1
|
Kato T, Manabe RI, Igarashi H, Kametani F, Hirokawa S, Sekine Y, Fujita N, Saito S, Kawashima Y, Hatano Y, Ando S, Nozaki H, Sugai A, Uemura M, Fukunaga M, Sato T, Koyama A, Saito R, Sugie A, Toyoshima Y, Kawata H, Murayama S, Matsumoto M, Kakita A, Hasegawa M, Ihara M, Kanazawa M, Nishizawa M, Tsuji S, Onodera O. Candesartan prevents arteriopathy progression in cerebral autosomal recessive arteriopathy with subcortical infarcts and leukoencephalopathy model. J Clin Invest 2021; 131:140555. [PMID: 34779414 DOI: 10.1172/jci140555] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 10/01/2021] [Indexed: 01/15/2023] Open
Abstract
Cerebral small vessel disease (CSVD) causes dementia and gait disturbance due to arteriopathy. Cerebral autosomal recessive arteriopathy with subcortical infarcts and leukoencephalopathy (CARASIL) is a hereditary form of CSVD caused by loss of high-temperature requirement A1 (HTRA1) serine protease activity. In CARASIL, arteriopathy causes intimal thickening, smooth muscle cell (SMC) degeneration, elastic lamina splitting, and vasodilation. The molecular mechanisms were proposed to involve the accumulation of matrisome proteins as substrates or abnormalities in transforming growth factor β (TGF-β) signaling. Here, we show that HTRA1-/- mice exhibited features of CARASIL-associated arteriopathy: intimal thickening, abnormal elastic lamina, and vasodilation. In addition, the mice exhibited reduced distensibility of the cerebral arteries and blood flow in the cerebral cortex. In the thickened intima, matrisome proteins, including the hub protein fibronectin (FN) and latent TGF-β binding protein 4 (LTBP-4), which are substrates of HTRA1, accumulated. Candesartan treatment alleviated matrisome protein accumulation and normalized the vascular distensibility and cerebral blood flow. Furthermore, candesartan reduced the mRNA expression of Fn1, Ltbp-4, and Adamtsl2, which are involved in forming the extracellular matrix network. Our results indicate that these accumulated matrisome proteins may be potential therapeutic targets for arteriopathy in CARASIL.
Collapse
Affiliation(s)
- Taisuke Kato
- Department of System Pathology for Neurological Disorders, Brain Science Branch, Brain Research Institute, Niigata University, Niigata, Japan
| | - Ri-Ichiroh Manabe
- Laboratory for Comprehensive Genomic Analysis, Center for Integrative Medical Sciences, RIKEN, Kanagawa, Japan
| | - Hironaka Igarashi
- Center for Integrated Human Brain Science, Brain Research Institute, Niigata University, Niigata, Japan
| | - Fuyuki Kametani
- Department of Brain and Neuroscience, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Sachiko Hirokawa
- Department of Neurology, Clinical Neuroscience Branch, Brain Research Institute, Niigata University, Niigata, Japan
| | - Yumi Sekine
- Department of Neurology, Clinical Neuroscience Branch, Brain Research Institute, Niigata University, Niigata, Japan
| | - Natsumi Fujita
- Department of Neurology, Clinical Neuroscience Branch, Brain Research Institute, Niigata University, Niigata, Japan
| | - Satoshi Saito
- Department of Neurology, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Yusuke Kawashima
- Department of Applied Genomics, Kazusa DNA Research Institute, Chiba, Japan
| | - Yuya Hatano
- Department of Neurology, Clinical Neuroscience Branch, Brain Research Institute, Niigata University, Niigata, Japan
| | - Shoichiro Ando
- Department of Neurology, Clinical Neuroscience Branch, Brain Research Institute, Niigata University, Niigata, Japan
| | - Hiroaki Nozaki
- Department of Medical Technology, Graduate School of Health Sciences, Niigata University, Niigata, Japan
| | - Akihiro Sugai
- Department of Neurology, Clinical Neuroscience Branch, Brain Research Institute, Niigata University, Niigata, Japan
| | - Masahiro Uemura
- Department of Neurology, Clinical Neuroscience Branch, Brain Research Institute, Niigata University, Niigata, Japan
| | - Masaki Fukunaga
- Division of Cerebral Integration, Department of System Neuroscience, National Institute for Physiological Sciences, Aichi, Japan
| | - Toshiya Sato
- Department of Laboratory Animal Science, Kitasato University School of Medicine, Kanagawa, Japan
| | - Akihide Koyama
- Department of Legal Medicine, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Rie Saito
- Department of Pathology, Clinical Neuroscience Branch and
| | - Atsushi Sugie
- Department of Neuroscience of Disease, Brain Research Institute, Niigata University, Niigata, Japan
| | | | - Hirotoshi Kawata
- Department of Pathology, Jichi Medical University, Tochigi, Japan
| | - Shigeo Murayama
- Brain Bank for Aging Research, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Tokyo, Japan.,Brain Bank for Neurodevelopmental, Neurological and Psychiatric Disorders, United Graduate School of Child Development, University of Osaka, Osaka, Japan
| | - Masaki Matsumoto
- Department of Omics and Systems Biology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | | | - Masato Hasegawa
- Department of Brain and Neuroscience, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Masafumi Ihara
- Department of Neurology, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Masato Kanazawa
- Department of Neurology, Clinical Neuroscience Branch, Brain Research Institute, Niigata University, Niigata, Japan
| | | | - Shoji Tsuji
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Osamu Onodera
- Department of Neurology, Clinical Neuroscience Branch, Brain Research Institute, Niigata University, Niigata, Japan
| |
Collapse
|
2
|
Su CT, Urban Z. LTBP4 in Health and Disease. Genes (Basel) 2021; 12:genes12060795. [PMID: 34071145 PMCID: PMC8224675 DOI: 10.3390/genes12060795] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/14/2021] [Accepted: 05/21/2021] [Indexed: 12/20/2022] Open
Abstract
Latent transforming growth factor β (TGFβ)-binding protein (LTBP) 4, a member of the LTBP family, shows structural homology with fibrillins. Both these protein types are characterized by calcium-binding epidermal growth factor-like repeats interspersed with 8-cysteine domains. Based on its domain composition and distribution, LTBP4 is thought to adopt an extended structure, facilitating the linear deposition of tropoelastin onto microfibrils. In humans, mutations in LTBP4 result in autosomal recessive cutis laxa type 1C, characterized by redundant skin, pulmonary emphysema, and valvular heart disease. LTBP4 is an essential regulator of TGFβ signaling and is related to development, immunity, injury repair, and diseases, playing a central role in regulating inflammation, fibrosis, and cancer progression. In this review, we focus on medical disorders or diseases that may be manipulated by LTBP4 in order to enhance the understanding of this protein.
