1
|
Krawiec A, Pietrasik J, Pietrasik Z, Mikuła-Pietrasik J, Książek K. Unveiling the role of extracellular matrix elements and regulators in shaping ovarian cancer growth and metastasis. Cell Signal 2025; 132:111843. [PMID: 40318796 DOI: 10.1016/j.cellsig.2025.111843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 04/18/2025] [Accepted: 04/29/2025] [Indexed: 05/07/2025]
Abstract
Epithelial ovarian cancer (EOC) progression is determined by numerous intracellular interactions and the interplay between malignant cells, normal cells, and the tumor acellular microenvironment, formed largely by the extracellular matrix (ECM). The structure and biochemical functioning of various ECM components, along with the activity of agents that regulate ECM remodeling, impact the disease's expansion (adhesion, proliferation, invasion), spread, and response to therapy. It is important to note that the involvement of ECM components and their regulators in the progression of EOC is bidirectional and distinctly depends on a particular tissue context. In certain situations, certain components of the ECM enhance the activity of cancer cells, but in other scenarios, they suppress it. In this review, we summarize the newest knowledge regarding diverse aspects of ECM engagement in EOC pathophysiology and chemotherapy. Moreover, we delineate conditions that exacerbate the pro-cancerous properties of ECM, including diabetes-associated glycation, aging, and cellular senescence. We also explore methods to therapeutically alter the properties of the ECM, which could be beneficial in ovarian cancer prevention and treatment.
Collapse
Affiliation(s)
- Adrianna Krawiec
- Poznan University of Medical Sciences, Department of Pathophysiology of Ageing and Civilization Diseases, Święcickiego 4 Str, 60-781 Poznań, Poland.
| | - Joanna Pietrasik
- Poznan University of Medical Sciences, Department of Pathophysiology of Ageing and Civilization Diseases, Święcickiego 4 Str, 60-781 Poznań, Poland
| | - Zofia Pietrasik
- Poznan University of Medical Sciences, Department of Pathophysiology of Ageing and Civilization Diseases, Święcickiego 4 Str, 60-781 Poznań, Poland
| | - Justyna Mikuła-Pietrasik
- Poznan University of Medical Sciences, Department of Pathophysiology of Ageing and Civilization Diseases, Święcickiego 4 Str, 60-781 Poznań, Poland.
| | - Krzysztof Książek
- Poznan University of Medical Sciences, Department of Pathophysiology of Ageing and Civilization Diseases, Święcickiego 4 Str, 60-781 Poznań, Poland.
| |
Collapse
|
2
|
Wang Y, Zhu N, Liu J, Chen F, Song Y, Ma Y, Yang Z, Wang D. Role of tumor microenvironment in ovarian cancer metastasis and clinical advancements. J Transl Med 2025; 23:539. [PMID: 40369674 PMCID: PMC12079989 DOI: 10.1186/s12967-025-06508-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 04/16/2025] [Indexed: 05/16/2025] Open
Abstract
Ovarian cancer (OC) is the most lethal gynecological malignancy worldwide, characterized by heterogeneity at the molecular, cellular and anatomical levels. Most patients are diagnosed at an advanced stage, characterized by widespread peritoneal metastasis. Despite optimal cytoreductive surgery and platinum-based chemotherapy, peritoneal spread and recurrence of OC are common, resulting in poor prognoses. The overall survival of patients with OC has not substantially improved over the past few decades, highlighting the urgent necessity of new treatment options. Unlike the classical lymphatic and hematogenous metastasis observed in other malignancies, OC primarily metastasizes through widespread peritoneal seeding. Tumor cells (the "seeds") exhibit specific affinities for certain organ microenvironments (the "soil"), and metastatic foci can only form when there is compatibility between the "seeds" and "soil." Recent studies have highlighted the tumor microenvironment (TME) as a critical factor influencing the interactions between the "seeds" and "soil," with ascites and the local peritoneal microenvironment playing pivotal roles in the initiation and progression of OC. Prior to metastasis, the interplay among tumor cells, immunosuppressive cells, and stromal cells leads to the formation of an immunosuppressive pre-metastatic niche in specific sites. This includes characteristic alterations in tumor cells, recruitment and functional anomalies of immune cells, and dysregulation of stromal cell distribution and function. TME-mediated crosstalk between cancer and stromal cells drives tumor progression, therapy resistance, and metastasis. In this review, we summarize the current knowledge on the onset and metastatic progression of OC. We provide a comprehensive discussion of the characteristics and functions of TME related to OC metastasis, as well as its association with peritoneal spread. We also outline ongoing relevant clinical trials, aiming to offer new insights for identifying potential effective biomarkers and therapeutic targets in future clinical practice.
Collapse
Affiliation(s)
- Yang Wang
- Department of Gynecology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Cancer Hospital of Dalian University of Technology, No.44 Xiaoheyan Road, Dadong District, Shenyang, Liaoning Province, 110042, People's Republic of China
| | - Na Zhu
- Department of Gynecology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Cancer Hospital of Dalian University of Technology, No.44 Xiaoheyan Road, Dadong District, Shenyang, Liaoning Province, 110042, People's Republic of China
| | - Jing Liu
- Department of Gynecology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Cancer Hospital of Dalian University of Technology, No.44 Xiaoheyan Road, Dadong District, Shenyang, Liaoning Province, 110042, People's Republic of China
| | - Fang Chen
- Department of Gynecology, People's Hospital of Liaoning Province, Shenyang, Liaoning Province, 110016, People's Republic of China
| | - Yang Song
- Department of Gynecology and Obstetrics, Shengjing Hospital of China Medical University, No.36, Sanhao Street, Heping District, Shenyang, Liaoning, 110004, People's Republic of China
| | - Yue Ma
- Department of Gynecology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Cancer Hospital of Dalian University of Technology, No.44 Xiaoheyan Road, Dadong District, Shenyang, Liaoning Province, 110042, People's Republic of China.
| | - Zhuo Yang
- Department of Gynecology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Cancer Hospital of Dalian University of Technology, No.44 Xiaoheyan Road, Dadong District, Shenyang, Liaoning Province, 110042, People's Republic of China.
| | - Danbo Wang
- Department of Gynecology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Cancer Hospital of Dalian University of Technology, No.44 Xiaoheyan Road, Dadong District, Shenyang, Liaoning Province, 110042, People's Republic of China.
| |
Collapse
|
3
|
Dehghan N, Mousavikia SN, Qasempour Y, Azimian H. Radiation-induced senescence in glioblastoma: An overview of the mechanisms and eradication strategies. Life Sci 2024; 359:123218. [PMID: 39510171 DOI: 10.1016/j.lfs.2024.123218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/29/2024] [Accepted: 11/02/2024] [Indexed: 11/15/2024]
Abstract
Radiotherapy as a treatment method for glioblastoma is limited due to the intrinsic apoptosis resistance mechanisms of the tumor. Administration of higher radiation doses contributes to toxicities in normal tissues and organs at risk, like optic chiasma. Cellular senescence represents an alternative mechanism to apoptosis following radiotherapy in glioblastoma, occurring in both normal and neoplastic cells. Although it impedes the growth of tumors and sustains cells in their cycle, it can also act as a cause of tumor development and recurrence following treatment. In this review, we discuss detailed insights into the significance of radiation-induced senescence in glioblastoma and the underlying mechanisms that lead to radioresistance. We also discuss senescence biomarkers and the role of senescence-associated secretory phenotype (SASP) in tumor recurrence. Finally, we review the studies that have administered potential interventions to eradicate or inhibit senescent cells in glioblastoma after treatment with radiation.
Collapse
Affiliation(s)
- Neda Dehghan
- Department of Medical Physics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyedeh Nasibeh Mousavikia
- Department of Medical Physics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Medical Physics Research Center, Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Younes Qasempour
- Department of Medical Physics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hosein Azimian
- Department of Medical Physics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Medical Physics Research Center, Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
4
|
Uruski P, Mikuła-Pietrasik J, Tykarski A, Książek K. Serum from Hypertensive Patients Induces Cancer-Supporting Phenotype of Vascular Endothelium In Vitro. Biomolecules 2024; 14:1374. [PMID: 39595551 PMCID: PMC11592052 DOI: 10.3390/biom14111374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/23/2024] [Accepted: 10/27/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND/OBJECTIVES Large-scale epidemiological studies have established a bidirectional association between hypertension and cancer. However, the underlying mechanisms explaining this connection remain unclear. In our study, we investigated whether serum from patients with hypertension (HT) could enhance the aggressiveness of cancer cells in vitro through alterations in endothelial cell phenotype. METHODS Experiments were performed using EAhy926 endothelial cells and ovarian (SKOV-3), colorectal (SW480), pancreatic (PSN-1), breast (MCF-7), and lung (A549) cancer cell lines. RESULTS This study showed that conditioned medium (CM) produced by EAhy926 cells, when exposed to serum from patients with untreated hypertension (HT-CM), promotes the proliferation, migration, and invasion of every cancer cell line tested. In addition, endothelial cells subjected to HT serum promote the adhesion of all cancer cell types except PSN-1. An intensified transendothelial invasion of cancer cells was accompanied by decreased expression of junctional proteins (connexin 43, E-cadherin, occluding, desmoglein) in HT serum-treated endothelial cells. Quantitative analysis of the secretome of endothelial cells subjected to HT serum showed that they secrete increased amounts of CCL2, CXCL1, CXCL8, bFGF, HGF, IL-6, PAI-1, and TGF-β1. Moreover, cancer cells exposed to HT-CM display increased mRNA expression for several pro-cancerogenic agents, including CXCL8, tPA, and VEGF. CONCLUSIONS Our report shows that hypertension may potentiate cancer cell aggressiveness by modulating endothelial cell phenotype. Further tests with antihypertensive drugs are required to assess whether effective treatment of hypertension can mitigate its cancer-promoting potential.
Collapse
Affiliation(s)
- Paweł Uruski
- Department of Hypertensiology, Angiology and Internal Medicine, Poznan University of Medical Sciences, Długa 1/2 Str., 61-848 Poznan, Poland; (P.U.); (A.T.)
| | - Justyna Mikuła-Pietrasik
- Department of Pathophysiology of Ageing and Civilization Diseases, Poznan University of Medical Sciences, Święcickiego 4 Str., 60-781 Poznan, Poland;
| | - Andrzej Tykarski
- Department of Hypertensiology, Angiology and Internal Medicine, Poznan University of Medical Sciences, Długa 1/2 Str., 61-848 Poznan, Poland; (P.U.); (A.T.)
| | - Krzysztof Książek
- Department of Pathophysiology of Ageing and Civilization Diseases, Poznan University of Medical Sciences, Święcickiego 4 Str., 60-781 Poznan, Poland;
| |
Collapse
|
5
|
Fujimoto H, Yoshihara M, Ricciardelli C, Tano S, Iyoshi S, Miyamoto E, Mogi K, Hayashi M, Hayakawa S, Nomura S, Kitami K, Uno K, Yoshikawa N, Emoto R, Matsui S, Kajiyama H. Aging affects regrowth of stealthperitoneal dissemination of advanced ovarian cancer: a multicenter retrospective cohort study. Sci Rep 2024; 14:23537. [PMID: 39384823 PMCID: PMC11479624 DOI: 10.1038/s41598-024-66419-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 07/01/2024] [Indexed: 10/11/2024] Open
Abstract
Ovarian cancer (OvCa) is one of the most lethal gynecological malignancies, and most patients are diagnosed at advanced stage with peritoneal dissemination. Although age at diagnosis is considered an independent prognostic factor, its impact on peritoneal recurrence after combined cytoreductive surgery and chemotherapy is not clear. The objective of this study was to investigate the impact of aging on peritoneal recurrence from stealth dissemination and gain insight of the pathophysiology of OvCa in elderly patients. A total of 243 patients with pT2b-pT3 epithelial ovarian who achieved complete surgery, no-residual tumor at first surgery, were selected to be analyzed the risk of peritoneal seeding and recurrence. We found that age over 65 years was independently associated with an increased risk of peritoneum-specific (PS) recurrence (. Furthermore, pT3 stages and positive ascites cytology also worsen the PS-relapse-free survival. Collectively, our findings suggest that age, especially over 65 years, predicts reduced peritoneum-specific tumor recurrence in patients with advanced ovarian cancer after complete cytoreduction surgery, particularly those with pT3 tumors and positive ascites cytology.
Collapse
Affiliation(s)
- Hiroki Fujimoto
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Japan
- Discipline of Obstetrics and Gynaecology, Adelaide Medical School, Robinson Research Institute, University of Adelaide, Adelaide, Australia
| | - Masato Yoshihara
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Japan.
- Center for Medical Education, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| | - Carmela Ricciardelli
- Discipline of Obstetrics and Gynaecology, Adelaide Medical School, Robinson Research Institute, University of Adelaide, Adelaide, Australia
| | - Sho Tano
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Japan
| | - Shohei Iyoshi
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Japan
| | - Emiri Miyamoto
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Japan
| | - Kazumasa Mogi
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Japan
| | - Maia Hayashi
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Japan
| | - Sae Hayakawa
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Japan
| | - Satoshi Nomura
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Japan
| | - Kazuhisa Kitami
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Japan
- Department of Obstetrics and Gynecology, Kitasato University Hospital, Sagamihara, Japan
| | - Kaname Uno
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Japan
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University Graduate School of Medicine, Lund, Sweden
| | - Nobuhisa Yoshikawa
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Japan
| | - Ryo Emoto
- Department of Biostatistics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shigeyuki Matsui
- Department of Biostatistics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroaki Kajiyama
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Japan
| |
Collapse
|
6
|
Laurent-Issartel C, Landras A, Agniel R, Giffard F, Blanc-Fournier C, Da Silva Cruz E, Habes C, Leroy-Dudal J, Carreiras F, Kellouche S. Ascites microenvironment conditions the peritoneal pre-metastatic niche to promote the implantation of ovarian tumor spheroids: Involvement of fibrinogen/fibrin and αV and α5β1 integrins. Exp Cell Res 2024; 441:114155. [PMID: 39002689 DOI: 10.1016/j.yexcr.2024.114155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 07/05/2024] [Accepted: 07/09/2024] [Indexed: 07/15/2024]
Abstract
At least one-third of patients with epithelial ovarian cancer (OC) present ascites at diagnosis and almost all have ascites at recurrence especially because of the propensity of the OC cells to spread in the abdominal cavity leading to peritoneal metastasis. The influence of ascites on the development of pre-metastatic niches, and on the biological mechanisms leading to cancer cell colonization of the mesothelium, remains poorly understood. Here, we show that ascites weakens the mesothelium by affecting the morphology of mesothelial cells and by destabilizing their distribution in the cell cycle. Ascites also causes destabilization of the integrity of mesothelium by modifying the organization of cell junctions, but it does not affect the synthesis of N-cadherin and ZO-1 by mesothelial cells. Moreover, ascites induces disorganization of focal contacts and causes actin cytoskeletal reorganization potentially dependent on the activity of Rac1. Ascites allows the densification and reorganization of ECM proteins of the mesothelium, especially fibrinogen/fibrin, and indicates that it is a source of the fibrinogen and fibrin surrounding OC spheroids. The fibrin in ascites leads to the adhesion of OC spheroids to the mesothelium, and ascites promotes their disaggregation followed by the clearance of mesothelial cells. Both αV and α5β1 integrins are involved. In conclusion ascites and its fibrinogen/fibrin composition affects the integrity of the mesothelium and promotes the integrin-dependent implantation of OC spheroids in the mesothelium.
