1
|
Takahashi M, Kushida Y, Kuroda Y, Wakao S, Horibata Y, Sugimoto H, Dezawa M, Saiki Y. Structural reconstruction of mouse acute aortic dissection by intravenously administered human Muse cells without immunosuppression. COMMUNICATIONS MEDICINE 2024; 4:174. [PMID: 39251746 PMCID: PMC11384757 DOI: 10.1038/s43856-024-00597-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 08/28/2024] [Indexed: 09/11/2024] Open
Abstract
BACKGROUND Stanford type B-acute aortic dissection (type B-AAD) is often life-threatening without invasive surgery. Multilineage-differentiating stress enduring cell (Muse cells), which comprise several percent of mesenchymal stem cells (MSCs), are endogenous pluripotent-like stem cells that selectively home to damaged tissue and replace damaged/apoptotic cells by in-vivo differentiation. METHODS Mortality, aortic diameter expansion, cell localization, cell differentiation, and inflammation of the dissected aorta were evaluated in type B-AAD model mice intravenously injected with human-Muse cells, -elastin-knockdown (KD)-Muse cells, -human leukocyte antigen-G (HLA-G)-KD-Muse cells, or MSCs, all without immunosuppressant. RESULTS Here, we show the Muse (50,000 cells) group has a lower incidence of aortic rupture and mortality of AAD compared with the MSC-50K (50,000 human-MSCs) and vehicle groups. Spectrum computed tomography in-vivo dynamics and 3-dimensional histologic analyses demonstrate that Muse cells more effectively home to the AAD tissue and survive for 8 weeks in the Muse group than in the MSC-750K (750,000 human-MSCs containing 50,000 Muse cells) group. Homing of Muse cells is impeded in the HLA-G-KD-Muse (50,000 cells) group. Differentiation of homed Muse cells into CD31(+) and alpha-smooth muscle actin (+) cells, production and reorganization of elastic fibers in the AAD tissue, and suppression of diameter expansion are greater in the Muse group than in the MSC-750K and elastin-KD-Muse (50,000 cells) groups. CONCLUSIONS Intravenously administered Muse cells reconstruct the dissected aorta and improve mortality and diameter enlargement rates. Moreover, small doses of purified Muse cells are more effective than large doses of MSCs. HLA-G is suggested to contribute to the successful survival and homing of Muse cells.
Collapse
Affiliation(s)
- Makoto Takahashi
- Division of Cardiovascular Surgery and Tohoku University Graduate School of Medicine1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, Japan.
- Department of Stem Cell Biology and Histology, Tohoku University Graduate School of Medicine, Sendai, Japan.
| | - Yoshihiro Kushida
- Department of Stem Cell Biology and Histology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yasumasa Kuroda
- Department of Stem Cell Biology and Histology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Shohei Wakao
- Department of Stem Cell Biology and Histology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yasuhiro Horibata
- Department of Biochemistry, Dokkyo Medical University School of Medicine, Mibu, Tochigi, Japan
| | - Hiroyuki Sugimoto
- Department of Biochemistry, Dokkyo Medical University School of Medicine, Mibu, Tochigi, Japan
| | - Mari Dezawa
- Department of Stem Cell Biology and Histology, Tohoku University Graduate School of Medicine, Sendai, Japan.
| | - Yoshikatsu Saiki
- Division of Cardiovascular Surgery and Tohoku University Graduate School of Medicine1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, Japan.
| |
Collapse
|
2
|
Liu Y, Wang L, Lei D, Tan X, Jin W, Hou M, Hu K, Yan Y, Wang H, Xiang C, Lai Y. Circ_0000006 and circ_0000160 regulate hsa-let-7e-5p/UBQLN4 axis in aortic dissection progression. PLoS One 2024; 19:e0304668. [PMID: 38820386 PMCID: PMC11142605 DOI: 10.1371/journal.pone.0304668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 05/15/2024] [Indexed: 06/02/2024] Open
Abstract
Aortic aneurysms (AA) and aorta dissection (AD) are life-threatening conditions with a rising incidence and high mortality rate. Recent research has linked non-coding RNAs to the regulation of AA and AD progression. In this study, we performed circRNA sequencing, microRNA (miRNA) sequencing, and messenger RNA (mRNA) sequencing on plasma samples from AA and AD patients to identify the key circRNA-miRNA-mRNA axis involved in the transition from AA to AD. Our results showed elevated levels of circ_0000006 and circ_0000160, along with decreased levels of hsa-let-7e-5p in AD samples compared to AA samples. Predictive analysis suggested that circ_0000006 and circ_0000160 potentially target hsa-let-7e-5p, which in turn may bind to the mRNA of Ubiquilin 4 (UBQLN4). In an AD cell model using vascular smooth muscle cells (VSMCs), silencing circ_0000006 and circ_0000160 attenuated the effects of platelet-derived growth factor (PDGF)-induced phenotypic changes, proliferation, and migration. This effect was partially reversed by inhibiting hsa-let-7e-5p. Furthermore, we found that overexpression of UBQLN4 counteracted the effects of hsa-let-7e-5p, suggesting UBQLN4 as a downstream mediator of hsa-let-7e-5p. In an animal model of AD, knockdown of circ_0000006 and circ_0000160 also showed protective effects against aortic septation. Overall, our findings indicate that the upregulation of circ_0000006 and circ_0000160 contributes to the progression from AA to AD by influencing abnormal phenotypic changes, migration, and proliferation of VSMCs. The Hsa-let-7e-5p/UBQLN4 axis may play a critical role in AD development. Targeting circ_0000006 and circ_0000160 could be a potential therapeutic strategy for preventing the progression of AD.
Collapse
Affiliation(s)
- Yong Liu
- Department of Cardiovascular Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Liang Wang
- Department of Cardiovascular Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Dongyun Lei
- Department of Dermatology, Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin, China
| | - Xiong Tan
- Department of Cardiovascular Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Weitao Jin
- Department of Cardiovascular Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Ming Hou
- Department of Cardiovascular Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Kai Hu
- Department of Cardiovascular Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Yu Yan
- Department of Cardiovascular Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Hao Wang
- Department of Cardiovascular Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Chaohu Xiang
- Department of Cardiovascular Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Yinglong Lai
- Department of Cardiovascular Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| |
Collapse
|
3
|
Alexander KC, Anderson CW, Agala CB, Tasoudis P, Collins EN, Ding Y, Blackwell JW, Willcox DE, Farivar BS, Kibbe MR, Ikonomidis JS, Akerman AW. Paradoxical Changes: EMMPRIN Tissue and Plasma Levels in Marfan Syndrome-Related Thoracic Aortic Aneurysms. J Clin Med 2024; 13:1548. [PMID: 38541774 PMCID: PMC10970932 DOI: 10.3390/jcm13061548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/01/2024] [Accepted: 03/03/2024] [Indexed: 11/03/2024] Open
Abstract
Background: Thoracic aortic aneurysms (TAAs) associated with Marfan syndrome (MFS) are unique in that extracellular matrix metalloproteinase inducer (EMMPRIN) levels do not behave the way they do in other cardiovascular pathologies. EMMPRIN is shed into the circulation through the secretion of extracellular vesicles. This has been demonstrated to be dependent upon the Membrane Type-1 MMP (MT1-MMP). We investigated this relationship in MFS TAA tissue and plasma to discern why unique profiles may exist. Methods: Protein targets were measured in aortic tissue and plasma from MFS patients with TAAs and were compared to healthy controls. The abundance and location of MT1-MMP was modified in aortic fibroblasts and secreted EMMPRIN was measured in conditioned culture media. Results: EMMPRIN levels were elevated in MFS TAA tissue but reduced in plasma, compared to the controls. Tissue EMMPRIN elevation did not induce MMP-3, MMP-8, or TIMP-1 expression, while MT1-MMP and TIMP-2 were elevated. MMP-2 and MMP-9 were reduced in TAA tissue but increased in plasma. In aortic fibroblasts, EMMPRIN secretion required the internalization of MT1-MMP. Conclusions: In MFS, impaired EMMPRIN secretion likely contributes to higher tissue levels, influenced by MT1-MMP cellular localization. Low EMMPRIN levels, in conjunction with other MMP analytes, distinguished MFS TAAs from controls, suggesting diagnostic potential.
Collapse
Affiliation(s)
- Kyle C. Alexander
- Department of Surgery, Division of Cardiothoracic Surgery, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (K.C.A.); (C.B.A.); (Y.D.); (J.W.B.); (J.S.I.)
| | - Carlton W. Anderson
- Advanced Analytics Core, Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Chris B. Agala
- Department of Surgery, Division of Cardiothoracic Surgery, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (K.C.A.); (C.B.A.); (Y.D.); (J.W.B.); (J.S.I.)
| | - Panagiotis Tasoudis
- Department of Surgery, Division of Cardiothoracic Surgery, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (K.C.A.); (C.B.A.); (Y.D.); (J.W.B.); (J.S.I.)
| | - Elizabeth N. Collins
- Department of Surgery, Division of Cardiothoracic Surgery, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (K.C.A.); (C.B.A.); (Y.D.); (J.W.B.); (J.S.I.)
| | - Yiwen Ding
- Department of Surgery, Division of Cardiothoracic Surgery, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (K.C.A.); (C.B.A.); (Y.D.); (J.W.B.); (J.S.I.)
| | - John W. Blackwell
- Department of Surgery, Division of Cardiothoracic Surgery, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (K.C.A.); (C.B.A.); (Y.D.); (J.W.B.); (J.S.I.)
| | - Danielle E. Willcox
- Department of Surgery, Division of Cardiothoracic Surgery, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (K.C.A.); (C.B.A.); (Y.D.); (J.W.B.); (J.S.I.)
| | - Behzad S. Farivar
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA (M.R.K.)
| | - Melina R. Kibbe
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA (M.R.K.)
- Department of Surgery, University of Virginia, Charlottesville, VA 22908, USA
| | - John S. Ikonomidis
- Department of Surgery, Division of Cardiothoracic Surgery, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (K.C.A.); (C.B.A.); (Y.D.); (J.W.B.); (J.S.I.)
| | - Adam W. Akerman
- Department of Surgery, Division of Cardiothoracic Surgery, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (K.C.A.); (C.B.A.); (Y.D.); (J.W.B.); (J.S.I.)
| |
Collapse
|
4
|
Alexander KC, Ikonomidis JS, Akerman AW. New Directions in Diagnostics for Aortic Aneurysms: Biomarkers and Machine Learning. J Clin Med 2024; 13:818. [PMID: 38337512 PMCID: PMC10856211 DOI: 10.3390/jcm13030818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/26/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024] Open
Abstract
This review article presents an appraisal of pioneering technologies poised to revolutionize the diagnosis and management of aortic aneurysm disease, with a primary focus on the thoracic aorta while encompassing insights into abdominal manifestations. Our comprehensive analysis is rooted in an exhaustive survey of contemporary and historical research, delving into the realms of machine learning (ML) and computer-assisted diagnostics. This overview draws heavily upon relevant studies, including Siemens' published field report and many peer-reviewed publications. At the core of our survey lies an in-depth examination of ML-driven diagnostic advancements, dissecting an array of algorithmic suites to unveil the foundational concepts anchoring computer-assisted diagnostics and medical image processing. Our review extends to a discussion of circulating biomarkers, synthesizing insights gleaned from our prior research endeavors alongside contemporary studies gathered from the PubMed Central database. We elucidate the prevalent challenges and envisage the potential fusion of AI-guided aortic measurements and sophisticated ML frameworks with the computational analyses of pertinent biomarkers. By framing current scientific insights, we contemplate the transformative prospect of translating fundamental research into practical diagnostic tools. This narrative not only illuminates present strides, but also forecasts promising trajectories in the clinical evaluation and therapeutic management of aortic aneurysm disease.
Collapse
Affiliation(s)
| | | | - Adam W. Akerman
- Department of Surgery, Division of Cardiothoracic Surgery, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (K.C.A.); (J.S.I.)
| |
Collapse
|
5
|
Kurihara G, Ujihara Y, Nakamura M, Sugita S. Delamination Strength and Elastin Interlaminar Fibers Decrease with the Development of Aortic Dissection in Model Rats. Bioengineering (Basel) 2023; 10:1292. [PMID: 38002416 PMCID: PMC10669036 DOI: 10.3390/bioengineering10111292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/05/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
Aortic dissection (AD) is a life-threatening tear of the vascular tissue with creation of a false lumen. To explore the mechanism underlying this tissue tear, this study investigated the delamination strength of AD model rats and the histological composition of the aorta at various stages of AD development. SD rats were administrated beta-amino propionitrile for 0 (Control), 3 (Pre-dissection), and 6 (Dissection) weeks. The thoracic aorta was harvested at 10-11 weeks of age. The Dissection group exclusively showed AD at the ascending aorta. The delamination strength, a force that separates the aorta in the radial direction, of the descending aorta decreased significantly in the order of the Control, Pre-dissection, and Dissection groups. A quantitative histological analysis of the aortic tissue demonstrated that, compared with the Control group, the area fraction of collagen was significantly higher in the Pre-dissection and Dissection groups and that of elastin was significantly lower in the Dissection group. The area fraction of the elastin fibers between the elastic laminas (interlaminar fibers) was significantly decreased in the order of the Control, Pre-dissection, and Dissection groups. Histological changes of the aortic tissue, perhaps a reduction in interlaminar fibers mainly aligned in the radial direction, decreased delamination strength, thereby causing AD.
