1
|
Proteomic analysis of postprandial high-density lipoproteins in healthy subjects. Int J Biol Macromol 2023; 225:1280-1290. [PMID: 36427620 DOI: 10.1016/j.ijbiomac.2022.11.187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 11/25/2022]
Abstract
The relationship between the functionality and composition of high-density lipoproteins (HDL) is yet not fully studied, and little is known about the influence of the diet in HDL proteome. Therefore, the aim of this research was to elucidate the HDL proteome associated to postprandial hyperlipidemia. Male volunteers were recruited for an interventional study with high fatty acid-based meals. Blood samples were collected before the intake (baseline), and 2-3 (postprandial peak) and 5-6 (postprandial post peak) hours later. HDL were purified and the protein composition was quantified by LC-MS/MS. Statistical analysis was performed by lineal models (amica) and by ANOVA and multi-t-test of the different conditions (MetaboAnalyst). Additionally, a clustering of the expression profiles of each protein was done with coseq R package (RStudio). Initially, 320 proteins were identified but only 119 remained after the filtering. APOM, APOE, APOB, and APOA2, proteins previously identified in the HDL proteome, were the only proteins with a statistically significant altered expression in postprandial hyperlipidemia when compared to baseline (p values <0.05 and logFC >1). In conclusion, we have been able to describe several behaviors of the whole HDL proteome during the postprandial hyperlipidemic metabolism.
Collapse
|
2
|
Noveir SD, Kerman BE, Xian H, Meuret C, Smadi S, Martinez AE, Johansson J, Zetterberg H, Parks BA, Kuklenyik Z, Mack WJ, Johansson JO, Yassine HN. Effect of the ABCA1 agonist CS-6253 on amyloid-β and lipoprotein metabolism in cynomolgus monkeys. Alzheimers Res Ther 2022; 14:87. [PMID: 35751102 PMCID: PMC9229758 DOI: 10.1186/s13195-022-01028-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Inducing brain ATP-binding cassette 1 (ABCA1) activity in Alzheimer's disease (AD) mouse models is associated with improvement in AD pathology. The purpose of this study was to investigate the effects of the ABCA1 agonist peptide CS-6253 on amyloid-β peptides (Aβ) and lipoproteins in plasma and cerebrospinal fluid (CSF) of cynomolgus monkeys, a species with amyloid and lipoprotein metabolism similar to humans. METHODS CS-6253 peptide was injected intravenously into cynomolgus monkeys at various doses in three different studies. Plasma and CSF samples were collected at several time points before and after treatment. Levels of cholesterol, triglyceride (TG), lipoprotein particles, apolipoproteins, and Aβ were measured using ELISA, ion-mobility analysis, and asymmetric-flow field-flow fractionation (AF4). The relationship between the change in levels of these biomarkers was analyzed using multiple linear regression models and linear mixed-effects models. RESULTS Following CS-6253 intravenous injection, within minutes, small plasma high-density lipoprotein (HDL) particles were increased. In two independent experiments, plasma TG, apolipoprotein E (apoE), and Aβ42/40 ratio were transiently increased following CS-6253 intravenous injection. This change was associated with a non-significant decrease in CSF Aβ42. Both plasma total cholesterol and HDL-cholesterol levels were reduced following treatment. AF4 fractionation revealed that CS-6253 treatment displaced apoE from HDL to intermediate-density- and low density-lipoprotein (IDL/LDL)-sized particles in plasma. In contrast to plasma, CS-6253 had no effect on the assessed CSF apolipoproteins or lipids. CONCLUSIONS Treatment with the ABCA1 agonist CS-6253 appears to favor Aβ clearance from the brain.
Collapse
Affiliation(s)
- Sasan D Noveir
- Departments of Medicine and Neurology, University of Southern California, Los Angeles, CA, 90033, USA
| | - Bilal E Kerman
- Departments of Medicine and Neurology, University of Southern California, Los Angeles, CA, 90033, USA
| | - Haotian Xian
- Departments of Medicine and Neurology, University of Southern California, Los Angeles, CA, 90033, USA
| | - Cristiana Meuret
- Departments of Medicine and Neurology, University of Southern California, Los Angeles, CA, 90033, USA
| | - Sabrina Smadi
- Departments of Medicine and Neurology, University of Southern California, Los Angeles, CA, 90033, USA
| | - Ashley E Martinez
- Departments of Medicine and Neurology, University of Southern California, Los Angeles, CA, 90033, USA
| | | | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
- UK Dementia Research Institute at UCL, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
| | - Bryan A Parks
- Centers for Disease Control and Prevention, Atlanta, GA, 30341, USA
| | | | - Wendy J Mack
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, 90033, USA
| | | | - Hussein N Yassine
- Departments of Medicine and Neurology, University of Southern California, Los Angeles, CA, 90033, USA.