Collapse
Affiliation(s)
- Carine Laurent-Issartel
- Equipe de Recherche sur Les Relations Matrice Extracellulaire-Cellules, ERRMECe, (EA1391), Groupe Matrice Extracellulaire et Physiopathologie (MECuP), Institut des Materiaux, I-MAT (FD4122), CY Cergy Paris Université, France
| | - Alexandra Landras
- Equipe de Recherche sur Les Relations Matrice Extracellulaire-Cellules, ERRMECe, (EA1391), Groupe Matrice Extracellulaire et Physiopathologie (MECuP), Institut des Materiaux, I-MAT (FD4122), CY Cergy Paris Université, France
| | - Rémy Agniel
- Equipe de Recherche sur Les Relations Matrice Extracellulaire-Cellules, ERRMECe, (EA1391), Groupe Matrice Extracellulaire et Physiopathologie (MECuP), Institut des Materiaux, I-MAT (FD4122), CY Cergy Paris Université, France
| | - Florence Giffard
- UNICANCER, F. Baclesse Comprehensive Cancer Center, Biopathology Department, Caen, France; Université de Caen Normandie, Inserm U1086 ANTICIPE, Caen, France; Université de Caen Normandie, Unité de Services PLATON, Plateforme Virtual'His, Caen, France
| | - Cécile Blanc-Fournier
- UNICANCER, F. Baclesse Comprehensive Cancer Center, Biopathology Department, Caen, France; Université de Caen Normandie, Unité de Services PLATON, Centre de Ressources Biologiques OvaRessources, Caen, France
| | - Elisabete Da Silva Cruz
- University of Strasbourg, Laboratory of Bioimaging and Pathologies, UMR CNRS 7021, Illkirch, France
| | - Chahrazed Habes
- Equipe de Recherche sur Les Relations Matrice Extracellulaire-Cellules, ERRMECe, (EA1391), Groupe Matrice Extracellulaire et Physiopathologie (MECuP), Institut des Materiaux, I-MAT (FD4122), CY Cergy Paris Université, France
| | - Johanne Leroy-Dudal
- Equipe de Recherche sur Les Relations Matrice Extracellulaire-Cellules, ERRMECe, (EA1391), Groupe Matrice Extracellulaire et Physiopathologie (MECuP), Institut des Materiaux, I-MAT (FD4122), CY Cergy Paris Université, France
| | - Franck Carreiras
- Equipe de Recherche sur Les Relations Matrice Extracellulaire-Cellules, ERRMECe, (EA1391), Groupe Matrice Extracellulaire et Physiopathologie (MECuP), Institut des Materiaux, I-MAT (FD4122), CY Cergy Paris Université, France
| | - Sabrina Kellouche
- Equipe de Recherche sur Les Relations Matrice Extracellulaire-Cellules, ERRMECe, (EA1391), Groupe Matrice Extracellulaire et Physiopathologie (MECuP), Institut des Materiaux, I-MAT (FD4122), CY Cergy Paris Université, France.
| |
Collapse
|
7
|
Jazwinska DE, Cho Y, Zervantonakis IK. Enhancing PKA-dependent mesothelial barrier integrity reduces ovarian cancer transmesothelial migration via inhibition of contractility. iScience 2024; 27:109950. [PMID: 38812549 PMCID: PMC11134878 DOI: 10.1016/j.isci.2024.109950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 03/25/2024] [Accepted: 05/07/2024] [Indexed: 05/31/2024] Open
Abstract
Cancer-mesothelial cell interactions are critical for multiple solid tumors to colonize the surface of peritoneal organs. Understanding mechanisms of mesothelial barrier dysfunction that impair its protective function is critical for discovering mesothelial-targeted therapies to combat metastatic spread. Here, we utilized a live cell imaging-based assay to elucidate the dynamics of ovarian cancer spheroid transmesothelial migration and mesothelial-generated mechanical forces. Treatment of mesothelial cells with the adenylyl cyclase agonist forskolin strengthens cell-cell junctions, reduces actomyosin fibers, contractility-driven matrix displacements, and cancer spheroid transmigration in a protein kinase A (PKA)-dependent mechanism. We also show that inhibition of the cytoskeletal regulator Rho-associated kinase in mesothelial cells phenocopies the anti-metastatic effects of forskolin. Conversely, upregulation of contractility in mesothelial cells disrupts cell-cell junctions and increases the clearance rates of ovarian cancer spheroids. Our findings demonstrate the critical role of mesothelial cell contractility and mesothelial barrier integrity in regulating metastatic dissemination within the peritoneal microenvironment.
Collapse
Affiliation(s)
- Dorota E. Jazwinska
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Youngbin Cho
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Ioannis K. Zervantonakis
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15261, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15232, USA
| |
Collapse
|
8
|
Rutecki S, Pakuła-Iwańska M, Leśniewska-Bocianowska A, Matuszewska J, Rychlewski D, Uruski P, Stryczyński Ł, Naumowicz E, Szubert S, Tykarski A, Mikuła-Pietrasik J, Książek K. Mechanisms of carboplatin- and paclitaxel-dependent induction of premature senescence and pro-cancerogenic conversion of normal peritoneal mesothelium and fibroblasts. J Pathol 2024; 262:198-211. [PMID: 37941520 DOI: 10.1002/path.6223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 09/08/2023] [Accepted: 09/27/2023] [Indexed: 11/10/2023]
Abstract
Carboplatin (CPT) and paclitaxel (PCT) are the optimal non-surgical treatment of epithelial ovarian cancer (EOC). Although their growth-restricting influence on EOC cells is well known, their impact on normal peritoneal cells, including mesothelium (PMCs) and fibroblasts (PFBs), is poorly understood. Here, we investigated whether, and if so, by what mechanism, CPT and PCT induce senescence of omental PMCs and PFBs. In addition, we tested whether PMC and PFB exposure to the drugs promotes the development of a pro-cancerogenic phenotype. The results showed that CPT and PCT induce G2/M growth arrest-associated senescence of normal peritoneal cells and that the strongest induction occurs when the drugs act together. PMCs senesce telomere-independently with an elevated p16 level and via activation of AKT and STAT3. In PFBs, telomeres shorten along with an induction of p21 and p53, and their senescence proceeds via the activation of ERK1/2. Oxidative stress in CPT + PCT-treated PMCs and PFBs is extensive and contributes causatively to their premature senescence. Both PMCs and PFBs exposed to CPT + PCT fuel the proliferation, migration, and invasion of established (A2780, OVCAR-3, SKOV-3) and primary EOCs, and this activity is linked with an overproduction of multiple cytokines altering the cancer cell transcriptome and controlled by p38 MAPK, NF-κB, STAT3, Notch1, and JAK1. Collectively, our findings indicate that CPT and PCT lead to iatrogenic senescence of normal peritoneal cells, which paradoxically and opposing therapeutic needs alters their phenotype towards pro-cancerogenic. It cannot be excluded that these adverse outcomes of chemotherapy may contribute to EOC relapse in the case of incomplete tumor eradication and residual disease initiation. © 2023 The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Szymon Rutecki
- Department of Pathophysiology of Ageing and Civilization Diseases, Poznań University of Medical Sciences, Poznań, Poland
- Poznań University of Medical Sciences Doctoral School, Poznań, Poland
| | | | | | - Julia Matuszewska
- Department of Pathophysiology of Ageing and Civilization Diseases, Poznań University of Medical Sciences, Poznań, Poland
| | - Daniel Rychlewski
- Department of Pathophysiology of Ageing and Civilization Diseases, Poznań University of Medical Sciences, Poznań, Poland
| | - Paweł Uruski
- Department of Hypertensiology, Poznań University of Medical Sciences, Poznań, Poland
| | - Łukasz Stryczyński
- Department of Hypertensiology, Poznań University of Medical Sciences, Poznań, Poland
| | - Eryk Naumowicz
- General Surgery Ward, Medical Centre HCP, Poznań, Poland
| | - Sebastian Szubert
- Department of Gynecology, Division of Gynecologic Oncology, Poznań University of Medical Sciences, Poznań, Poland
| | - Andrzej Tykarski
- Department of Hypertensiology, Poznań University of Medical Sciences, Poznań, Poland
| | - Justyna Mikuła-Pietrasik
- Department of Pathophysiology of Ageing and Civilization Diseases, Poznań University of Medical Sciences, Poznań, Poland
| | - Krzysztof Książek
- Department of Pathophysiology of Ageing and Civilization Diseases, Poznań University of Medical Sciences, Poznań, Poland
| |
Collapse
|
9
|
Thapa BV, Banerjee M, Glimm T, Saini DK, Bhat R. The senescent mesothelial matrix accentuates colonization by ovarian cancer cells. Cell Mol Life Sci 2023; 81:2. [PMID: 38043093 PMCID: PMC10694112 DOI: 10.1007/s00018-023-05017-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 10/04/2023] [Accepted: 10/24/2023] [Indexed: 12/05/2023]
Abstract
Ovarian cancer is amongst the most morbid of gynecological malignancies due to its diagnosis at an advanced stage, a transcoelomic mode of metastasis, and rapid transition to chemotherapeutic resistance. Like all other malignancies, the progression of ovarian cancer may be interpreted as an emergent outcome of the conflict between metastasizing cancer cells and the natural defense mounted by microenvironmental barriers to such migration. Here, we asked whether senescence in coelom-lining mesothelia, brought about by drug exposure, affects their interaction with disseminated ovarian cancer cells. We observed that cancer cells adhered faster on senescent human and murine mesothelial monolayers than on non-senescent controls. Time-lapse epifluorescence microscopy showed that mesothelial cells were cleared by a host of cancer cells that surrounded the former, even under sub-confluent conditions. A multiscale computational model predicted that such colocalized mesothelial clearance under sub-confluence requires greater adhesion between cancer cells and senescent mesothelia. Consistent with the prediction, we observed that senescent mesothelia expressed an extracellular matrix with higher levels of fibronectin, laminins and hyaluronan than non-senescent controls. On senescent matrix, cancer cells adhered more efficiently, spread better, and moved faster and persistently, aiding the spread of cancer. Inhibition assays using RGD cyclopeptides suggested the adhesion was predominantly contributed by fibronectin and laminin. These findings led us to propose that the senescence-associated matrisomal phenotype of peritoneal barriers enhances the colonization of invading ovarian cancer cells contributing to the metastatic burden associated with the disease.
Collapse
Affiliation(s)
- Bharat Vivan Thapa
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bangalore, 560012, India
- Undergraduate Program, Indian Institute of Science, Bangalore, 560012, India
| | - Mallar Banerjee
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bangalore, 560012, India
| | - Tilmann Glimm
- Department of Mathematics, Western Washington University, Bellingham, WA, 98229, USA
| | - Deepak K Saini
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bangalore, 560012, India.
- Department of Bioengineering, Indian Institute of Science, Bangalore, 560012, India.
| | - Ramray Bhat
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bangalore, 560012, India.
- Department of Bioengineering, Indian Institute of Science, Bangalore, 560012, India.
| |
Collapse
|
10
|
Fu X, Wang Q, Du H, Hao H. CXCL8 and the peritoneal metastasis of ovarian and gastric cancer. Front Immunol 2023; 14:1159061. [PMID: 37377954 PMCID: PMC10291199 DOI: 10.3389/fimmu.2023.1159061] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023] Open
Abstract
CXCL8 is the most representative chemokine produced autocrine or paracrine by tumor cells, endothelial cells and lymphocytes. It can play a key role in normal tissues and tumors by activating PI3K-Akt, PLC, JAK-STAT, and other signaling pathways after combining with CXCR1/2. The incidence of peritoneal metastasis in ovarian and gastric cancer is extremely high. The structure of the peritoneum and various peritoneal-related cells supports the peritoneal metastasis of cancers, which readily produces a poor prognosis, low 5-year survival rate, and the death of patients. Studies show that CXCL8 is excessively secreted in a variety of cancers. Thus, this paper will further elaborate on the mechanism of CXCL8 and the peritoneal metastasis of ovarian and gastric cancer to provide a theoretical basis for the proposal of new methods for the prevention, diagnosis, and treatment of cancer peritoneal metastasis.
Collapse
|
11
|
Koizume S, Kanayama T, Kimura Y, Hirano H, Takahashi T, Ota Y, Miyazaki K, Yoshihara M, Nakamura Y, Yokose T, Kato H, Takenaka K, Sato S, Tadokoro H, Miyagi E, Miyagi Y. Cancer cell-derived CD69 induced under lipid and oxygen starvation promotes ovarian cancer progression through fibronectin. Cancer Sci 2023. [PMID: 36854451 DOI: 10.1111/cas.15774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 02/17/2023] [Accepted: 02/22/2023] [Indexed: 03/02/2023] Open
Abstract
Cancer tissues generally have molecular oxygen and serum component deficiencies because of poor vascularization. Recently, we revealed that ICAM1 is strongly activated through lipophagy in ovarian clear cell carcinoma (CCC) cells in response to starvation of long-chain fatty acids and oxygen and confers resistance to apoptosis caused by these harsh conditions. CD69 is a glycoprotein that is synthesized in immune cells and is associated with their activation through cellular signaling pathways. However, the expression and function of CD69 in nonhematological cells is unclear. Here, we report that CD69 is induced in CCC cells as in ICAM1. Mass spectrometry analysis of phosphorylated peptides followed by pathway analysis revealed that CD69 augments CCC cell binding to fibronectin (FN) in association with the phosphorylation of multiple cellular signaling molecules including the focal adhesion pathway. Furthermore, CD69 synthesized in CCC cells could facilitate cell survival because the CD69-FN axis can induce epithelial-mesenchymal transition. Experiments with surgically removed tumor samples revealed that CD69 is predominantly expressed in CCC tumor cells compared with other histological subtypes of epithelial ovarian cancer. Overall, our data suggest that cancer cell-derived CD69 can contribute to CCC progression through FN.