Collapse
Affiliation(s)
- Genki Kurihara
- Department of Electrical and Mechanical Engineering, Graduate School of Engineering, Nagoya Institute of Technology, Nagoya 466-8555, Japan; (G.K.); (Y.U.); (M.N.)
| | - Yoshihiro Ujihara
- Department of Electrical and Mechanical Engineering, Graduate School of Engineering, Nagoya Institute of Technology, Nagoya 466-8555, Japan; (G.K.); (Y.U.); (M.N.)
| | - Masanori Nakamura
- Department of Electrical and Mechanical Engineering, Graduate School of Engineering, Nagoya Institute of Technology, Nagoya 466-8555, Japan; (G.K.); (Y.U.); (M.N.)
- Center of Biomedical Physics and Information Technology, Nagoya Institute of Technology, Nagoya 466-8555, Japan
- Department of Nanopharmaceutical Sciences, Nagoya Institute of Technology, Nagoya 466-8555, Japan
| | - Shukei Sugita
- Department of Electrical and Mechanical Engineering, Graduate School of Engineering, Nagoya Institute of Technology, Nagoya 466-8555, Japan; (G.K.); (Y.U.); (M.N.)
- Center of Biomedical Physics and Information Technology, Nagoya Institute of Technology, Nagoya 466-8555, Japan
| |
Collapse
|
6
|
Ashida S, Yamawaki-Ogata A, Tokoro M, Mutsuga M, Usui A, Narita Y. Administration of anti-inflammatory M2 macrophages suppresses progression of angiotensin II-induced aortic aneurysm in mice. Sci Rep 2023; 13:1380. [PMID: 36697439 PMCID: PMC9877022 DOI: 10.1038/s41598-023-27412-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 01/02/2023] [Indexed: 01/27/2023] Open
Abstract
Aortic aneurysm (AA) is a vascular disorder characterized pathologically by inflammatory cell invasion and extracellular matrix (ECM) degradation. It is known that regulation of the balance between pro-inflammatory M1 macrophages (M1Ms) and anti-inflammatory M2 macrophages (M2Ms) plays a pivotal role in AA stabilization. We investigated the effects of M2M administration in an apolipoprotein E-deficient (apoE-/-) mouse model in which AA was induced by angiotensin II (ATII) infusion. Mice received intraperitoneal administration of 1 million M2Ms 4 weeks after ATII infusion. Compared with a control group that was administered saline, the M2M group exhibited reduced AA expansion; decreased expression levels of interleukin (IL)-1β, IL-6, tumor necrosis factor-α (TNF-α), and monocyte chemoattractant protein-1 (MCP-1); and a lower M1M/M2M ratio. Moreover, the M2M group exhibited upregulation of anti-inflammatory factors, including IL-4 and IL-10. PKH26-labeled M2Ms accounted for 6.5% of cells in the aneurysmal site and co-expressed CD206. Taken together, intraperitoneal administration of M2Ms inhibited AA expansion by reducing the inflammatory reaction via regulating the M1M/M2M ratio. This study shows that M2M administration might be useful for the treatment of AA.
Collapse
Affiliation(s)
- Shinichi Ashida
- Department of Cardiac Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Aika Yamawaki-Ogata
- Department of Cardiac Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Masayoshi Tokoro
- Department of Cardiac Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Masato Mutsuga
- Department of Cardiac Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Akihiko Usui
- Department of Cardiac Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Yuji Narita
- Department of Cardiac Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan.
| |
Collapse
|
7
|
Kilic T, Okuno K, Eguchi S, Kassiri Z. Disintegrin and Metalloproteinases (ADAMs [A Disintegrin and Metalloproteinase] and ADAMTSs [ADAMs With a Thrombospondin Motif]) in Aortic Aneurysm. Hypertension 2022; 79:1327-1338. [PMID: 35543145 DOI: 10.1161/hypertensionaha.122.17963] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Aortic aneurysm is a complex pathology that can be lethal if not detected in time. Although several molecular mechanisms and pathways have been identified to be involved in aortic aneurysm development and growth, the current lack of an effective pharmacological treatment highlights the need for a more thorough understanding of the factors that regulate the remodeling of the aortic wall in response to triggers that lead to aneurysm formation. This task is further complicated by the regional heterogeneity of the aorta and that thoracic and abdominal aortic aneurysm are distinct pathologies with different risk factors and distinct course of progression. ADAMs (a disintegrin and metalloproteinases) and ADAMTS (ADAMs with a thrombospondin motif) are proteinases that share similarities with other proteinases but possess unique and diverse properties that place them in a category of their own. In this review, we discuss what is known on how ADAMs and ADAMTSs are altered in abdominal aortic aneurysm and thoracic aortic aneurysm in patients, in different animal models, and their role in regulating the function of different vascular and inflammatory cell types. A full understanding of the role of ADAMs and ADAMTSs in aortic aneurysm will help reveal a more complete understanding of the underlying mechanism driving aneurysm formation, which will help towards developing an effective treatment in preventing or limiting the growth of aortic aneurysm.
Collapse
Affiliation(s)
- Tolga Kilic
- Department of Physiology, Cardiovascular Research Center, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada (T.K., Z.K.)
| | - Keisuke Okuno
- Cardiovascular Research Center and Department of Cardiovascular Science, Lewis Katz School of Medicine at Temple University, Philadelphia, PA (K.O., S.E.)
| | - Satoru Eguchi
- Cardiovascular Research Center and Department of Cardiovascular Science, Lewis Katz School of Medicine at Temple University, Philadelphia, PA (K.O., S.E.)
| | - Zamaneh Kassiri
- Department of Physiology, Cardiovascular Research Center, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada (T.K., Z.K.)
| |
Collapse
|
8
|
Mackay CDA, Jadli AS, Fedak PWM, Patel VB. Adventitial Fibroblasts in Aortic Aneurysm: Unraveling Pathogenic Contributions to Vascular Disease. Diagnostics (Basel) 2022; 12:diagnostics12040871. [PMID: 35453919 PMCID: PMC9025866 DOI: 10.3390/diagnostics12040871] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/15/2022] [Accepted: 03/28/2022] [Indexed: 12/21/2022] Open
Abstract
Aortic aneurysm (AA) is a degenerative vascular disease that involves aortic dilatation, and, if untreated, it can lead to rupture. Despite its significant impact on the healthcare system, its multifactorial nature and elusive pathophysiology contribute to limited therapeutic interventions that prevent the progression of AA. Thus, further research into the mechanisms underlying AA is paramount. Adventitial fibroblasts are one of the key constituents of the aortic wall, and they play an essential role in maintaining vessel structure and function. However, adventitial fibroblasts remain understudied when compared with endothelial cells and smooth muscle cells. Adventitial fibroblasts facilitate the production of extracellular matrix (ECM), providing structural integrity. However, during biomechanical stress and/or injury, adventitial fibroblasts can be activated into myofibroblasts, which move to the site of injury and secrete collagen and cytokines, thereby enhancing the inflammatory response. The overactivation or persistence of myofibroblasts has been shown to initiate pathological vascular remodeling. Therefore, understanding the underlying mechanisms involved in the activation of fibroblasts and in regulating myofibroblast activation may provide a potential therapeutic target to prevent or delay the progression of AA. This review discusses mechanistic insights into myofibroblast activation and associated vascular remodeling, thus illustrating the contribution of fibroblasts to the pathogenesis of AA.
Collapse
Affiliation(s)
- Cameron D. A. Mackay
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; (C.D.A.M.); (A.S.J.)
- Libin Cardiovascular Institute, University of Calgary, 3330 Hospital Drive NW HMRB-G71, Calgary, AB T2N 4N1, Canada;
| | - Anshul S. Jadli
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; (C.D.A.M.); (A.S.J.)
- Libin Cardiovascular Institute, University of Calgary, 3330 Hospital Drive NW HMRB-G71, Calgary, AB T2N 4N1, Canada;
| | - Paul W. M. Fedak
- Libin Cardiovascular Institute, University of Calgary, 3330 Hospital Drive NW HMRB-G71, Calgary, AB T2N 4N1, Canada;
- Section of Cardiac Surgery, Department of Cardiac Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Vaibhav B. Patel
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; (C.D.A.M.); (A.S.J.)
- Libin Cardiovascular Institute, University of Calgary, 3330 Hospital Drive NW HMRB-G71, Calgary, AB T2N 4N1, Canada;
- Correspondence: or ; Tel.: +1-(403)-220-3446
| |
Collapse
|
9
|
5'-tiRNA-Cys-GCA regulates VSMC proliferation and phenotypic transition by targeting STAT4 in aortic dissection. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 26:295-306. [PMID: 34513311 PMCID: PMC8413832 DOI: 10.1016/j.omtn.2021.07.013] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 07/17/2021] [Indexed: 12/11/2022]
Abstract
Accumulating evidence shows that tRNA-derived fragments are a novel class of functional small non-coding RNA; however, their roles in aortic dissection (AD) are still unknown. In this study, we found that 5'-tiRNA-Cys-GCA was significantly downregulated in human and mouse models of aortic dissection. The abnormal proliferation, migration, and phenotypic transition of vascular smooth muscle cells (VSMCs) played a crucial role in the initiation and progression of aortic dissection, with 5'-tiRNA-Cys-GCA as a potential phenotypic switching regulator, because its overexpression inhibited the proliferation and migration of VSMCs and increased the expression of contractile markers. In addition, we verified that signal transducer and activator of transcription 4 (STAT4) was a direct downstream target of 5'-tiRNA-Cys-GCA. We found that the STAT4 upregulation in oxidized low-density lipoprotein (ox-LDL)-treated VSMCs, which promoted cell proliferation, migration, and phenotypic transformation, was reversed by 5'-tiRNA-Cys-GCA. Furthermore, 5'-tiRNA-Cys-GCA treatment reduced the incidence and prevented the malignant process of angiotensin II- and β-aminopropionitrile-induced AD in mice. In conclusion, our findings reveal that 5'-tiRNA-Cys-GCA is a potential regulator of the AD pathological process via the STAT4 signaling pathway, providing a novel clinical target for the development of future treatment strategies for aortic dissection.
Collapse
|
10
|
Kozakai M, Narita Y, Yamawaki-Ogata A, Fujimoto KL, Mutsuga M, Tokuda Y, Usui A. Alternative therapeutic strategy for existing aortic aneurysms using mesenchymal stem cell-derived exosomes. Expert Opin Biol Ther 2021; 22:95-104. [PMID: 34823415 DOI: 10.1080/14712598.2022.2005575] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
BACKGROUND Several studies demonstrated the therapeutic potential of mesenchymal stem cell-derived exosomes (MSC-exs) based on their anti-inflammatory properties. The objective was to determine the therapeutic effects of MSC-exs on aortic aneurysms (AAs) caused by atherosclerosis. RESEARCH DESIGN AND METHODS Apolipoprotein E knockout mice with AAs induced by angiotensin II were injected with MSC-exs or saline as a control. The change in the diameter of the aorta was measured. The expression of AA-related proteins and the histology of the aortic wall were investigated at 1 week after treatment. MicroRNA and protein profiles of MSC-exs were examined. RESULTS MSC-exs significantly attenuated AA progression (2.04 ± 0.20 mm in the saline group and 1.34 ± 0.13 mm in the MSC-ex group, P = 0.004). In the MSC-ex group, the expression of IL-1β, TNF-α and MCP-1 decreased, and expression of IGF-1 and TIMP-2 increased. MSC-ex induced the M2 phenotype in macrophages and suppressed the destruction of the elastic lamellae in the aortic wall. MSC-exs contained high levels of 10 microRNAs that inhibit AA formation and 13 proteins that inhibit inflammation and promote extracellular matrix synthesis. CONCLUSIONS MSC-ex might be a novel alternative therapeutic tool for treatment of existing AAs.
Collapse
Affiliation(s)
- Motoshi Kozakai
- Department of Cardiac Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yuji Narita
- Department of Cardiac Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Aika Yamawaki-Ogata
- Department of Cardiac Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kazuro L Fujimoto
- Department of Cardiac Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masato Mutsuga
- Department of Cardiac Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoshiyuki Tokuda
- Department of Cardiac Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Akihiko Usui
- Department of Cardiac Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
11
|
Akerman AW, Collins EN, Peterson AR, Collins LB, Harrison JK, DeVaughn A, Townsend JM, Vanbuskirk RL, Riopedre‐Maqueira J, Reyes A, Oh JE, Raybuck CM, Jones JA, Ikonomidis JS. miR-133a Replacement Attenuates Thoracic Aortic Aneurysm in Mice. J Am Heart Assoc 2021; 10:e019862. [PMID: 34387094 PMCID: PMC8475064 DOI: 10.1161/jaha.120.019862] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 04/01/2021] [Indexed: 11/22/2022]
Abstract
Background Thoracic aortic aneurysms (TAAs) occur because of abnormal remodeling of aortic extracellular matrix and are accompanied by the emergence of proteolytically active myofibroblasts. The microRNA miR-133a regulates cellular phenotypes and is reduced in clinical TAA specimens. This study tested the hypothesis that miR-133a modulates aortic fibroblast phenotype, and overexpression by lentivirus attenuates the development of TAA in a murine model. Methods and Results TAA was induced in mice. Copy number of miR-133a was reduced in TAA tissue and linear regression analysis confirmed an inverse correlation between aortic diameter and miR-133a. Analyses of phenotypic markers revealed an mRNA expression profile consistent with myofibroblasts in TAA tissue. Fibroblasts were isolated from the thoracic aortae of mice with/without TAA. When compared with controls, miR-133a was reduced, migration was increased, adhesion was reduced, and the ability to contract a collagen disk was increased. Overexpression/knockdown of miR-133a controlled these phenotypes. After TAA induction in mice, a single tail-vein injection of either miR-133a overexpression or scrambled sequence (control) lentivirus was performed. Overexpression of miR-133a attenuated TAA development. The pro-protein convertase furin was confirmed to be a target of miR-133a by luciferase reporter assay. Furin was elevated in this murine model of TAA and repressed by miR-133a replacement in vivo resulting in reduced proteolytic activation. Conclusions miR-133a regulates aortic fibroblast phenotype and over-expression prevented the development of TAA in a murine model. These findings suggest that stable alterations in aortic fibroblasts are associated with development of TAA and regulation by miR-133a may lead to a novel therapeutic strategy.