| |
Collapse
|
3
|
Horiuchi Y, Ohkawa R, Lai SJ, Yamazaki A, Ikoma H, Yano K, Kameda T, Tozuka M. Characterization of the cholesterol efflux of apolipoprotein E-containing high-density lipoprotein in THP-1 cells. Biol Chem 2019; 400:209-218. [PMID: 30210053 DOI: 10.1515/hsz-2018-0284] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 09/02/2018] [Indexed: 01/02/2023]
Abstract
High-density lipoprotein (HDL), also known as antiatherogenic lipoprotein, consists of heterogeneous particles in terms of size, density and composition, suggesting differences among HDL subclasses in characteristics and functions. We investigated the role of apolipoprotein E (apoE)-containing HDL, a minor HDL subclass, in the cholesterol efflux capacity (CEC) of HDL, which is its predominant atheroprotective function. The CEC of apoE-containing HDL was similar to that of apoE-deficient HDL, but the former exhibited a greater rate increase (1.48-fold) compared to that of the latter (1.10-fold) by the stimulation of THP-1 macrophages with the Liver X Receptor (LXR) agonist. No difference in CEC was observed without the LXR agonist between apoA-I, the main apolipoprotein in HDL, and apoE, whereas the increase in CEC in response to treatment with the LXR agonist was greater for apoA-I (4.25-fold) than for apoE (2.22-fold). Furthermore, the increase in the CEC of apoE-containing HDL induced by the LXR agonist was significantly reduced by treatment with glyburide, an inhibitor of ATP-binding cassette transporter A1 (ABCA1). These results suggest that apoE-containing HDL, unlike apoE-deficient HDL, is involved in cholesterol efflux via ABCA1.
Collapse
Affiliation(s)
- Yuna Horiuchi
- Department of Analytical Laboratory Chemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Ryunosuke Ohkawa
- Department of Analytical Laboratory Chemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Shao-Jui Lai
- Department of Analytical Laboratory Chemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Azusa Yamazaki
- Department of Analytical Laboratory Chemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Hayato Ikoma
- Clinical Laboratory, Hamamatsu University Hospital, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
| | - Kouji Yano
- Center for Genomic and Regenerative Medicine, Graduate School of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Takahiro Kameda
- Department of Medical Technology, School of Health Sciences, Tokyo University of Technology, 5-23-22 Nishikamata, Ota-ku, Tokyo 144-8535, Japan
| | - Minoru Tozuka
- Department of Analytical Laboratory Chemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| |
Collapse
|
4
|
Omage K, Azeke MA, Omage SO. Evaluation of the efficacy of Acalypha wilkesiana leaves in managing cardiovascular disease risk factors in rabbits exposed to salt-loaded diets. CLINICAL PHYTOSCIENCE 2018. [DOI: 10.1186/s40816-018-0060-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
|
5
|
Diet-induced hypercholesterolemia alters liver glycosaminoglycans and associated-lipoprotein receptors in rats. J Physiol Biochem 2017; 73:539-550. [DOI: 10.1007/s13105-017-0583-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 07/18/2017] [Indexed: 10/19/2022]
|
6
|
Hsieh JY, Chang CT, Huang MT, Chang CM, Chen CY, Shen MY, Liao HY, Wang GJ, Chen CH, Chen CJ, Yang CY. Biochemical and functional characterization of charge-defined subfractions of high-density lipoprotein from normal adults. Anal Chem 2013; 85:11440-11448. [PMID: 24171625 PMCID: PMC3919464 DOI: 10.1021/ac402516u] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
High-density lipoprotein (HDL) is regarded as atheroprotective because it provides antioxidant and anti-inflammatory benefits and plays an important role in reverse cholesterol transport. In this paper, we outline a novel methodology for studying the heterogeneity of HDL. Using anion-exchange chromatography, we separated HDL from 6 healthy individuals into five subfractions (H1 through H5) with increasing charge and evaluated the composition and biologic activities of each subfraction. Sodium dodecyl sulfate polyacrylamide gel electrophoresis analysis showed that apolipoprotein (apo) AI and apoAII were present in all 5 subfractions; apoCI