Collapse
Affiliation(s)
- Chi-Ting Su
- Department of Internal Medicine, Renal Division, National Taiwan University Hospital Yunlin Branch, Douliu 640, Taiwan;
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Department of Medicine, National Taiwan University Cancer Center Hospital, Taipei 106, Taiwan
| | - Zsolt Urban
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Correspondence: ; Tel.: +1-412-648-8269
| |
Collapse
|
3
|
Qu J, Yang SZ, Zhu Y, Guo T, Thannickal VJ, Zhou Y. Targeting mechanosensitive MDM4 promotes lung fibrosis resolution in aged mice. J Exp Med 2021; 218:e20202033. [PMID: 33688918 PMCID: PMC7953267 DOI: 10.1084/jem.20202033] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 12/18/2020] [Accepted: 01/21/2021] [Indexed: 12/15/2022] Open
Abstract
Aging is a strong risk factor and an independent prognostic factor for progressive human idiopathic pulmonary fibrosis (IPF). Aged mice develop nonresolving pulmonary fibrosis following lung injury. In this study, we found that mouse double minute 4 homolog (MDM4) is highly expressed in the fibrotic lesions of human IPF and experimental pulmonary fibrosis in aged mice. We identified MDM4 as a matrix stiffness-regulated endogenous inhibitor of p53. Reducing matrix stiffness down-regulates MDM4 expression, resulting in p53 activation in primary lung myofibroblasts isolated from IPF patients. Gain of p53 function activates a gene program that sensitizes lung myofibroblasts to apoptosis and promotes the clearance of apoptotic myofibroblasts by macrophages. Destiffening of the fibrotic lung matrix by targeting nonenzymatic cross-linking or genetic ablation of Mdm4 in lung (myo)fibroblasts activates the Mdm4-p53 pathway and promotes lung fibrosis resolution in aged mice. These findings suggest that mechanosensitive MDM4 is a molecular target with promising therapeutic potential against persistent lung fibrosis associated with aging.
Collapse
Affiliation(s)
- Jing Qu
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shan-Zhong Yang
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL
| | - Yi Zhu
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL
| | - Ting Guo
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL
- The Second Xiangya Hospital, Central-South University, Changsha, Hunan, China
| | - Victor J. Thannickal
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL
| | - Yong Zhou
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL
| |
Collapse
|
4
|
Barnes JW, Aarnio-Peterson M, Norris J, Haskins M, Flanagan-Steet H, Steet R. Upregulation of Sortilin, a Lysosomal Sorting Receptor, Corresponds with Reduced Bioavailability of Latent TGFβ in Mucolipidosis II Cells. Biomolecules 2020; 10:biom10050670. [PMID: 32357547 PMCID: PMC7277838 DOI: 10.3390/biom10050670] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/14/2020] [Accepted: 04/20/2020] [Indexed: 12/14/2022] Open
Abstract
Mucolipidosis II (ML-II) is a lysosomal disease caused by defects in the carbohydrate-dependent sorting of soluble hydrolases to lysosomes. Altered growth factor signaling has been identified as a contributor to the phenotypes associated with ML-II and other lysosomal disorders but an understanding of how these signaling pathways are affected is still emerging. Here, we investigated transforming growth factor beta 1 (TGFβ1) signaling in the context of ML-II patient fibroblasts, observing decreased TGFβ1 signaling that was accompanied by impaired TGFβ1-dependent wound closure. We found increased intracellular latent TGFβ1 complexes, caused by reduced secretion and stable localization in detergent-resistant lysosomes. Sortilin, a sorting receptor for hydrolases and TGFβ-related cytokines, was upregulated in ML-II fibroblasts as well as GNPTAB-null HeLa cells, suggesting a mechanism for inappropriate lysosomal targeting of TGFβ. Co-expression of sortilin and TGFβ in HeLa cells resulted in reduced TGFβ1 secretion. Elevated sortilin levels correlated with normal levels of cathepsin D in ML-II cells, consistent with a compensatory role for this receptor in lysosomal hydrolase targeting. Collectively, these data support a model whereby sortilin upregulation in cells with lysosomal storage maintains hydrolase sorting but suppresses TGFβ1 secretion through increased lysosomal delivery. These findings highlight an unexpected link between impaired lysosomal sorting and altered growth factor bioavailability.
Collapse
Affiliation(s)
- Jarrod W Barnes
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | - Joy Norris
- Greenwood Genetic Center, Greenwood, SC 29646, USA
| | - Mark Haskins
- Emeritus Professor, Pathology and Medical Genetics, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104-6051, USA
| | | | | |
Collapse
|
5
|
Juban G, Saclier M, Yacoub-Youssef H, Kernou A, Arnold L, Boisson C, Ben Larbi S, Magnan M, Cuvellier S, Théret M, Petrof BJ, Desguerre I, Gondin J, Mounier R, Chazaud B. AMPK Activation Regulates LTBP4-Dependent TGF-β1 Secretion by Pro-inflammatory Macrophages and Controls Fibrosis in Duchenne Muscular Dystrophy. Cell Rep 2019; 25:2163-2176.e6. [PMID: 30463013 DOI: 10.1016/j.celrep.2018.10.077] [Citation(s) in RCA: 145] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 09/06/2018] [Accepted: 10/19/2018] [Indexed: 12/22/2022] Open
Abstract
Chronic inflammation and fibrosis characterize Duchenne muscular dystrophy (DMD). We show that pro-inflammatory macrophages are associated with fibrosis in mouse and human DMD muscle. DMD-derived Ly6Cpos macrophages exhibit a profibrotic activity by sustaining fibroblast production of collagen I. This is mediated by the high production of latent-TGF-β1 due to the higher expression of LTBP4, for which polymorphisms are associated with the progression of fibrosis in DMD patients. Skewing macrophage phenotype via AMPK activation decreases ltbp4 expression by Ly6Cpos macrophages, blunts the production of latent-TGF-β1, and eventually reduces fibrosis and improves DMD muscle force. Moreover, fibro-adipogenic progenitors are the main providers of TGF-β-activating enzymes in mouse and human DMD, leading to collagen production by fibroblasts. In vivo pharmacological inhibition of TGF-β-activating enzymes improves the dystrophic phenotype. Thus, an AMPK-LTBP4 axis in inflammatory macrophages controls the production of TGF-β1, which is further activated by and acts on fibroblastic cells, leading to fibrosis in DMD.