Collapse
MESH Headings
- Animals
- Aorta, Thoracic/metabolism
- Aorta, Thoracic/pathology
- Aortic Aneurysm, Thoracic/chemically induced
- Aortic Aneurysm, Thoracic/genetics
- Aortic Aneurysm, Thoracic/metabolism
- Aortic Aneurysm, Thoracic/prevention & control
- Calcium Chloride
- Cell Adhesion
- Cell Movement
- Cells, Cultured
- Dilatation, Pathologic
- Disease Models, Animal
- Fibroblasts/metabolism
- Fibroblasts/pathology
- Furin/genetics
- Furin/metabolism
- Genetic Therapy
- Genetic Vectors
- Lentivirus/genetics
- Mice, Inbred C57BL
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Phenotype
- Vascular Remodeling
- Mice
Collapse
Affiliation(s)
- Adam W. Akerman
- Division of Cardiothoracic SurgeryDepartment of SurgeryUniversity of North CarolinaChapel HillNC
| | - Elizabeth N. Collins
- Division of Cardiothoracic SurgeryDepartment of SurgeryUniversity of North CarolinaChapel HillNC
| | - Andrew R. Peterson
- Division of Cardiothoracic SurgeryDepartment of SurgeryUniversity of North CarolinaChapel HillNC
| | - Lauren B. Collins
- Division of Cardiothoracic SurgeryDepartment of SurgeryUniversity of North CarolinaChapel HillNC
| | - Jessica K. Harrison
- Division of Cardiothoracic SurgeryDepartment of SurgeryUniversity of North CarolinaChapel HillNC
| | - Amari DeVaughn
- Division of Cardiothoracic SurgeryDepartment of SurgeryUniversity of North CarolinaChapel HillNC
| | - Jaleel M. Townsend
- Division of Cardiothoracic SurgeryDepartment of SurgeryUniversity of North CarolinaChapel HillNC
| | - Rebecca L. Vanbuskirk
- Division of Cardiothoracic SurgeryDepartment of SurgeryUniversity of North CarolinaChapel HillNC
| | | | - Ailet Reyes
- Division of Cardiothoracic SurgeryDepartment of SurgeryUniversity of North CarolinaChapel HillNC
| | - Joyce E. Oh
- Division of Cardiothoracic SurgeryDepartment of SurgeryUniversity of North CarolinaChapel HillNC
| | - Charles M. Raybuck
- Division of Cardiothoracic SurgeryDepartment of SurgeryUniversity of North CarolinaChapel HillNC
| | - Jeffrey A. Jones
- Division of Cardiothoracic SurgeryDepartment of SurgeryMedical University of South CarolinaCharlestonSC
- Research ServiceRalph H. Johnson VA Medical CenterCharlestonSC
| | - John S. Ikonomidis
- Division of Cardiothoracic SurgeryDepartment of SurgeryUniversity of North CarolinaChapel HillNC
| |
Collapse
|
12
|
Pei H, Zhang H, Tian C, Sun X, Qian X, Meng Y, Guo X, Chang Q. Proliferative Vascular Smooth Muscle Cells Stimulate Extracellular Matrix Production via Osteopontin/p38 MAPK Signaling Pathway. Cardiology 2021; 146:646-655. [PMID: 34186540 DOI: 10.1159/000513143] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 11/13/2020] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Extracellular matrix disorder and cellular phenotype transformation are the major histopathological features associated with ascending aortic aneurysms. Rare studies have investigated the relationship between cellular phenotype transformation and the abnormalities of the matrix constituents. In this study, we investigated whether the cellular phenotype transformation resulted in the extracellular matrix disorder. METHODS Aortic samples were obtained from 20 patients undergoing operations for ascending aortic aneurysms. Control aortic samples were obtained from 15 patients who underwent coronary artery bypass graft. The protein levels of osteopontin (OPN), collagen, and elastin were examined using Western blot, and quantitative reverse transcriptase-PCR was used to analyze the mRNA expression of collagen and elastin. In vitro experiment, vascular smooth muscle cells (VSMCs) were treated with recombinant human OPN (rh-OPN) or p38 MAPK inhibitor (SB203580) to investigate whether OPN and p38 MAPK regulated the expression of collagen and elastin. RESULTS The protein level of OPN and collagen III increased in ascending aortic aneurysm samples, compared with controls (p < 0.05). There was no difference in the protein level of elastin between aneurysm tissues and the controls. VSMCs treated with rh-OPN increased the collagen III and elastin protein level and mRNA expression (p < 0.05). Cells treated with SB203580 decreased the collagen III and elastin protein level and mRNA expression (p < 0.05). Furthermore, VSMCs incubated with SB203580 reduced the rh-OPN-induced production of collagen III and elastin (p < 0.05). CONCLUSION OPN, the proliferative VSMCs maker, increased the expression of extracellular matrix. OPN/p38 MAPK signaling pathways may protect against ascending aortic aneurysm progression.
Collapse
Affiliation(s)
- Huawei Pei
- Department of Cardiovascular Surgery, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Haiyue Zhang
- Department of Neurology, Xuanwu Hospital Capital Medical University, Beijing, China
| | - Chuan Tian
- Department of Cardiovascular Surgery, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaogang Sun
- Department of Cardiovascular Surgery, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Xiangyang Qian
- Department of Cardiovascular Surgery, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Yanhai Meng
- Department of Cardiovascular Surgery, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaobo Guo
- Department of Cardiovascular Surgery, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Qian Chang
- Department of Cardiovascular Surgery, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
13
|
Interaction between the apelinergic system and ACE2 in the cardiovascular system: therapeutic implications. Clin Sci (Lond) 2021; 134:2319-2336. [PMID: 32901821 DOI: 10.1042/cs20200479] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/27/2020] [Accepted: 09/01/2020] [Indexed: 12/13/2022]
Abstract
The apelinergic system is widely expressed and acts through autocrine and paracrine signaling to exert protective effects, including vasodilatory, metabolic, and inotropic effects on the cardiovascular (CV) system. The apelin pathway's dominant physiological role has delineated therapeutic implications for coronary artery disease, heart failure (HF), aortic aneurysm, pulmonary arterial hypertension (PAH), and transplant vasculopathy. Apelin peptides interact with the renin-angiotensin system (RAS) by promoting angiotensin converting enzyme 2 (ACE2) transcription leading to increased ACE2 protein and activity while also antagonizing the effects of angiotensin II (Ang II). Apelin modulation of the RAS by increasing ACE2 action is limited due to its rapid degradation by proteases, including ACE2, neprilysin (NEP), and kallikrein. Apelin peptides are hence tightly regulated in a negative feedback manner by ACE2. Plasma apelin levels are suppressed in pathological conditions, but its diagnostic and prognostic utility requires further clinical exploration. Enhancing the beneficial actions of apelin peptides and ACE2 axes while complementing existing pharmacological blockade of detrimental pathways is an exciting pathway for developing new therapies. In this review, we highlight the interaction between the apelin and ACE2 systems, discuss their pathophysiological roles and potential for treating a wide array of CV diseases (CVDs).
Collapse
|
14
|
Akita N, Narita Y, Yamawaki-Ogata A, Usui A, Komori K. Therapeutic effect of allogeneic bone marrow-derived mesenchymal stromal cells on aortic aneurysms. Cell Tissue Res 2021; 383:781-793. [PMID: 33146827 DOI: 10.1007/s00441-020-03295-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 09/14/2020] [Indexed: 01/14/2023]
Abstract
We previously reported the effectiveness of autologous mesenchymal stromal cells (MSCs) for the treatment of aortic aneurysm (AA), mediated mainly by these cells' anti-inflammatory properties. In this study, we investigate whether the therapeutic effects of allogeneic MSCs on AA are the same as those of autologous MSCs. To examine the immune response to allogeneic MSCs, C57BL/6 lymphocytes were co-cultured with BALB/c MSCs for 5 days in vitro. Apolipoprotein E-deficient C57BL/6 mice with AA induced by angiotensin II were randomly divided into three groups defined by the following intravenous injections: (i) 0.2 ml of saline (n = 10, group S) as a control, (ii) 1 × 106 autologous MSCs (isolated from C57BL/6, n = 10, group Au) and (iii) 1 × 106 allogeneic MSCs (isolated from BALB/c, n = 10, group Al). Two weeks after injection, aortic diameters were measured, along with enzymatic activities of MMP-2 and MMP-9 and cytokine concentrations in AAs. Neither allogenic (BALB/c) MSCs nor autologous (C57BL/6) MSCs accelerated the proliferation of lymphocytes obtained from C57BL/6. Compared with group S, groups Au and Al had significantly shorter aortic diameters (group S vs Au vs Al; 2.29 vs 1.40 vs 1.36 mm, respectively, p < 0.01), reduced MMP-2 and MMP-9 activities, downregulated IL-6 and MCP-1 and upregulated expression of IGF-1 and TIMP-2. There were no differences in these results between groups Au and Al. Thus, our study suggests that treatment with allogeneic MSCs improves chronic inflammation and reduced aortic dilatation. These effects were equivalent to those of autologous MSCs in established mouse models of AA.
Collapse
Affiliation(s)
- Naohiro Akita
- Division of Vascular Surgery, Department of Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yuji Narita
- Department of Cardiac Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan.
| | - Aika Yamawaki-Ogata
- Department of Cardiac Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Akihiko Usui
- Department of Cardiac Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Kimihiro Komori
- Division of Vascular Surgery, Department of Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
15
|
Bruijn LE, van den Akker BEWM, van Rhijn CM, Hamming JF, Lindeman JHN. Extreme Diversity of the Human Vascular Mesenchymal Cell Landscape. J Am Heart Assoc 2020; 9:e017094. [PMID: 33190596 PMCID: PMC7763765 DOI: 10.1161/jaha.120.017094] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 10/05/2020] [Indexed: 12/17/2022]
Abstract
Background Human mesenchymal cells are culprit factors in vascular (patho)physiology and are hallmarked by phenotypic and functional heterogeneity. At present, they are subdivided by classic umbrella terms, such as "fibroblasts," "myofibroblasts," "smooth muscle cells," "fibrocytes," "mesangial cells," and "pericytes." However, a discriminative marker-based subclassification has to date not been established. Methods and Results As a first effort toward a classification scheme, a systematic literature search was performed to identify the most commonly used phenotypical and functional protein markers for characterizing and classifying vascular mesenchymal cell subpopulation(s). We next applied immunohistochemistry and immunofluorescence to inventory the expression pattern of identified markers on human aorta specimens representing early, intermediate, and end stages of human atherosclerotic disease. Included markers comprise markers for mesenchymal lineage (vimentin, FSP-1 [fibroblast-specific protein-1]/S100A4, cluster of differentiation (CD) 90/thymocyte differentiation antigen 1, and FAP [fibroblast activation protein]), contractile/non-contractile phenotype (α-smooth muscle actin, smooth muscle myosin heavy chain, and nonmuscle myosin heavy chain), and auxiliary contractile markers (h1-Calponin, h-Caldesmon, Desmin, SM22α [smooth muscle protein 22α], non-muscle myosin heavy chain, smooth muscle myosin heavy chain, Smoothelin-B, α-Tropomyosin, and Telokin) or adhesion proteins (Paxillin and Vinculin). Vimentin classified as the most inclusive lineage marker. Subset markers did not separate along classic lines of smooth muscle cell, myofibroblast, or fibroblast, but showed clear temporal and spatial diversity. Strong indications were found for presence of stem cells/Endothelial-to-Mesenchymal cell Transition and fibrocytes in specific aspects of the human atherosclerotic process. Conclusions This systematic evaluation shows a highly diverse and dynamic landscape for the human vascular mesenchymal cell population that is not captured by the classic nomenclature. Our observations stress the need for a consensus multiparameter subclass designation along the lines of the cluster of differentiation classification for leucocytes.
Collapse
Affiliation(s)
- Laura E. Bruijn
- Division of Vascular SurgeryDepartment of SurgeryLeiden University Medical CenterLeidenthe Netherlands
| | | | - Connie M. van Rhijn
- Division of Vascular SurgeryDepartment of SurgeryLeiden University Medical CenterLeidenthe Netherlands
| | - Jaap F. Hamming
- Division of Vascular SurgeryDepartment of SurgeryLeiden University Medical CenterLeidenthe Netherlands
| | - Jan H. N. Lindeman
- Division of Vascular SurgeryDepartment of SurgeryLeiden University Medical CenterLeidenthe Netherlands
| |
Collapse
|
16
|
Liu B, Granville DJ, Golledge J, Kassiri Z. Pathogenic mechanisms and the potential of drug therapies for aortic aneurysm. Am J Physiol Heart Circ Physiol 2020; 318:H652-H670. [PMID: 32083977 PMCID: PMC7099451 DOI: 10.1152/ajpheart.00621.2019] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 02/13/2020] [Accepted: 02/13/2020] [Indexed: 12/14/2022]
Abstract
Aortic aneurysm is a permanent focal dilation of the aorta. It is usually an asymptomatic disease but can lead to sudden death due to aortic rupture. Aortic aneurysm-related mortalities are estimated at ∼200,000 deaths per year worldwide. Because no pharmacological treatment has been found to be effective so far, surgical repair remains the only treatment for aortic aneurysm. Aortic aneurysm results from changes in the aortic wall structure due to loss of smooth muscle cells and degradation of the extracellular matrix and can form in different regions of the aorta. Research over the past decade has identified novel contributors to aneurysm formation and progression. The present review provides an overview of cellular and noncellular factors as well as enzymes that process extracellular matrix and regulate cellular functions (e.g., matrix metalloproteinases, granzymes, and cathepsins) in the context of aneurysm pathogenesis. An update of clinical trials focusing on therapeutic strategies to slow abdominal aortic aneurysm growth and efforts underway to develop effective pharmacological treatments is also provided.