Collapse
Affiliation(s)
- Shiro Koizume
- Molecular Pathology and Genetics Division, Kanagawa Cancer Center Research Institute, Yokohama, Japan
- Department of Pathology, Kanagawa Cancer Center Hospital, Yokohama, Japan
| | - Tomohiko Kanayama
- Molecular Pathology and Genetics Division, Kanagawa Cancer Center Research Institute, Yokohama, Japan
| | - Yayoi Kimura
- Advancer Medical Research Center, Yokohama City University, Yokohama, Japan
| | - Hisashi Hirano
- Advancer Medical Research Center, Yokohama City University, Yokohama, Japan
| | - Tomoko Takahashi
- Molecular Pathology and Genetics Division, Kanagawa Cancer Center Research Institute, Yokohama, Japan
| | - Yukihide Ota
- Molecular Pathology and Genetics Division, Kanagawa Cancer Center Research Institute, Yokohama, Japan
- Department of Obstetrics, Gynecology and Molecular Reproductive Science, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Kaoru Miyazaki
- Molecular Pathology and Genetics Division, Kanagawa Cancer Center Research Institute, Yokohama, Japan
| | - Mitsuyo Yoshihara
- Molecular Pathology and Genetics Division, Kanagawa Cancer Center Research Institute, Yokohama, Japan
| | - Yoshiyasu Nakamura
- Molecular Pathology and Genetics Division, Kanagawa Cancer Center Research Institute, Yokohama, Japan
| | - Tomoyuki Yokose
- Department of Pathology, Kanagawa Cancer Center Hospital, Yokohama, Japan
| | - Hisamori Kato
- Department of Gynecology, Kanagawa Cancer Center Hospital, Yokohama, Japan
| | - Katsuya Takenaka
- Molecular Pathology and Genetics Division, Kanagawa Cancer Center Research Institute, Yokohama, Japan
| | - Shinya Sato
- Molecular Pathology and Genetics Division, Kanagawa Cancer Center Research Institute, Yokohama, Japan
- Department of Pathology, Kanagawa Cancer Center Hospital, Yokohama, Japan
| | - Hiroko Tadokoro
- Molecular Pathology and Genetics Division, Kanagawa Cancer Center Research Institute, Yokohama, Japan
| | - Etsuko Miyagi
- Department of Obstetrics, Gynecology and Molecular Reproductive Science, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Yohei Miyagi
- Molecular Pathology and Genetics Division, Kanagawa Cancer Center Research Institute, Yokohama, Japan
- Department of Pathology, Kanagawa Cancer Center Hospital, Yokohama, Japan
| |
Collapse
|
12
|
Zheng A, Wei Y, Zhao Y, Zhang T, Ma X. The role of cancer-associated mesothelial cells in the progression and therapy of ovarian cancer. Front Immunol 2022; 13:1013506. [PMID: 36268019 PMCID: PMC9577001 DOI: 10.3389/fimmu.2022.1013506] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 09/15/2022] [Indexed: 11/13/2022] Open
Abstract
Ovarian cancer is currently one of the most common malignant tumors in females with poor survival rates around the world, killing about 200,000 women each year. Although great progress has been made in treatment, most patients receiving first-line therapy experience tumor recurrence. The tumor microenvironment plays an important role in regulating the progression and prognosis of ovarian cancer. Cancer-associated mesothelial cells are the main cell population in the tumor microenvironment, which affect the progression, prognosis and chemical resistance of ovarian cancer. Cancer-associated mesothelial cells can also interact with other microenvironmental components, such as exosomes, macrophages, and adipocytes. Some studies have developed drugs targeting cancer-associated mesothelial cells in ovarian cancer to evaluate the therapeutic efficiency. In this review we highlighted the key role of cancer-associated mesothelial cells in the progression and prognosis of ovarian cancer. We also described the progress of cancer-associated mesothelial cells targeted therapy for ovarian cancer. Continued insight into the role of cancer-associated mesothelial cells in ovarian cancer will potentially contribute to the development of new and effective therapeutic regiments.
Collapse
Affiliation(s)
- Aiping Zheng
- Division of Biotherapy, Cancer Center, West China Hospital, Cancer Center, Sichuan University, Chengdu, China
- Head & Neck Oncology Ward, Cancer Center, West China Hospital, Cancer Center, Sichuan University, Chengdu, China
| | - Yuhao Wei
- West China School of Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Yunuo Zhao
- Division of Biotherapy, Cancer Center, West China Hospital, Cancer Center, Sichuan University, Chengdu, China
| | - Tao Zhang
- Division of Biotherapy, Cancer Center, West China Hospital, Cancer Center, Sichuan University, Chengdu, China
| | - Xuelei Ma
- Division of Biotherapy, Cancer Center, West China Hospital, Cancer Center, Sichuan University, Chengdu, China
- *Correspondence: Xuelei Ma,
| |
Collapse
|
13
|
Li J, Guo T. Role of Peritoneal Mesothelial Cells in the Progression of Peritoneal Metastases. Cancers (Basel) 2022; 14:2856. [PMID: 35740521 PMCID: PMC9221366 DOI: 10.3390/cancers14122856] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/19/2022] [Accepted: 06/06/2022] [Indexed: 11/17/2022] Open
Abstract
Peritoneal metastatic cancer comprises a heterogeneous group of primary tumors that originate in the peritoneal cavity or metastasize into the peritoneal cavity from a different origin. Metastasis is a characteristic of end-stage disease, often indicative of a poor prognosis with limited treatment options. Peritoneal mesothelial cells (PMCs) are a thin layer of cells present on the surface of the peritoneum. They display differentiated characteristics in embryonic development and adults, representing the first cell layer encountering peritoneal tumors to affect their progression. PMCs have been traditionally considered a barrier to the intraperitoneal implantation and metastasis of tumors; however, recent studies indicate that PMCs can either inhibit or actively promote tumor progression through distinct mechanisms. This article presents a review of the role of PMCs in the progression of peritoneum implanted tumors, offering new ideas for therapeutic targets and related research.
Collapse
Affiliation(s)
- Junliang Li
- The First School of Clinical Medicine, Lanzhou University, Lanzhou 730030, China;
- Department of General Surgery, Gansu Provincial Hospital, Lanzhou 730030, China
- The First School of Clinical Medical, Gansu University of Chinese Medicine, Lanzhou 730030, China
| | - Tiankang Guo
- The First School of Clinical Medicine, Lanzhou University, Lanzhou 730030, China;
- Department of General Surgery, Gansu Provincial Hospital, Lanzhou 730030, China
| |
Collapse
|
14
|
Cho K, Yang KE, Nam SB, Lee SI, Yeo EJ, Choi JS. Shotgun proteomics of extracellular matrix in late senescent human dermal fibroblasts reveals a down-regulated fibronectin-centered network. J Anal Sci Technol 2022. [DOI: 10.1186/s40543-022-00329-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
AbstractExtracellular matrix (ECM) proteins play a pivotal role in cell growth and differentiation. To characterize aged ECM proteins, we compared the proteomes by shotgun method of young (passage #15) and late senescent (passage #40) human dermal fibroblasts (HDFs) using SDS-PAGE coupled with LC–MS/MS. The relative abundance of identified proteins was determined using mol% of individual proteins as a semi-quantitative index. Fifteen ECM proteins including apolipoprotein B (APOB) and high-temperature requirement factor 1 (HTRA1) were up-regulated, whereas 50 proteins including fibronectin 1 (FN1) and vitronectin (VTN) were down-regulated in late senescent HDFs. The identified ECM proteins combined with plasma membrane were queried to construct the protein–protein interaction network using Ingenuity Pathways Analysis, resulting in a distinct FN1-centered network. Of differentially abundant ECM proteins in shotgun proteomics, the protein levels of FN1, VTN, APOB, and HTRA1 were verified by immunoblot analysis. The results suggest that the aging process in HDFs might be finally involved in the impaired FN1 regulatory ECM network combined with altered interaction of neighboring proteins. Shotgun proteomics of highly aged HDFs provides insight for further studies of late senescence-related alterations in ECM proteins.
Collapse
|
15
|
Pretzsch E, Nieß H, Bösch F, Westphalen C, Jacob S, Neumann J, Werner J, Heinemann V, Angele M. Age and metastasis – How age influences metastatic spread in cancer. Colorectal cancer as a model. Cancer Epidemiol 2022; 77:102112. [PMID: 35104771 DOI: 10.1016/j.canep.2022.102112] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 01/15/2022] [Accepted: 01/17/2022] [Indexed: 12/12/2022]
|
16
|
Mikuła-Pietrasik J, Rutecki S, Książek K. The functional multipotency of transforming growth factor β signaling at the intersection of senescence and cancer. Cell Mol Life Sci 2022; 79:196. [PMID: 35305149 PMCID: PMC11073081 DOI: 10.1007/s00018-022-04236-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/22/2022] [Accepted: 03/08/2022] [Indexed: 12/12/2022]
Abstract
The transforming growth factor β (TGF-β) family of cytokines comprises a group of proteins, their receptors, and effector molecules that, in a coordinated manner, modulate a plethora of physiological and pathophysiological processes. TGF-β1 is the best known and plausibly most active representative of this group. It acts as an immunosuppressant, contributes to extracellular matrix remodeling, and stimulates tissue fibrosis, differentiation, angiogenesis, and epithelial-mesenchymal transition. In recent years, this cytokine has been established as a vital regulator of organismal aging and cellular senescence. Finally, the role of TGF-β1 in cancer progression is no longer in question. Because this protein is involved in so many, often overlapping phenomena, the question arises whether it can be considered a molecular bridge linking some of these phenomena together and governing their reciprocal interactions. In this study, we reviewed the literature from the perspective of the role of various TGF-β family members as regulators of a complex mutual interplay between senescence and cancer. These aspects are then considered in a broader context of remaining TGF-β-related functions and coexisting processes. The main narrative axis in this work is centered around the interaction between the senescence of normal peritoneal cells and ovarian cancer cells. The discussion also includes examples of TGF-β activity at the interface of other normal and cancer cell types.
Collapse
Affiliation(s)
- Justyna Mikuła-Pietrasik
- Department of Pathophysiology of Ageing and Civilization Diseases, Długa ½ Str, Poznań University of Medical Sciences, 61-848, Poznań, Poland
| | - Szymon Rutecki
- Department of Pathophysiology of Ageing and Civilization Diseases, Długa ½ Str, Poznań University of Medical Sciences, 61-848, Poznań, Poland
| | - Krzysztof Książek
- Department of Pathophysiology of Ageing and Civilization Diseases, Długa ½ Str, Poznań University of Medical Sciences, 61-848, Poznań, Poland.
| |
Collapse
|
17
|
Ritch SJ, Telleria CM. The Transcoelomic Ecosystem and Epithelial Ovarian Cancer Dissemination. Front Endocrinol (Lausanne) 2022; 13:886533. [PMID: 35574025 PMCID: PMC9096207 DOI: 10.3389/fendo.2022.886533] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 03/24/2022] [Indexed: 11/13/2022] Open
Abstract
Epithelial ovarian cancer (EOC) is considered the deadliest gynecological disease and is normally diagnosed at late stages, at which point metastasis has already occurred. Throughout disease progression, EOC will encounter various ecosystems and the communication between cancer cells and these microenvironments will promote the survival and dissemination of EOC. The primary tumor is thought to develop within the ovaries or the fallopian tubes, both of which provide a microenvironment with high risk of causing DNA damage and enhanced proliferation. EOC disseminates by direct extension from the primary tumors, as single cells or multicellular aggregates. Under the influence of cellular and non-cellular factors, EOC spheroids use the natural flow of peritoneal fluid to reach distant organs within the peritoneal cavity. These cells can then implant and seed distant organs or tissues, which develop rapidly into secondary tumor nodules. The peritoneal tissue and the omentum are two common sites of EOC metastasis, providing a microenvironment that supports EOC invasion and survival. Current treatment for EOC involves debulking surgery followed by platinum-taxane combination chemotherapy; however, most patients will relapse with a chemoresistant disease with tumors developed within the peritoneum. Therefore, understanding the role of the unique microenvironments that promote EOC transcoelomic dissemination is important in improving patient outcomes from this disease. In this review article, we address the process of ovarian cancer cellular fate at the site of its origin in the secretory cells of the fallopian tube or in the ovarian surface epithelial cells, their detachment process, how the cells survive in the peritoneal fluid avoiding cell death triggers, and how cancer- associated cells help them in the process. Finally, we report the mechanisms used by the ovarian cancer cells to adhere and migrate through the mesothelial monolayer lining the peritoneum. We also discuss the involvement of the transcoelomic ecosystem on the development of chemoresistance of EOC.
Collapse
Affiliation(s)
- Sabrina J. Ritch
- Experimental Pathology Unit, Department of Pathology, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
| | - Carlos M. Telleria
- Experimental Pathology Unit, Department of Pathology, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
- Cancer Research Program, Research Institute, McGill University Health Centre, Montreal, QC, Canada
- *Correspondence: Carlos M. Telleria, ; orcid.org/0000-0003-1070-3538
| |
Collapse
|
18
|
Zhang J, Yang N, Kreeger PK, Notbohm J. Topological defects in the mesothelium suppress ovarian cancer cell clearance. APL Bioeng 2021; 5:036103. [PMID: 34396026 PMCID: PMC8337086 DOI: 10.1063/5.0047523] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 06/21/2021] [Indexed: 02/06/2023] Open
Abstract
We investigated an in vitro model for mesothelial clearance, wherein ovarian cancer cells invade into a layer of mesothelial cells, resulting in mesothelial retraction combined with cancer cell disaggregation and spreading. Prior to the addition of tumor cells, the mesothelial cells had an elongated morphology, causing them to align with their neighbors into well-ordered domains. Flaws in this alignment, which occur at topological defects, have been associated with altered cell density, motion, and forces. Here, we identified topological defects in the mesothelial layer and showed how they affected local cell density by producing a net flow of cells inward or outward, depending on the defect type. At locations of net inward flow, mesothelial clearance was impeded. Hence, the collective behavior of the mesothelial cells, as governed by the topological defects, affected tumor cell clearance and spreading. Importantly, our findings were consistent across multiple ovarian cancer cell types, suggesting a new physical mechanism that could impact ovarian cancer metastasis.
