .,Guangdong Provincial Key Laboratory of Tumor Targeted Drugs, Guangzhou Enterprise Key Laboratory of Gene Medicine, Guangzhou Doublle Bioproducts Co. Ltd., Guangzhou, China
| | - Ran-Yi Liu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China, ;
| | - Hui Han
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China, ; .,Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou, China,
| |
Collapse
|
11
|
Zuiverloon TC, de Jong FC, Costello JC, Theodorescu D. Systematic Review: Characteristics and Preclinical Uses of Bladder Cancer Cell Lines. Bladder Cancer 2018; 4:169-183. [PMID: 29732388 PMCID: PMC5929350 DOI: 10.3233/blc-180167] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND Bladder cancer (BC) cell lines are indispensable in basic and preclinical research. Currently, an up-to-date and comprehensive overview of available BC cell lines is not available. OBJECTIVE To provide an overview and resources on the origin, pathological and molecular characteristics of commonly used human, murine and canine BC cell lines. METHODS A PubMed search was performed for relevant articles published between 1980 and 2017 according to the following MeSH terms: cell line; cell line, tumor; urinary bladder neoplasms; carcinoma, transitional cell. The Cellosaurus database was searched, using the term "bladder" and/or "urothelial carcinoma". We followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. RESULTS We provide information on 157 human, murine and canine BC cell lines. 103 human BC cell lines have molecular data available, of which 69 have been profiled by at least one "omic" technology. We outline how these cell lines are currently being used for in vitro and in vivo experimental models. These results allow direct comparison of BC cell lines to patient samples, providing information needed to make informed decisions on the most genomically appropriate cell line to answer research questions. Furthermore, we show that cross-contamination remains an issue and describe guidelines for prevention. CONCLUSIONS In the BC field, multiple human, murine and canine BC cell lines have been developed and many have become indispensable for in vitro and in vivo research. High-throughput -omic technologies have dramatically increased the amount of molecular data on these cell lines. We synthesized a comprehensive overview of these data as a resource for the BC scientific community.
Collapse
Affiliation(s)
- Tahlita C.M. Zuiverloon
- Department of Urology, Erasmus Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Surgery (Urology), University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- University of Colorado Comprehensive Cancer Center, Aurora, CO, USA
| | - Florus C. de Jong
- Department of Urology, Erasmus Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Pathology, Erasmus Medical Center Rotterdam, Rotterdam, The Netherlands
| | - James C. Costello
- University of Colorado Comprehensive Cancer Center, Aurora, CO, USA
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Dan Theodorescu
- Department of Surgery (Urology), University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- University of Colorado Comprehensive Cancer Center, Aurora, CO, USA
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
12
|
John BA, Said N. Insights from animal models of bladder cancer: recent advances, challenges, and opportunities. Oncotarget 2017; 8:57766-57781. [PMID: 28915710 PMCID: PMC5593682 DOI: 10.18632/oncotarget.17714] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 04/18/2017] [Indexed: 12/16/2022] Open
Abstract
Bladder cancer (urothelial cancer of the bladder) is the most common malignancy affecting the urinary system with increasing incidence and mortality. Treatment of bladder cancer has not advanced in the past 30 years. Therefore, there is a crucial unmet need for novel therapies, especially for high grade/stage disease that can only be achieved by preclinical model systems that faithfully recapitulate the human disease. Animal models are essential elements in bladder cancer research to comprehensively study the multistep cascades of carcinogenesis, progression and metastasis. They allow for the investigation of premalignant phases of the disease that are not clinically encountered. They can be useful for identification of diagnostic and prognostic biomarkers for disease progression and for preclinical identification and validation of therapeutic targets/candidates, advancing translation of basic research to clinic. This review summarizes the latest advances in the currently available bladder cancer animal models, their translational potential, merits and demerits, and the prevalent tumor evaluation modalities. Thereby, findings from these model systems would provide valuable information that can help researchers and clinicians utilize the model that best answers their research questions.
Collapse
Affiliation(s)
- Bincy Anu John
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Neveen Said
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA.,Department of Pathology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA.,Department of Urology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| |
Collapse
|
13
|
Devis L, Moiola CP, Masia N, Martinez-Garcia E, Santacana M, Stirbat TV, Brochard-Wyart F, García Á, Alameda F, Cabrera S, Palacios J, Moreno-Bueno G, Abal M, Thomas W, Dufour S, Matias-Guiu X, Santamaria A, Reventos J, Gil-Moreno A, Colas E. Activated leukocyte cell adhesion molecule (ALCAM) is a marker of recurrence and promotes cell migration, invasion, and metastasis in early-stage endometrioid endometrial cancer. J Pathol 2017; 241:475-487. [PMID: 27873306 DOI: 10.1002/path.4851] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 10/17/2016] [Accepted: 10/29/2016] [Indexed: 02/06/2023]
Abstract