Collapse
Affiliation(s)
- Bo Liu
- University of Wisconsin, Madison, Department of Surgery, Madison Wisconsin
| | - David J Granville
- International Collaboration on Repair Discoveries Centre and University of British Columbia Centre for Heart Lung Innovation, Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jonathan Golledge
- The Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Department of Vascular and Endovascular Surgery, Townsville Hospital and Health Services, Townsville, Queensland, Australia
| | - Zamaneh Kassiri
- University of Alberta, Department of Physiology, Cardiovascular Research Center, Faculty of Medicine and Dentistry, Edmonton, Alberta, Canada
| |
Collapse
|
17
|
Shen YH, LeMaire SA, Webb NR, Cassis LA, Daugherty A, Lu HS. Aortic Aneurysms and Dissections Series. Arterioscler Thromb Vasc Biol 2020; 40:e37-e46. [PMID: 32101472 DOI: 10.1161/atvbaha.120.313991] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The aortic wall is composed of highly dynamic cell populations and extracellular matrix. In response to changes in the biomechanical environment, aortic cells and extracellular matrix modulate their structure and functions to increase aortic wall strength and meet the hemodynamic demand. Compromise in the structural and functional integrity of aortic components leads to aortic degeneration, biomechanical failure, and the development of aortic aneurysms and dissections (AAD). A better understanding of the molecular pathogenesis of AAD will facilitate the development of effective medications to treat these conditions. Here, we summarize recent findings on AAD published in ATVB. In this issue, we focus on the dynamics of aortic cells and extracellular matrix in AAD; in the next issue, we will focus on the role of signaling pathways in AAD.
Collapse
Affiliation(s)
- Ying H Shen
- From the Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX (Y.H.S., S.A.L.).,Department of Cardiovascular Surgery, Texas Heart Institute, Houston (Y.H.S., S.A.L.)
| | - Scott A LeMaire
- From the Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX (Y.H.S., S.A.L.).,Department of Cardiovascular Surgery, Texas Heart Institute, Houston (Y.H.S., S.A.L.)
| | - Nancy R Webb
- Department of Pharmacology and Nutritional Sciences (N.R.W., L.A.C.), University of Kentucky, Lexington
| | - Lisa A Cassis
- Department of Pharmacology and Nutritional Sciences (N.R.W., L.A.C.), University of Kentucky, Lexington
| | - Alan Daugherty
- Department of Physiology and Saha Cardiovascular Research Center (A.D., H.S.L.), University of Kentucky, Lexington
| | - Hong S Lu
- Department of Physiology and Saha Cardiovascular Research Center (A.D., H.S.L.), University of Kentucky, Lexington
| |
Collapse
|
18
|
Akerman AW, Blanding WM, Stroud RE, Nadeau EK, Mukherjee R, Ruddy JM, Zile MR, Ikonomidis JS, Jones JA. Elevated Wall Tension Leads to Reduced miR-133a in the Thoracic Aorta by Exosome Release. J Am Heart Assoc 2020; 8:e010332. [PMID: 30572760 PMCID: PMC6405702 DOI: 10.1161/jaha.118.010332] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Background Reduced miR‐133a was previously found to be associated with thoracic aortic (TA) dilation, as seen in aneurysm disease. Because wall tension increases with vessel diameter (Law of Laplace), this study tested the hypothesis that elevated tension led to the reduction of miR‐133a in the TA. Methods and Results Elevated tension (1.5 g; 150 mm Hg) applied to murine TA ex vivo reduced miR‐133a tissue abundance compared with TA held at normotension (0.7 g; 70 mm Hg). Cellular miR‐133a levels were reduced with biaxial stretch of isolated murine TA fibroblasts, whereas smooth muscle cells were not affected. Mechanisms contributing to the loss of miR‐133a abundance were further investigated in TA fibroblasts. Biaxial stretch did not reduce primary miR‐133a transcription and had no effect on the expression/abundance of 3 microRNA‐specific exoribonucleases. Remarkably, biaxial stretch increased exosome secretion, and exosomes isolated from TA fibroblasts contained more miR‐133a. Inhibition of exosome secretion prevented the biaxial stretch‐induced reduction of miR‐133a. Subsequently, 2 in vivo models of hypertension were used to determine the effect of elevated wall tension on miR‐133a abundance in the TA: wild‐type mice with osmotic pump–mediated angiotensin II infusion and angiotensin II–independent spontaneously hypertensive mice. Interestingly, the abundance of miR‐133a was decreased in TA tissue and increased in the plasma in both models of hypertension compared with a normotensive control group. Furthermore, miR‐133a was elevated in the plasma of hypertensive human subjects, compared with normotensive patients. Conclusions Taken together, these results identified exosome secretion as a tension‐sensitive mechanism by which miR‐133a abundance was reduced in TA fibroblasts.
Collapse
Affiliation(s)
- Adam W Akerman
- 1 Division of Cardiothoracic Surgery Department of Surgery Medical University of South Carolina Charleston SC.,4 Cardiothoracic Surgery Research University of North Carolina at Chapel Hill NC
| | - Walker M Blanding
- 1 Division of Cardiothoracic Surgery Department of Surgery Medical University of South Carolina Charleston SC
| | - Robert E Stroud
- 1 Division of Cardiothoracic Surgery Department of Surgery Medical University of South Carolina Charleston SC
| | - Elizabeth K Nadeau
- 1 Division of Cardiothoracic Surgery Department of Surgery Medical University of South Carolina Charleston SC
| | - Rupak Mukherjee
- 1 Division of Cardiothoracic Surgery Department of Surgery Medical University of South Carolina Charleston SC.,2 Research Service Ralph H. Johnson Veterans Affairs Medical Center Charleston SC
| | - Jean Marie Ruddy
- 3 Division of Vascular Surgery Medical University of South Carolina Charleston SC
| | - Michael R Zile
- 1 Division of Cardiothoracic Surgery Department of Surgery Medical University of South Carolina Charleston SC.,2 Research Service Ralph H. Johnson Veterans Affairs Medical Center Charleston SC
| | - John S Ikonomidis
- 4 Cardiothoracic Surgery Research University of North Carolina at Chapel Hill NC
| | - Jeffrey A Jones
- 1 Division of Cardiothoracic Surgery Department of Surgery Medical University of South Carolina Charleston SC.,2 Research Service Ralph H. Johnson Veterans Affairs Medical Center Charleston SC
| |
Collapse
|
19
|
Sherifova S, Sommer G, Viertler C, Regitnig P, Caranasos T, Smith MA, Griffith BE, Ogden RW, Holzapfel GA. Failure properties and microstructure of healthy and aneurysmatic human thoracic aortas subjected to uniaxial extension with a focus on the media. Acta Biomater 2019; 99:443-456. [PMID: 31465883 DOI: 10.1016/j.actbio.2019.08.038] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 08/14/2019] [Accepted: 08/21/2019] [Indexed: 12/14/2022]
Abstract
Current clinical practice for aneurysmatic interventions is often based on the maximum diameter of the vessel and/or on the growth rate, although rupture can occur at any diameter and growth rate, leading to fatality. For 27 medial samples obtained from 12 non-aneurysmatic (control) and 9 aneurysmatic human descending thoracic aortas we examined: the mechanical responses up to rupture using uniaxial extension tests of circumferential and longitudinal specimens; the structure of these tissues using second-harmonic imaging and histology, in particular, the content proportions of collagen, elastic fibers and smooth muscle cells in the media. It was found that the mean failure stresses were higher in the circumferential directions (Control-C 1474kPa; Aneurysmatic-C 1446kPa), than in the longitudinal directions (Aneurysmatic-L 735kPa; Control-L 579kPa). This trend was the opposite to that observed for the mean collagen fiber directions measured from the loading axis (Control-L > Aneurysmatic-L > Aneurysmatic-C > Control-C), thus suggesting that the trend in the failure stress can in part be attributed to the collagen architecture. The difference in the mean values of the out-of-plane dispersion in the radial/longitudinal plane between the control and aneurysmatic groups was significant. The difference in the mean values of the mean fiber angle from the circumferential direction was also significantly different between the two groups. Most specimens showed delamination zones near the ruptured region in addition to ruptured collagen and elastic fibers. This study provides a basis for further studies on the microstructure and the uniaxial failure properties of (aneurysmatic) arterial walls towards realistic modeling and prediction of tissue failure. STATEMENT OF SIGNIFICANCE: A data set relating uniaxial failure properties to the microstructure of non-aneurysmatic and aneurysmatic human thoracic aortic medias under uniaxial extension tests is presented for the first time. It was found that the mean failure stresses were higher in the circumferential directions, than in the longitudinal directions. The general trend for the failure stresses was Control-C > Aneurysmatic-C > Aneurysmatic-L > Control-L, which was the opposite of that observed for the mean collagen fiber direction relative to the loading axis (Control-L > Aneurysmatic-L > Aneurysmatic-C > Control-C) suggesting that the trend in the failure stress can in part be attributed to the collagen architecture. This study provides a first step towards more realistic modeling and prediction of tissue failure.
Collapse
|
20
|
Sherifova S, Holzapfel GA. Biomechanics of aortic wall failure with a focus on dissection and aneurysm: A review. Acta Biomater 2019; 99:1-17. [PMID: 31419563 PMCID: PMC6851434 DOI: 10.1016/j.actbio.2019.08.017] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 08/05/2019] [Accepted: 08/08/2019] [Indexed: 12/12/2022]
Abstract
Aortic dissections and aortic aneurysms are fatal events characterized by structural changes to the aortic wall. The maximum diameter criterion, typically used for aneurysm rupture risk estimations, has been challenged by more sophisticated biomechanically motivated models in the past. Although these models are very helpful for the clinicians in decision-making, they do not attempt to capture material failure. Following a short overview of the microstructure of the aorta, we analyze the failure mechanisms involved in the dissection and rupture by considering also traumatic rupture. We continue with a literature review of experimental studies relevant to quantify tissue strength. More specifically, we summarize more extensively uniaxial tensile, bulge inflation and peeling tests, and we also specify trouser, direct tension and in-plane shear tests. Finally we analyze biomechanically motivated models to predict rupture risk. Based on the findings of the reviewed studies and the rather large variations in tissue strength, we propose that an appropriate material failure criterion for aortic tissues should also reflect the microstructure in order to be effective. STATEMENT OF SIGNIFICANCE: Aortic dissections and aortic aneurysms are fatal events characterized by structural changes to the aortic wall. Despite the advances in medical, biomedical and biomechanical research, the mortality rates of aneurysms and dissections remain high. The present review article summarizes experimental studies that quantify the aortic wall strength and it discusses biomechanically motivated models to predict rupture risk. We identified contradictory observations and a large variation within and between data sets, which may be due to biological variations, different sample sizes, differences in experimental protocols, etc. Based on the findings of the reviewed literature and the rather large variations in tissue strength, it is proposed that an appropriate criterion for aortic failure should also reflect the microstructure.
Collapse
Affiliation(s)
- Selda Sherifova
- Institute of Biomechanics, Graz University of Technology, Stremayrgasse 16/2, 8010 Graz, Austria
| | - Gerhard A Holzapfel
- Institute of Biomechanics, Graz University of Technology, Stremayrgasse 16/2, 8010 Graz, Austria; Department of Structural Engineering, Norwegian Institute of Science and Technology (NTNU), 7491 Trondheim, Norway.
| |
Collapse
|
21
|
Stern C, Scharinger B, Tuerkcan A, Nebert C, Mimler T, Baranyi U, Doppler C, Aschacher T, Andreas M, Stelzmueller ME, Ehrlich M, Graf A, Laufer G, Bernhard D, Messner B. Strong Signs for a Weak Wall in Tricuspid Aortic Valve Associated Aneurysms and a Role for Osteopontin in Bicuspid Aortic Valve Associated Aneurysms. Int J Mol Sci 2019; 20:ijms20194782. [PMID: 31561491 PMCID: PMC6802355 DOI: 10.3390/ijms20194782] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 09/22/2019] [Indexed: 12/15/2022] Open
Abstract
Central processes in the pathogenesis of TAV- (tricuspid aortic valve) and BAV- (bicuspid aortic valve) associated ascending thoracic aortic aneurysm (ATAA) development are still unknown. To gain new insights, we have collected aortic tissue and isolated smooth muscle cells of aneurysmal tissue and subjected them to in situ and in vitro analyses. We analyzed aortic tissue from 78 patients (31 controls, 28 TAV-ATAAs, and 19 BAV-ATAAs) and established 30 primary smooth muscle cell cultures. Analyses included histochemistry, immuno-, auto-fluorescence-based image analyses, and cellular analyses including smooth muscle cell contraction studies. With regard to TAV associated aneurysms, we observed a strong impairment of the vascular wall, which appears on different levels—structure and dimension of the layers (reduced media thickness, increased intima thickness, atherosclerotic changes, degeneration of aortic media, decrease of collagen, and increase of elastic fiber free area) as well as on the cellular level (accumulation of fibroblasts/myofibroblasts, and increase in the number of smooth muscle cells with a reduced alpha smooth muscle actin (α-SM actin) content per cell). The pathological changes in the aortic wall of BAV patients were much less pronounced—apart from an increased expression of osteopontin (OPN) in the vascular wall which stem from smooth muscle cells, we observed a trend towards increased calcification of the aortic wall (increase significantly associated with age). These observations provide strong evidence for different pathological processes and different disease mechanisms to occur in BAV- and TAV-associated aneurysms.