Collapse
Affiliation(s)
- Gaëtan Juban
- Institut NeuroMyoGène, Université Claude Bernard Lyon 1, CNRS UMR 5310, INSERM U1217, Université Lyon, Villeurbanne 69100, France
| | - Marielle Saclier
- Institut Cochin, INSERM U1016, CNRS UMR 8104, Université Paris Descartes, Sorbonne Paris Cité, Paris 75014, France
| | - Houda Yacoub-Youssef
- Institut Cochin, INSERM U1016, CNRS UMR 8104, Université Paris Descartes, Sorbonne Paris Cité, Paris 75014, France
| | - Amel Kernou
- Institut Cochin, INSERM U1016, CNRS UMR 8104, Université Paris Descartes, Sorbonne Paris Cité, Paris 75014, France
| | - Ludovic Arnold
- Centre d'Immunologie et des Maladies Infectieuses, INSERM U1135, Université Pierre et Marie Curie, Sorbonne Universités, Paris 75013, France
| | - Camille Boisson
- Institut NeuroMyoGène, Université Claude Bernard Lyon 1, CNRS UMR 5310, INSERM U1217, Université Lyon, Villeurbanne 69100, France
| | - Sabrina Ben Larbi
- Institut NeuroMyoGène, Université Claude Bernard Lyon 1, CNRS UMR 5310, INSERM U1217, Université Lyon, Villeurbanne 69100, France
| | - Mélanie Magnan
- Institut Cochin, INSERM U1016, CNRS UMR 8104, Université Paris Descartes, Sorbonne Paris Cité, Paris 75014, France
| | - Sylvain Cuvellier
- Institut Cochin, INSERM U1016, CNRS UMR 8104, Université Paris Descartes, Sorbonne Paris Cité, Paris 75014, France
| | - Marine Théret
- Institut NeuroMyoGène, Université Claude Bernard Lyon 1, CNRS UMR 5310, INSERM U1217, Université Lyon, Villeurbanne 69100, France
| | - Basil J Petrof
- Meakins-Christie Laboratories, McGill University, Montreal, QC H4A3J1, Canada; Research Institute of the McGill University Health Centre, Montreal, QC H4A3J1, Canada
| | - Isabelle Desguerre
- Institut Cochin, INSERM U1016, CNRS UMR 8104, Université Paris Descartes, Sorbonne Paris Cité, Paris 75014, France
| | - Julien Gondin
- Institut NeuroMyoGène, Université Claude Bernard Lyon 1, CNRS UMR 5310, INSERM U1217, Université Lyon, Villeurbanne 69100, France
| | - Rémi Mounier
- Institut NeuroMyoGène, Université Claude Bernard Lyon 1, CNRS UMR 5310, INSERM U1217, Université Lyon, Villeurbanne 69100, France
| | - Bénédicte Chazaud
- Institut NeuroMyoGène, Université Claude Bernard Lyon 1, CNRS UMR 5310, INSERM U1217, Université Lyon, Villeurbanne 69100, France.
| |
Collapse
|
6
|
Wu J, Li X, Zhao M, Huang H, Sun W, Gao Y. Early Detection of Urinary Proteome Biomarkers for Effective Early Treatment of Pulmonary Fibrosis in a Rat Model. Proteomics Clin Appl 2017; 11. [DOI: 10.1002/prca.201700103] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Revised: 09/12/2017] [Indexed: 12/18/2022]
Affiliation(s)
- Jianqiang Wu
- Department of Pathophysiology; Institute of Basic Medical Sciences; Chinese Academy of Medical Sciences; School of Basic Medicine; Peking Union Medical College; Beijing China
| | - Xundou Li
- Department of Pathophysiology; Institute of Basic Medical Sciences; Chinese Academy of Medical Sciences; School of Basic Medicine; Peking Union Medical College; Beijing China
| | - Mindi Zhao
- Department of Pathophysiology; Institute of Basic Medical Sciences; Chinese Academy of Medical Sciences; School of Basic Medicine; Peking Union Medical College; Beijing China
| | - He Huang
- Department of Biochemistry and Molecular Biology; School of Life Sciences; Beijing Normal University; Gene Engineering and Biotechnology Beijing Key Laboratory; Beijing China
| | - Wei Sun
- Core Facility of Instrument; Institute of Basic Medical Sciences; Chinese Academy of Medical Sciences; School of Basic Medicine; Peking Union Medical College; Beijing China
| | - Youhe Gao
- Department of Biochemistry and Molecular Biology; School of Life Sciences; Beijing Normal University; Gene Engineering and Biotechnology Beijing Key Laboratory; Beijing China
| |
Collapse
|
7
|
Lu J, Liu Q, Wang L, Tu W, Chu H, Ding W, Jiang S, Ma Y, Shi X, Pu W, Zhou X, Jin L, Wang J, Wu W. Increased expression of latent TGF-β-binding protein 4 affects the fibrotic process in scleroderma by TGF-β/SMAD signaling. J Transl Med 2017; 97:591-601. [PMID: 28263294 DOI: 10.1038/labinvest.2017.20] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 01/03/2017] [Accepted: 01/13/2017] [Indexed: 01/06/2023] Open
Abstract
Scleroderma is a fibrosis-related disorder characterized by cutaneous and internal organ fibrosis, and excessive collagen deposition in extracellular matrix (ECM) is a major cause of fibrosis. Transforming growth factor-β (TGF-β)/SMAD signaling has a central role in the pathogenesis of fibrosis by inducing abnormal collagen accumulation in ECM, and latent TGF-β-binding protein 4 (LTBP-4) affects the secretion of latent TGF-β to ECM. A previous study indicated that bleomycin (BLM) treatment increased LTBP-4 expression in lung fibroblasts of Thy-1 knockout mice with lung fibrosis, and LTBP-4 further promoted TGF-β bioavailability as well as SMAD3 phosphorylation. However, the expression and function of LTBP-4 in human scleroderma remain unclear. We aimed to investigate the potential role of LTBP-4 in scleroderma through clinical, in vivo and in vitro studies. LTBP-4 and TGF-β expressions were significantly upregulated in systemic scleroderma (SSc) patients' plasma compared with normal controls (LTBP-4, 1,215±100.2 vs 542.8±41.7 ng/ml, P<0.0001; TGF-β, 1.5±0.2 vs 0.7±0.1 ng/ml, P=0.0031), while no significant difference was found between localized scleroderma (LSc) and normal controls. The plasma concentrations of LTBP-4 and TGF-β were even higher in SSc patients with lung fibrosis (LTBP-4, 1462± 137.3 vs 892.8±113.4 ng/ml, P=0.0037; TGF-β, 2.0±0.4 vs 0.9±0.2 ng/ml, P=0.0212) and esophagus involvement (1390±134.4 vs 940.7±127.0 ng/ml, P=0.0269; TGF-β, 1.9±0.3 vs 0.9±0.2 ng/ml, P=0.0426). The area under receiver operating characteristics (ROC) curve of LTBP-4 was 0.86. Immunohistochemistry measurement also demonstrated a higher LTBP-4 expression in sclerotic skin tissue of LSc and SSc compared with normal controls. More positive fibroblasts were also found in BLM-induced scleroderma mouse model than the saline-treated group. In in vitro studies, knockdown of LTBP-4 in SSc skin fibroblasts prominently reduced downstream COL1A1, COL1A2, and COL3A1 mRNA level by 84%, 82%, and 43%, respectively, and other fibrosis-related genes' expression were also decreased. Furthermore, extracellular TGF-β level and the SMAD2/3 phosphorylation were inhibited through LTBP-4 knockdown treatment, suggesting that the knockdown of LTBP-4 reduced the collagen expression through TGF-β/SMAD signaling pathway. Taken together, these data suggest that LTBP-4 affects fibrotic process in scleroderma, and the high expression of LTBP-4 in SSc plasma may serve as a clinical biomarker in diagnosing this disease. In addition, this study also lays the theoretical foundation for targeting LTBP-4 as treatment of scleroderma.