Endometrial cancer is the most common gynaecological cancer in western countries, being the most common subtype of endometrioid tumours. Most patients are diagnosed at an early stage and present an excellent prognosis. However, a number of those continue to suffer recurrence, without means of identification by risk classification systems. Thus, finding a reliable marker to predict recurrence becomes an important unmet clinical issue. ALCAM is a cell-cell adhesion molecule and member of the immunoglobulin superfamily that has been associated with the genesis of many cancers. Here, we first determined the value of ALCAM as a marker of recurrence in endometrioid endometrial cancer by conducting a retrospective multicentre study of 174 primary tumours. In early-stage patients (N = 134), recurrence-free survival was poorer in patients with ALCAM-positive compared to ALCAM-negative tumours (HR 4.237; 95% CI 1.01-17.76). This difference was more significant in patients with early-stage moderately-poorly differentiated tumours (HR 9.259; 95% CI 2.12-53.47). In multivariate analysis, ALCAM positivity was an independent prognostic factor in early-stage disease (HR 6.027; 95% CI 1.41-25.74). Then we demonstrated in vitro a role for ALCAM in cell migration and invasion by using a loss-of-function model in two endometrial cancer cell lines. ALCAM depletion resulted in a reduced primary tumour size and reduced metastatic local spread in an orthotopic murine model. Gene expression analysis of ALCAM-depleted cell lines pointed to motility, invasiveness, cellular assembly, and organization as the most deregulated functions. Finally, we assessed some of the downstream effector genes that are involved in ALCAM-mediated cell migration; specifically FLNB, TXNRD1, and LAMC2 were validated at the mRNA and protein level. In conclusion, our results highlight the potential of ALCAM as a recurrent biomarker in early-stage endometrioid endometrial cancer and point to ALCAM as an important molecule in endometrial cancer dissemination by regulating cell migration, invasion, and metastasis. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Laura Devis
- Biomedical Research Group in Gynecology, Vall Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Cristian P Moiola
- Biomedical Research Group in Gynecology, Vall Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Nuria Masia
- Cell Cycle and Ovarian Cancer Group, Biomedical Research Group in Gynecology, Vall Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Elena Martinez-Garcia
- Biomedical Research Group in Gynecology, Vall Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Maria Santacana
- Pathological Oncology Group and Pathology Department, Hospital Arnau de Vilanova, Lleida, Spain
| | | | | | - Ángel García
- Pathology Department, Vall Hebron University Hospital, Barcelona, Spain
| | | | - Silvia Cabrera
- Gynecological Oncology Department, Vall Hebron University Hospital, Barcelona, Spain
| | - Jose Palacios
- Department of Pathology, Hospital Universitario Ramón y Cajal, 28031 Madrid, Spain
| | - Gema Moreno-Bueno
- Hospital MD Anderson Cancer Centre Madrid, 28033 Madrid, Spain.,Departament of Biochemistry, Universidad Autonoma de Madrid (UAM), Instituto de Investigaciones Biomedicas 'Alberto Sols' (CSIC-UAM), IdiPAZ, 28046 Madrid, Spain
| | - Miguel Abal
- Translational Medical Oncology, Health Research Institute of Santiago (IDIS), Fundacion Ramon Dominguez, SERGAS, 15706 Santiago de Compostela, Spain
| | - William Thomas
- Department of Natural Sciences, Colby-Sawyer College, New London, NH 03257, USA
| | | | - Xavier Matias-Guiu
- Pathological Oncology Group and Pathology Department, Hospital Arnau de Vilanova, Lleida, Spain
| | - Anna Santamaria
- Cell Cycle and Ovarian Cancer Group, Biomedical Research Group in Gynecology, Vall Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Jaume Reventos
- Biomedical Research Group in Gynecology, Vall Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain.,Basic Sciences Department, International University of Catalonia, Barcelona, Spain
| | - Antonio Gil-Moreno
- Biomedical Research Group in Gynecology, Vall Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain.,Gynecological Oncology Department, Vall Hebron University Hospital, Barcelona, Spain
| | - Eva Colas
- Biomedical Research Group in Gynecology, Vall Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain.,Pathological Oncology Group and Pathology Department, Hospital Arnau de Vilanova, Lleida, Spain
| |
Collapse
|
14
|
Moon YW, Rao G, Kim JJ, Shim HS, Park KS, An SS, Kim B, Steeg PS, Sarfaraz S, Changwoo Lee L, Voeller D, Choi EY, Luo J, Palmieri D, Chung HC, Kim JH, Wang Y, Giaccone G. LAMC2 enhances the metastatic potential of lung adenocarcinoma. Cell Death Differ 2015; 22:1341-52. [PMID: 25591736 DOI: 10.1038/cdd.2014.228] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 11/18/2014] [Accepted: 11/28/2014] [Indexed: 12/14/2022] Open
Abstract
Lung cancer is the number one cancer killer, and metastasis is the main cause of high mortality in lung cancer patients. However, mechanisms underlying the development of lung cancer metastasis remain unknown. Using genome-wide transcriptional analysis in an experimental metastasis model, we identified laminin γ2 (LAMC2), an epithelial basement membrane protein, to be significantly upregulated in lung adenocarcinoma metastatic cells. Elevated LAMC2 increased traction force, migration, and invasion of lung adenocarcinoma cells accompanied by the induction of epithelial-mesenchymal transition (EMT). LAMC2 knockdown decreased traction force, migration, and invasion accompanied by EMT reduction in vitro, and attenuated metastasis in mice. LAMC2 promoted migration and invasion via EMT that was integrin β1- and ZEB1-dependent. High LAMC2 was significantly correlated with the mesenchymal marker vimentin expression in lung adenocarcinomas, and with higher risk of recurrence or death in patients with lung adenocarcinoma. We suggest that LAMC2 promotes metastasis in lung adenocarcinoma via EMT and may be a potential therapeutic target.