Collapse
Affiliation(s)
- Christian Stern
- Cardiac Surgery Research Laboratory, Department of Cardiac Surgery, Medical University of Vienna, 1090 Vienna, Austria.
- Julius-Bernstein-Institute for Physiology, Medical Faculty of the Martin-Luther- University, 06112 Halle-Wittenberg, Germany.
| | - Bernhard Scharinger
- Cardiac Surgery Research Laboratory, Department of Cardiac Surgery, Medical University of Vienna, 1090 Vienna, Austria.
- Department of Radiology, Paracelsus Medical University Salzburg, 5020 Salzburg, Austria.
| | - Adrian Tuerkcan
- Cardiac Surgery Research Laboratory, Department of Cardiac Surgery, Medical University of Vienna, 1090 Vienna, Austria.
| | - Clemens Nebert
- Cardiac Surgery Research Laboratory, Department of Cardiac Surgery, Medical University of Vienna, 1090 Vienna, Austria.
| | - Teresa Mimler
- Cardiac Surgery Research Laboratory, Department of Cardiac Surgery, Medical University of Vienna, 1090 Vienna, Austria.
| | - Ulrike Baranyi
- Cardiac Surgery Research Laboratory, Department of Cardiac Surgery, Medical University of Vienna, 1090 Vienna, Austria.
| | - Christian Doppler
- Cardiac Surgery Research Laboratory, University Clinic for Cardiac Surgery, Medical University of Innsbruck, 6020 Innsbruck, Austria.
- Division for Pathophysiology, Institute of Physiology and Pathophysiology, Johannes Kepler University Linz, 4020 Linz, Austria.
| | - Thomas Aschacher
- Cardiac Surgery Research Laboratory, Department of Cardiac Surgery, Medical University of Vienna, 1090 Vienna, Austria.
- Department of Surgery, Cardiac Surgery, Medical University of Vienna, 1090 Vienna, Austria.
| | - Martin Andreas
- Department of Surgery, Cardiac Surgery, Medical University of Vienna, 1090 Vienna, Austria.
| | | | - Marek Ehrlich
- Department of Surgery, Cardiac Surgery, Medical University of Vienna, 1090 Vienna, Austria.
| | - Alexandra Graf
- Center for Medical Statistics, Informatics and Intelligent Systems, Medical University of Vienna, 1090 Vienna, Austria.
| | - Guenther Laufer
- Department of Surgery, Cardiac Surgery, Medical University of Vienna, 1090 Vienna, Austria.
| | - David Bernhard
- Cardiac Surgery Research Laboratory, University Clinic for Cardiac Surgery, Medical University of Innsbruck, 6020 Innsbruck, Austria.
- Division for Pathophysiology, Institute of Physiology and Pathophysiology, Johannes Kepler University Linz, 4020 Linz, Austria.
| | - Barbara Messner
- Cardiac Surgery Research Laboratory, Department of Cardiac Surgery, Medical University of Vienna, 1090 Vienna, Austria.
| |
Collapse
|
22
|
Montelukast, a Cysteinyl Leukotriene Receptor 1 Antagonist, Induces M2 Macrophage Polarization and Inhibits Murine Aortic Aneurysm Formation. BIOMED RESEARCH INTERNATIONAL 2019; 2019:9104680. [PMID: 31263710 PMCID: PMC6556796 DOI: 10.1155/2019/9104680] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 04/14/2019] [Accepted: 05/09/2019] [Indexed: 01/01/2023]
Abstract
Background The pathogenesis of abdominal aortic aneurysm (AAA) is characterized by atherosclerosis with chronic inflammation in the aortic wall. Montelukast is a selective cys-LT 1 receptor antagonist that can suppress atherosclerotic diseases. We evaluated the in vitro properties of montelukast and its in vivo activities in an angiotensin II–infused apolipoprotein E–deficient (apoE−/−) AAA mouse model. Methods The mouse monocyte/macrophage cell line J774A.1 was used in vitro. M1 macrophages were treated with montelukast, and gene expressions of inflammatory cytokines were measured. Macrophages were cultured with montelukast, then gene expressions of arginase-1 and IL (interleukin)-10 were assessed by quantitative polymerase chain reaction, arginase-1 was measured by fluorescence-activated cell sorting, and IL-10 concentration was analyzed by enzyme-linked immunosorbent assay. In vivo, one group (Mont, n=7) received oral montelukast (10 mg/kg/day) for 28 days, and the other group (Saline, n=7) was given normal Saline as a control for the same period. Aortic diameters, activities of matrix metalloproteinases (MMPs), cytokine concentrations, and the number of M2 macrophages were analyzed. Results Relative to control, montelukast significantly suppressed gene expressions of MMP-2, MMP-9, and IL-1β, induced gene expressions of arginase-1 and IL-10, enhanced the expression of the arginase-1 cell surface protein, and increased the protein concentration of IL-10. In vivo, montelukast significantly decreased aortic expansion (Saline vs Mont; 2.44 ± 0.15 mm vs 1.59 ± 0.20 mm, P<.01), reduced MMP-2 activity (Saline vs Mont; 1240 μM vs 755 μM, P<.05), and induced infiltration of M2 macrophages (Saline vs Mont; 7.51 % vs 14.7 %, P<.05). Conclusion Montelukast induces M2 macrophage polarization and prevents AAA formation in apoE−/− mice.
Collapse
|
23
|
Is there a role for autophagy in ascending aortopathy associated with tricuspid or bicuspid aortic valve? Clin Sci (Lond) 2019; 133:805-819. [PMID: 30991346 DOI: 10.1042/cs20181092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 02/27/2019] [Accepted: 03/18/2019] [Indexed: 01/04/2023]
Abstract
Autophagy is a conserved process by which cytoplasmatic elements are sequestered in vesicles and degraded after their fusion with lysosomes, thus recycling the precursor molecules. The autophagy-mediated removal of redundant/harmful/damaged organelles and biomolecules plays not only a replenishing function, but protects against stressful conditions through an adaptive mechanism. Autophagy, known to play a role in several pathological conditions, is now gaining increasing attention also in the perspective of the identification of the pathogenetic mechanisms at the basis of ascending thoracic aortic aneurysm (TAA), a localized or diffused dilatation of the aorta with an abnormal widening greater than 50 percent of the vessel's normal diameter. TAA is less frequent than abdominal aortic aneurysm (AAA), but is encountered with a higher percentage in patients with congenital heart disease or known genetic syndromes. Several biological aspects of TAA pathophysiology remain to be elucitated and therapeutic needs are still widely unmet. One of the most controversial and epidemiologically important forms of TAA is that associated with the congenital bicuspid malformation of the aortic valve (BAV). Dysregulated autophagy in response, for example, to wall shear stress alterations, has been demonstrated to affect the phenotype of vascular cells relevant to aortopathy, with potential consequences on signaling, remodeling, and angiogenesis. The most recent findings and hypotheses concerning the multiple aspects of autophagy and of its dysregulation are summarized, both in general and in the context of the different vascular cell types and of TAA progression, with particular reference to BAV-related aortopathy.
Collapse
|
24
|
MicroRNA-134-5p Regulates Media Degeneration through Inhibiting VSMC Phenotypic Switch and Migration in Thoracic Aortic Dissection. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 16:284-294. [PMID: 30951965 PMCID: PMC6446055 DOI: 10.1016/j.omtn.2019.02.021] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 01/15/2019] [Accepted: 02/08/2019] [Indexed: 11/20/2022]
Abstract
Abnormal phenotypic switch, migration, and proliferation of vascular smooth muscle cells (VSMCs) are hallmarks for pathogenesis of thoracic aortic dissection (TAD). In the current study, we identified miR-134-5p as a critical regulator controlling human VSMC phenotypic switch and migration to investigate whether miR-134-5p affects human VSMC functions and development of TAD. Using miRNA microarray of aorta specimens from 12 TAD and 12 controls, we identified miR-134-5p, which was significantly downregulated in TAD tissues. With qPCR detection, we found that miR-134-5p was also evidently decreased in human AoSMCs. Ectopic expression of miR-134-5p obviously promoted VSMC differentiation and expression of contractile markers, such as α-SMA, SM22α, and MYH11. miR-134-5p potently inhibited PDGF-BB-induced VSMC phenotypic switch and migration. We further identified STAT5B and ITGB1 as downstream targets of miR-134-5p in human VSMCs and proved them to be mediators in VSMC phenotypic switch and progression of TAD. Finally, Ad-miR-134-5p obviously suppressed the aorta dilatation and vascular media degeneration by 39% in TAD mice after vascular injury induced by Ang II. Our findings revealed that miR-134-5p was a novel regulator in vascular remodeling and pathological progress of TAD via targeting STAT5B/ITGB1 expression. Targeting miR-134-5p or its downstream molecules in VSMCs might develop new avenues in clinical treatment of TAD.
Collapse
|
25
|
Induction of human aortic myofibroblast-mediated extracellular matrix dysregulation: A potential mechanism of fluoroquinolone-associated aortopathy. J Thorac Cardiovasc Surg 2019; 157:109-119.e2. [DOI: 10.1016/j.jtcvs.2018.08.079] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 08/20/2018] [Accepted: 08/23/2018] [Indexed: 12/11/2022]
|
26
|
Hosoyama K, Wakao S, Kushida Y, Ogura F, Maeda K, Adachi O, Kawamoto S, Dezawa M, Saiki Y. Intravenously injected human multilineage-differentiating stress-enduring cells selectively engraft into mouse aortic aneurysms and attenuate dilatation by differentiating into multiple cell types. J Thorac Cardiovasc Surg 2018; 155:2301-2313.e4. [DOI: 10.1016/j.jtcvs.2018.01.098] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 01/13/2018] [Accepted: 01/22/2018] [Indexed: 12/23/2022]
|
27
|
Blunder S, Messner B, Scharinger B, Doppler C, Zeller I, Zierer A, Laufer G, Bernhard D. Targeted gene expression analyses and immunohistology suggest a pro-proliferative state in tricuspid aortic valve-, and senescence and viral infections in bicuspid aortic valve-associated thoracic aortic aneurysms. Atherosclerosis 2018; 271:111-119. [DOI: 10.1016/j.atherosclerosis.2018.02.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 01/11/2018] [Accepted: 02/02/2018] [Indexed: 01/13/2023]
|
28
|
The oral administration of clarithromycin prevents the progression and rupture of aortic aneurysm. J Vasc Surg 2018; 68:82S-92S.e2. [PMID: 29550174 DOI: 10.1016/j.jvs.2017.12.047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 12/08/2017] [Indexed: 12/12/2022]
Abstract
OBJECTIVE The pathogenesis of aortic aneurysm (AA) is associated with chronic inflammation in the aortic wall with increased levels of matrix metalloproteinases (MMPs). Clarithromycin (CAM) has been reported to suppresses MMP activity. In this study, we investigated whether CAM could prevent the formation and rupture of AA. METHODS Male apolipoprotein E-deficient mice (28-30 weeks of age) were infused with angiotensin II for 28 days. CAM (100 mg/kg/d) or saline (as a control) was administered orally to the mice every day (CAM group, n = 13; control group, n = 13). After the administration period, the aortic diameter, elastin content, macrophage infiltration, MMP levels, and levels of inflammatory cytokines, including nuclear factor κB (NF-κB), were measured. RESULTS The aortic diameter was significantly suppressed in the CAM group (P < .001). No rupture death was observed in the CAM group in contrast to five deaths (38%) in the control group (P < .01). CAM significantly suppressed the degradation of aortic elastin (56.3% vs 16.5%; P < .001) and decreased the infiltration of inflammatory macrophages (0.05 vs 0.16; P < .01). Compared with the controls, the enzymatic activity of MMP-2 and MMP-9 was significantly reduced in the CAM group (MMP-2, 0.15 vs 0.56 [P < .01]; MMP-9, 0.12 vs 0.60 [P < .01]), and the levels of interleukin 1β (346.6 vs 1066.0; P < .05), interleukin 6 (128.4 vs 346.2; P < .05), and phosphorylation of NF-κB were also decreased (0.3 vs 2.0; P < .01). CONCLUSIONS CAM suppressed the progression and rupture of AA through the suppression of inflammatory macrophage infiltration, a reduction in MMP-2 and MMP-9 activity, and the inhibition of elastin degradation associated with the suppression of NF-κB phosphorylation.
Collapse
|
29
|
Arterial wall remodeling under sustained axial twisting in rats. J Biomech 2017; 60:124-133. [PMID: 28693818 DOI: 10.1016/j.jbiomech.2017.06.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 06/13/2017] [Accepted: 06/14/2017] [Indexed: 01/03/2023]
Abstract
Blood vessels often experience torsion along their axes and it is essential to understand their biological responses and wall remodeling under torsion. To this end, a rat model was developed to investigate the arterial wall remodeling under sustained axial twisting in vivo. Rat carotid arteries were twisted at 180° along the longitudinal axis through a surgical procedure and maintained for different durations up to 4weeks. The wall remodeling in these twisted arteries was examined using histology, immunohistochemistry and fluorescent microscopy. Our data showed that arteries remodeled under twisting in a time-dependent manner during the 4weeks post-surgery. Cell proliferation, MMP-2 and MMP-9 expressions, medial wall thickness and lumen diameter increased while collagen to elastin ratio decreased. The size and number of internal elastic lamina fenestrae increased with elongated shapes, while the endothelial cells elongated and aligned towards the blood flow direction gradually. These results demonstrated that sustained axial twisting results in artery remodeling in vivo. The rat carotid artery twisting model is an effective in vivo model for studying arterial wall remodeling under long-term torsion. These results enrich our understanding of vascular biology and arterial wall remodeling under mechanical stresses.