Collapse
Affiliation(s)
- Jiaying Lu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Qingmei Liu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China.,State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Lei Wang
- Division of Rheumatology, Shanghai TCM-integrated Hospital, Shanghai, China
| | - Wenzhen Tu
- Division of Rheumatology, Shanghai TCM-integrated Hospital, Shanghai, China
| | - Haiyan Chu
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Weifeng Ding
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Shuai Jiang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Yanyun Ma
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Xiangguang Shi
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Weilin Pu
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Xiaodong Zhou
- University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Li Jin
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Jiucun Wang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China.,Institute of Rheumatology, Immunology and Allergy, Fudan University, Shanghai, China
| | - Wenyu Wu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
8
|
Leiva O, Ng SK, Chitalia S, Balduini A, Matsuura S, Ravid K. The role of the extracellular matrix in primary myelofibrosis. Blood Cancer J 2017; 7:e525. [PMID: 28157219 PMCID: PMC5386340 DOI: 10.1038/bcj.2017.6] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 12/20/2016] [Indexed: 02/06/2023] Open
Abstract
Primary myelofibrosis (PMF) is a myeloproliferative neoplasm that arises from clonal proliferation of hematopoietic stem cells and leads to progressive bone marrow (BM) fibrosis. While cellular mutations involved in the development of PMF have been heavily investigated, noteworthy is the important role the extracellular matrix (ECM) plays in the progression of BM fibrosis. This review surveys ECM proteins contributors of PMF, and highlights how better understanding of the control of the ECM within the BM niche may lead to combined therapeutic options in PMF.
Collapse
Affiliation(s)
- O Leiva
- Department of Medicine and Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, USA
| | - S K Ng
- Department of Medicine and Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, USA
| | - S Chitalia
- Department of Medicine and Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, USA
| | - A Balduini
- Department of Molecular Medicine, University of Pavia, Pavia, Italy.,Laboratory of Biotechnology, IRCCS San Matteo Foundation, Pavia, Italy
| | - S Matsuura
- Department of Medicine and Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, USA
| | - K Ravid
- Department of Medicine and Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, USA
| |
Collapse
|
9
|
Hinz B. The extracellular matrix and transforming growth factor-β1: Tale of a strained relationship. Matrix Biol 2015; 47:54-65. [PMID: 25960420 DOI: 10.1016/j.matbio.2015.05.006] [Citation(s) in RCA: 436] [Impact Index Per Article: 43.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2014] [Revised: 02/19/2015] [Accepted: 02/20/2015] [Indexed: 01/06/2023]
Abstract
Physiological tissue repair aims at restoring the mechano-protective properties of the extracellular matrix. Consequently, redundant regulatory mechanisms are in place ensuring that tissue remodeling terminates once matrix homeostasis is re-established. If these mechanisms fail, stromal cells become continuously activated, accumulate excessive amounts of stiff matrix, and fibrosis develops. In this mini-review, I develop the hypothesis that the mechanical state of the extracellular matrix and the pro-fibrotic transforming growth factor (TGF)-β1 cooperate to regulate the remodeling activities of stromal cells. TGF-β1 is stored in the matrix as part of a large latent complex and can be activated by cell contractile force that is transmitted by integrins. Matrix straining and stiffening lower the threshold for TGF-β1 activation by increasing the mechanical resistance to cell pulling. Different elements of this mechanism can be pharmacologically targeted to interrupt the mechanical positive feedback loop of fibrosis, including specific integrins and matrix protein interactions.
Collapse
Affiliation(s)
- Boris Hinz
- Laboratory of Tissue Repair and Regeneration, Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, 150 College Street, FitzGerald Building, Room 234, Toronto, Ontario M5S 3E2, Canada.
| |
Collapse
|
10
|
Moreira R, Milan M, Balseiro P, Romero A, Babbucci M, Figueras A, Bargelloni L, Novoa B. Gene expression profile analysis of Manila clam (Ruditapes philippinarum) hemocytes after a Vibrio alginolyticus challenge using an immune-enriched oligo-microarray. BMC Genomics 2014; 15:267. [PMID: 24708293 PMCID: PMC4234419 DOI: 10.1186/1471-2164-15-267] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 03/31/2014] [Indexed: 01/11/2023] Open
Abstract
Background The Manila clam (Ruditapes philippinarum) is a cultured bivalve with worldwide commercial importance, and diseases cause high economic losses. For this reason, interest in the immune genes in this species has recently increased. The present work describes the construction of the first R. philippinarum microarray containing immune-related hemocyte sequences and its application to study the gene transcription profiles of hemocytes from clams infected with V. alginolyticus through a time course. Results The complete set of sequences from R. philippinarum available in the public databases and the hemocyte sequences enriched in immune transcripts were assembled successfully. A total of 12,156 annotated sequences were used to construct the 8 ×15 k oligo-microarray. The microarray experiments yielded a total of 579 differentially expressed transcripts. Using the gene expression results, the associated Gene Ontology terms and the enrichment analysis, we found different response mechanisms throughout the experiment. Genes related to signaling, transcription and apoptosis, such as IL-17D, NF-κB or calmodulin, were typically expressed as early as 3 hours post-challenge (hpc), while characteristic immune genes, such as PGRPs, FREPs and defense proteins appeared later at 8 hpc. This immune-triggering response could have affected a high number of processes that seemed to be activated 24 hpc to overcome the Vibrio challenge, including the expression of many cytoskeleton molecules, which is indicative of the active movement of hemocytes. In fact functional studies showed an increment in apoptosis, necrosis or cell migration after the infection. Finally, 72 hpc, activity returned to normal levels, and more than 50% of the genes were downregulated in a negative feedback of all of the previously active processes. Conclusions Using a new version of the R. philippinarum oligo-microarray, a putative timing for the response against a Vibrio infection was established. The key point to overcome the challenge seemed to be 8 hours after the challenge, when we detected immune functions that could lead to the destruction of the pathogen and the activation of a wide variety of processes related to homeostasis and defense. These results highlight the importance of a fast response in bivalves and the effectiveness of their innate immune system.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Beatriz Novoa
- Instituto de Investigaciones Marinas (IIM), Consejo Superior de Investigaciones Científicas (CSIC), Eduardo Cabello 6, 36208 Vigo, Spain.
| |
Collapse
|
11
|
Tsukui T, Ueha S, Abe J, Hashimoto SI, Shichino S, Shimaoka T, Shand FHW, Arakawa Y, Oshima K, Hattori M, Inagaki Y, Tomura M, Matsushima K. Qualitative rather than quantitative changes are hallmarks of fibroblasts in bleomycin-induced pulmonary fibrosis. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 183:758-73. [PMID: 23886891 DOI: 10.1016/j.ajpath.2013.06.005] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Revised: 05/13/2013] [Accepted: 06/03/2013] [Indexed: 02/06/2023]
Abstract
Pulmonary fibrosis is characterized by accumulation of activated fibroblasts that produce excessive amounts of extracellular matrix components such as collagen type I. However, the dynamics and activation signatures of fibroblasts during fibrogenesis remain poorly understood, especially in vivo. We examined changes in lung tissue cell populations and in the phenotype of activated fibroblasts after acute injury in a model of bleomycin-induced pulmonary fibrosis. Despite clustering of collagen type I-producing fibroblasts in fibrotic regions, flow cytometry-based quantitative analysis of whole lungs revealed that the number of fibroblasts in the lungs remained constant. At the peak of inflammation, fibroblast proliferation and apoptosis were both increased, suggesting that the clustering was not merely a result of proliferation, but also of fibroblast migration from nearby alveolar walls. Parabiosis experiments demonstrated that fibroblasts were not supplied from the circulation. Comprehensive gene expression analysis of freshly isolated fibroblasts revealed a detailed activation signature associated with fibrogenesis, including changes in genes responsible for migration and extracellular matrix construction. The Spp1 gene, which encodes osteopontin, was highly up-regulated and was an identifying characteristic of activated fibroblasts present at the sites of remodeling. Osteopontin may serve as a useful marker of profibrotic fibroblasts. These results provide insights into the cellular and molecular mechanisms underlying pulmonary fibrosis and provide a foundation for development of specific antifibrotic therapies.