Collapse
Affiliation(s)
- Y W Moon
- 1] Medical Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA [2] Division of Medical Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, South Korea
| | - G Rao
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - J J Kim
- Department of Bioengineering, Johns Hopkins University, Baltimore, MD, USA
| | - H-S Shim
- Department of Pathology, Yonsei University College of Medicine, Seoul, South Korea
| | - K-S Park
- 1] Medical Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA [2] Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - S S An
- Department of Environmental Health Sciences, Johns Hopkins University, Bloomberg School of Public Health, Baltimore, MD, USA
| | - B Kim
- Pathology Branch, National Cancer Institute, National Institutes of Health, MD, USA
| | - P S Steeg
- Women's Cancers Section, Laboratory of Molecular Pharmacology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - S Sarfaraz
- Medical Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - L Changwoo Lee
- Medical Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Donna Voeller
- Medical Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - E Y Choi
- Department of Environmental Health Sciences, Johns Hopkins University, Bloomberg School of Public Health, Baltimore, MD, USA
| | - Ji Luo
- Medical Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - D Palmieri
- Women's Cancers Section, Laboratory of Molecular Pharmacology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - H C Chung
- Division of Medical Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, South Korea
| | - J-H Kim
- Division of Medical Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, South Korea
| | - Y Wang
- 1] Medical Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA [2] Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - G Giaccone
- 1] Medical Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA [2] Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| |
Collapse
|
15
|
Ostenfeld MS, Jeppesen DK, Laurberg JR, Boysen AT, Bramsen JB, Primdal-Bengtson B, Hendrix A, Lamy P, Dagnaes-Hansen F, Rasmussen MH, Bui KH, Fristrup N, Christensen EI, Nordentoft I, Morth JP, Jensen JB, Pedersen JS, Beck M, Theodorescu D, Borre M, Howard KA, Dyrskjøt L, Ørntoft TF. Cellular disposal of miR23b by RAB27-dependent exosome release is linked to acquisition of metastatic properties. Cancer Res 2014; 74:5758-71. [PMID: 25261234 DOI: 10.1158/0008-5472.can-13-3512] [Citation(s) in RCA: 240] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Exosomes are small secreted vesicles that can transfer their content to recipient cells. In cancer, exosome secretion has been implicated in tumor growth and metastatic spread. In this study, we explored the possibility that exosomal pathways might discard tumor-suppressor miRNA that restricts metastatic progression. Secreted miRNA characterized from isogenic bladder carcinoma cell lines with differing metastatic potential were uncoupled from binding to target transcripts or the AGO2-miRISC complex. In metastatic cells, we observed a relative increase in secretion of miRNA with tumor-suppressor functions, including miR23b, miR224, and miR921. Ectopic expression of miR23b inhibited invasion, anoikis, angiogenesis, and pulmonary metastasis. Silencing of the exocytotic RAB family members RAB27A or RAB27B halted miR23b and miR921 secretion and reduced cellular invasion. Clinically, elevated levels of RAB27B expression were linked to poor prognosis in two independent cohorts of patients with bladder cancer. Moreover, highly exocytosed miRNA from metastatic cells, such as miR23b, were reduced in lymph node metastases compared with patient-matched primary tumors and were correlated with increments in miRNA-targeted RNA. Taken together, our results suggested that exosome-mediated secretion of tumor-suppressor miRNA is selected during tumor progression as a mechanism to coordinate activation of a metastatic cascade.
Collapse
Affiliation(s)
| | - Dennis K Jeppesen
- Department of Molecular Medicine (MOMA), Aarhus University Hospital, Skejby, Denmark
| | - Jens R Laurberg
- Department of Molecular Medicine (MOMA), Aarhus University Hospital, Skejby, Denmark
| | - Anders T Boysen
- The interdisciplinary Nanoscience Center (iNANO), Aarhus University, Denmark
| | - Jesper B Bramsen
- Department of Molecular Medicine (MOMA), Aarhus University Hospital, Skejby, Denmark
| | | | - An Hendrix
- Laboratory of Experimental Cancer Research, Ghent University Hospital, Belgium
| | - Philippe Lamy
- Department of Molecular Medicine (MOMA), Aarhus University Hospital, Skejby, Denmark
| | | | - Mads H Rasmussen
- Department of Molecular Medicine (MOMA), Aarhus University Hospital, Skejby, Denmark
| | | | - Niels Fristrup
- Department of Molecular Medicine (MOMA), Aarhus University Hospital, Skejby, Denmark
| | | | - Iver Nordentoft
- Department of Molecular Medicine (MOMA), Aarhus University Hospital, Skejby, Denmark
| | - Jens P Morth
- Centre for Molecular Medicine Norway (NCMM), University of Oslo, Norway
| | | | - Jakob S Pedersen
- Department of Molecular Medicine (MOMA), Aarhus University Hospital, Skejby, Denmark
| | | | | | - Michael Borre
- Department of Urology, Aarhus University Hospital, Denmark
| | - Kenneth A Howard
- The interdisciplinary Nanoscience Center (iNANO), Aarhus University, Denmark
| | - Lars Dyrskjøt
- Department of Molecular Medicine (MOMA), Aarhus University Hospital, Skejby, Denmark
| | - Torben Falck Ørntoft
- Department of Molecular Medicine (MOMA), Aarhus University Hospital, Skejby, Denmark.
| |
Collapse
|
16
|
Ru Y, Kechris KJ, Tabakoff B, Hoffman P, Radcliffe RA, Bowler R, Mahaffey S, Rossi S, Calin GA, Bemis L, Theodorescu D. The multiMiR R package and database: integration of microRNA-target interactions along with their disease and drug associations. Nucleic Acids Res 2014; 42:e133. [PMID: 25063298 PMCID: PMC4176155 DOI: 10.1093/nar/gku631] [Citation(s) in RCA: 459] [Impact Index Per Article: 41.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 06/16/2014] [Accepted: 06/27/2014] [Indexed: 12/29/2022] Open
Abstract
microRNAs (miRNAs) regulate expression by promoting degradation or repressing translation of target transcripts. miRNA target sites have been catalogued in databases based on experimental validation and computational prediction using various algorithms. Several online resources provide collections of multiple databases but need to be imported into other software, such as R, for processing, tabulation, graphing and computation. Currently available miRNA target site packages in R are limited in the number of databases, types of databases and flexibility. We present multiMiR, a new miRNA-target interaction R package and database, which includes several novel features not available in existing R packages: (i) compilation of nearly 50 million records in human and mouse from 14 different databases, more than any other collection; (ii) expansion of databases to those based on disease annotation and drug microRNAresponse, in addition to many experimental and computational databases; and (iii) user-defined cutoffs for predicted binding strength to provide the most confident selection. Case studies are reported on various biomedical applications including mouse models of alcohol consumption, studies of chronic obstructive pulmonary disease in human subjects, and human cell line models of bladder cancer metastasis. We also demonstrate how multiMiR was used to generate testable hypotheses that were pursued experimentally.