was present only in H1, and apoCIII and apoE were most abundantly present in H4 and H5. HDL-associated antioxidant enzymes such as lecithin-cholesterol acyltransferase, lipoprotein-associated phospholipase A2, and paraoxonase 1 were most abundant in H4 and H5. Lipoprotein isoforms were analyzed in each subfraction by using matrix-assisted laser desorption-time-of-flight mass spectrometry. To quantify other proteins in the HDL subfractions, we used the isobaric tags for the relative and absolute quantitation approach followed by nanoflow liquid chromatography-tandem mass spectrometry analysis. Most antioxidant proteins detected were found in H4 and H5. The ability of each subfraction to induce cholesterol efflux from macrophages increased with increasing HDL electronegativity, with the exception of H5, which promoted the least efflux activity. In conclusion, anion-exchange chromatography is an attractive method for separating HDL into subfractions with distinct lipoprotein compositions and biologic activities. By comparing the properties of these subfractions, it may be possible to uncover HDL-specific proteins that play a role in disease.
Collapse
Affiliation(s)
- Ju-Yi Hsieh
- L5 Research Center, Medical Research Department, China Medical University Hospital, 2 Yude Road, North District, Taichung, 40447, Taiwan
| | - Chiz-Tzung Chang
- L5 Research Center, Medical Research Department, China Medical University Hospital, 2 Yude Road, North District, Taichung, 40447, Taiwan
- College of Medicine, China Medical University, Taichung, 40402, Taiwan
| | - Max T. Huang
- Section of Atherosclerosis and Lipoprotein Research, Department of Medicine, Baylor College of Medicine, Houston, Texas 77030, United States
| | - Chia-Ming Chang
- L5 Research Center, Medical Research Department, China Medical University Hospital, 2 Yude Road, North District, Taichung, 40447, Taiwan
| | - Chia-Ying Chen
- L5 Research Center, Medical Research Department, China Medical University Hospital, 2 Yude Road, North District, Taichung, 40447, Taiwan
| | - Ming-Yi Shen
- L5 Research Center, Medical Research Department, China Medical University Hospital, 2 Yude Road, North District, Taichung, 40447, Taiwan
- Graduate Institute of Clinical Medical Science, China Medical University, Taichung, 40402, Taiwan
| | - Hsin-Yi Liao
- Proteomics Core Laboratory, Department of Medical Research, China Medical University Hospital, Taichung, 40402, Taiwan
| | - Guei-Jane Wang
- Graduate Institute of Clinical Medical Science, China Medical University, Taichung, 40402, Taiwan
- Department of Medical Research, China Medical University Hospital, Taichung, 40402, Taiwan
- Department of Health and Nutrition Biotechnology, Asia University, Taichung 41354, Taiwan
| | - Chu-Huang Chen
- L5 Research Center, Medical Research Department, China Medical University Hospital, 2 Yude Road, North District, Taichung, 40447, Taiwan
- Section of Atherosclerosis and Lipoprotein Research, Department of Medicine, Baylor College of Medicine, Houston, Texas 77030, United States
- Graduate Institute of Clinical Medical Science, China Medical University, Taichung, 40402, Taiwan
- Vascular and Medicinal Research, Texas Heart Institute, Houston, Texas 77030, United States
| | - Chao-Jung Chen
- Section of Atherosclerosis and Lipoprotein Research, Department of Medicine, Baylor College of Medicine, Houston, Texas 77030, United States
- Proteomics Core Laboratory, Department of Medical Research, China Medical University Hospital, Taichung, 40402, Taiwan
| | - Chao-Yuh Yang
- L5 Research Center, Medical Research Department, China Medical University Hospital, 2 Yude Road, North District, Taichung, 40447, Taiwan
- Section of Atherosclerosis and Lipoprotein Research, Department of Medicine, Baylor College of Medicine, Houston, Texas 77030, United States
- Graduate Institute of Clinical Medical Science, China Medical University, Taichung, 40402, Taiwan
- Vascular and Medicinal Research, Texas Heart Institute, Houston, Texas 77030, United States
| |
Collapse
|
7
|
Al-Zoairy R, Melmer A, Ress C, Laimer M, Kaser S, Ebenbichler C. Lipid profile changes after pronounced weight loss induced by bariatric surgery. ACTA ACUST UNITED AC 2012. [DOI: 10.2217/clp.12.9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