Collapse
Affiliation(s)
- Tatsuya Tsukui
- Department of Molecular Preventive Medicine, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Mechanisms of acute respiratory distress syndrome in children and adults: a review and suggestions for future research. Pediatr Crit Care Med 2013; 14:631-43. [PMID: 23823199 DOI: 10.1097/pcc.0b013e318291753f] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVES To provide a current overview of the epidemiology and pathophysiology of acute respiratory distress syndrome in adults and children, and to identify research questions that will address the differences between adults and children with acute respiratory distress syndrome. DATA SOURCES Narrative literature review and author-generated data. DATA SELECTION The epidemiology of acute respiratory distress syndrome in adults and children, lung morphogenesis, and postnatal lung growth and development are reviewed. The pathophysiology of acute respiratory distress syndrome is divided into eight categories: alveolar fluid transport, surfactant, innate immunity, apoptosis, coagulation, direct alveolar epithelial injury by bacterial products, ventilator-associated lung injury, and repair. DATA EXTRACTION AND SYNTHESIS Epidemiologic data suggest significant differences in the prevalence and mortality of acute respiratory distress syndrome between children and adults. Postnatal lung development continues through attainment of adult height, and there is overlap between the regulation of postnatal lung development and inflammatory, apoptotic, alveolar fluid clearance, and repair mechanisms. Therefore, there is a different biological baseline network of gene and protein expression in children as compared with adults. CONCLUSIONS There are significant obstacles to performing research on children with acute respiratory distress syndrome. However, epidemiologic, clinical, and animal studies suggest age-dependent differences in the pathophysiology of acute respiratory distress syndrome. In order to reduce the prevalence and improve the outcome of patients with acute respiratory distress syndrome, translational studies of inflammatory, apoptotic, alveolar fluid clearance, and repair mechanisms are needed. Understanding the differences in pathophysiologic mechanisms in acute respiratory distress syndrome between children and adults should facilitate identification of novel therapeutic interventions to prevent or modulate lung injury and improve lung repair.
Collapse
|
13
|
Flanigan KM, Ceco E, Lamar KM, Kaminoh Y, Dunn DM, Mendell JR, King WM, Pestronk A, Florence JM, Mathews KD, Finkel RS, Swoboda KJ, Gappmaier E, Howard MT, Day JW, McDonald C, McNally EM, Weiss RB. LTBP4 genotype predicts age of ambulatory loss in Duchenne muscular dystrophy. Ann Neurol 2013; 73:481-8. [PMID: 23440719 PMCID: PMC4106425 DOI: 10.1002/ana.23819] [Citation(s) in RCA: 186] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Revised: 11/02/2012] [Accepted: 11/17/2012] [Indexed: 12/30/2022]
Abstract
OBJECTIVE Duchenne muscular dystrophy (DMD) displays a clinical range that is not fully explained by the primary DMD mutations. Ltbp4, encoding latent transforming growth factor-β binding protein 4, was previously discovered in a genome-wide scan as a modifier of murine muscular dystrophy. We sought to determine whether LTBP4 genotype influenced DMD severity in a large patient cohort. METHODS We analyzed nonsynonymous single nucleotide polymorphisms (SNPs) from human LTBP4 in 254 nonambulatory subjects with known DMD mutations. These SNPs, V194I, T787A, T820A, and T1140M, form the VTTT and IAAM LTBP4 haplotypes. RESULTS Individuals homozygous for the IAAM LTBP4 haplotype remained ambulatory significantly longer than those heterozygous or homozygous for the VTTT haplotype. Glucocorticoid-treated patients who were IAAM homozygotes lost ambulation at 12.5 ± 3.3 years compared to 10.7 ± 2.1 years for treated VTTT heterozygotes or homozygotes. IAAM fibroblasts exposed to transforming growth factor (TGF) β displayed reduced phospho-SMAD signaling compared to VTTT fibroblasts, consistent with LTBP4' role as a regulator of TGFβ. INTERPRETATION LTBP4 haplotype influences age at loss of ambulation, and should be considered in the management of DMD patients.
Collapse
Affiliation(s)
- Kevin M. Flanigan
- The Center for Gene Therapy, Nationwide Children's Hospital, The Ohio State University, Columbus, Ohio
- Department of Pediatrics, The Ohio State University, Columbus, Ohio
- Department of Neurology, The Ohio State University, Columbus, Ohio
| | - Ermelinda Ceco
- Department of Medicine, Department of Human Genetics, Committee on Cell Physiology, The University of Chicago
| | - Kay-Marie Lamar
- Department of Medicine, Department of Human Genetics, Committee on Cell Physiology, The University of Chicago
| | - Yuuki Kaminoh
- The Center for Gene Therapy, Nationwide Children's Hospital, The Ohio State University, Columbus, Ohio
| | - Diane M. Dunn
- Department of Human Genetics, The University of Utah School of Medicine, Salt Lake City, Utah
| | - Jerry R. Mendell
- The Center for Gene Therapy, Nationwide Children's Hospital, The Ohio State University, Columbus, Ohio
- Department of Pediatrics, The Ohio State University, Columbus, Ohio
- Department of Neurology, The Ohio State University, Columbus, Ohio
| | - Wendy M. King
- Department of Neurology, The Ohio State University, Columbus, Ohio
| | - Alan Pestronk
- Department of Neurology, Washington University at St. Louis, St. Louis, Missouri
| | - Julaine M. Florence
- Department of Neurology, Washington University at St. Louis, St. Louis, Missouri
| | - Katherine D. Mathews
- Department of Pediatrics and Neurology, University of Iowa Carver College of Medicine, Iowa City, Iowa
| | - Richard S. Finkel
- Division of Neurology, The Children's Hospital of Philadelphia, and the Departments of Neurology and Pediatrics, Pearlman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Kathryn J. Swoboda
- Department of Neurology, University of Utah School of Medicine, University of Utah, Salt Lake City, Utah
| | - Eduard Gappmaier
- Department of Physical Therapy, University of Utah, Salt Lake City, Utah
| | - Michael T. Howard
- Department of Human Genetics, The University of Utah School of Medicine, Salt Lake City, Utah
| | - John W. Day
- Department of Neurology, University of Minnesota, Minneapolis, Minnesota
| | - Craig McDonald
- Department of Physical Medicine and Rehabilitation, University of California Davis, Sacramento, California
| | - Elizabeth M. McNally
- Department of Medicine, Department of Human Genetics, Committee on Cell Physiology, The University of Chicago
| | - Robert B. Weiss
- Department of Human Genetics, The University of Utah School of Medicine, Salt Lake City, Utah
| |
Collapse
|
14
|
Yang Y, Huang Y, Huang C, Lv X, Liu L, Wang Y, Li J. Antifibrosis effects of triterpene acids of Eriobotrya japonica (Thunb.) Lindl. leaf in a rat model of bleomycin-induced pulmonary fibrosis. J Pharm Pharmacol 2012; 64:1751-60. [PMID: 23146038 DOI: 10.1111/j.2042-7158.2012.01550.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Abstract
Objective
The aim of this study was to investigate the prophylactic effect and some mechanisms of action of triterpene acids of loquat (TAL) on bleomycin A5-induced pulmonary fibrosis rats.