Collapse
Affiliation(s)
| | - Ning Yang
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | | | | |
Collapse
|
19
|
Malignant Ascites Promote Adhesion of Ovarian Cancer Cells to Peritoneal Mesothelium and Fibroblasts. Int J Mol Sci 2021; 22:ijms22084222. [PMID: 33921783 PMCID: PMC8073321 DOI: 10.3390/ijms22084222] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/13/2021] [Accepted: 04/17/2021] [Indexed: 12/19/2022] Open
Abstract
Although malignant ascites (MAs) are known to contribute to various aspects of ovarian cancer progression, knowledge regarding their role in the adhesion of cancer cells to normal peritoneal cells is incomplete. Here, we compared the effect of MAs and benign ascites (BAs) on the adhesion of A2780 and OVCAR-3 cancer cells to omentum-derived peritoneal mesothelial cells (PMCs) and peritoneal fibroblasts (PFBs). The results showed that MAs stimulated the adhesion of A2780 and OVCAR-3 cells to PMCs and PFBs more efficiently than did BAs, and the strongest binding occurred when both cancer and normal cells were exposed to the fluid. Intervention studies showed that MAs-driven adhesion of A2780 cells to PMCs/PFBs depends on the presence of TGF-β1 and HGF, whereas binding of OVCAR-3 cells was mediated by TGF-β1, GRO-1, and IGF-1. Moreover, MAs upregulated α5β1 integrin expression on PFBs but not on PMCs or cancer cells, vimentin expression in all cells tested, and ICAM-1 only in cancer cells. When integrin-linked kinase was neutralized in PMCs or PFBs, cancer cell adhesion to PMCs and PFBs decreased. Collectively, our report shows that MAs may contribute to the early stages of ovarian cancer metastasis by modulating the proadhesive interplay between normal and cancer cells.
Collapse
|
20
|
Uruski P, Mikuła-Pietrasik J, Drzewiecki M, Budkiewicz S, Gładki M, Kurmanalina G, Tykarski A, Książek K. Diverse functional responses to high glucose by primary and permanent hybrid endothelial cells in vitro. J Mol Cell Cardiol 2021; 156:1-6. [PMID: 33731316 DOI: 10.1016/j.yjmcc.2021.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 03/10/2021] [Indexed: 11/30/2022]
Abstract
Various types of human endothelial cells, including human umbilical vein endothelial cells (HUVECs) and the established hybrid EAhy926 cells, are used in experimental research. Here, we compared the biological properties of HUVECs and EAhy926 cells under normal (5 mM) and high glucose (30 mM; HG) conditions. The results showed that HG induced cellular senescence and a stronger DNA damage response in HUVECs than in EAhy926 cells. The magnitude of oxidative stress elicited in HUVECs by HG was also greater than that elicited in their established counterparts. Both endothelial cell types promoted the progression of breast (MCF7), ovarian (OVCAR-3), and lung (A549) cancer cells; however, the effects elicited by HG-treated HUVECs on adhesion (MCF7, OVCAR-3), proliferation (OVCAR-3), and migration (OVCAR-3) were more pronounced. Finally, HG stimulated the production of a higher number of proangiogenic agents in HUVECs than in EAhy926 cells. Collectively, our study shows that the functional properties of primary and established endothelial cells exposed to HG differ substantially, which seems to result from the higher sensitivity of the former to this stressor. The interchangeability of both types of endothelial cells in biomedical research should be considered with great care to avoid losing some biological effects due to the choice of cells with higher stress tolerance.
Collapse
Affiliation(s)
- Paweł Uruski
- Department of Hypertensiology, Poznan University of Medical Sciences, Długa 1/2 Str., 61-848 Poznan, Poland.
| | - Justyna Mikuła-Pietrasik
- Department of Pathophysiology of Ageing and Civilization Diseases, Poznan University of Medical Sciences, Długa 1/2 Str., 61-848 Poznan, Poland.
| | - Marcin Drzewiecki
- Department of Pathophysiology of Ageing and Civilization Diseases, Poznan University of Medical Sciences, Długa 1/2 Str., 61-848 Poznan, Poland.
| | - Sylwia Budkiewicz
- Department of Pathophysiology of Ageing and Civilization Diseases, Poznan University of Medical Sciences, Długa 1/2 Str., 61-848 Poznan, Poland.
| | - Marcin Gładki
- Department of Pediatric Cardiac Surgery, Poznan University of Medical Sciences, Szpitalna 27/33 Str., 60-572 Poznań, Poland.
| | - Gulnara Kurmanalina
- Department of Internal Medicine, West Kazakhstan Marat Ospanov State Medical University, Aktobe, Kazakhstan, Maresyeva Str., 030005, Aktobe, Kazakhstan
| | - Andrzej Tykarski
- Department of Hypertensiology, Poznan University of Medical Sciences, Długa 1/2 Str., 61-848 Poznan, Poland
| | - Krzysztof Książek
- Department of Pathophysiology of Ageing and Civilization Diseases, Poznan University of Medical Sciences, Długa 1/2 Str., 61-848 Poznan, Poland.
| |
Collapse
|
21
|
Książek K. Where does cellular senescence belong in the pathophysiology of ovarian cancer? Semin Cancer Biol 2020; 81:14-23. [PMID: 33290845 DOI: 10.1016/j.semcancer.2020.11.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/28/2020] [Accepted: 11/30/2020] [Indexed: 12/16/2022]
Abstract
Although ovarian cancer is the leading cause of death from gynecological malignancies, there are still some issues that hamper accurate interpretation of the complexity of cellular and molecular events underlying the pathophysiology of this disease. One of these is cellular senescence, which is the process whereby cells irreversibly lose their ability to divide and develop a phenotype that fuels a variety of age-related diseases, including cancer. In this review, various aspects of cellular senescence associated with intraperitoneal ovarian cancer metastasis are presented and discussed, including mechanisms of senescence in normal peritoneal mesothelial cells; the role of senescent mesothelium in ovarian cancer progression; the effect of drugs commonly used as first-line therapy in ovarian cancer patients on senescence of normal cells; mechanisms of spontaneous senescence in ovarian cancer cells; and, last but not least, other pharmacologic strategies to induce senescence in ovarian malignancies. Collectively, this study shows that cellular senescence is involved in several aspects of ovarian cancer pathobiology. Proper understanding of this phenomenon, particularly its clinical relevance, seems to be critical for oncology patients from both therapeutic and prognostic perspectives.
Collapse
Affiliation(s)
- Krzysztof Książek
- Department of Pathophysiology of Ageing and Civilization Diseases, Poznań University of Medical Sciences, Długa 1/2 Str., 61-848, Poznań, Poland.
| |
Collapse
|
22
|
Hart PC, Kenny HA, Grassl N, Watters KM, Litchfield LM, Coscia F, Blaženović I, Ploetzky L, Fiehn O, Mann M, Lengyel E, Romero IL. Mesothelial Cell HIF1α Expression Is Metabolically Downregulated by Metformin to Prevent Oncogenic Tumor-Stromal Crosstalk. Cell Rep 2020; 29:4086-4098.e6. [PMID: 31851935 DOI: 10.1016/j.celrep.2019.11.079] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 10/04/2019] [Accepted: 11/19/2019] [Indexed: 01/04/2023] Open
Abstract
The tumor microenvironment (TME) plays a pivotal role in cancer progression, and, in ovarian cancer (OvCa), the primary TME is the omentum. Here, we show that the diabetes drug metformin alters mesothelial cells in the omental microenvironment. Metformin interrupts bidirectional signaling between tumor and mesothelial cells by blocking OvCa cell TGF-β signaling and mesothelial cell production of CCL2 and IL-8. Inhibition of tumor-stromal crosstalk by metformin is caused by the reduced expression of the tricarboxylic acid (TCA) enzyme succinyl CoA ligase (SUCLG2). Through repressing this TCA enzyme and its metabolite, succinate, metformin activated prolyl hydroxylases (PHDs), resulting in the degradation of hypoxia-inducible factor 1α (HIF1α) in mesothelial cells. Disruption of HIF1α-driven IL-8 signaling in mesothelial cells by metformin results in reduced OvCa invasion in an organotypic 3D model. These findings indicate that tumor-promoting signaling between mesothelial and OvCa cells in the TME can be targeted using metformin.
Collapse
Affiliation(s)
- Peter C Hart
- Department of Obstetrics and Gynecology/Section of Gynecologic Oncology, University of Chicago, Chicago, IL 60637, USA
| | - Hilary A Kenny
- Department of Obstetrics and Gynecology/Section of Gynecologic Oncology, University of Chicago, Chicago, IL 60637, USA
| | - Niklas Grassl
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried 82152, Germany
| | - Karen M Watters
- Department of Obstetrics and Gynecology/Section of Gynecologic Oncology, University of Chicago, Chicago, IL 60637, USA
| | - Lacey M Litchfield
- Department of Obstetrics and Gynecology/Section of Gynecologic Oncology, University of Chicago, Chicago, IL 60637, USA
| | - Fabian Coscia
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried 82152, Germany
| | - Ivana Blaženović
- West Coast Metabolomics Center, University of California, Davis Genome Center, Davis, CA, USA
| | - Lisa Ploetzky
- West Coast Metabolomics Center, University of California, Davis Genome Center, Davis, CA, USA
| | - Oliver Fiehn
- West Coast Metabolomics Center, University of California, Davis Genome Center, Davis, CA, USA
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried 82152, Germany
| | - Ernst Lengyel
- Department of Obstetrics and Gynecology/Section of Gynecologic Oncology, University of Chicago, Chicago, IL 60637, USA.
| | - Iris L Romero
- Department of Obstetrics and Gynecology/Section of Gynecologic Oncology, University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
23
|
PDK1 promotes ovarian cancer metastasis by modulating tumor-mesothelial adhesion, invasion, and angiogenesis via α5β1 integrin and JNK/IL-8 signaling. Oncogenesis 2020; 9:24. [PMID: 32071289 PMCID: PMC7028730 DOI: 10.1038/s41389-020-0209-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 02/04/2020] [Accepted: 02/06/2020] [Indexed: 12/11/2022] Open
Abstract
Ovarian cancer is the most lethal gynecological malignancies owing to the lack of definitive symptoms until development of widespread metastases. Identification of novel prognostic and therapeutic targets is therefore an urgent need to improve survival. Here, we demonstrated high expression of the mitochondrial gatekeeping enzyme, pyruvate dehydrogenase kinase 1 (PDK1), in both clinical samples and cell lines of ovarian cancer. PDK1 expression was significantly associated with metastasis, reduced chemosensitivity, and poor overall and disease-free survival, and further highlighted as an independent prognostic factor. Silencing of PDK1 retarded lactate production, ovarian cancer cell adhesion, migration, invasion, and angiogenesis, and consequently metastasis, concomitant with decreased α5β1 integrin expression. Phospho-kinase array profiling and RNA sequencing analyses further revealed reduction of JNK activation and IL-8 expression in PDK1-depleted cells. Conversely, PDK1 overexpression promoted cell adhesion via modulation of α5β1 integrins, along with cell migration, invasion, and angiogenesis through activation of JNK/IL-8 signaling. PDK1 depletion additionally hindered tumor growth and dissemination in nude mice in vivo. Importantly, PDK1 levels were upregulated upon treatment with conditioned medium from omental tissues, which in turn promoted metastasis. Our findings suggest that PDK1, which is regulated by the tumor microenvironment, controls lactate production and promotes ovarian cancer cell metastasis via modulation of α5β1 integrin and JNK/IL-8 signaling. To our knowledge, this is the first report to demonstrate an association between PDK1 and survival in patients with ovarian cancer, supporting its efficacy as a valuable prognostic marker and therapeutic molecular target for the disease.
Collapse
|
24
|
Deciphering the Molecular Mechanism of Spontaneous Senescence in Primary Epithelial Ovarian Cancer Cells. Cancers (Basel) 2020; 12:cancers12020296. [PMID: 32012719 PMCID: PMC7072138 DOI: 10.3390/cancers12020296] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/21/2020] [Accepted: 01/23/2020] [Indexed: 12/18/2022] Open
Abstract
Spontaneous senescence of cancer cells remains a puzzling and poorly understood phenomenon. Here we comprehensively characterize this process in primary epithelial ovarian cancer cells (pEOCs). Analysis of tumors from ovarian cancer patients showed an abundance of senescent cells in vivo. Further, serially passaged pEOCs become senescent after a few divisions. These senescent cultures display trace proliferation, high expression of senescence biomarkers (SA--Gal, -H2A.X), growth-arrest in the G1 phase, increased level of cyclins D1, D2, decreased cyclin B1, up-regulated p16, p21, and p53 proteins, eroded telomeres, reduced activity of telomerase, predominantly non-telomeric DNA damage, activated AKT, AP-1, and ERK1/2 signaling, diminished JNK, NF-B, and STAT3 pathways, increased formation of reactive oxygen species, unchanged activity of antioxidants, increased oxidative damage to DNA and proteins, and dysfunctional mitochondria. Moreover, pEOC senescence is inducible by normal peritoneal mesothelium, fibroblasts, and malignant ascites via the paracrine activity of GRO-1, HGF, and TGF-1. Collectively, pEOCs undergo spontaneous senescence in a mosaic, telomere-dependent and telomere-independent manner, plausibly in an oxidative stress-dependent mechanism. The process may also be activated by extracellular stimuli. The biological and clinical significance of pEOC senescence remains to be explored.
Collapse
|
25
|
Fibronectin in Cancer: Friend or Foe. Cells 2019; 9:cells9010027. [PMID: 31861892 PMCID: PMC7016990 DOI: 10.3390/cells9010027] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 12/13/2019] [Accepted: 12/18/2019] [Indexed: 01/10/2023] Open
Abstract
The role of fibronectin (FN) in tumorigenesis and malignant progression has been highly controversial. Cancerous FN plays a tumor-suppressive role, whereas it is pro-metastatic and associated with poor prognosis. Interestingly, FN matrix deposited in the tumor microenvironments (TMEs) promotes tumor progression but is paradoxically related to a better prognosis. Here, we justify how FN impacts tumor transformation and subsequently metastatic progression. Next, we try to reconcile and rationalize the seemingly conflicting roles of FN in cancer and TMEs. Finally, we propose future perspectives for potential FN-based therapeutic strategies.