Collapse
|
30
|
Shen YH, LeMaire SA. Molecular pathogenesis of genetic and sporadic aortic aneurysms and dissections. Curr Probl Surg 2017; 54:95-155. [PMID: 28521856 DOI: 10.1067/j.cpsurg.2017.01.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 01/16/2017] [Indexed: 12/20/2022]
Affiliation(s)
- Ying H Shen
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX; Department of Cardiovascular Surgery, Texas Heart Institute, Houston, TX; Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX.
| | - Scott A LeMaire
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX; Department of Cardiovascular Surgery, Texas Heart Institute, Houston, TX; Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX; Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX.
| |
Collapse
|
31
|
Ikonomidis JS, Nadeau EK, Akerman AW, Stroud RE, Mukherjee R, Jones JA. Regulation of membrane type-1 matrix metalloproteinase activity and intracellular localization in clinical thoracic aortic aneurysms. J Thorac Cardiovasc Surg 2016; 153:537-546. [PMID: 27923483 DOI: 10.1016/j.jtcvs.2016.10.065] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 09/19/2016] [Accepted: 10/04/2016] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Membrane type-1 matrix metalloproteinase (MT1-MMP) is elevated during thoracic aortic aneurysm (TAA) development in mouse models, and plays an important role in the activation of matrix metalloproteinase (MMP)-2 and the release of matrix- bound transforming growth factor-β. In this study, we tested the hypothesis that MT1-MMP is subject to protein kinase C (PKC)-mediated regulation, which alters intracellular trafficking and activity with TAAs. METHODS Levels of MMP-2, native and phosphorylated MT1-MMP, and PKC-δ were measured in aortic tissue from patients with small TAAs (<5 cm; n = 8) and large TAAs (>6.5 cm; n = 8), and compared with values measured in normal controls (n = 8). Cellular localization of green fluorescent protein (GFP)-tagged MT1-MMP was assessed in aortic fibroblasts isolated from control and 4-week TAA mice. The effects of PKC-mediated phosphorylation on MT1-MMP cellular localization and function (active MMP-2 vs phospo-Smad2 abundance) were assessed after treatment with a PKC activator (phorbol-12-myristate-13-acetate [PMA], 100 nM) with and without a PKC-δ-specific inhibitor (röttlerin, 3 μM). RESULTS Compared with controls, MT1-MMP abundance was increased in aortas from both TAA groups. Active MMP-2 was increased only in the large TAA group. The abundances of phosphorylated MT1-MMP and activated PKC-δ were enhanced in the small TAA group compared with the large TAA group. MT1-MMP was localized on the plasma membrane in aortic fibroblasts from control mice and in endosomes from TAA mice. Treatment with PMA induced MT1-MMP-GFP internalization, enhanced phospho-Smad2, and reduced MMP-2 activation, whereas röttlerin pretreatment inhibited these effects. CONCLUSIONS Phosphorylation of MT1-MMP mediates its activity through directing cellular localization, shifting its role from MMP-2 activation to intracellular signaling. Thus, targeted inhibition of MT1-MMP may have therapeutic relevance as an approach to attenuating TAA development.
Collapse
Affiliation(s)
- John S Ikonomidis
- Division of Cardiothoracic Surgery, Medical University of South Carolina, Charleston, SC
| | - Elizabeth K Nadeau
- Division of Cardiothoracic Surgery, Medical University of South Carolina, Charleston, SC
| | - Adam W Akerman
- Division of Cardiothoracic Surgery, Medical University of South Carolina, Charleston, SC
| | - Robert E Stroud
- Division of Cardiothoracic Surgery, Medical University of South Carolina, Charleston, SC
| | - Rupak Mukherjee
- Division of Cardiothoracic Surgery, Medical University of South Carolina, Charleston, SC; Research Service, Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC
| | - Jeffrey A Jones
- Division of Cardiothoracic Surgery, Medical University of South Carolina, Charleston, SC; Research Service, Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC.
| |
Collapse
|
32
|
Baranyi U, Stern C, Winter B, Türkcan A, Scharinger B, Stelzmüller ME, Aschacher T, Andreas M, Ehrlich M, Laufer G, Bernhard D, Messner B. The megaaortic syndrome: Progression of ascending aortic aneurysm or a disease of distinct origin? Int J Cardiol 2016; 227:717-726. [PMID: 27836291 DOI: 10.1016/j.ijcard.2016.10.072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 10/27/2016] [Indexed: 10/20/2022]
Abstract
BACKGROUND Thoracic aortic aneurysm (TAA) is an often asymptomatic disease with fatal outcome, such as dissection or rupture. The megaaortic syndrome (MAS) is an extensive dilatation of the whole aorta with low incidence but high lethal outcome with unknown pathophysiology so far. METHODS AND RESULTS We compared aortic tissue of patients with sporadic TAAs and MAS of the ascending aorta with non-aneurysmal control tissues. Specimens of MAS patients showed a significantly reduced thickness of the media but an increased thickness of the intima compared to control tissue and TAAs with moderate dilatation. Advanced media degeneration however was detectable in both, TAAs with enhanced luminal diameter and MAS specimens, accompanied by reduced medial smooth muscle cell-density. Further specimens of MAS were characterized by massive atherosclerotic lesions in contrast to specimens of sporadic TAA patients. Infiltrations of macrophages in atherosclerotic lesions but also in the media adjacent to the adventitia were significantly elevated in tissue of TAAs with dilatation ≤6cm. Of note, atherosclerotic plaque-associated macrophages as well as those in the external media produce huge amounts of MMP-9 which is possibly involved in media degeneration and tissue destruction. CONCLUSIONS Taken together these results demonstrate that the pathology of MAS shows similarities with that of TAAs but pathological differences in the ascending aorta, suggesting that MAS might be a disease of different origin.
Collapse
Affiliation(s)
- Ulrike Baranyi
- Cardiac Surgery Research Laboratory, Department of Surgery, Medical University of Vienna, Vienna, Austria
| | - Christian Stern
- Cardiac Surgery Research Laboratory, Department of Surgery, Medical University of Vienna, Vienna, Austria
| | - Birgitta Winter
- Cardiac Surgery Research Laboratory, Department of Surgery, Medical University of Vienna, Vienna, Austria
| | - Adrian Türkcan
- Cardiac Surgery Research Laboratory, Department of Surgery, Medical University of Vienna, Vienna, Austria
| | - Bernhard Scharinger
- Cardiac Surgery Research Laboratory, Department of Surgery, Medical University of Vienna, Vienna, Austria
| | | | - Thomas Aschacher
- Department of Surgery, Cardiac Surgery, Medical University of Vienna, Vienna, Austria
| | - Martin Andreas
- Department of Surgery, Cardiac Surgery, Medical University of Vienna, Vienna, Austria
| | - Marek Ehrlich
- Department of Surgery, Cardiac Surgery, Medical University of Vienna, Vienna, Austria
| | - Günther Laufer
- Department of Surgery, Cardiac Surgery, Medical University of Vienna, Vienna, Austria
| | - David Bernhard
- Cardiac Surgery Research Laboratory Innsbruck, University Clinic for Cardiac Surgery, Innsbruck Medical University, Innsbruck, Austria
| | - Barbara Messner
- Cardiac Surgery Research Laboratory, Department of Surgery, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
33
|
Luo Y, Duprey A, Avril S, Lu J. Characteristics of thoracic aortic aneurysm rupture in vitro. Acta Biomater 2016; 42:286-295. [PMID: 27395826 DOI: 10.1016/j.actbio.2016.06.036] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 06/13/2016] [Accepted: 06/28/2016] [Indexed: 10/21/2022]
Abstract
UNLABELLED Ascending thoracic aortic aneurysms (ATAAs) are focal dilatations in the aorta that are prone to rupture or dissection. To accurately evaluate the rupture risk, one must know the local mechanical conditions at the rupture site and understand how rupture is triggered in a layered fibrous media. A challenge facing experimental studies of ATAA rupture is that the ATAA tissue is highly heterogeneous; experimental protocols that operate under the premise of tissue homogeneity will have difficulty delineating the location conditions. In this work, we employed a previously established pointwise identification method to characterize wall stress, strain, and property distributions to a sub-millimeter resolution. Based on the acquired field data, we obtained the local mechanical properties at the rupture site in nine ATAA tissue samples. The rupture stress, ultimate strain, energy density, and the toughness of the tested samples were also reported. Our results show that the direction of the rupture is aligned with the direction of maximum stiffness, indicating that higher stiffness is not always related to higher strength. It was also found that the rupture generally occurs at a location of highest stored energy. As a higher stiffness and higher strain energy indicate a larger recruitment of collagen fibers in the tissue at the location and along the direction of rupture, the recruitment of collagen fibers in the deformation of the tissue is probably essential in ATAA rupture. STATEMENT OF SIGNIFICANCE A major challenge in the experimental study of aneurysm properties is that the tissues are heterogeneous. When the specimens are not reasonably homogeneous, traditional tests that work under the premise of tissue homogeneity cannot reliably delineate the local conditions at the rupture site. In this work, we investigated the local characteristics of rupture of human ascending aortic aneurysm tissue. We identified the stress, strain, and elastic properties to a submillimeter resolution. Based on the field values, we determined the local conditions - elastic properties, direction of maximum stiffness, stress, strain, energy consumption - at the rupture site. It was found that the tissues consistently cleave in the direction of the maximum stiffness, and generally occurs at the location of highest energy. Since a higher stiffness and higher strain energy indicate a larger recruitment of collagen fibers in the tissue at the location and along the direction of rupture, the work suggests that the recruitment of collagen fibers in the deformation of the tissue is probably essential in aneurysm rupture.
Collapse
|
34
|
Yan Y, Tan MW, Xue X, Ding XY, Wang GK, Xu ZY. Involvement of Oct4 in the pathogenesis of thoracic aortic dissection via inducing the dedifferentiated phenotype of human aortic smooth muscle cells by directly upregulating KLF5. J Thorac Cardiovasc Surg 2016; 152:820-829.e4. [PMID: 27353340 DOI: 10.1016/j.jtcvs.2016.05.036] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 04/27/2016] [Accepted: 05/20/2016] [Indexed: 12/29/2022]
Abstract
OBJECTIVE To investigate the expression of Oct4 in human thoracic aortic dissection (TAD) and the regulation mechanisms of Oct4 on phenotype transition of human aortic smooth muscle cells (HASMCs). METHODS Aortic samples from TAD patients (n = 12) and organ donors (n = 6) were collected. qRT-PCR, western blot, and immunohistochemistry were performed to identify Oct4 expression in aortic media. Immunofluorescence was performed to analyze Oct4 expression in primary HASMCs. Oct4A and Oct4B isoforms were detected. Gain-of-function experiments were performed to determine the effects of Oct4 on HASMC phenotype transition. Chromatin immunoprecipitation, luciferase assay, and rescue experiments were performed to analyze mechanisms of Oct4 on HASMC phenotype transition. RESULTS Oct4 expression levels, especially the Oct4A isoform, were significantly higher in TAD patients compared with normal controls. Notably, Oct4 presented a strong and strict nuclear localization in primary HASMCs of TAD patients but a mild and diffuse distribution in both cytoplasm and nucleus in the control group. Overexpression of Oct4 induced dedifferentiation of HASMCs characterized by decreased contractile proteins and elevated migration capability. Krüppel-like factor 5 (KLF5) was found to be a directly regulated target gene of Oct4 in HASMCs. Furthermore, downregulation of KLF5 significantly alleviated the effects of Oct4 on phenotype transition of HASMCs. CONCLUSIONS Oct4 expression was significantly upregulated in aortic tissues and primary HASMCs of TAD patients. The increased Oct4 induced phenotype transition of HASMCs from the contractile type to the synthetic type by directly upregulating KLF5.
Collapse
Affiliation(s)
- Yan Yan
- Department of Cardiothoracic Surgery, Changhai Hospital, Second Military Medical University, Shanghai, Zhejiang, China
| | - Meng-Wei Tan
- Department of Cardiothoracic Surgery, Changhai Hospital, Second Military Medical University, Shanghai, Zhejiang, China.
| | - Xiang Xue
- Department of Cardiothoracic Surgery, Changhai Hospital, Second Military Medical University, Shanghai, Zhejiang, China
| | - Xue-Yan Ding
- Cardiovascular Therapeutic Centre, The 117 Hospital of the Chinese People's Liberation Army, Hangzhou, Zhejiang, China
| | - Guo-Kun Wang
- Department of Cardiothoracic Surgery, Changhai Hospital, Second Military Medical University, Shanghai, Zhejiang, China
| | - Zhi-Yun Xu
- Department of Cardiothoracic Surgery, Changhai Hospital, Second Military Medical University, Shanghai, Zhejiang, China.
| |
Collapse
|
35
|
Poduri A, Rateri DL, Howatt DA, Balakrishnan A, Moorleghen JJ, Cassis LA, Daugherty A. Fibroblast Angiotensin II Type 1a Receptors Contribute to Angiotensin II-Induced Medial Hyperplasia in the Ascending Aorta. Arterioscler Thromb Vasc Biol 2015; 35:1995-2002. [PMID: 26160957 PMCID: PMC4552596 DOI: 10.1161/atvbaha.115.305995] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 06/29/2015] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Angiotensin II (Ang II) infusion causes aortic medial thickening via stimulation of angiotensin II type 1a (AT1a) receptors. The purpose of this study was to determine the cellular loci of AT1a receptors that mediate this Ang II-induced aortic pathology. APPROACH AND RESULTS Saline or Ang II was infused into AT1a receptor floxed mice expressing Cre under control of cell-specific promoters. Initially, AT1a receptors were depleted in aortic smooth muscle cell and endothelium by expressing Cre under control of SM22 and Tie2 promoters, respectively. Deletion of AT1a receptors in either cell type had no effect on Ang II-induced medial thickening. To determine whether this effect was related to neural stimulation, AT1a receptors were depleted using an enolase 2-driven Cre. Depletion of AT1a receptors in neural cells attenuated Ang II-induced medial thickening of the ascending, but not descending aorta. Lineage tracking studies, using ROSA26-LacZ, demonstrated that enolase 2 was also expressed in adventitial cells adjacent to the region of attenuated thickening. To determine whether adventitial fibroblasts contributed to this attenuation, AT1a receptors in fibroblasts were depleted using S100A4 driven Cre. Similar to enolase 2-Cre, Ang II-induced medial thickening was attenuated in the ascending, but not the descending aorta. Lineage tracking demonstrated an increase of S100A4-LacZ positive cells in the media of the ascending region during Ang II infusion. CONCLUSIONS AT1a receptor depletion in fibroblasts attenuates Ang II-induced medial hyperplasia in the ascending aorta.