Methods
A model of pulmonary fibrosis was induced by injecting rats with a single dose of bleomycin A5 (5 mg/kg) into the trachea. From the second day, rats in the preventive groups were treated with TAL (50, 150 or 450 mg/kg) or dexamethasone (1.2 mg/kg). On the 28th day after medication, the rats were killed and haematoxylin-eosin or masson staining was used to evaluate the degree of pulmonary fibrosis. Tumour necrosis factor-α (TNF-α) and transforming growth factor-β1 (TGF-β1) levels in alveolar macrophage culture supernatant were detected by ELISA. The mRNA expression of TNF-α and TGF-β1 in alveolar macrophage was observed by RT-PCR.
Key findings
Lung histopathological examination showed TAL could ameliorate the structure of the lung and alleviate fibrogenesis. At the same time, TAL (150 or 450 mg/kg dose group) could reduce the expression of TNF-α and TGF-β1 in alveolar macrophage of rats with pulmonary fibrosis at either the protein or mRNA level.
Conclusions
TAL had a positive prophylactic effect on lung fibrosis, which might have been related to its reduction on TNF-α or TGF-β1 expression in the alveolar macrophage of pulmonary fibrosis rats.
Collapse
Affiliation(s)
- Yaru Yang
- School of Pharmacy, Anhui Medical University, Hefei, Anhui Province, China
- Department of Pharmacy, The Second Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Yan Huang
- School of Pharmacy, Anhui Medical University, Hefei, Anhui Province, China
| | - Cheng Huang
- School of Pharmacy, Anhui Medical University, Hefei, Anhui Province, China
| | - Xiongwen Lv
- School of Pharmacy, Anhui Medical University, Hefei, Anhui Province, China
| | - Liping Liu
- Department of Pharmacy, The Second Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Yuanyuan Wang
- Department of Pharmacy, The Second Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Jun Li
- School of Pharmacy, Anhui Medical University, Hefei, Anhui Province, China
| |
Collapse
|
15
|
Leppäranta O, Sens C, Salmenkivi K, Kinnula VL, Keski-Oja J, Myllärniemi M, Koli K. Regulation of TGF-β storage and activation in the human idiopathic pulmonary fibrosis lung. Cell Tissue Res 2012; 348:491-503. [PMID: 22434388 DOI: 10.1007/s00441-012-1385-9] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Accepted: 02/21/2012] [Indexed: 11/30/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive disease of unknown cause. The pathogenesis of the disease is characterized by fibroblast accumulation and excessive transforming growth factor-β (TGF-β) activation. Although TGF-β activation is a complex process involving various protein interactions, little is known of the specific routes of TGF-β storage and activation in human lung. Here, we have systematically analyzed the expression of specific proteins involved in extracellular matrix targeting and activation of TGF-β. Latent TGF-β-binding protein (LTBP)-1 was found to be significantly upregulated in IPF patient lungs. LTBP-1 expression was especially high in the fibroblastic foci, in which P-Smad2 immunoreactivity, indicative of TGF-β signaling activity, was less prominent. In cultured primary lung fibroblasts and epithelial cells, short-interfering-RNA-mediated downregulation of LTBP-1 resulted in either increased or decreased TGF-β signaling activity, respectively, suggesting that LTBP-1-mediated TGF-β activation is dependent on the cellular context in the lung. Furthermore, LTBP-1 was shown to colocalize with fibronectin, fibrillin-1 and fibrillin-2 proteins in the IPF lung. Fibrillin-2, a developmental gene expressed only in blood vessels in normal adult lung, was found specifically upregulated in IPF fibroblastic foci. The TGF-β-activating integrin β8 subunit was expressed at low levels in both control and IPF lungs. Alterations in extracellular matrix composition, such as high levels of the TGF-β storage protein LTBP-1 and the re-appearance of fibrillin-2, probably modulate TGF-β availability and activation in different pulmonary compartments in the fibrotic lung.
Collapse
Affiliation(s)
- Outi Leppäranta
- Department of Medicine, Division of Pulmonary Medicine, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland.
| | | | | | | | | | | | | |
Collapse
|
16
|
Ding Q, Luckhardt T, Hecker L, Zhou Y, Liu G, Antony VB, deAndrade J, Thannickal VJ. New insights into the pathogenesis and treatment of idiopathic pulmonary fibrosis. Drugs 2012; 71:981-1001. [PMID: 21668038 DOI: 10.2165/11591490-000000000-00000] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is the most common and lethal of the idiopathic interstitial pneumonias. There are currently no effective pharmacological therapies approved for the treatment of IPF. Despite the focus on targeting fibrogenic pathways, recent clinical trials have been largely disappointing. Progress is being made in elucidating key cellular processes and molecular pathways critical to IPF pathogenesis, and this should facilitate the development of more effective therapeutics for this recalcitrant disease. Emerging pathobiological concepts include the role of aging and cellular senescence, oxidative stress, endoplasmic reticulum stress, cellular plasticity, microRNAs and mechanotransduction. Therapeutic approaches that target molecular pathways to modulate aberrant cellular phenotypes and promote tissue homeostasis in the lung must be developed. Heterogeneity in biological and clinical phenotypes of IPF warrants a personalized medicine approach to diagnosis and treatment of this lung disorder.
Collapse
Affiliation(s)
- Qiang Ding
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, USA
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Huang X, Gai Y, Yang N, Lu B, Samuel CS, Thannickal VJ, Zhou Y. Relaxin regulates myofibroblast contractility and protects against lung fibrosis. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 179:2751-65. [PMID: 21983071 DOI: 10.1016/j.ajpath.2011.08.018] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Revised: 07/18/2011] [Accepted: 08/22/2011] [Indexed: 12/11/2022]
Abstract
Myofibroblasts are specialized contractile cells that participate in tissue fibrosis and remodeling, including idiopathic pulmonary fibrosis (IPF). Mechanotransduction, a process by which mechanical stimuli are converted into biochemical signals, regulates myofibroblast differentiation. Relaxin is a peptide hormone that mediates antifibrotic effects through regulation of collagen synthesis and turnover. In this study, we demonstrate enhanced myofibroblast contraction in bleomycin-induced lung fibrosis in mice and in fibroblastic foci of human subjects with IPF, using phosphorylation of the regulatory myosin light chain (MLC(20)) as a biomarker of in vivo cellular contractility. Compared with wild-type mice, relaxin knockout mice express higher lung levels of phospho-MLC(20) and develop more severe bleomycin-induced lung fibrosis. Exogenous relaxin inhibits MLC(20) phosphorylation and bleomycin-induced lung fibrosis in both relaxin knockout and wild-type mice. Ex vivo studies of IPF lung myofibroblasts demonstrate decreases in MLC(20) phosphorylation and reduced contractility in response to relaxin. Characterization of the signaling pathway reveals that relaxin regulates MLC(20) dephosphorylation and lung myofibroblast contraction by inactivating RhoA/Rho-associated protein kinase through a nitric oxide/cGMP/protein kinase G-dependent mechanism. These studies identify a novel antifibrotic role of relaxin involving the inhibition of the contractile phenotype of lung myofibroblasts and suggest that targeting myofibroblast contractility with relaxin-like peptides may be of therapeutic benefit in the treatment of fibrotic lung disease.