Collapse
Affiliation(s)
- Yuanbin Ru
- Department of Surgery, School of Medicine, University of Colorado Denver, Aurora, CO 80045, USA
| | - Katerina J Kechris
- Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado Denver, Aurora, CO 80045, USA
| | - Boris Tabakoff
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Colorado Denver, Aurora, CO 80045, USA
| | - Paula Hoffman
- Department of Pharmacology, School of Medicine, University of Colorado Denver, Aurora, CO 80045, USA
| | - Richard A Radcliffe
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Colorado Denver, Aurora, CO 80045, USA
| | - Russell Bowler
- Department of Medicine, National Jewish Health, Denver, CO 80206, USA
| | - Spencer Mahaffey
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Colorado Denver, Aurora, CO 80045, USA
| | - Simona Rossi
- Department of Experimental Therapeutics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - George A Calin
- Department of Experimental Therapeutics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Lynne Bemis
- Department of Biomedical Sciences, University of Minnesota Medical School Duluth Campus, Duluth, MN 55812, USA
| | - Dan Theodorescu
- Department of Surgery, School of Medicine, University of Colorado Denver, Aurora, CO 80045, USA Department of Pharmacology, School of Medicine, University of Colorado Denver, Aurora, CO 80045, USA University of Colorado Comprehensive Cancer Center, Aurora, CO 80045, USA
| |
Collapse
|
17
|
Garg M, Braunstein G, Koeffler HP. LAMC2 as a therapeutic target for cancers. Expert Opin Ther Targets 2014; 18:979-82. [PMID: 24976367 DOI: 10.1517/14728222.2014.934814] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Cancer is the leading cause of morbidity and mortality in developed countries and the second major cause of death in developing countries. Laminins are crucial proteins in the basal lamina (one of the layers of the basement membrane), and these form a protein network that influences both normal and transformed cell differentiation, migration and adhesion, as well as phenotype and survival. The basement membranes act as a mechanical barrier to tumor growth, but these molecules, including laminins, are also important autocrine factors produced by cancers to promote tumorigenesis. Several studies in cancers have shown the importance of LAMC2, a laminin component. The elevated expression of LAMC2 on cancer cells appears to drive tumorigenesis through its interactions with several cell-surface receptors including α6β4 and α3β1 integrins and EGFRs. The accumulating evidence indicates that LAMC2-mediated signaling network plays an important role in the progression, migration and invasion of multiple types of cancer, suggesting that it might be a potential therapeutic anticancer target for inhibiting tumorigenesis. Furthermore, elevated serum levels of LAMC2 in cancer patients might be an attractive serum-based diagnostic biomarker.
Collapse
Affiliation(s)
- Manoj Garg
- Cancer Science Institute of Singapore (CSI), National University of Singapore , 14 Medical Drive, Singapore, 117599 , Singapore
| | | | | |
Collapse
|
18
|
Sutoh Yoneyama M, Hatakeyama S, Habuchi T, Inoue T, Nakamura T, Funyu T, Wiche G, Ohyama C, Tsuboi S. Vimentin intermediate filament and plectin provide a scaffold for invadopodia, facilitating cancer cell invasion and extravasation for metastasis. Eur J Cell Biol 2014; 93:157-69. [PMID: 24810881 DOI: 10.1016/j.ejcb.2014.03.002] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 03/26/2014] [Accepted: 03/26/2014] [Indexed: 01/17/2023] Open
Abstract
To investigate the molecular mechanisms of cancer metastasis, we have isolated a high-metastatic bladder cancer cell subpopulation from a low-metastatic cell line by using an in vivo selection system. Cells in the subpopulation showed a high ability to form invadopodia, the filamentous actin (F-actin)-based membrane protrusions that play an essential role in cancer cell invasion. Analysis of the gene expression profile revealed that the expression of an intermediate filament (IF) protein, vimentin and a cytoskeletal linker protein, plectin was up-regulated in the high-metastatic subpopulation compared with the low metastatic cell line. Here we report a novel role of vimentin IF and plectin in metastasis. In invasive bladder cancer cells, the vimentin IF-plectin-invadopodia F-actin link was formed. Disruption of this link severely impaired invadopodia formation, reducing the capacities of extracellular matrix degradation, transendothelial migration and metastasis. In addition, the vimentin assembly into the filaments was required for invadopodia formation. Our results suggest that plectin anchoring invadopodia to vimentin IF scaffolds and stabilizes invadopodia, which is a critical molecular process for cancer cell invasion and extravasation for metastasis.
Collapse
Affiliation(s)
- Mihoko Sutoh Yoneyama
- Department of Urology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Shingo Hatakeyama
- Department of Urology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Tomonori Habuchi
- Department of Urology, Akita University Graduate School of Medicine, Akita 010-8543, Japan
| | - Takamitsu Inoue
- Department of Urology, Akita University Graduate School of Medicine, Akita 010-8543, Japan
| | - Toshiya Nakamura
- Department of Biomedical Sciences, Hirosaki University Graduate School of Health Sciences, Hirosaki, Japan
| | - Tomihisa Funyu
- Department of Cancer Immunology and Cell Biology, Oyokyo Kidney Research Institute, Hirosaki, Japan
| | - Gerhard Wiche
- Max F. Perutz Laboratories, Department of Biochemistry and Cell Biology, University of Vienna, Vienna 1030, Austria
| | - Chikara Ohyama
- Department of Urology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Shigeru Tsuboi
- Department of Urology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan; Department of Cancer Immunology and Cell Biology, Oyokyo Kidney Research Institute, Hirosaki, Japan.