Collapse
MESH Headings
- Angiotensin II/toxicity
- Animals
- Aorta, Thoracic/drug effects
- Aorta, Thoracic/metabolism
- Aorta, Thoracic/pathology
- Atherosclerosis/genetics
- Atherosclerosis/metabolism
- Atherosclerosis/prevention & control
- DNA/genetics
- Disease Models, Animal
- Fibroblasts/metabolism
- Fibroblasts/pathology
- Gene Expression Regulation
- Genotype
- Hyperplasia/drug therapy
- Hyperplasia/genetics
- Hyperplasia/pathology
- Infusions, Intravenous
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- RNA, Messenger/genetics
- Receptor, Angiotensin, Type 1/administration & dosage
- Receptor, Angiotensin, Type 1/biosynthesis
- Receptor, Angiotensin, Type 1/genetics
- Tunica Media/drug effects
- Tunica Media/metabolism
- Tunica Media/pathology
Collapse
Affiliation(s)
- Aruna Poduri
- From the Saha Cardiovascular Research Center (A.P., D.L.R., D.A.H., A.B., J.J.M., A.D.) and Department of Molecular and Biomedical Pharmacology (L.A.C.), University of Kentucky, Lexington
| | - Debra L Rateri
- From the Saha Cardiovascular Research Center (A.P., D.L.R., D.A.H., A.B., J.J.M., A.D.) and Department of Molecular and Biomedical Pharmacology (L.A.C.), University of Kentucky, Lexington
| | - Deborah A Howatt
- From the Saha Cardiovascular Research Center (A.P., D.L.R., D.A.H., A.B., J.J.M., A.D.) and Department of Molecular and Biomedical Pharmacology (L.A.C.), University of Kentucky, Lexington
| | - Anju Balakrishnan
- From the Saha Cardiovascular Research Center (A.P., D.L.R., D.A.H., A.B., J.J.M., A.D.) and Department of Molecular and Biomedical Pharmacology (L.A.C.), University of Kentucky, Lexington
| | - Jessica J Moorleghen
- From the Saha Cardiovascular Research Center (A.P., D.L.R., D.A.H., A.B., J.J.M., A.D.) and Department of Molecular and Biomedical Pharmacology (L.A.C.), University of Kentucky, Lexington
| | - Lisa A Cassis
- From the Saha Cardiovascular Research Center (A.P., D.L.R., D.A.H., A.B., J.J.M., A.D.) and Department of Molecular and Biomedical Pharmacology (L.A.C.), University of Kentucky, Lexington
| | - Alan Daugherty
- From the Saha Cardiovascular Research Center (A.P., D.L.R., D.A.H., A.B., J.J.M., A.D.) and Department of Molecular and Biomedical Pharmacology (L.A.C.), University of Kentucky, Lexington.
| |
Collapse
|
36
|
Grewal N, Gittenberger-de Groot AC, DeRuiter MC. Reply to the editor. J Thorac Cardiovasc Surg 2014; 148:2440-2. [PMID: 25444210 DOI: 10.1016/j.jtcvs.2014.08.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 08/14/2014] [Indexed: 11/28/2022]
Affiliation(s)
- Nimrat Grewal
- Department of Cardiothoracic Surgery, Leiden University Medical Center, Leiden, The Netherlands; Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, The Netherlands
| | - Adriana C Gittenberger-de Groot
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, The Netherlands; Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Marco C DeRuiter
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
37
|
Chang F, Lemmon CA, Nilaratanakul V, Rotter V, Romer L. Endothelial matrix assembly during capillary morphogenesis: insights from chimeric TagRFP-fibronectin matrix. J Histochem Cytochem 2014; 62:774-90. [PMID: 25063001 PMCID: PMC4209295 DOI: 10.1369/0022155414547419] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 07/13/2014] [Indexed: 11/22/2022] Open
Abstract
Biologically relevant, three-dimensional extracellular matrix is an essential component of in vitro vasculogenesis models. WI-38 fibroblasts assemble a 3D matrix that induces endothelial tubulogenesis, but this model is challenged by fibroblast senescence and the inability to distinguish endothelial cell-derived matrix from matrix made by WI-38 fibroblasts. Matrices produced by hTERT-immortalized WI-38 recapitulated those produced by wild type fibroblasts. ECM fibrils were heavily populated by tenascin-C, fibronectin, and type VI collagen. Nearly half of the total type I collagen, but only a small fraction of the type IV collagen, were incorporated into ECM. Stable hTERT-WI-38 transfectants expressing TagRFP-fibronectin incorporated TagRFP into ~90% of the fibronectin in 3D matrices. TagRFP-fibronectin colocalized with tenascin-C and with type I collagen in a pattern that was similar to that seen in matrices from wild type WI-38. Human Umbilical Vein Endothelial Cells (HUVEC) formed 3D adhesions and tubes on WI38-hTERT-TagRFP-FN-derived matrices, and the TagRFP-fibronectin component of this new 3D human fibroblast matrix model facilitated the demonstration of concentrated membrane type 1 metalloprotease and new HUVEC FN and collagen type IV fibrils during EC tubulogenesis. These findings indicate that WI-38-hTERT- and WI-38-hTERT-TagRFP-FN-derived matrices provide platforms for the definition of new matrix assembly and remodeling events during vasculogenesis.
Collapse
Affiliation(s)
- Fumin Chang
- Anesthesiology and Critical Care Medicine (FC, LR), Johns Hopkins Medical Institutions, Baltimore, MDDepartment of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA (CAL)Cell Biology (LR), Johns Hopkins Medical Institutions, Baltimore, MDBiomedical Engineering (LR), Johns Hopkins Medical Institutions, Baltimore, MDPediatrics (LR), Johns Hopkins Medical Institutions, Baltimore, MDCenter for Cell Dynamics (LR), Johns Hopkins Medical Institutions, Baltimore, MDGraduate Program in Cellular and Molecular Medicine (VN), Johns Hopkins Medical Institutions, Baltimore, MDDepartment of Molecular and Cell Biology, The Weizmann Institute of Science, Rehovot, Israel (VR)
| | - Christopher A Lemmon
- Anesthesiology and Critical Care Medicine (FC, LR), Johns Hopkins Medical Institutions, Baltimore, MDDepartment of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA (CAL)Cell Biology (LR), Johns Hopkins Medical Institutions, Baltimore, MDBiomedical Engineering (LR), Johns Hopkins Medical Institutions, Baltimore, MDPediatrics (LR), Johns Hopkins Medical Institutions, Baltimore, MDCenter for Cell Dynamics (LR), Johns Hopkins Medical Institutions, Baltimore, MDGraduate Program in Cellular and Molecular Medicine (VN), Johns Hopkins Medical Institutions, Baltimore, MDDepartment of Molecular and Cell Biology, The Weizmann Institute of Science, Rehovot, Israel (VR)
| | - Voraphoj Nilaratanakul
- Anesthesiology and Critical Care Medicine (FC, LR), Johns Hopkins Medical Institutions, Baltimore, MDDepartment of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA (CAL)Cell Biology (LR), Johns Hopkins Medical Institutions, Baltimore, MDBiomedical Engineering (LR), Johns Hopkins Medical Institutions, Baltimore, MDPediatrics (LR), Johns Hopkins Medical Institutions, Baltimore, MDCenter for Cell Dynamics (LR), Johns Hopkins Medical Institutions, Baltimore, MDGraduate Program in Cellular and Molecular Medicine (VN), Johns Hopkins Medical Institutions, Baltimore, MDDepartment of Molecular and Cell Biology, The Weizmann Institute of Science, Rehovot, Israel (VR)
| | - Varda Rotter
- Anesthesiology and Critical Care Medicine (FC, LR), Johns Hopkins Medical Institutions, Baltimore, MDDepartment of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA (CAL)Cell Biology (LR), Johns Hopkins Medical Institutions, Baltimore, MDBiomedical Engineering (LR), Johns Hopkins Medical Institutions, Baltimore, MDPediatrics (LR), Johns Hopkins Medical Institutions, Baltimore, MDCenter for Cell Dynamics (LR), Johns Hopkins Medical Institutions, Baltimore, MDGraduate Program in Cellular and Molecular Medicine (VN), Johns Hopkins Medical Institutions, Baltimore, MDDepartment of Molecular and Cell Biology, The Weizmann Institute of Science, Rehovot, Israel (VR)
| | - Lewis Romer
- Anesthesiology and Critical Care Medicine (FC, LR), Johns Hopkins Medical Institutions, Baltimore, MDDepartment of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA (CAL)Cell Biology (LR), Johns Hopkins Medical Institutions, Baltimore, MDBiomedical Engineering (LR), Johns Hopkins Medical Institutions, Baltimore, MDPediatrics (LR), Johns Hopkins Medical Institutions, Baltimore, MDCenter for Cell Dynamics (LR), Johns Hopkins Medical Institutions, Baltimore, MDGraduate Program in Cellular and Molecular Medicine (VN), Johns Hopkins Medical Institutions, Baltimore, MDDepartment of Molecular and Cell Biology, The Weizmann Institute of Science, Rehovot, Israel (VR)
| |
Collapse
|
38
|
Serhatli M, Baysal K, Acilan C, Tuncer E, Bekpinar S, Baykal AT. Proteomic study of the microdissected aortic media in human thoracic aortic aneurysms. J Proteome Res 2014; 13:5071-80. [PMID: 25264617 DOI: 10.1021/pr5006586] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Aortic aneurysm is a complex multifactorial disease, and its molecular mechanism is not understood. In thoracic aortic aneurysm (TAA), the expansion of the aortic wall is lead by extracellular matrix (ECM) degeneration in the medial layer, which leads to weakening of the aortic wall. This dilatation may end in rupture and-if untreated-death. The aortic media is composed of vascular smooth muscle cells (VSMCs) and proteins involved in aortic elasticity and distensibility. Delineating their functional and quantitative decrease is critical in elucidating the disease causing mechanisms as well as the development of new preventive therapies. Laser microdissection (LMD) is an advanced technology that enables the isolation of the desired portion of tissue or cells for proteomics analysis, while preserving their integrity. In our study, the aortic media layers of 36 TAA patients and 8 controls were dissected using LMD technology. The proteins isolated from these tissue samples were subjected to comparative proteomic analysis by nano-LC-MS/MS, which enabled the identification of 352 proteins in aortic media. Among these, 41 proteins were differentially expressed in the TAA group with respect to control group, and all were downregulated in the patients. Of these medial proteins, 25 are novel, and their association with TAA is reported for the first time in our study. Subsequent analysis of the data by ingenuity pathway analysis (IPA) shows that the majority of differentially expressed proteins were found to be cytoskeletal-associated proteins and components of the ECM which are critical in maintaining aortic integrity. Our results indicate that the protein expression profile in the aortic media from TAA patients differs significantly from controls. Further analysis of the mechanism points to markers of pathological ECM remodeling, which, in turn, affect VSMC cytosolic structure and architecture. In the future, the detailed investigation of the differentially expressed proteins may provide insight into the elucidation of the pathological processes underlying aneurysms.
Collapse
Affiliation(s)
- Muge Serhatli
- TUBITAK-Marmara Research Center, Genetic Engineering and Biotechnology Institute , 41470 Gebze, Kocaeli, Turkey
| | | | | | | | | | | |
Collapse
|
39
|
Chen J, Wang FL, Chen WD. Modulation of apoptosis-related cell signalling pathways by curcumin as a strategy to inhibit tumor progression. Mol Biol Rep 2014; 41:4583-94. [PMID: 24604727 DOI: 10.1007/s11033-014-3329-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2014] [Accepted: 02/26/2014] [Indexed: 02/06/2023]
Abstract
A hallmark of cancer is resistance to apoptosis, with both the loss of proapoptotic signals and the gain of anti-apoptotic mechanisms contributing to tumorigenesis. As inducing apoptosis in malignant cells is one of the most challenging tasks regarding cancer, researchers increasingly focus on natural products to regulate apoptotic signaling pathways. Curcumin, a polyphenolic derivative of turmeric, is a natural compound derived from Curcuma longa, has attracted great interest in the research of cancer during the last half century. Extensive studies revealed that curcumin has chemopreventive properties, which are mainly due to its ability to arrest cell cycle and to induce apoptosis in cancer cells either alone or in combination with chemotherapeutic agents or radiation. The underlying action mechanisms of curcumin are diverse and has not been elucidated so far. By regulating multiple important cellular signalling pathways including NF-κB, TRAIL, PI3 K/Akt, JAK/STAT, Notch-1, JNK, etc., curcumin are known to activate cell death signals and induce apoptosis in pre-cancerous or cancer cells without affecting normal cells, thereby inhibiting tumor progression. Several phase I and phase II clinical trials indicate that curcumin is quite safe and may exhibit therapeutic efficacy. This article reviews the main effects of curcumin on the different apoptotic signaling pathways involved in curcumin induced apoptosis in cancer cells via cellular transduction pathways and provides an in depth assessment of its pharmacological activity in the management of tumor progression.