Collapse
Affiliation(s)
- Xiangwei Huang
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
During wound healing, contractile fibroblasts called myofibroblasts regulate the formation and contraction of granulation tissue; however, pathological and persistent myofibroblast activation, which occurs in hypertrophic scars or tissue fibrosis, results in a loss of function. Many reviews outline the cellular and molecular features of myofibroblasts and their roles in a variety of diseases. This review focuses on the origins of myofibroblasts and the factors that control their differentiation and prolonged survival in fibrotic tissues. Pulmonary fibrosis is used to illustrate many key points, but examples from other tissues and models are also included. Myofibroblasts originate mostly from tissue-resident fibroblasts, and also from epithelial and endothelial cells or other mesenchymal precursors. Their differentiation is influenced by cytokines, growth factors, extracellular matrix composition and stiffness, and cell surface molecules such as proteoglycans and THY1, among other factors. Many of these effects are modulated by cell contraction. Myofibroblasts resist programmed cell death, which promotes their accumulation in fibrotic tissues. The cause of resistance to apoptosis in myofibroblasts is under ongoing investigation, but many of the same stimuli that regulate their differentiation are involved. The contributions of oxidative stress, the WNT-β-catenin pathway and PPARγ to myofibroblast differentiation and survival are increasingly appreciated.
Collapse
|
19
|
Zhou Y, Hagood JS, Lu B, Merryman WD, Murphy-Ullrich JE. Thy-1-integrin alphav beta5 interactions inhibit lung fibroblast contraction-induced latent transforming growth factor-beta1 activation and myofibroblast differentiation. J Biol Chem 2010; 285:22382-93. [PMID: 20463011 DOI: 10.1074/jbc.m110.126227] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Myofibroblasts, key effector cells in tissue fibrosis, are specialized contractile cells. Lung myofibroblast contraction induces integrin alpha(v)beta(5)-dependent latent transforming growth factor (TGF)-beta1 activation suggests that myofibroblast contractility may be a driving force for the persistent myofibroblast differentiation observed in fibrotic lungs. Understanding the mechanisms that regulate fibroblast contraction and mechanotransduction will add new insights into the pathogenesis of lung fibrosis and may lead to new therapeutic approaches for treating fibrotic lung diseases. We and others previously demonstrated that lung fibroblast expression of Thy-1 prevents lung fibrosis. The mechanisms underlying the anti-fibrotic effect of Thy-1 are not well understood. In this study, we showed that Thy-1 interacts with integrin alpha(v)beta(5), both in a cell-free system and on the cell surface of rat lung fibroblasts. Thy-1-integrin alpha(v)beta(5) interactions are RLD-dependent because mutated Thy-1, in which RLD is replaced by RLE, loses the ability to bind the integrin. Furthermore, Thy-1 expression prevents fibroblast contraction-induced, integrin alpha(v)beta(5)-dependent latent TGF-beta1 activation and TGF-beta1-dependent lung myofibroblast differentiation. In contrast, lack of Thy-1 expression or disruption of Thy-1-alpha(v)beta(5) interactions renders lung fibroblasts susceptible to contraction-induced latent TGF-beta1 activation and myofibroblast differentiation. These data suggest that Thy-1-integrin alpha(v)beta(5) interactions inhibit contraction-induced latent TGF-beta1 activation, presumably by blocking the binding of extracellular matrix-bound latent TGF-beta1 with integrin alpha(v)beta(5). Our studies suggest that targeting key mechanotransducers to inhibit mechanotransduction might be an effective approach to inhibit the deleterious effects of myofibroblast contraction on lung fibrogenesis.
Collapse
Affiliation(s)
- Yong Zhou
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA.
| | | | | | | | | |
Collapse
|
20
|
Kantola AK, Ryynänen MJ, Lhota F, Keski-Oja J, Koli K. Independent regulation of short and long forms of latent TGF-beta binding protein (LTBP)-4 in cultured fibroblasts and human tissues. J Cell Physiol 2010; 223:727-36. [PMID: 20175115 DOI: 10.1002/jcp.22082] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Transforming growth factor (TGF)-beta is secreted and targeted into the extracellular matrix (ECM) in association with one of the latent TGF-beta binding proteins (LTBPs). Activation of these latent complexes is an important regulatory step in TGF-beta signaling. LTBPs target the growth factor into the ECM and expose it to activating mechanisms. Disruption of LTBP-4 gene causes severe developmental abnormalities in both humans and mice. Transcripts for two N-terminally distinct LTBP-4 variants, LTBP-4S (short) and -4L (long), have been identified. In the current work, we have characterized differences in the expression, processing, and ECM targeting of these LTBP-4 variants. Heart and skeletal muscle displayed expression of both variants, while liver expressed mainly LTBP-4L and lung as well as small intestine LTBP-4S. This tissue-specific expression pattern was found to originate from control of transcription by two independent promoters. Furthermore, LTBP-4S and -4L proteins were secreted and processed differently. During secretion, LTBP-4L was complexed with TGF-beta1, whereas the majority of LTBP-4S was secreted in a free form. In addition, LTBP-4S was incorporated into the ECM, while full-length LTBP-4L was not readily detectable in the ECM. These data suggest that LTBP-4 functions are modified by tissue-specific expression of the two N-terminally distinct variants, which in addition exhibit significant differences in cellular processing and targeting, that is, this provides a basis for understanding molecular diversity in LTBP-4 structure and function.
Collapse
Affiliation(s)
- Anna K Kantola
- Department of Virology, Haartman Institute and Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | | | | | | | | |
Collapse
|
21
|
Xin Wang, Lina Lv, Ying Chen, Jie Chen. A CD36 synthetic peptide inhibits silica-induced lung fibrosis in the mice. Toxicol Ind Health 2010; 26:47-53. [DOI: 10.1177/0748233709359274] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Silicosis is a kind of pneumoconiosis caused by inhalation of silica dust, which is characterized by lung fibrosis. The biologically active form of transforming growth factor-β1 (TGF-β1) plays a key role in the development of lung fibrosis. CD36 is involved in the transformation of latent TGF-β1 (L-TGF-β1) to active TGF-β1. The antagonistic effect of the synthetic peptide was analyzed by the administration of CD36 (93-110) synthetic peptide to the silicosis model of mice. The hydroxyproline content of the silica + CD36 (93-110) synthetic peptide group was significantly lower than that of the other experimental groups [silica and silica + CD36 (208-225) synthetic peptide groups] (p < .05). Inflammation, fibrotic degree and distribution of collagen fibers in silicotic nodules of the silica + CD36 (93-110) synthetic peptide group were less than those of the other experimental groups. The expressions of collagen I and III of the silica + CD36 (93-110) synthetic peptide group were significantly lower than those of the other experimental groups (p < .05). CD36 (93-110) synthetic peptide reduced the tissue fibrotic pathologies and collagen accumulation in the silicosis model of mice, resulting in the decreased severity of silica-induced lung fibrosis.