| |
Collapse
|
19
|
Tokui N, Yoneyama MS, Hatakeyama S, Yamamoto H, Koie T, Saitoh H, Yamaya K, Funyu T, Nakamura T, Ohyama C, Tsuboi S. Extravasation during bladder cancer metastasis requires cortactin‑mediated invadopodia formation. Mol Med Rep 2014; 9:1142-6. [PMID: 24549769 DOI: 10.3892/mmr.2014.1965] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 02/02/2014] [Indexed: 11/06/2022] Open
Abstract
Invasive cancer cells form the filamentous actin‑based membrane protrusions known as invadopodia. Invadopodia are thought to play a critical role in cancer cell invasion and metastasis due to their ability to degrade the extracellular matrix. The present study assessed whether invadopodia formation is essential in extravasation of circulating bladder cancer cells and lung metastasis. To analyze the importance of invadopodia, bladder cancer cell lines with reduced invadopodia formation were established by silencing the expression of cortactin, an essential component of invadopodia, using cortactin short hairpin RNA. Bladder cancer cells with cortactin knockdown demonstrated a markedly decreased ability to form invadopodia, secrete matrix metalloproteinases and invade the extracellular matrix. In addition, the knockdown cells exhibited a reduced transendothelial invasion capacity and decreased formation of metastatic foci in the lungs. The present study demonstrated that bladder cancer cells with cortactin knockdown have a reduced capacity to extravasate into the lung from the circulation, due to the decreased invasive character of invadopodia. This suggests that invadopodia formation is a critical process for cancer cell extravasation.
Collapse
Affiliation(s)
- Noriko Tokui
- Department of Urology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 036‑8562, Japan
| | - Mihoko Sutoh Yoneyama
- Department of Urology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 036‑8562, Japan
| | - Shingo Hatakeyama
- Department of Urology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 036‑8562, Japan
| | - Hayato Yamamoto
- Department of Urology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 036‑8562, Japan
| | - Takuya Koie
- Department of Urology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 036‑8562, Japan
| | - Hisao Saitoh
- Department of Urology, Oyokyo Kidney Research Institute, Hirosaki, Aomori 036‑8243, Japan
| | - Kanemitsu Yamaya
- Department of Urology, Oyokyo Kidney Research Institute, Hirosaki, Aomori 036‑8243, Japan
| | - Tomihisa Funyu
- Department of Urology, Oyokyo Kidney Research Institute, Hirosaki, Aomori 036‑8243, Japan
| | - Toshiya Nakamura
- Department of Biomedical Sciences, Hirosaki University Graduate School of Health Sciences, Hirosaki, Aomori 036‑8564, Japan
| | - Chikara Ohyama
- Department of Urology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 036‑8562, Japan
| | - Shigeru Tsuboi
- Department of Urology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 036‑8562, Japan
| |
Collapse
|
20
|
Jeppesen DK, Nawrocki A, Jensen SG, Thorsen K, Whitehead B, Howard KA, Dyrskjøt L, Ørntoft TF, Larsen MR, Ostenfeld MS. Quantitative proteomics of fractionated membrane and lumen exosome proteins from isogenic metastatic and nonmetastatic bladder cancer cells reveal differential expression of EMT factors. Proteomics 2014; 14:699-712. [PMID: 24376083 DOI: 10.1002/pmic.201300452] [Citation(s) in RCA: 136] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 11/28/2013] [Accepted: 12/15/2013] [Indexed: 12/20/2022]
Abstract
Cancer cells secrete soluble factors and various extracellular vesicles, including exosomes, into their tissue microenvironment. The secretion of exosomes is speculated to facilitate local invasion and metastatic spread. Here, we used an in vivo metastasis model of human bladder carcinoma cell line T24 without metastatic capacity and its two isogenic derivate cell lines SLT4 and FL3, which form metastases in the lungs and liver of mice, respectively. Cultivation in CLAD1000 bioreactors rather than conventional culture flasks resulted in a 13- to 16-fold increased exosome yield and facilitated quantitative proteomics of fractionated exosomes. Exosomes from T24, SLT4, and FL3 cells were partitioned into membrane and luminal fractions and changes in protein abundance related to the gain of metastatic capacity were identified by quantitative iTRAQ proteomics. We identified several proteins linked to epithelial-mesenchymal transition, including increased abundance of vimentin and hepatoma-derived growth factor in the membrane, and casein kinase II α and annexin A2 in the lumen of exosomes, respectively, from metastatic cells. The change in exosome protein abundance correlated little, although significant for FL3 versus T24, with changes in cellular mRNA expression. Our proteomic approach may help identification of proteins in the membrane and lumen of exosomes potentially involved in the metastatic process.
Collapse
|
21
|
Takagi S, Oh-hara T, Sato S, Gong B, Takami M, Fujita N. Expression of Aggrus/podoplanin in bladder cancer and its role in pulmonary metastasis. Int J Cancer 2013; 134:2605-14. [PMID: 24222607 PMCID: PMC4233981 DOI: 10.1002/ijc.28602] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 10/15/2013] [Accepted: 11/04/2013] [Indexed: 11/16/2022]
Abstract
Platelet aggregation-inducing factor Aggrus, also known as podoplanin, is associated with tumor malignancy by promoting hematogenous metastasis. Aggrus overexpression has been reported in some tumor tissues including lung, esophagus, head and neck and brain. We here found the frequent upregulation of aggrus mRNA in urinary bladder cancers using cancer tissue panels from various organs. Immunohistochemical analysis confirmed Aggrus protein expression in urinary bladder cancers and suggested a positive correlation between Aggrus expression and metastatic tendency in bladder cancers. Endogenous expression of Aggrus protein on the cell surface was found in the mouse bladder cancer MBT-2 cell line and human bladder cancer SCaBER cell lines. Knockdown of Aggrus expression in MBT-2 cells decreased their ability to induce platelet aggregation and form pulmonary metastasis in syngeneic mouse models. Knockdown of Aggrus expression in the human bladder cancer SCaBER cells also attenuated their ability to induce platelet aggregation and form pulmonary metastasis in mice. Moreover, pulmonary metastasis of SCaBER cells was prevented by prior administration of our generated anti-Aggrus neutralizing monoclonal antibodies by attenuating their retention in lung. These results indicate that Aggrus plays an important role in bladder cancer metastasis. Thus, anti-Aggrus neutralizing antibodies would be useful for the prevention of hematogenous metastasis of Aggrus-positive bladder cancer.