Collapse
|
26
|
Senescence-related deterioration of intercellular junctions in the peritoneal mesothelium promotes the transmesothelial invasion of ovarian cancer cells. Sci Rep 2019; 9:7587. [PMID: 31110245 PMCID: PMC6527686 DOI: 10.1038/s41598-019-44123-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 05/09/2019] [Indexed: 12/13/2022] Open
Abstract
Mechanisms of transmesothelial invasion of ovarian cancer are still poorly understood. Here we examined whether this phenomenon may be determined by an expression of intercellular junctions in peritoneal mesothelial cells (PMCs). Analysis of ovarian tumors showed that cancer cells are localized below an intact layer of PMCs. The PMCs located near the invaded cancer cells displayed low expression of connexin 43, E-cadherin, occludin, and desmoglein, as well as expressed SA-β-Gal, a marker of senescence. Experiments in vitro showed that senescent PMCs exhibited decreased levels of the four tested intercellular junctions, and that the invasion of ovarian cancer cells through the PMCs increased proportionally to the admixture of senescent cells. Intervention studies showed that the expression of connexin 43, E-cadherin, occludin, and desmoglein in senescent PMCs could be restored upon the blockade of p38 MAPK, NF-κB, AKT, JNK, HGF, and TGF-β1. When these molecules were neutralized, the efficiency of the transmesothelial cancer cell invasion was diminished. Collectively, our findings show that the integrity of the peritoneal mesothelium, which is determined by the expression of junctional proteins, is critical for the invasion of ovarian cancer. They also indicate a mechanism by which senescent PMCs may promote the invasive potential of cancer cells.
Collapse
|
27
|
A Unique Pattern of Mesothelial-Mesenchymal Transition Induced in the Normal Peritoneal Mesothelium by High-Grade Serous Ovarian Cancer. Cancers (Basel) 2019; 11:cancers11050662. [PMID: 31086083 PMCID: PMC6562987 DOI: 10.3390/cancers11050662] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 05/07/2019] [Accepted: 05/13/2019] [Indexed: 01/05/2023] Open
Abstract
The study was designed to establish whether high aggressiveness of high-grade serous ovarian cancer cells (HGSOCs), which display rapid growth, advanced stage at diagnosis and the highest mortality among all epithelial ovarian cancer histotypes, may be linked with a specific pattern of mesothelial-mesenchymal transition (MMT) elicited by these cells in normal peritoneal mesothelial cells (PMCs). Experiments were performed on primary PMCs, stable and primary ovarian cancer cells, tumors from patients with ovarian cancer, and laboratory animals. Results of in vitro and in vivo tests showed that MMT triggered by HGSOCs (primary cells and OVCAR-3 line) is far more pronounced than the process evoked by cells representing less aggressive ovarian cancer histotypes (A2780, SKOV-3). Mechanistically, HGSOCs induce MMT via Smad 2/3, ILK, TGF-β1, HGF, and IGF-1, whereas A2780 and SKOV-3 cells via exclusively Smad 2/3 and HGF. The conditioned medium from PMCs undergoing MMT promoted the progression of cancer cells and the effects exerted by the cells triggered to undergo MMT by the HGSOCs were significantly stronger than those related to the activity of their less aggressive counterparts. Our findings indicate that MMT in PMCs provoked by HGSOCs is stronger, proceeds via different mechanisms and has more procancerous characteristics than MMT provoked by less aggressive cancer histotypes, which may at least partly explain high aggressiveness of HGSOCs.
Collapse
|
28
|
Harper EI, Sheedy EF, Stack MS. With Great Age Comes Great Metastatic Ability: Ovarian Cancer and the Appeal of the Aging Peritoneal Microenvironment. Cancers (Basel) 2018; 10:E230. [PMID: 29996539 PMCID: PMC6070816 DOI: 10.3390/cancers10070230] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 07/02/2018] [Accepted: 07/04/2018] [Indexed: 12/22/2022] Open
Abstract
Age is one of the biggest risk factors for ovarian cancer. Older women have higher rates of diagnosis and death associated with the disease. In mouse models, it was shown that aged mice had greater tumor burden than their younger counterparts when intraperitoneally injected with ovarian tumor cells. While very few papers have been published looking at the direct link between ovarian cancer metastasis and age, there is a wealth of information on how age affects metastatic microenvironments. Mesothelial cells, the peritoneal extracellular matrix (ECM), fibroblasts, adipocytes and immune cells all exhibit distinct changes with age. The aged peritoneum hosts a higher number of senescent cells than its younger counterpart, in both the mesothelium and the stroma. These senescent cells promote an inflammatory profile and overexpress Matrix Metalloproteinases (MMPs), which remodel the ECM. The aged ECM is also modified by dysregulated collagen and laminin synthesis, increases in age-related crosslinking and increasing ovarian cancer invasion into the matrix. These changes contribute to a vastly different microenvironment in young and aged models for circulating ovarian cancer cells, creating a more welcoming “soil”.
Collapse
Affiliation(s)
- Elizabeth I Harper
- Department of Chemistry and Biochemistry, University of Notre Dame, South Bend, IN 46617, USA.
- Harper Cancer Research Institute, University of Notre Dame, South Bend, IN 46617, USA.
- Integrated Biomedical Sciences Program, University of Notre Dame, South Bend, IN 46617, USA.
| | - Emma F Sheedy
- Harper Cancer Research Institute, University of Notre Dame, South Bend, IN 46617, USA.
- Department of Mathematics, University of Notre Dame, South Bend, IN 46617, USA.
| | - M Sharon Stack
- Department of Chemistry and Biochemistry, University of Notre Dame, South Bend, IN 46617, USA.
- Harper Cancer Research Institute, University of Notre Dame, South Bend, IN 46617, USA.
| |
Collapse
|
29
|
Loughran EA, Leonard AK, Hilliard TS, Phan RC, Yemc MG, Harper E, Sheedy E, Klymenko Y, Asem M, Liu Y, Yang J, Johnson J, Tarwater L, Shi Z, Leevy M, Ravosa MJ, Stack MS. Aging Increases Susceptibility to Ovarian Cancer Metastasis in Murine Allograft Models and Alters Immune Composition of Peritoneal Adipose Tissue. Neoplasia 2018; 20:621-631. [PMID: 29754071 PMCID: PMC5994778 DOI: 10.1016/j.neo.2018.03.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 03/20/2018] [Accepted: 03/26/2018] [Indexed: 11/30/2022] Open
Abstract
Ovarian cancer, the most deadly gynecological malignancy in U.S. women, metastasizes uniquely, spreading through the peritoneal cavity and often generating widespread metastatic sites before diagnosis. The vast majority of ovarian cancer cases occur in women over 40 and the median age at diagnosis is 63. Additionally, elderly women receive poorer prognoses when diagnosed with ovarian cancer. Despite age being a significant risk factor for the development of this cancer, there are little published data which address the impact of aging on ovarian cancer metastasis. Here we report that the aged host is more susceptible to metastatic success using two murine syngeneic allograft models of ovarian cancer metastasis. This age-related increase in metastatic tumor burden corresponds with an increase in tumor infiltrating lymphocytes (TILs) in tumor-bearing mice and alteration of B cell-related pathways in gonadal adipose tissue. Based on this work, further studies elucidating the status of B cell TILs in mouse models of metastasis and human tumors in the context of aging are warranted.
Collapse
Affiliation(s)
- Elizabeth A Loughran
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN; Integrated Biomedical Sciences Graduate Program, University of Notre Dame, Notre Dame, IN; Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN
| | - Annemarie K Leonard
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN; Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN
| | - Tyvette S Hilliard
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN; Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN
| | - Ryan C Phan
- Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN
| | - Madeleine G Yemc
- Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN
| | - Elizabeth Harper
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN; Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN
| | - Emma Sheedy
- Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN
| | - Yuliya Klymenko
- Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN; Department of Biological Sciences, University of Notre Dame, Notre Dame, IN
| | - Marwa Asem
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN; Integrated Biomedical Sciences Graduate Program, University of Notre Dame, Notre Dame, IN; Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN
| | - Yueying Liu
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN; Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN
| | - Jing Yang
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN; Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN
| | - Jeff Johnson
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN; Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN
| | - Laura Tarwater
- Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN
| | - Zonggao Shi
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN; Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN
| | - Matthew Leevy
- Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN; Department of Biological Sciences, University of Notre Dame, Notre Dame, IN
| | - Matthew J Ravosa
- Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN; Department of Biological Sciences, University of Notre Dame, Notre Dame, IN; Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN; Department of Anthropology, University of Notre Dame, Notre Dame, IN
| | - M Sharon Stack
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN; Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN.
| |
Collapse
|
30
|
Mikuła-Pietrasik J, Stryczyński Ł, Uruski P, Tykarski A, Książek K. Procancerogenic activity of senescent cells: A case of the peritoneal mesothelium. Ageing Res Rev 2018; 43:1-9. [PMID: 29355719 DOI: 10.1016/j.arr.2018.01.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Revised: 01/13/2018] [Accepted: 01/16/2018] [Indexed: 01/18/2023]
Abstract
Human peritoneal mesothelial cells belong to a narrow group of somatic cells in which both the triggers and the mechanisms of senescence have already been well defined. Importantly, senescent mesothelial cells have been found in the peritoneal cavity in vivo. From a clinical point of view, peritoneal mesothelial cells have been recognized as playing a critical role in the intraperitoneal development of tumor metastases. The pro-cancerogenic behavior of mesothelial cells is even more pronounced when the cells exhaust their proliferative capacity and become senescent. In this review, we summarize the current state of art regarding the contribution of peritoneal mesothelial cells in the progression of ovarian, colorectal, and pancreatic carcinomas, with particular attention paid to the cancer-promoting activity of their senescent counterparts. Moreover, we delineate the mechanisms, mediators, and signaling pathways that are engaged by the senescent mesothelial cells to support such vital elements of cancer progression as adhesion, proliferation, migration, invasion, epithelial-mesenchymal transition, and angiogenesis. Finally, we discuss the experimental evidence regarding both natural and synthetic compounds that may either prevent or restrict cancer development by delaying senescence of mesothelial cells.
Collapse
Affiliation(s)
- Justyna Mikuła-Pietrasik
- Department of Hypertensiology, Angiology and Internal Medicine, Poznań University of Medical Sciences, Długa 1/2 Str., 61-848 Poznań, Poland.
| | - Łukasz Stryczyński
- Department of Hypertensiology, Angiology and Internal Medicine, Poznań University of Medical Sciences, Długa 1/2 Str., 61-848 Poznań, Poland.
| | - Paweł Uruski
- Department of Hypertensiology, Angiology and Internal Medicine, Poznań University of Medical Sciences, Długa 1/2 Str., 61-848 Poznań, Poland.
| | - Andrzej Tykarski
- Department of Hypertensiology, Angiology and Internal Medicine, Poznań University of Medical Sciences, Długa 1/2 Str., 61-848 Poznań, Poland.
| | - Krzysztof Książek
- Department of Hypertensiology, Angiology and Internal Medicine, Poznań University of Medical Sciences, Długa 1/2 Str., 61-848 Poznań, Poland.
| |
Collapse
|
31
|
Mikuła-Pietrasik J, Uruski P, Tykarski A, Książek K. The peritoneal "soil" for a cancerous "seed": a comprehensive review of the pathogenesis of intraperitoneal cancer metastases. Cell Mol Life Sci 2018; 75:509-525. [PMID: 28956065 PMCID: PMC5765197 DOI: 10.1007/s00018-017-2663-1] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 08/29/2017] [Accepted: 09/20/2017] [Indexed: 01/02/2023]
Abstract
Various types of tumors, particularly those originating from the ovary and gastrointestinal tract, display a strong predilection for the peritoneal cavity as the site of metastasis. The intraperitoneal spread of a malignancy is orchestrated by a reciprocal interplay between invading cancer cells and resident normal peritoneal cells. In this review, we address the current state-of-art regarding colonization of the peritoneal cavity by ovarian, colorectal, pancreatic, and gastric tumors. Particular attention is paid to the pro-tumoral role of various kinds of peritoneal cells, including mesothelial cells, fibroblasts, adipocytes, macrophages, the vascular endothelium, and hospicells. Anatomo-histological considerations on the pro-metastatic environment of the peritoneal cavity are presented in the broader context of organ-specific development of distal metastases in accordance with Paget's "seed and soil" theory of tumorigenesis. The activity of normal peritoneal cells during pivotal elements of cancer progression, i.e., adhesion, migration, invasion, proliferation, EMT, and angiogenesis, is discussed from the perspective of well-defined general knowledge on a hospitable tumor microenvironment created by the cellular elements of reactive stroma, such as cancer-associated fibroblasts and macrophages. Finally, the paper addresses the unique features of the peritoneal cavity that predispose this body compartment to be a niche for cancer metastases, presents issues that are topics of an ongoing debate, and points to areas that still require further in-depth investigations.
Collapse
Affiliation(s)
- Justyna Mikuła-Pietrasik
- Department of Hypertensiology, Angiology and Internal Medicine, Poznań University of Medical Sciences, Długa 1/2 Str., 61-848, Poznan, Poland
| | - Paweł Uruski
- Department of Hypertensiology, Angiology and Internal Medicine, Poznań University of Medical Sciences, Długa 1/2 Str., 61-848, Poznan, Poland
| | - Andrzej Tykarski
- Department of Hypertensiology, Angiology and Internal Medicine, Poznań University of Medical Sciences, Długa 1/2 Str., 61-848, Poznan, Poland
| | - Krzysztof Książek
- Department of Hypertensiology, Angiology and Internal Medicine, Poznań University of Medical Sciences, Długa 1/2 Str., 61-848, Poznan, Poland.
| |
Collapse
|
32
|
Mikuła-Pietrasik J, Uruski P, Pakuła M, Maksin K, Szubert S, Woźniak A, Naumowicz E, Szpurek D, Tykarski A, Książek K. Oxidative stress contributes to hepatocyte growth factor-dependent pro-senescence activity of ovarian cancer cells. Free Radic Biol Med 2017; 110:270-279. [PMID: 28652056 DOI: 10.1016/j.freeradbiomed.2017.06.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Revised: 06/14/2017] [Accepted: 06/23/2017] [Indexed: 11/26/2022]
Abstract
The cancer-promoting activity of senescent peritoneal mesothelial cells (HPMCs) has already been well evidenced both in vitro and in vivo. Here we sought to determine if ovarian cancer cells may activate senescence in HPMCs. The study showed that conditioned medium (CM) from ovarian cancer cells (OVCAR-3, SKOV-3, A2780) inhibited growth and promoted the development of senescence phenotype (increased SA-β-Gal, γ-H2A.X, 53BP1, and decreased Cx43) in HPMCs. An analysis of tumors isolated from the peritoneum of patients with ovarian cancer revealed an abundance of senescent HPMCs in proximity to cancerous tissue. The presence of senescent HPMCs was incidental when fragments of peritoneum free from cancer were evaluated. An analysis of the cells' secretome followed by intervention studies with exogenous proteins and neutralizing antibodies revealed hepatocyte growth factor (HGF) as the mediator of the pro-senescence impact of the cancer cells. The activity of cancerous CM and HGF was associated with an induction of mitochondrial oxidative stress. Signaling pathways involved in the senescence of HPMCs elicited by the cancer-derived CM and HGF included p38 MAPK, AKT and NF-κB. HPMCs that senesced prematurely in response to the cancer-derived CM promoted adhesion of ovarian cancer cells, however this effect was effectively prevented by the cell protection against oxidative stress. Collectively, our findings indicate that ovarian cancer cells can elicit HGF-dependent senescence in HPMCs, which may contribute to the formation of a metastatic niche for these cells within the peritoneal cavity.