8
|
Rosenson RS, Brewer HB, Chapman MJ, Fazio S, Hussain MM, Kontush A, Krauss RM, Otvos JD, Remaley AT, Schaefer EJ. HDL Measures, Particle Heterogeneity, Proposed Nomenclature, and Relation to Atherosclerotic Cardiovascular Events. Clin Chem 2011; 57:392-410. [DOI: 10.1373/clinchem.2010.155333] [Citation(s) in RCA: 356] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND
A growing body of evidence from epidemiological data, animal studies, and clinical trials supports HDL as the next target to reduce residual cardiovascular risk in statin-treated, high-risk patients. For more than 3 decades, HDL cholesterol has been employed as the principal clinical measure of HDL and cardiovascular risk associated with low HDL-cholesterol concentrations. The physicochemical and functional heterogeneity of HDL present important challenges to investigators in the cardiovascular field who are seeking to identify more effective laboratory and clinical methods to develop a measurement method to quantify HDL that has predictive value in assessing cardiovascular risk.
CONTENT
In this report, we critically evaluate the diverse physical and chemical methods that have been employed to characterize plasma HDL. To facilitate future characterization of HDL subfractions, we propose the development of a new nomenclature based on physical properties for the subfractions of HDL that includes very large HDL particles (VL-HDL), large HDL particles (L-HDL), medium HDL particles (M-HDL), small HDL particles (S-HDL), and very-small HDL particles (VS-HDL). This nomenclature also includes an entry for the pre-β-1 HDL subclass that participates in macrophage cholesterol efflux.
SUMMARY
We anticipate that adoption of a uniform nomenclature system for HDL subfractions that integrates terminology from several methods will enhance our ability not only to compare findings with different approaches for HDL fractionation, but also to assess the clinical effects of different agents that modulate HDL particle structure, metabolism, and function, and in turn, cardiovascular risk prediction within these HDL subfractions.
Collapse
Affiliation(s)
| | | | - M John Chapman
- INSERM Unit 939, UPMC Paris 6, Hôpital de la Pitié, Paris, France
| | | | | | - Anatol Kontush
- INSERM Unit 939, UPMC Paris 6, Hôpital de la Pitié, Paris, France
| | - Ronald M Krauss
- Children's Hospital Oakland Research Institute, University of California, Berkeley
- University of California, San Francisco, CA
| | | | - Alan T Remaley
- Lipoprotein Metabolism Section, Pulmonary and Vascular Medicine Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD
| | | |
Collapse
|
9
|
Chatterjee C, Sparks DL. Hepatic lipase, high density lipoproteins, and hypertriglyceridemia. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 178:1429-33. [PMID: 21406176 DOI: 10.1016/j.ajpath.2010.12.050] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2010] [Revised: 11/24/2010] [Accepted: 12/03/2010] [Indexed: 11/17/2022]
Abstract
Hepatic lipase (HL) is a lipolytic enzyme that contributes to the regulation of plasma triglyceride (TG) levels. Elevated TG levels may increase the risk of developing coronary heart disease, and studies suggest that mutations in the HL gene may be associated with elevated TG levels and increased risk of coronary heart disease. Hepatic lipase facilitates the clearance of TG from the very low density lipoprotein (VLDL) pool, and this function is governed by the composition and quality of high density lipoprotein (HDL) particles. In humans, HL is a liver resident enzyme regulated by factors that release it from the liver and activate it in the bloodstream. HDL regulates the release of HL from the liver and HDL structure controls HL transport and activation in the circulation. Alterations in HDL-apolipoprotein composition can perturb HL function by inhibiting the release and activation of the enzyme. HDL structure may therefore affect plasma TG levels and coronary heart disease risk.
Collapse
Affiliation(s)
- Cynthia Chatterjee
- Atherosclerosis, Genetics and Cell Biology Group, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | | |
Collapse
|