Collapse
Affiliation(s)
- Satoshi Takagi
- Division of Experimental Chemotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
22
|
Yang X, Huang H, Zeng Z, Zhao L, Hu P, He D, Tang X, Zeng Z. Diagnostic value of bladder tumor fibronectin in patients with bladder tumor: A systematic review with meta-analysis. Clin Biochem 2013; 46:1377-82. [DOI: 10.1016/j.clinbiochem.2013.05.064] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Revised: 05/14/2013] [Accepted: 05/22/2013] [Indexed: 01/26/2023]
|
23
|
Smith SC, Baras AS, Owens CR, Dancik G, Theodorescu D. Transcriptional signatures of Ral GTPase are associated with aggressive clinicopathologic characteristics in human cancer. Cancer Res 2012; 72:3480-91. [PMID: 22586063 DOI: 10.1158/0008-5472.can-11-3966] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
RalA and RalB are small GTPases that support malignant development and progression in experimental models of bladder, prostate, and squamous cancer. However, demonstration of their clinical relevance in human tumors remains lacking. Here, we developed tools to evaluate Ral protein expression, activation, and transcriptional output and evaluated their association with clinicopathologic parameters in common human tumor types. To evaluate the relevance of Ral activation and transcriptional output, we correlated RalA and RalB activation with the mutational status of key human bladder cancer genes. We also identified and evaluated a transcriptional signature of genes that correlates with depletion of RalA and RalB in vivo. The Ral transcriptional signature score, but not protein expression as evaluated by immunohistochemistry, predicted disease stage, progression to muscle invasion, and survival in human bladder cancers and metastatic and stem cell phenotypes in bladder cancer models. In prostate cancer, the Ral transcriptional signature score was associated with seminal vesicle invasion, androgen-independent progression, and reduced survival. In squamous cell carcinoma, this score was decreased in cancer tissues compared with normal mucosa, validating the experimental findings that Ral acts as a tumor suppressor in this tumor type. Together, our findings show the clinical relevance of Ral in human cancer and provide a rationale for the development of Ral-directed therapies.
Collapse
Affiliation(s)
- Steven C Smith
- Department of Urology, University of Virginia, Charlottesville, Virginia, USA
| | | | | | | | | |
Collapse
|
24
|
Nitz MD, Harding MA, Smith SC, Thomas S, Theodorescu D. RREB1 transcription factor splice variants in urologic cancer. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 179:477-86. [PMID: 21703425 DOI: 10.1016/j.ajpath.2011.03.038] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2010] [Revised: 02/23/2011] [Accepted: 03/23/2011] [Indexed: 11/19/2022]
Abstract
RREB1 is an alternatively spliced transcription factor implicated in Ras signaling and cancer. Little is known about the expression of RREB1 isoforms in cell lines or human tumors, or about the clinical relevance of the latter. We have developed tools for IHC of RREB1 protein isoform-specific amplification of RREB1 mRNA and selective knockdown of RREB1 isoforms and use these to provide new information by characterizing RREB1 expression in bladder and prostate cancer cell lines and human tissue samples. Previously described splice variants RREB1α, RREB1β, RREB1γ, and RREB1δ were identified, as well as the novel variant RREB1ε. Total and isoform-specific mRNA expression was lower in most but not all tumors, compared with normal tissues. RREB1 IHC performed on a bladder cancer TMA did not indicate a relationship between total RREB1 expression and overall survival after radical cystectomy for invasive bladder cancer. In contrast, in vitro proliferation studies using the UMUC-3 bladder cancer cell line after selective isoform-specific knockdown of expression indicate that RREB1α is not necessary for proliferation, but that RREB1β may be required. These contributions should accelerate progress in the nascent RREB1 field by providing new reagents while also providing clues to the role of RREB1 isoforms in human cancer and raising the possibility of isoform-specific roles in human carcinogenesis and progression.
Collapse
Affiliation(s)
- Matthew D Nitz
- Department of Molecular Physiology and Biological Physics, University of Virginia Health Sciences Center, Charlottesville, Virginia, USA
| | | | | | | | | |
Collapse
|
25
|
Sun L, Hu H, Peng L, Zhou Z, Zhao X, Pan J, Sun L, Yang Z, Ran Y. P-cadherin promotes liver metastasis and is associated with poor prognosis in colon cancer. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 179:380-90. [PMID: 21703417 DOI: 10.1016/j.ajpath.2011.03.046] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Revised: 02/28/2011] [Accepted: 03/02/2011] [Indexed: 02/08/2023]
Abstract
P-cadherin belongs to the family of classic cadherins, which is important for maintaining cellular localization and tissue integrity. Recently, it has become evident that P-cadherin contributes to the oncogenesis of many tumor types, including melanoma, prostate, breast, and colon carcinomas. Although cadherin switching is a crucial step in metastasis, the role of P-cadherin in colon cancer metastasis to the liver is unknown. In this study, we performed gene expression analysis and found that the level of P-cadherin was higher in tissue from liver metastases of colon cancer than in the corresponding primary colon cancer tissues. IHC analysis also showed that P-cadherin expression was significantly higher in liver metastases than in paired primary colorectal cancer tumors. Knockdown of P-cadherin in colon cancer cells inhibited wound healing, proliferation, and colony formation and resulted in developing fewer liver metastatic foci and reducing the tumor burden in vivo. Inhibition of P-cadherin expression also induced the up-regulation of E-cadherin and the down-regulation of β-catenin and its downstream target molecules, including survivin and c-Myc. In summary, these results uncover a novel function of P-cadherin in the regulation of colon cancer metastasis to the liver, suggesting that blocking the activity of P-cadherin or its associated signaling may be a valuable target for the treatment of hepatic metastases of colon carcinomas.