Collapse
Affiliation(s)
- Justyna Mikuła-Pietrasik
- Department of Hypertensiology, Angiology and Internal Medicine, Poznań University of Medical Sciences, Długa 1/2 Str., 61-848 Poznań, Poland.
| | - Paweł Uruski
- Department of Hypertensiology, Angiology and Internal Medicine, Poznań University of Medical Sciences, Długa 1/2 Str., 61-848 Poznań, Poland.
| | - Martyna Pakuła
- Department of Hypertensiology, Angiology and Internal Medicine, Poznań University of Medical Sciences, Długa 1/2 Str., 61-848 Poznań, Poland.
| | - Konstantin Maksin
- Department of Clinical Pathology, Poznań University of Medical Sciences, Przybyszewskiego 49 Str., 60-355 Poznań, Poland.
| | - Sebastian Szubert
- Division of Gynecological Surgery, Poznań University of Medical Sciences, Polna 33 Str, 60-535 Poznań, Poland.
| | - Aldona Woźniak
- Department of Clinical Pathology, Poznań University of Medical Sciences, Przybyszewskiego 49 Str., 60-355 Poznań, Poland.
| | - Eryk Naumowicz
- General Surgery Ward, Medical Centre HCP, 28 Czerwca 1956 r. 223/229 Str., 61-485 Poznań, Poland.
| | - Dariusz Szpurek
- Division of Gynecological Surgery, Poznań University of Medical Sciences, Polna 33 Str, 60-535 Poznań, Poland.
| | - Andrzej Tykarski
- Department of Hypertensiology, Angiology and Internal Medicine, Poznań University of Medical Sciences, Długa 1/2 Str., 61-848 Poznań, Poland.
| | - Krzysztof Książek
- Department of Hypertensiology, Angiology and Internal Medicine, Poznań University of Medical Sciences, Długa 1/2 Str., 61-848 Poznań, Poland.
| |
Collapse
|
33
|
Lopez-Anton M, Rudolf A, Baird DM, Roger L, Jones RE, Witowski J, Fraser DJ, Bowen T. Telomere length profiles in primary human peritoneal mesothelial cells are consistent with senescence. Mech Ageing Dev 2017; 164:37-40. [PMID: 28373051 DOI: 10.1016/j.mad.2017.03.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 03/15/2017] [Accepted: 03/22/2017] [Indexed: 12/19/2022]
Abstract
Mesothelial cell (MC) senescence contributes to malignancy and tissue fibrosis. The role of telomere erosion in MC senescence remains controversial, with evidence for both telomere-dependent and telomere-independent mechanisms reported. Single telomere length analysis revealed considerable telomere length heterogeneity in freshly isolated human peritoneal MCs, reflecting a heterogeneous proliferative history and providing high-resolution evidence for telomere-dependent senescence. By contrast the attenuated replicative lifespan, lack of telomere erosion and induction of p16 expression in in vitro-aged cells was consistent with stress-induced senescence. Given the potential pathophysiological impact of senescence in mesothelial tissues, high-resolution MC telomere length analysis may provide clinically useful information.
Collapse
Affiliation(s)
- Melisa Lopez-Anton
- Wales Kidney Research Unit, Division of Infection and Immunity, School of Medicine, College of Biomedical and Life Sciences, Cardiff University, Heath Park, Cardiff CF14 4XN, UK.
| | - András Rudolf
- Department of Pathophysiology, Poznan University of Medical Sciences, Poznan, Poland.
| | - Duncan M Baird
- Division of Cancer and Genetics, School of Medicine, College of Biomedical and Life Sciences, Cardiff University, Heath Park, Cardiff CF14 4XN, UK.
| | - Laureline Roger
- Division of Cancer and Genetics, School of Medicine, College of Biomedical and Life Sciences, Cardiff University, Heath Park, Cardiff CF14 4XN, UK.
| | - Rhiannon E Jones
- Division of Cancer and Genetics, School of Medicine, College of Biomedical and Life Sciences, Cardiff University, Heath Park, Cardiff CF14 4XN, UK.
| | - Janusz Witowski
- Department of Pathophysiology, Poznan University of Medical Sciences, Poznan, Poland.
| | - Donald J Fraser
- Wales Kidney Research Unit, Division of Infection and Immunity, School of Medicine, College of Biomedical and Life Sciences, Cardiff University, Heath Park, Cardiff CF14 4XN, UK; Cardiff Institute of Tissue Engineering and Repair, Cardiff University, Museum Place, Cardiff CF10 3BG, UK.
| | - Timothy Bowen
- Wales Kidney Research Unit, Division of Infection and Immunity, School of Medicine, College of Biomedical and Life Sciences, Cardiff University, Heath Park, Cardiff CF14 4XN, UK; Cardiff Institute of Tissue Engineering and Repair, Cardiff University, Museum Place, Cardiff CF10 3BG, UK.
| |
Collapse
|
34
|
Worzfeld T, Pogge von Strandmann E, Huber M, Adhikary T, Wagner U, Reinartz S, Müller R. The Unique Molecular and Cellular Microenvironment of Ovarian Cancer. Front Oncol 2017; 7:24. [PMID: 28275576 PMCID: PMC5319992 DOI: 10.3389/fonc.2017.00024] [Citation(s) in RCA: 190] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 02/07/2017] [Indexed: 12/13/2022] Open
Abstract
The reciprocal interplay of cancer cells and host cells is an indispensable prerequisite for tumor growth and progression. Cells of both the innate and adaptive immune system, in particular tumor-associated macrophages (TAMs) and T cells, as well as cancer-associated fibroblasts enter into a malicious liaison with tumor cells to create a tumor-promoting and immunosuppressive tumor microenvironment (TME). Ovarian cancer, the most lethal of all gynecological malignancies, is characterized by a unique TME that enables specific and efficient metastatic routes, impairs immune surveillance, and mediates therapy resistance. A characteristic feature of the ovarian cancer TME is the role of resident host cells, in particular activated mesothelial cells, which line the peritoneal cavity in huge numbers, as well as adipocytes of the omentum, the preferred site of metastatic lesions. Another crucial factor is the peritoneal fluid, which enables the transcoelomic spread of tumor cells to other pelvic and peritoneal organs, and occurs at more advanced stages as a malignancy-associated effusion. This ascites is rich in tumor-promoting soluble factors, extracellular vesicles and detached cancer cells as well as large numbers of T cells, TAMs, and other host cells, which cooperate with resident host cells to support tumor progression and immune evasion. In this review, we summarize and discuss our current knowledge of the cellular and molecular interactions that govern this interplay with a focus on signaling networks formed by cytokines, lipids, and extracellular vesicles; the pathophysiologial roles of TAMs and T cells; the mechanism of transcoelomic metastasis; and the cell type selective processing of signals from the TME.
Collapse
Affiliation(s)
- Thomas Worzfeld
- Institute of Pharmacology, Biochemical-Pharmacological Center (BPC), Philipps University, Marburg, Germany; Department of Pharmacology, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Elke Pogge von Strandmann
- Experimental Tumor Research, Clinic for Hematology, Oncology and Immunology, Center for Tumor Biology and Immunology, Philipps University , Marburg , Germany
| | - Magdalena Huber
- Institute of Medical Microbiology and Hygiene, Biomedical Research Center, Philipps University , Marburg , Germany
| | - Till Adhikary
- Institute of Molecular Biology and Tumor Research, Center for Tumor Biology and Immunology, Philipps University , Marburg , Germany
| | - Uwe Wagner
- Clinic for Gynecology, Gynecological Oncology and Gynecological Endocrinology, University Hospital of Giessen and Marburg (UKGM) , Marburg , Germany
| | - Silke Reinartz
- Clinic for Gynecology, Gynecological Oncology and Gynecological Endocrinology, Center for Tumor Biology and Immunology (ZTI), Philipps University , Marburg , Germany
| | - Rolf Müller
- Institute of Molecular Biology and Tumor Research, Center for Tumor Biology and Immunology, Philipps University , Marburg , Germany
| |
Collapse
|
35
|
Li SS, Ip CKM, Tang MYH, Sy SKH, Yung S, Chan TM, Yang M, Shum HC, Wong AST. Modeling Ovarian Cancer Multicellular Spheroid Behavior in a Dynamic 3D Peritoneal Microdevice. J Vis Exp 2017. [PMID: 28287578 DOI: 10.3791/55337] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Ovarian cancer is characterized by extensive peritoneal metastasis, with tumor spheres commonly found in the malignant ascites. This is associated with poor clinical outcomes and currently lacks effective treatment. Both the three-dimensional (3D) environment and the dynamic mechanical forces are very important factors in this metastatic cascade. However, traditional cell cultures fail to recapitulate this natural tumor microenvironment. Thus, in vivo-like models that can emulate the intraperitoneal environment are of obvious importance. In this study, a new microfluidic platform of the peritoneum was set up to mimic the situation of ovarian cancer spheroids in the peritoneal cavity during metastasis. Ovarian cancer spheroids generated under a non-adherent condition were cultured in microfluidic channels coated with peritoneal mesothelial cells subjected to physiologically relevant shear stress. In summary, this dynamic 3D ovarian cancer-mesothelium microfluidic platform can provide new knowledge on basic cancer biology and serve as a platform for potential drug screening and development.
Collapse
Affiliation(s)
- Shan-Shan Li
- School of Biological Sciences, University of Hong Kong
| | - Carman K M Ip
- School of Biological Sciences, University of Hong Kong
| | | | - Samuel K H Sy
- Department of Mechanical Engineering, University of Hong Kong
| | - Susan Yung
- Department of Medicine, University of Hong Kong
| | | | - Mengsu Yang
- Department of Biomedical Sciences, Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institutes of City University of Hong Kong
| | - Ho Cheung Shum
- Department of Mechanical Engineering, University of Hong Kong;
| | | |
Collapse
|
36
|
Weidle UH, Birzele F, Kollmorgen G, Rueger R. Mechanisms and Targets Involved in Dissemination of Ovarian Cancer. Cancer Genomics Proteomics 2017; 13:407-423. [PMID: 27807064 DOI: 10.21873/cgp.20004] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 08/01/2016] [Indexed: 02/07/2023] Open
Abstract
Ovarian carcinoma is associated with the highest death rate of all gynecological tumors. On one hand, its aggressiveness is based on the rapid dissemination of ovarian cancer cells to the peritoneum, the omentum, and organs located in the peritoneal cavity, and on the other hand, on the rapid development of resistance to chemotherapeutic agents. In this review, we focus on the metastatic process of ovarian cancer, which involves dissemination of, homing to and growth of tumor cells in distant organs, and describe promising molecular targets for possible therapeutic intervention. We provide an outline of the interaction of ovarian cancer cells with the microenvironment such as mesothelial cells, adipocytes, fibroblasts, endothelial cells, and other stromal components in the context of approaches for therapeutic interference with dissemination. The targets described in this review are discussed with respect to their validity as drivers of metastasis and to the availability of suitable efficient agents for their blockage, such as small molecules, monoclonal antibodies or antibody conjugates as emerging tools to manage this disease.
Collapse
Affiliation(s)
- Ulrich H Weidle
- Roche Innovation Center Munich, Roche Diagnostics GmbH, Penzberg, Germany
| | - Fabian Birzele
- Roche Innovation Center Basel, F. Hoffmann-LaRoche Ltd., Basel, Switzerland
| | | | - Rüdiger Rueger
- Roche Innovation Center Munich, Roche Diagnostics GmbH, Penzberg, Germany
| |
Collapse
|
37
|
Cancer-associated peritoneal mesothelial cells lead the formation of pancreatic cancer peritoneal dissemination. Int J Oncol 2016; 50:457-467. [PMID: 28035373 DOI: 10.3892/ijo.2016.3829] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 12/21/2016] [Indexed: 11/05/2022] Open
Abstract
The interaction between the cancer cells and the peritoneal mesothelial cells (PMCs) plays an important role in the peritoneal dissemination in several types of cancer. However, the role of PMCs in the peritoneal dissemination of pancreatic cancer remains unclear. In the present study, we investigated the interaction between the pancreatic cancer cells (PCCs) and the PMCs in the formation of peritoneal dissemination in vitro and in vivo. The tumor-stromal interaction of PCCs and PMCs significantly enhanced their mobility and invasiveness and enhanced the proliferation and anoikis resistance of PCCs. In a 3D organotypic culture model of peritoneal dissemination, co-culture of PCCs and PMCs significantly increased the cells invading into the collagen gel layer compared with mono-culture of PCCs. PMCs pre-invaded into the collagen gel, remodeled collagen fibers, and increased parallel fiber orientation along the direction of cell invasion. In the tissues of peritoneal dissemination of the KPC (LSL-KrasG12D/+; LSL-Trp53R172H/+;Pdx-1-Cre) transgenic mouse, the monolayer of PMCs was preserved in tumor-free areas, whereas PMCs around the invasive front of peritoneal dissemination proliferated and invaded into the muscle layer. In vivo, intraperitoneal injection of PCCs with PMCs significantly promoted peritoneal dissemination compared with PCCs alone. The present data suggest that the cancer-associated PMCs have important promoting roles in the peritoneal dissemination of PCCs. Therapy targeting cancer-associated PMCs may improve the prognosis of patients with pancreatic cancer.