Collapse
Affiliation(s)
- Xin Wang
- Division of Pneumoconiosis, School of Public Health, China Medical University, Shenyang, PR China
| | - Lina Lv
- Division of Pneumoconiosis, School of Public Health, China Medical University, Shenyang, PR China
| | - Ying Chen
- Division of Pneumoconiosis, School of Public Health, China Medical University, Shenyang, PR China
| | - Jie Chen
- Division of Pneumoconiosis, School of Public Health, China Medical University, Shenyang, PR China,
| |
Collapse
|
22
|
Heydemann A, Ceco E, Lim JE, Hadhazy M, Ryder P, Moran JL, Beier DR, Palmer AA, McNally EM. Latent TGF-beta-binding protein 4 modifies muscular dystrophy in mice. J Clin Invest 2009; 119:3703-12. [PMID: 19884661 DOI: 10.1172/jci39845] [Citation(s) in RCA: 165] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Accepted: 09/09/2009] [Indexed: 11/17/2022] Open
Abstract
Most single-gene diseases, including muscular dystrophy, display a nonuniform phenotype. Phenotypic variability arises, in part, due to the presence of genetic modifiers that enhance or suppress the disease process. We employed an unbiased mapping approach to search for genes that modify muscular dystrophy in mice. In a genome-wide scan, we identified a single strong locus on chromosome 7 that influenced two pathological features of muscular dystrophy, muscle membrane permeability and muscle fibrosis. Within this genomic interval, an insertion/deletion polymorphism of 36 bp in the coding region of the latent TGF-beta-binding protein 4 gene (Ltbp4) was found. Ltbp4 encodes a latent TGF-beta-binding protein that sequesters TGF-beta and regulates its availability for binding to the TGF-beta receptor. Insertion of 12 amino acids into the proline-rich region of LTBP4 reduced proteolytic cleavage and was associated with reduced TGF-beta signaling, decreased fibrosis, and improved muscle pathology in a mouse model of muscular dystrophy. In contrast, a 12-amino-acid deletion in LTBP4 was associated with increased proteolysis, SMAD signaling, and fibrosis. These data identify Ltbp4 as a target gene to regulate TGF-beta signaling and modify outcomes in muscular dystrophy.
Collapse
Affiliation(s)
- Ahlke Heydemann
- Department of Medicine, Section of Cardiology, University of Chicago, Chicago, Illinois, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Restoration of podocyte structure and improvement of chronic renal disease in transgenic mice overexpressing renin. PLoS One 2009; 4:e6721. [PMID: 19696925 PMCID: PMC2725297 DOI: 10.1371/journal.pone.0006721] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2009] [Accepted: 07/12/2009] [Indexed: 11/19/2022] Open
Abstract
Background Proteinuria is a major marker of the decline of renal function and an important risk factor of coronary heart disease. Elevated proteinuria is associated to the disruption of slit-diaphragm and loss of podocyte foot processes, structural alterations that are considered irreversible. The objective of the present study was to investigate whether proteinuria can be reversed and to identify the structural modifications and the gene/protein regulation associated to this reversal. Methodology/Principal Findings We used a novel transgenic strain of mouse (RenTg) that overexpresses renin at a constant high level. At the age of 12-month, RenTg mice showed established lesions typical of chronic renal disease such as peri-vascular and periglomerular inflammation, glomerular ischemia, glomerulosclerosis, mesangial expansion and tubular dilation. Ultrastructural analysis indicated abnormal heterogeneity of basement membrane thickness and disappearance of podocyte foot processes. These structural alterations were accompanied by decreased expressions of proteins specific of podocyte (nephrin, podocin), or tubular epithelial cell (E-cadherin and megalin) integrity. In addition, since TGFβ is considered the major pro-fibrotic agent in renal disease and since exogenous administration of BMP7 is reported to antagonize the TGFβ-induced phenotype changes in kidney, we have screened the expressions of several genes belonging in the TGFβ/BMP superfamily. We found that the endogenous inhibitors of BMPs such as noggin and Usag-1 were several-fold activated inhibiting the action of BMPs and thus reinforcing the deleterious action of TGFβ.Treatment with an AT1 receptor antagonist, at dose that did not decrease arterial pressure, gradually reduced albuminuria. This decrease was accompanied by re-expression of podocin, nephrin, E-cadherin and megalin, and reappearance of podocyte foot processes. In addition, expressions of noggin and Usag-1 were markedly decreased, permitting thus activation of the beneficial action of BMPs. Conclusions/Significance These findings show that proteinuria and alterations in the expression of proteins involved in the integrity and function of glomerular and renal epithelial phenotype are reversible events when the local action of angiotensin II is blocked, and provide hope that chronic renal disease can be efficiently treated.
Collapse
|
24
|
Wang X, Chen Y, Lv L, Chen J. Silencing CD36 gene expression results in the inhibition of latent-TGF-beta1 activation and suppression of silica-induced lung fibrosis in the rat. Respir Res 2009; 10:36. [PMID: 19439069 PMCID: PMC2698900 DOI: 10.1186/1465-9921-10-36] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2009] [Accepted: 05/13/2009] [Indexed: 01/01/2023] Open
Abstract
Background The biologically active form of transforming growth factor-β1 (TGF-β1) plays a key role in the development of lung fibrosis. CD36 is involved in the transformation of latent TGF-β1 (L-TGF-β1) to active TGF-β1. To clarify the role of CD36 in the development of silica-induced lung fibrosis, a rat silicosis model was used to observe both the inhibition of L-TGF-β1 activation and the antifibrotic effect obtained by lentiviral vector silencing of CD36 expression. Methods The rat silicosis model was induced by intratracheal injection of 10 mg silica per rat and CD36 expression was silenced by administration of a lentiviral vector (Lv-shCD36). The inhibition of L-TGF-β1 activation was examined using a CCL-64 mink lung epithelial growth inhibition assay, while determination of hydroxyproline content along with pathological and immunohistochemical examinations were used for observation of the inhibition of silica-induced lung fibrosis. Results The lentiviral vector (Lv-shCD36) silenced expression of CD36 in alveolar macrophages (AMs) obtained from bronchoalveolar lavage fluid (BALF) and the activation of L-TGF-β1 in the BALF was inhibited by Lv-shCD36. The hydroxyproline content of silica+Lv-shCD36 treated groups was significantly lower than in other experimental groups. The degree of fibrosis in the silica+Lv-shCD36-treated groups was less than observed in other experimental groups. The expression of collagen I and III in the silica+Lv-shCD36-treated group was significantly lower than in the other experimental groups. Conclusion These results indicate that silencing expression of CD36 can result in the inhibition of L-TGF-β1 activation in a rat silicosis model, thus further preventing the development of silica-induced lung fibrosis.
Collapse
Affiliation(s)
- Xin Wang
- Division of Pneumoconiosis, School of Public Health, China Medical University, Shenyang, PR China.
| | | | | | | |
Collapse
|