Collapse
Affiliation(s)
- Lichao Sun
- State Key Laboratory of Molecular Oncology, Cancer Institute (Hospital), Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Said N, Smith S, Sanchez-Carbayo M, Theodorescu D. Tumor endothelin-1 enhances metastatic colonization of the lung in mouse xenograft models of bladder cancer. J Clin Invest 2010; 121:132-47. [PMID: 21183790 DOI: 10.1172/jci42912] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2010] [Accepted: 10/27/2010] [Indexed: 12/14/2022] Open
Abstract
Many patients with advanced bladder cancer develop lethal metastases to the lung. The vasoconstricting protein endothelin-1 (ET-1) has been implicated in this process, although the mechanism(s) by which it promotes metastasis remains unclear. Here, we have evaluated whether tumor ET-1 expression can serve as a biomarker for lung metastasis and whether it is required for metastatic disease. Evaluation of ET-1 mRNA and protein expression in four patient cohorts revealed that levels of ET-1 are higher in patients with muscle-invasive bladder cancers, which are associated with higher incidence of metastasis, and that high ET-1 levels are associated with decreased disease-specific survival. Consistent with its proinflammatory activity, we found that tumor-derived ET-1 acts through endothelin-1 receptor A (ETAR) to enhance migration and invasion of both tumor cells and macrophages and induces expression of inflammatory cytokines and proteases. Using human and mouse cancer cells depleted of ET-1 and pharmacologic blockade of ET receptors in lung metastasis models, we found that tumor ET-1 expression and ETAR activity are necessary for metastatic lung colonization and that this process is preceded by and dependent on macrophage infiltration of the lung. In contrast, tumor ET-1 expression and ETAR activity appeared less important in established primary or metastatic tumor growth. These findings strongly suggest that ETAR inhibitors might be more effective as adjuvant therapeutic agents than as initial treatment for advanced primary or metastatic disease.
Collapse
Affiliation(s)
- Neveen Said
- Department of Molecular Physiology, University of Virginia, Charlottesville, Virginia, USA
| | | | | | | |
Collapse
|
27
|
Kim K, Cho SY, Kim BJ, Kim MH, Choi SC, Ryu SY. The type of metastasis is a prognostic factor in disseminated cervical cancer. J Gynecol Oncol 2010; 21:186-90. [PMID: 20922142 DOI: 10.3802/jgo.2010.21.3.186] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2010] [Revised: 08/11/2010] [Accepted: 08/18/2010] [Indexed: 11/30/2022] Open
Abstract
OBJECTIVE THE OBJECTIVES OF THIS STUDY WERE TWOFOLD: to verify whether the type of metastasis (lymphatic vs. hematogenous) is a prognostic factor, and to identify molecular markers associated with survival in patients with disseminated cervical cancer. METHODS Between April 1997 and May 2008, 30 patients with disseminated cervical cancer who had supraclavicular lymph node (N=13) or hematogenous metastases (N=17) were initially treated at our institute. We reviewed medical records to extract clinicopathologic variables. For 17 patients with available pathological specimens, we evaluated the association of immunohistochemical staining for metalloproteinase (MMP)-2, vascular endothelial growth factor (VEGF)-A, and laminin V gamma (LAMC)-2 with survival and clinicopathologic variables via a log-rank test and Cox regression analysis. RESULTS Patients who had only lymphatic metastasis (odds ratio [OR], 5.3; 95% confidence interval [CI], 1.4 to 19.5) or completed initial treatment (OR, 3.2; 95% CI, 1.1 to 9.9) showed better survival than patients who did not, but none of the molecular markers were associated with survival. Out of 13 patients with only lymphatic metastasis, three patients who had received volume-directed radiation with concurrent chemotherapy had a long-term survival of over two years. However, patients with hematogenous metastasis showed extremely poor prognosis. CONCLUSION The type of metastasis and completion of initial treatment were associated with prolonged survival in patients with disseminated cervical cancer, and over 20% of patients with lymphatic metastasis were salvaged with volume-directed radiation with concurrent chemotherapy. None of the molecular markers were associated with survival in patients with disseminated cervical cancer.
Collapse
Affiliation(s)
- Kidong Kim
- Department of Obstetrics and Gynecology, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences, Seoul, Korea
| | | | | | | | | | | |
Collapse
|
28
|
Rosenfeld JA, Malhotra AK, Lencz T. Novel multi-nucleotide polymorphisms in the human genome characterized by whole genome and exome sequencing. Nucleic Acids Res 2010; 38:6102-11. [PMID: 20488869 PMCID: PMC2952858 DOI: 10.1093/nar/gkq408] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Genomic sequence comparisons between individuals are usually restricted to the analysis of single nucleotide polymorphisms (SNPs). While the interrogation of SNPs is efficient, they are not the only form of divergence between genomes. In this report, we expand the scope of polymorphism detection by investigating the occurrence of double nucleotide polymorphisms (DNPs) and triple nucleotide polymorphisms (TNPs), in which two or three consecutive nucleotides are altered compared to the reference sequence. We have found such DNPs and TNPs throughout two complete genomes and eight exomes. Within exons, these novel polymorphisms are over-represented amongst protein-altering variants; nearly all DNPs and TNPs result in a change in amino acid sequence and, in some cases, two adjacent amino acids are changed. DNPs and TNPs represent a potentially important new source of genetic variation which may underlie human disease and they should be included in future medical genetics studies. As a confirmation of the damaging nature of xNPs, we have identified changes in the exome of a glioblastoma cell line that are important in glioblastoma pathogenesis. We have found a TNP causing a single amino acid change in LAMC2 and a TNP causing a truncation of HUWE1.