Collapse
|
38
|
Senescent peritoneal mesothelium creates a niche for ovarian cancer metastases. Cell Death Dis 2016; 7:e2565. [PMID: 28032864 PMCID: PMC5261005 DOI: 10.1038/cddis.2016.417] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 11/07/2016] [Accepted: 11/14/2016] [Indexed: 01/20/2023]
Abstract
Although both incidence and aggressiveness of ovarian malignancy rise with age, the exact reason for this tendency, in particular the contribution of senescent cells, remains elusive. In this project we found that the patient's age determines the frequency of intraperitoneal metastases of ovarian cancer. Moreover, we documented that senescent human peritoneal mesothelial cells (HPMCs) stimulate proliferation, migration and invasion of ovarian cancer cells in vitro, and that this effect is related to both the activity of soluble agents released to the environment by these cells and direct cell-cell contact. The panel of mediators of the pro-cancerous activity of senescent HPMCs appeared to be cancer cell line-specific. The growth of tumors in a mouse peritoneal cavity was intensified when the cancer cells were co-injected together with senescent HPMCs. This effect was reversible when the senescence of HPMCs was slowed down by the neutralization of p38 MAPK. The analysis of lesions excised from the peritoneum of patients with ovarian cancer showed the abundance of senescent HPMCs in close proximity to the cancerous tissue. Collectively, our findings indicate that senescent HPMCs which accumulate in the peritoneum in vivo may create a metastatic niche facilitating intraperitoneal expansion of ovarian malignancy.
Collapse
|
39
|
Mikuła-Pietrasik J, Sosińska P, Maksin K, Kucińska MG, Piotrowska H, Murias M, Woźniak A, Szpurek D, Książek K. Colorectal cancer-promoting activity of the senescent peritoneal mesothelium. Oncotarget 2016; 6:29178-95. [PMID: 26284488 PMCID: PMC4745719 DOI: 10.18632/oncotarget.4932] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 07/24/2015] [Indexed: 02/03/2023] Open
Abstract
Gastrointestinal cancers metastasize into the peritoneal cavity in a process controlled by peritoneal mesothelial cells (HPMCs). In this paper we examined if senescent HPMCs can intensify the progression of colorectal (SW480) and pancreatic (PSN-1) cancers in vitro and in vivo. Experiments showed that senescent HPMCs stimulate proliferation, migration and invasion of SW480 cells, and migration of PSN-1 cells. When SW480 cells were injected i.p. with senescent HPMCs, the dynamics of tumor formation and vascularization were increased. When xenografts were generated using PSN-1 cells, senescent HPMCs failed to favor their growth. SW480 cells subjected to senescent HPMCs displayed up-regulated expression of transcripts for various pro-cancerogenic agents as well as increased secretion of their products. Moreover, they underwent an epithelial-mesenchymal transition in the Smad 2/3-Snail1-related pathway. The search for mediators of senescent HPMC activity showed that increased SW480 cell proliferation was stimulated by IL-6, migration by CXCL8 and CCL2, invasion by IL-6, MMP-3 and uPA, and epithelial-mesenchymal transition by TGF-β1. Secretion of these agents by senescent HPMCs was increased in an NF-κB- and p38 MAPK-dependent mechanism. Collectively, our findings indicate that in the peritoneum senescent HPMCs may create a metastatic niche in which critical aspects of cancer progression become intensified.
Collapse
Affiliation(s)
| | - Patrycja Sosińska
- Department of Pathophysiology, Poznań University of Medical Sciences, Poznań, Poland
| | - Konstantin Maksin
- Department of Clinical Pathology, Poznań University of Medical Sciences, PoznaÅń, Poland
| | - Mał Gorzata Kucińska
- Department of Toxicology, Poznań University of Medical Sciences, Poznań, Poland
| | - Hanna Piotrowska
- Department of Toxicology, Poznań University of Medical Sciences, Poznań, Poland
| | - Marek Murias
- Department of Toxicology, Poznań University of Medical Sciences, Poznań, Poland
| | - Aldona Woźniak
- Department of Clinical Pathology, Poznań University of Medical Sciences, PoznaÅń, Poland
| | - Dariusz Szpurek
- Division of Gynecological Surgery, Poznań University of Medical Sciences, Poznań, Poland
| | - Krzysztof Książek
- Department of Pathophysiology, Poznań University of Medical Sciences, Poznań, Poland
| |
Collapse
|
40
|
Mikuła-Pietrasik J, Uruski P, Matuszkiewicz K, Szubert S, Moszyński R, Szpurek D, Sajdak S, Tykarski A, Książek K. Ovarian cancer-derived ascitic fluids induce a senescence-dependent pro-cancerogenic phenotype in normal peritoneal mesothelial cells. Cell Oncol (Dordr) 2016; 39:473-481. [PMID: 27444787 DOI: 10.1007/s13402-016-0289-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/08/2016] [Indexed: 12/21/2022] Open
Abstract
PURPOSE After the seeding ovarian cancer cells into the peritoneal cavity, ascitic fluid creates a microenvironment in which these cells can survive and disseminate. The exact nature of the interactions between malignant ascitic fluids and peritoneal mesothelial cells (HPMCs) in ovarian cancer progression has so far remained elusive. Here we assessed whether malignant ascitic fluids may promote the senescence of HPMCs and, by doing so, enhance the acquisition of their pro-cancerogenic phenotype. METHODS Primary omentum-derived HPMCs, ovarian cancer-derived cell lines (A2780, OVCAR-3, SKOV-3), malignant ascitic fluids and benign ascitic fluids from non-cancerous patients were used in this study. Ovarian cancer cell proliferation, as well as HPMC proliferation and senescence, were determined using flow cytometry and β-galactosidase assays, respectively. Ovarian cancer cell migration was quantified using a Transwell assay. The concentrations of soluble agents in ascitic fluids, conditioned media and cell lysates were measured using DuoSet® Immunoassay Development kits. RESULTS We found that HPMCs, when exposed to malignant ascitic fluids, exhibited decreased proliferation and increased senescence rates. The malignant ascitic fluids were found to contain elevated levels of HGF, TGF-β1 and GRO-1, of which HGF and GRO-1 were able to induce senescence in HPMCs. We also found that HPMCs subjected to malignant ascitic fluids or exogenously added HGF and GRO-1 stimulated ovarian cancer cell progression, which was manifested by an increased production of HA (adhesion), uPA (proliferation), IL-8 and MCP-1 (migration). CONCLUSION Our results indicate that malignant ascitic fluids may contribute to ovarian cancer progression by accelerating the senescence of HPMCs.
Collapse
Affiliation(s)
- Justyna Mikuła-Pietrasik
- Department of Hypertensiology, Angiology and Internal Medicine, Poznań University of Medical Sciences, Długa 1/2 Str, 61-848, Poznań, Poland
| | - Paweł Uruski
- Department of Hypertensiology, Angiology and Internal Medicine, Poznań University of Medical Sciences, Długa 1/2 Str, 61-848, Poznań, Poland
| | - Kinga Matuszkiewicz
- Department of Hypertensiology, Angiology and Internal Medicine, Poznań University of Medical Sciences, Długa 1/2 Str, 61-848, Poznań, Poland
| | - Sebastian Szubert
- Division of Gynecological Surgery, Poznań University of Medical Sciences, Polna 33 Str, 60-535, Poznań, Poland
| | - Rafał Moszyński
- Division of Gynecological Surgery, Poznań University of Medical Sciences, Polna 33 Str, 60-535, Poznań, Poland
| | - Dariusz Szpurek
- Division of Gynecological Surgery, Poznań University of Medical Sciences, Polna 33 Str, 60-535, Poznań, Poland
| | - Stefan Sajdak
- Division of Gynecological Surgery, Poznań University of Medical Sciences, Polna 33 Str, 60-535, Poznań, Poland
| | - Andrzej Tykarski
- Department of Hypertensiology, Angiology and Internal Medicine, Poznań University of Medical Sciences, Długa 1/2 Str, 61-848, Poznań, Poland
| | - Krzysztof Książek
- Department of Hypertensiology, Angiology and Internal Medicine, Poznań University of Medical Sciences, Długa 1/2 Str, 61-848, Poznań, Poland.
| |
Collapse
|
41
|
The Mesothelial Origin of Carcinoma Associated-Fibroblasts in Peritoneal Metastasis. Cancers (Basel) 2015; 7:1994-2011. [PMID: 26426054 PMCID: PMC4695872 DOI: 10.3390/cancers7040872] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 09/14/2015] [Accepted: 09/23/2015] [Indexed: 01/15/2023] Open
Abstract
Solid tumors are complex and unstructured organs that, in addition to cancer cells, also contain other cell types. Carcinoma-associated fibroblasts (CAFs) represent an important population in the tumor microenviroment and participate in several stages of tumor progression, including cancer cell migration/invasion and metastasis. During peritoneal metastasis, cancer cells detach from the primary tumor, such as ovarian or gastrointestinal, disseminate through the peritoneal fluid and colonize the peritoneum. Tumor cells metastasize by attaching to and invading through the mesothelial cell (MC) monolayer that lines the peritoneal cavity, then colonizing the submesothelial compact zone where CAFs accumulate. CAFs may derive from different sources depending on the surrounding metastatic niche. In peritoneal metastasis, a sizeable subpopulation of CAFs originates from MCs through a mesothelial-to-mesenchymal transition (MMT), which promotes adhesion, invasion, vascularization and subsequent tumor growth. The bidirectional communication between cancer cells and MC-derived CAFs via secretion of a wide range of cytokines, growth factors and extracellular matrix components seems to be crucial for the establishment and progression of the metastasis in the peritoneum. This manuscript provides a comprehensive review of novel advances in understanding how peritoneal CAFs provide cancer cells with a supportive microenvironment, as well as the development of future therapeutic approaches by interfering with the MMT in the peritoneum.
Collapse
|
42
|
High Potency of a Novel Resveratrol Derivative, 3,3',4,4'-Tetrahydroxy-trans-stilbene, against Ovarian Cancer Is Associated with an Oxidative Stress-Mediated Imbalance between DNA Damage Accumulation and Repair. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:135691. [PMID: 26229578 PMCID: PMC4502315 DOI: 10.1155/2015/135691] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 06/07/2015] [Accepted: 06/14/2015] [Indexed: 12/31/2022]
Abstract
We explored the effect of a new resveratrol (RVT) derivative, 3,3′,4,4′-tetrahydroxy-trans-stilbene (3,3′,4,4′-THS), on viability, apoptosis, proliferation, and senescence of three representative lines of ovarian cancer cells, that is, A2780, OVCAR-3, and SKOV-3, in vitro. In addition, the mechanistic aspects of 3,3′,4,4′-THS activity, including cell redox homeostasis (the production of reactive oxygen species, activity of enzymatic antioxidants, and magnitude of DNA damage accumulation and repair), and the activity of caspases (3, 8, and 9) and p38 MAPK were examined. The study showed that 3,3′,4,4′-THS affects cancer cell viability much more efficiently than its parent drug. This effect coincided with increased generation of reactive oxygen species, downregulated activity of superoxide dismutase and catalase, and excessive accumulation of 8-hydroxy-2′-deoxyguanosine and its insufficient repair due to decreased expression of DNA glycosylase I. Cytotoxicity elicited by 3,3′,4,4′-THS was related to increased incidence of apoptosis, which was mediated by caspases 3 and 9. Moreover, 3,3′,4,4′-THS inhibited cancer cell proliferation and accelerated senescence, which was accompanied by the activation of p38 MAPK. Collectively, our findings indicate that 3,3′,4,4′-THS may constitute a valuable tool in the fight against ovarian malignancy and that the anticancer capabilities of this stilbene proceed in an oxidative stress-dependent mechanism.
Collapse
|
43
|
O'Reilly EA, Gubbins L, Sharma S, Tully R, Guang MHZ, Weiner-Gorzel K, McCaffrey J, Harrison M, Furlong F, Kell M, McCann A. The fate of chemoresistance in triple negative breast cancer (TNBC). BBA CLINICAL 2015; 3:257-75. [PMID: 26676166 PMCID: PMC4661576 DOI: 10.1016/j.bbacli.2015.03.003] [Citation(s) in RCA: 280] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 03/03/2015] [Accepted: 03/05/2015] [Indexed: 12/21/2022]
Abstract
BACKGROUND Treatment options for women presenting with triple negative breast cancer (TNBC) are limited due to the lack of a therapeutic target and as a result, are managed with standard chemotherapy such as paclitaxel (Taxol®). Following chemotherapy, the ideal tumour response is apoptotic cell death. Post-chemotherapy, cells can maintain viability by undergoing viable cellular responses such as cellular senescence, generating secretomes which can directly enhance the malignant phenotype. SCOPE OF REVIEW How tumour cells retain viability in response to chemotherapeutic engagement is discussed. In addition we discuss the implications of this retained tumour cell viability in the context of the development of recurrent and metastatic TNBC disease. Current adjuvant and neo-adjuvant treatments available and the novel potential therapies that are being researched are also reviewed. MAJOR CONCLUSIONS Cellular senescence and cytoprotective autophagy are potential mechanisms of chemoresistance in TNBC. These two non-apoptotic outcomes in response to chemotherapy are inextricably linked and are neglected outcomes of investigation in the chemotherapeutic arena. Cellular fate assessments may therefore have the potential to predict TNBC patient outcome. GENERAL SIGNIFICANCE Focusing on the fact that cancer cells can bypass the desired cellular apoptotic response to chemotherapy through cellular senescence and cytoprotective autophagy will highlight the importance of targeting non-apoptotic survival pathways to enhance chemotherapeutic efficacy.