Collapse
Affiliation(s)
- Jeffrey A Rosenfeld
- Zucker Hillside Hospital, North Shore-Long Island Jewish Health System, Glen Oaks, NY, USA.
| | | | | |
Collapse
|
29
|
Lagerstedt KK, Kristiansson E, Lönnroth C, Andersson M, Iresjö BM, Gustafsson A, Hansson E, Kressner U, Nordgren S, Enlund F, Lundholm K. Genes with relevance for early to late progression of colon carcinoma based on combined genomic and transcriptomic information from the same patients. Cancer Inform 2010; 9:79-91. [PMID: 20467480 PMCID: PMC2867635 DOI: 10.4137/cin.s4545] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Genetic and epigenetic alterations in colorectal cancer are numerous. However, it is difficult to judge whether such changes are primary or secondary to the appearance and progression of tumors. Therefore, the aim of the present study was to identify altered DNA regions with significant covariation to transcription alterations along colon cancer progression. METHODS Tumor and normal colon tissue were obtained at primary operations from 24 patients selected by chance. DNA, RNA and microRNAs were extracted from the same biopsy material in all individuals and analyzed by oligo-nucleotide array-based comparative genomic hybridization (CGH), mRNA- and microRNA oligo-arrays. Statistical analyses were performed to assess statistical interactions (correlations, co-variations) between DNA copy number changes and significant alterations in gene and microRNA expression using appropriate parametric and non-parametric statistics. RESULTS Main DNA alterations were located on chromosome 7, 8, 13 and 20. Tumor DNA copy number gain increased with tumor progression, significantly related to increased gene expression. Copy number loss was not observed in Dukes A tumors. There was no significant relationship between expressed genes and tumor progression across Dukes A-D tumors; and no relationship between tumor stage and the number of microRNAs with significantly altered expression. Interaction analyses identified overall 41 genes, which discriminated early Dukes A plus B tumors from late Dukes C plus D tumor; 28 of these genes remained with correlations between genomic and transcriptomic alterations in Dukes C plus D tumors and 17 in Dukes D. One microRNA (microR-663) showed interactions with DNA alterations in all Dukes A-D tumors. CONCLUSIONS Our modeling confirms that colon cancer progression is related to genomic instability and altered gene expression. However, early invasive tumor growth seemed rather related to transcriptomic alterations, where changes in microRNA may be an early phenomenon, and less to DNA copy number changes.
Collapse
Affiliation(s)
- Kristina K. Lagerstedt
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, Sahlgrenska University Hospital, Gothenburg, Sweden
| | | | - Christina Lönnroth
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Marianne Andersson
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Britt-Marie Iresjö
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Annika Gustafsson
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, Sahlgrenska University Hospital, Gothenburg, Sweden
| | | | - Ulf Kressner
- Department of Surgery, Uddevalla Hospital, Uddevalla, Sweden
| | - Svante Nordgren
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Fredrik Enlund
- Department of Clinical Chemistry, Sahlgrenska Academy, Sahlgrenska University Hospital, Gotenhburg, Sweden.
| | - Kent Lundholm
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
30
|
Tian Z, Hwang T, Kuang R. A hypergraph-based learning algorithm for classifying gene expression and arrayCGH data with prior knowledge. Bioinformatics 2009; 25:2831-8. [PMID: 19648139 DOI: 10.1093/bioinformatics/btp467] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
MOTIVATION Incorporating biological prior knowledge into predictive models is a challenging data integration problem in analyzing high-dimensional genomic data. We introduce a hypergraph-based semi-supervised learning algorithm called HyperPrior to classify gene expression and array-based comparative genomic hybridization (arrayCGH) data using biological knowledge as constraints on graph-based learning. HyperPrior is a robust two-step iterative method that alternatively finds the optimal labeling of the samples and the optimal weighting of the features, guided by constraints encoding prior knowledge. The prior knowledge for analyzing gene expression data is that cancer-related genes tend to interact with each other in a protein-protein interaction network. Similarly, the prior knowledge for analyzing arrayCGH data is that probes that are spatially nearby in their layout along the chromosomes tend to be involved in the same amplification or deletion event. Based on the prior knowledge, HyperPrior imposes a consistent weighting of the correlated genomic features in graph-based learning. RESULTS We applied HyperPrior to test two arrayCGH datasets and two gene expression datasets for both cancer classification and biomarker identification. On all the datasets, HyperPrior achieved competitive classification performance, compared with SVMs and the other baselines utilizing the same prior knowledge. HyperPrior also identified several discriminative regions on chromosomes and discriminative subnetworks in the PPI, both of which contain cancer-related genomic elements. Our results suggest that HyperPrior is promising in utilizing biological prior knowledge to achieve better classification performance and more biologically interpretable findings in gene expression and arrayCGH data. AVAILABILITY http://compbio.cs.umn.edu/HyperPrior CONTACT kuang@cs.umn.edu SUPPLEMENTARY INFORMATION Supplementary data are available at bioinformatics online.
Collapse
Affiliation(s)
- Ze Tian
- Department of Computer Science and Engineering, University of Minnesota Twin Cities, Minneapolis, MN, USA
| | | | | |
Collapse
|
31
|
Abstract
Metastasis suppressor proteins regulate multiple steps in the metastatic cascade, including cancer cell invasion, survival in the vascular and lymphatic circulation, and colonization of distant organ sites. Understanding the biology of metastasis suppressors provides valuable mechanistic insights that may translate to therapeutic opportunities. Several reports have explored novel strategies for restoring metastasis suppressor function, including gene transfer, induction of previously suppressed gene expression and exogenous administration of gene product. Pathways activated downstream of metastasis suppressor loss can also be targeted. Although none of these strategies are yet in routine clinical use, several are being tested preclinically and in clinical trials.
Collapse
Affiliation(s)
- Steven Christopher Smith
- Department of Molecular Physiology and Biological Physics, University of Virginia Health System, Charlottesville, Virginia 22908, USA
| | | |
Collapse
|