Collapse
Affiliation(s)
- Elma A O'Reilly
- UCD Conway Institute of Biomolecular and Biomedical Research, UCD School of Medicine and Medical Science (SMMS), Belfield, Dublin 4, Ireland ; Department of Surgery, Mater Misericordiae Hospital, Dublin 7, Ireland
| | - Luke Gubbins
- UCD Conway Institute of Biomolecular and Biomedical Research, UCD School of Medicine and Medical Science (SMMS), Belfield, Dublin 4, Ireland
| | - Shiva Sharma
- UCD Conway Institute of Biomolecular and Biomedical Research, UCD School of Medicine and Medical Science (SMMS), Belfield, Dublin 4, Ireland ; Department of Surgery, Mater Misericordiae Hospital, Dublin 7, Ireland
| | - Riona Tully
- UCD Conway Institute of Biomolecular and Biomedical Research, UCD School of Medicine and Medical Science (SMMS), Belfield, Dublin 4, Ireland
| | - Matthew Ho Zhing Guang
- UCD Conway Institute of Biomolecular and Biomedical Research, UCD School of Medicine and Medical Science (SMMS), Belfield, Dublin 4, Ireland
| | - Karolina Weiner-Gorzel
- UCD Conway Institute of Biomolecular and Biomedical Research, UCD School of Medicine and Medical Science (SMMS), Belfield, Dublin 4, Ireland
| | - John McCaffrey
- Department of Oncology, Mater Misericordiae Hospital, Dublin 7, Ireland
| | - Michele Harrison
- Department of Pathology, Mater Misericordiae Hospital, Dublin 7, Ireland
| | - Fiona Furlong
- School of Pharmacy, Queens University Belfast, Belfast BT7 1NN, UK
| | - Malcolm Kell
- Department of Surgery, Mater Misericordiae Hospital, Dublin 7, Ireland
| | - Amanda McCann
- UCD Conway Institute of Biomolecular and Biomedical Research, UCD School of Medicine and Medical Science (SMMS), Belfield, Dublin 4, Ireland
| |
Collapse
|
44
|
Xie X, Long L, Wang H, Zheng Y, Liu S. The specifical inhibition of the expression of integrin alpha5/beta1 probably enhances the treatment effects and improves the prognosis of epithelial ovarian cancer. Med Hypotheses 2014; 84:68-71. [PMID: 25499001 DOI: 10.1016/j.mehy.2014.11.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 11/08/2014] [Accepted: 11/21/2014] [Indexed: 02/05/2023]
Abstract
Due to subtle symptoms and the absence of effective early screening methods, most of epithelial ovarian cancer patients are diagnosed in the late stage, when current treatment strategies are not so satisfactory. To date, ovarian cancer is still the leading cause of gynecological malignancy deaths in women. The formation of massive ascites is one of the important characteristics of epithelial ovarian carcinoma in the late stage. Cancer cells, existing in ascites in the form of spheroids, play an important role in metastasis and recurrence of the malignancy. Alpha5/beta1 integrin has been found to participate in the formation of epithelial ovarian cancer multicellular spheroids in vitro. But if we want to choose alpha5- and beta1-integrin subunits as treatment targets, we must specifically block the two subunits in cancer cells, because these two subunits are very important for the physiological activities in normal cells. Based on the knowledge mentioned above, we present hypotheses that we can inhibit specifically the expression of alpha5/beta1 integrin in cancer cells with the help of complementary replication defective adenovirus. As a result, the formation of cancer cells spheroids in ascites might be interfered with and the treatment effects and prognosis of epithelial ovarian cancer might be improved.
Collapse
Affiliation(s)
- Xiaoyan Xie
- Laboratory of Cell and Gene Therapy, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, China; Department of Obstetric & Gynecologic, West China Second University Hospital, Sichuan University, China; Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, China
| | - Lili Long
- Department of ENT, West China Hospital, Sichuan University, Chengdu, China
| | - He Wang
- Department of Obstetric & Gynecologic, West China Second University Hospital, Sichuan University, China; Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, China
| | - Ying Zheng
- Department of Obstetric & Gynecologic, West China Second University Hospital, Sichuan University, China; Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, China.
| | - Shanling Liu
- Laboratory of Cell and Gene Therapy, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, China; Department of Obstetric & Gynecologic, West China Second University Hospital, Sichuan University, China; Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, China.
| |
Collapse
|
45
|
Verardo R, Piazza S, Klaric E, Ciani Y, Bussadori G, Marzinotto S, Mariuzzi L, Cesselli D, Beltrami AP, Mano M, Itoh M, Kawaji H, Lassmann T, Carninci P, Hayashizaki Y, Forrest ARR, Beltrami CA, Schneider C. Specific Mesothelial Signature Marks the Heterogeneity of Mesenchymal Stem Cells From High-Grade Serous Ovarian Cancer. Stem Cells 2014; 32:2998-3011. [DOI: 10.1002/stem.1791] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 04/17/2014] [Accepted: 05/10/2014] [Indexed: 12/31/2022]
Affiliation(s)
- Roberto Verardo
- Laboratorio Nazionale-Consorzio Interuniversitario Biotecnologie (LNCIB); Area Science Park Trieste Italy
| | - Silvano Piazza
- Laboratorio Nazionale-Consorzio Interuniversitario Biotecnologie (LNCIB); Area Science Park Trieste Italy
| | - Enio Klaric
- Laboratorio Nazionale-Consorzio Interuniversitario Biotecnologie (LNCIB); Area Science Park Trieste Italy
| | - Yari Ciani
- Laboratorio Nazionale-Consorzio Interuniversitario Biotecnologie (LNCIB); Area Science Park Trieste Italy
| | - Giulio Bussadori
- Laboratorio Nazionale-Consorzio Interuniversitario Biotecnologie (LNCIB); Area Science Park Trieste Italy
| | - Stefania Marzinotto
- Department of Medical and Biological Sciences; University of Udine; Udine Italy
| | - Laura Mariuzzi
- Department of Medical and Biological Sciences; University of Udine; Udine Italy
| | - Daniela Cesselli
- Department of Medical and Biological Sciences; University of Udine; Udine Italy
| | - Antonio P. Beltrami
- Department of Medical and Biological Sciences; University of Udine; Udine Italy
| | - Miguel Mano
- International Centre for Genetic Engineering and Biotechnology (ICGEB); Area Science Park Trieste Italy
| | - Masayoshi Itoh
- RIKEN Omics Science Center (OSC); Tsurumi-ku Yokohama Japan
| | - Hideya Kawaji
- RIKEN Omics Science Center (OSC); Tsurumi-ku Yokohama Japan
| | - Timo Lassmann
- RIKEN Omics Science Center (OSC); Tsurumi-ku Yokohama Japan
| | - Piero Carninci
- RIKEN Omics Science Center (OSC); Tsurumi-ku Yokohama Japan
| | | | | | - Carlo A. Beltrami
- International Centre for Genetic Engineering and Biotechnology (ICGEB); Area Science Park Trieste Italy
| | - Claudio Schneider
- Laboratorio Nazionale-Consorzio Interuniversitario Biotecnologie (LNCIB); Area Science Park Trieste Italy
- International Centre for Genetic Engineering and Biotechnology (ICGEB); Area Science Park Trieste Italy
| | | |
Collapse
|
46
|
Mikuła-Pietrasik J, Sosińska P, Kucińska M, Murias M, Maksin K, Malińska A, Ziółkowska A, Piotrowska H, Woźniak A, Książek K. Peritoneal mesothelium promotes the progression of ovarian cancer cells in vitro and in a mice xenograft model in vivo. Cancer Lett 2014; 355:310-5. [PMID: 25301450 DOI: 10.1016/j.canlet.2014.09.041] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 09/25/2014] [Accepted: 09/29/2014] [Indexed: 01/21/2023]
Abstract
The role of mesothelial cells in the intraperitoneal spread of ovarian cancer is still elusive. In particular, it is unclear whether these cells constitute a passive barrier preventing cancer cell progression or perhaps act as an active promoter of this process. In this report we show that omental human peritoneal mesothelial cells (HPMCs) stimulate adhesion and proliferation of ovarian cancer cells (A2780, OVCAR-3, SKOV-3). The latter was associated with the paracrine activity of GRO-1, IL-6, and IL-8 released to the environment by HPMCs. Furthermore, the growth dynamics of ovarian cancer xenografts produced in response to i.p. injection of ovarian cancer cells together with HPMCs was remarkably greater than for implantation of cancer cells alone. A layer of peritoneal mesothelium was consistently present in close proximity to the tumor mass in every xenograft model. In conclusion, our results indicate that HPMCs play a supporting role in the intraperitoneal invasiveness of ovarian malignancy, whose effect may be attributed to their ability to stimulate adhesion and proliferation of cancer cells.
Collapse
Affiliation(s)
- Justyna Mikuła-Pietrasik
- Laboratory of Gerontology, Department of Pathophysiology, Poznań University of Medical Sciences, Rokietnicka 8 Str., 60-806 Poznań, Poland
| | - Patrycja Sosińska
- Laboratory of Gerontology, Department of Pathophysiology, Poznań University of Medical Sciences, Rokietnicka 8 Str., 60-806 Poznań, Poland
| | - Małgorzata Kucińska
- Department of Toxicology, Poznań University of Medical Sciences, Dojazd 30 Str., 60-631 Poznań, Poland
| | - Marek Murias
- Department of Toxicology, Poznań University of Medical Sciences, Dojazd 30 Str., 60-631 Poznań, Poland
| | - Konstantin Maksin
- Department of Clinical Pathology, Poznań University of Medical Sciences, Przybyszewskiego 49 Str., 60-355 Poznań, Poland
| | - Agnieszka Malińska
- Department of Histology and Embryology, Poznań University of Medical Sciences, Święcickiego 6 Str, 60-781 Poznań, Poland
| | - Agnieszka Ziółkowska
- Department of Histology and Embryology, Poznań University of Medical Sciences, Święcickiego 6 Str, 60-781 Poznań, Poland
| | - Hanna Piotrowska
- Department of Toxicology, Poznań University of Medical Sciences, Dojazd 30 Str., 60-631 Poznań, Poland
| | - Aldona Woźniak
- Department of Clinical Pathology, Poznań University of Medical Sciences, Przybyszewskiego 49 Str., 60-355 Poznań, Poland
| | - Krzysztof Książek
- Laboratory of Gerontology, Department of Pathophysiology, Poznań University of Medical Sciences, Rokietnicka 8 Str., 60-806 Poznań, Poland.
| |
Collapse
|
47
|
Mikuła-Pietrasik J, Sosińska P, Murias M, Michalak M, Wierzchowski M, Piechota M, Sikora E, Książek K. Resveratrol Derivative, 3,3′,4,4′-Tetrahydroxy-trans-Stilbene, Retards Senescence of Mesothelial Cells via Hormetic-Like Prooxidative Mechanism. J Gerontol A Biol Sci Med Sci 2014; 70:1169-80. [DOI: 10.1093/gerona/glu172] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2014] [Accepted: 08/14/2014] [Indexed: 01/08/2023] Open
|
48
|
Kenny HA, Chiang CY, White EA, Schryver EM, Habis M, Romero IL, Ladanyi A, Penicka CV, George J, Matlin K, Montag A, Wroblewski K, Yamada SD, Mazar AP, Bowtell D, Lengyel E. Mesothelial cells promote early ovarian cancer metastasis through fibronectin secretion. J Clin Invest 2014; 124:4614-28. [PMID: 25202979 DOI: 10.1172/jci74778] [Citation(s) in RCA: 252] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 07/31/2014] [Indexed: 12/16/2022] Open
Abstract
Ovarian cancer (OvCa) metastasizes to organs in the abdominal cavity, such as the omentum, which are covered by a single layer of mesothelial cells. Mesothelial cells are generally thought to be "bystanders" to the metastatic process and simply displaced by OvCa cells to access the submesothelial extracellular matrix. Here, using organotypic 3D cultures, we found that primary human mesothelial cells secrete fibronectin in the presence of OvCa cells. Moreover, we evaluated the tumor stroma of 108 human omental metastases and determined that fibronectin was consistently overexpressed in these patients. Blocking fibronectin production in primary mesothelial cells in vitro or in murine models, either genetically (fibronectin 1 floxed mouse model) or via siRNA, decreased adhesion, invasion, proliferation, and metastasis of OvCa cells. Using a coculture model, we determined that OvCa cells secrete TGF-β1, which in turn activates a TGF-β receptor/RAC1/SMAD-dependent signaling pathway in the mesothelial cells that promotes a mesenchymal phenotype and transcriptional upregulation of fibronectin. Additionally, blocking α5 or β1 integrin function with antibodies reduced metastasis in an orthotopic preclinical model of OvCa metastasis. These findings indicate that cancer-associated mesothelial cells promote colonization during the initial steps of OvCa metastasis and suggest that mesothelial cells actively contribute to metastasis.
Collapse
|
49
|
Mikuła-Pietrasik J, Sosińska P, Książek K. Resveratrol inhibits ovarian cancer cell adhesion to peritoneal mesothelium in vitro by modulating the production of α5β1 integrins and hyaluronic acid. Gynecol Oncol 2014; 134:624-30. [PMID: 24995580 DOI: 10.1016/j.ygyno.2014.06.022] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 06/11/2014] [Accepted: 06/24/2014] [Indexed: 11/27/2022]
Abstract
OBJECTIVE Resveratrol (Res) is known to inhibit adhesion of numerous malignancies though its effect on an adherence of ovarian cancer cells to peritoneal mesothelium remains undefined. METHODS To address this issue, ovarian cancer cells (A2780, OVCAR-3, SKOV-3) were subjected to Res (10, 50, 100 μM), and then their adhesion to omentum-derived human peritoneal mesothelial cells (HPMCs) was assayed. RESULTS The study showed that Res inhibits adhesion of all ovarian cancer cell lines investigated. More importantly, this effect was evident either when cancer cells were directly treated with Res (cell-dependent activity) or when intact cancer cells were pretreated with conditioned medium (CM) generated by their counterparts subjected to Res (medium-dependent activity). Cell-dependent activity of Res has been recognized to be linked with decreased level of cellular α5β1 integrins which decreased functionality corresponds with reduced efficiency of cancer cell adhesion. Medium-related effects have been, in turn, associated with up-regulated secretion of soluble HA to environment (CM). The experiments with exogenous HA revealed the inverse relation between HA concentration in CM and cancer cell adhesion. When the CM from cells subjected with Res (with elevated HA) was supplemented with hyaluronidase, the restoration of cell adhesive capabilities occurred. CONCLUSIONS Our studies evidenced that Res affects ovarian cancer cell adhesion to HPMCs by decreasing cellular α5β1 integrin level and by increasing the secretion of HA to environment.
Collapse
Affiliation(s)
- Justyna Mikuła-Pietrasik
- Laboratory of Gerontology, Department of Pathophysiology, Poznań University of Medical Sciences, Rokietnicka 8 Str., 60-806 Poznań, Poland.
| | - Patrycja Sosińska
- Laboratory of Gerontology, Department of Pathophysiology, Poznań University of Medical Sciences, Rokietnicka 8 Str., 60-806 Poznań, Poland.
| | - Krzysztof Książek
- Laboratory of Gerontology, Department of Pathophysiology, Poznań University of Medical Sciences, Rokietnicka 8 Str., 60-806 Poznań, Poland.
| |
Collapse
|
50
|
Expression of the miR200 Family of microRNAs in Mesothelial Cells Suppresses the Dissemination of Ovarian Cancer Cells. Mol Cancer Ther 2014; 13:2081-91. [DOI: 10.1158/1535-7163.mct-14-0135] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|