Collapse
Affiliation(s)
- Jin Chen
- Department of Pharmacy, The Second People's Hospital of Hefei, Hefei, 230011, Anhui, People's Republic of China,
| | | | | |
Collapse
|
40
|
Deciphering the stromal and hematopoietic cell network of the adventitia from non-aneurysmal and aneurysmal human aorta. PLoS One 2014; 9:e89983. [PMID: 24587165 PMCID: PMC3937418 DOI: 10.1371/journal.pone.0089983] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Accepted: 01/23/2014] [Indexed: 01/09/2023] Open
Abstract
Aneurysm is associated to a complex remodeling of arteries that affects all their layers. Although events taking place in the intima and the media have received a particular attention, molecular and cellular events taking place in the adventitia have started to be deciphered only recently. In this study, we have precisely described the composition and distribution of stromal and hematopoietic cells in human arterial adventitia, both at steady state and in the setting of aortic aneurysm. Using polychromatic immunofluorescent and flow cytometry analyses, we observed that unlike the medial layer (which comprises mostly macrophages and T cells among leukocytes), the adventitia comprises a much greater variety of leukocytes. We observed an altered balance in macrophages subsets in favor of M2-like macrophages, an increased proliferation of macrophages, a greater number of all stromal cells in aneurysmal aortas. We also confirmed that in this pathological setting, adventitia comprised blood vessels and arterial tertiary lymphoid organs (ATLOs), which contained also M-DC8+ dendritic cells (slanDCs) that could participate in the induction of T-cell responses. Finally, we showed that lymphatic vessels can be detected in aneurysmal adventitia, the functionality of which will have to be evaluated in future studies. All together, these observations provide an integrative outlook of the stromal and hematopoietic cell network of the human adventitia both at steady state and in the context of aneurysm.
Collapse
|
41
|
Yamawaki-Ogata A, Fu X, Hashizume R, Fujimoto KL, Araki Y, Oshima H, Narita Y, Usui A. Therapeutic potential of bone marrow-derived mesenchymal stem cells in formed aortic aneurysms of a mouse model. Eur J Cardiothorac Surg 2014; 45:e156-65. [PMID: 24554076 DOI: 10.1093/ejcts/ezu018] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES An aortic aneurysm (AA) is caused by atherosclerosis with chronic inflammation. Mesenchymal stem cells (MSCs) have potential anti-inflammatory properties. In this study, we examined whether an already-formed AA can be treated by intravenous injection of bone marrow-derived (BM)-MSCs in a mouse model. METHODS AA was induced in apolipoprotein E-deficient mice by angiotensin II-infusion for 28 days through sub-cutaneous osmotic mini-pumps. After that, 1 × 10(6) BM-MSCs (in 0.2 ml saline) or 0.2 ml saline as a control was injected via the tail vein. Mice were sacrificed at 2 (saline group n = 10, BM-MSC group n = 10), 4 (saline group n = 6, BM-MSC group n = 7) or 8 weeks (saline group n = 5, BM-MSC group n = 6) after injection. The aortic tissues of each group were dissected. Aortic diameter, elastin content, matrix metalloproteinase (MMP)-2 and -9 enzymatic activity and cytokine concentrations were measured, as was macrophage infiltration, which was also evaluated histologically. RESULTS The incidence of AA in the BM-MSC group was reduced at 2 weeks (BM-MSC 40% vs saline 100%, P < 0.05), and aortic diameter was reduced at 2 and 4 weeks (2 weeks: 1.40 vs 2.29 mm, P < 0.001; 4 weeks: 1.73 vs 2.32 mm, P < 0.05). The enzymatic activities of MMP-2 and -9 were reduced in the BM-MSC group at 2 weeks (active-MMP-2: 0.28 vs 0.45 unit/ml, P < 0.05; active-MMP-9: 0.16 vs 0.34 unit/ml, P < 0.05). Inflammatory cytokines were down-regulated in the BM-MSC group (interleukin-6: 2 weeks: 1475.6 vs 3399.5 pg/ml, P < 0.05; 4 weeks: 2184.7 vs 3712.8 pg/ml, P < 0.05 and monocyte chemotactic protein-1: 2 weeks: 208.0 vs 352.7 pg/ml, P < 0.05) and insulin-like growth factor (IGF)-1 and tissue inhibitor of metalloproteinase (TIMP)-2 were up-regulated in the BM-MSC group at 2 weeks (IGF-1: 4.7 vs 2.0 ng/ml, P < 0.05; TIMP-2: 9.5 vs 4.0 ng/ml, P < 0.001). BM-MSC injection inhibited infiltration of M1 macrophages and preserved the construction of elastin. CONCLUSIONS Our results suggest that BM-MSCs might be an effective treatment for AA. Further investigation is necessary to optimize the injected dosage and the frequency of BM-MSCs to prevent a transient effect.
Collapse
Affiliation(s)
- Aika Yamawaki-Ogata
- Department of Cardiac Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Eckhouse SR, Logdon CB, Oelsen JM, Patel RK, Rice AD, Stroud RE, Wince WB, Mukherjee R, Spinale FG, Ikonomidis JS, Jones JA. Reproducible porcine model of thoracic aortic aneurysm. Circulation 2013; 128:S186-93. [PMID: 24030405 DOI: 10.1161/circulationaha.112.000363] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Thoracic aortic aneurysms (TAAs) develop secondary to abnormal aortic extracellular matrix remodeling, resulting in a weakened and dilated aortic wall that progressed to rupture if left unattended. Currently, no diagnostic/prognostic tests are available for the detection of TAA disease. This is largely driven by the lack of a large animal model, which would permit longitudinal/mechanistic studies. Accordingly, the objective of the present study was to establish a reproducible porcine model of aortic dilatation, which recapitulates the structural and biochemical changes observed during human TAA development. METHODS AND RESULTS Descending TAAs were induced in Yorkshire pigs (20-25 kg; n=7) through intra-adventitial injections of collagenase (5 mL, 0.35 mg/mL) and periadventitial application of crystalline CaCl2 (0.5 g). Three weeks after TAA induction, aortas were harvested and tissue was collected for biochemical and histological measurements. A subset of animals underwent MRI preoperatively and at terminal surgery. Results were compared with sham-operated controls (n=6). Three weeks after TAA induction, aortic luminal area increased by 38 ± 13% (P=0.018 versus control). Aortic structural changes included elastic lamellar degradation and decreased collagen content. The protein abundance of matrix metalloproteinases 3, 8, 9, and 12 increased in TAA tissue homogenates, whereas tissue inhibitors of metalloproteinases 1 and 4 decreased. CONCLUSIONS These data demonstrate aortic dilatation, aortic medial degeneration, and alterations in matrix metalloproteinase/tissue inhibitors of metalloproteinase abundance, consistent with TAA formation. This study establishes for the first time a large animal model of TAA that recapitulates the hallmarks of human disease and provides a reproducible test bed for examining diagnostic, prognostic, and therapeutic strategies.
Collapse
Affiliation(s)
- Shaina R Eckhouse
- Division of Cardiothoracic Surgery, Department of Surgery (S.R.E., C.B.L., J.M.O., R.K.P., A.D.R., R.E.S., R.M., J.S.I., J.A.J.) and Division of Cardiology, Department of Medicine (W.B.W.), Medical University of South Carolina, Charleston, SC; Research Service, Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC (J.A.J.); and Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC, and Wm. Jennings Bryan Dorn Veterans Affairs Medical Center, Columbia, SC (F.G.S.)
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Kavarana MN, Mukherjee R, Eckhouse SR, Rawls WF, Logdon C, Stroud RE, Patel RK, Nadeau EK, Spinale FG, Graham EM, Forbus GA, Bradley SM, Ikonomidis JS, Jones JA. Pulmonary artery endothelial cell phenotypic alterations in a large animal model of pulmonary arteriovenous malformations after the Glenn shunt. Ann Thorac Surg 2013; 96:1442-1449. [PMID: 23968766 DOI: 10.1016/j.athoracsur.2013.05.075] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Revised: 05/16/2013] [Accepted: 05/21/2013] [Indexed: 11/29/2022]
Abstract
BACKGROUND Longevity of the superior cavopulmonary connection (SCPC) is limited by the development of pulmonary arteriovenous malformations (PAVM). The goal of this study was to determine whether phenotypic changes in pulmonary artery endothelial cells (PAEC) that favor angiogenesis occur with PAVM formation. METHODS A superior vena cava to right pulmonary artery connection was constructed in 5 pigs. Pulmonary arteries were harvested at 6 to 8 weeks after surgery to establish cultures of PAEC and smooth muscle cells, to determine cell proliferation, gene expression, and tubule formation. Abundance of proteins related to angiogenesis was measured in lung tissue. RESULTS Contrast echocardiography revealed right-to-left shunting, consistent with PAVM formation. While the proliferation of smooth muscle cells from the right pulmonary artery (shunted side) and left pulmonary artery (nonshunted side) were similar, right PAEC proliferation was significantly higher. Expression profiles of genes encoding cellular signaling proteins were higher in PAECs from the right pulmonary artery versus left pulmonary artery. Protein abundance of angiopoietin-1, and Tie-2 (angiopoietin receptor) were increased in the right lung (both p < 0.05). Tubule formation was increased in endothelial cells from the right pulmonary artery compared with the left pulmonary artery (404 ± 16 versus 199 ± 71 tubules/mm(2), respectively; p < 0.05). CONCLUSIONS These findings demonstrate that PAVMs developed in a clinically relevant animal model of SCPC concomitantly with differential changes in PAEC proliferative ability and phenotype. Moreover, there was a significant increase in the angiopoietin/Tie-2 complex in the right lung, which may provide novel therapeutic targets to attenuate PAVM formation after a SCPC.
Collapse
Affiliation(s)
- Minoo N Kavarana
- Division of Cardiothoracic Surgery, Medical University of South Carolina, Charleston, South Carolina.
| | - Rupak Mukherjee
- Division of Cardiothoracic Surgery, Medical University of South Carolina, Charleston, South Carolina
| | - Shaina R Eckhouse
- Division of Cardiothoracic Surgery, Medical University of South Carolina, Charleston, South Carolina
| | - William F Rawls
- Division of Cardiothoracic Surgery, Medical University of South Carolina, Charleston, South Carolina
| | - Christina Logdon
- University of South Carolina School of Medicine, Columbia, South Carolina
| | - Robert E Stroud
- Division of Cardiothoracic Surgery, Medical University of South Carolina, Charleston, South Carolina
| | - Risha K Patel
- Division of Cardiothoracic Surgery, Medical University of South Carolina, Charleston, South Carolina
| | - Elizabeth K Nadeau
- Division of Cardiothoracic Surgery, Medical University of South Carolina, Charleston, South Carolina
| | - Francis G Spinale
- University of South Carolina School of Medicine, Columbia, South Carolina
| | - Eric M Graham
- Division of Pediatric Cardiology, Medical University of South Carolina, Charleston, South Carolina
| | - Geoffrey A Forbus
- Division of Pediatric Cardiology, Medical University of South Carolina, Charleston, South Carolina
| | - Scott M Bradley
- Division of Cardiothoracic Surgery, Medical University of South Carolina, Charleston, South Carolina
| | - John S Ikonomidis
- Division of Cardiothoracic Surgery, Medical University of South Carolina, Charleston, South Carolina
| | - Jeffrey A Jones
- Division of Cardiothoracic Surgery, Medical University of South Carolina, Charleston, South Carolina; Division of Pediatric Cardiology, Medical University of South Carolina, Charleston, South Carolina
| |
Collapse
|
44
|
Zhang XY, Shen BR, Zhang YC, Wan XJ, Yao QP, Wu GL, Wang JY, Chen SG, Yan ZQ, Jiang ZL. Induction of thoracic aortic remodeling by endothelial-specific deletion of microRNA-21 in mice. PLoS One 2013; 8:e59002. [PMID: 23527070 PMCID: PMC3601125 DOI: 10.1371/journal.pone.0059002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Accepted: 02/08/2013] [Indexed: 12/22/2022] Open
Abstract
MicroRNAs (miRs) are known to have an important role in modulating vascular biology. MiR21 was found to be involved in the pathogenesis of proliferative vascular disease. The role of miR21 in endothelial cells (ECs) has well studied in vitro, but the study in vivo remains to be elucidated. In this study, miR21 endothelial-specific knockout mice were generated by Cre/LoxP system. Compared with wild-type mice, the miR21 deletion in ECs resulted in structural and functional remodeling of aorta significantly, such as diastolic pressure dropping, maximal tension depression, endothelium-dependent relaxation impairment, an increase of opening angles and wall-thickness/inner diameter ratio, and compliance decrease, in the miR21 endothelial-specific knockout mice. Furthermore, the miR21 deletion in ECs induced down-regulation of collagen I, collagen III and elastin mRNA and proteins, as well as up-regulation of Smad7 and down-regulation of Smad2/5 in the aorta of miR21 endothelial-specific knockout mice. CTGF and downstream MMP/TIMP changes were also identified to mediate vascular remodeling. The results showed that miR21 is identified as a critical molecule to modulate vascular remodeling, which will help to understand the role of miR21 in vascular biology and the pathogenesis of vascular diseases.
Collapse
Affiliation(s)
- Xing-Yi Zhang
- Institute of Mechanobiology & Medical Engineering, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Bao-Rong Shen
- Institute of Mechanobiology & Medical Engineering, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yu-Cheng Zhang
- Institute of Mechanobiology & Medical Engineering, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xue-Jiao Wan
- Institute of Mechanobiology & Medical Engineering, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Qing-Ping Yao
- Institute of Mechanobiology & Medical Engineering, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Guang-Liang Wu
- Institute of Mechanobiology & Medical Engineering, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Ji-Yao Wang
- Institute of Mechanobiology & Medical Engineering, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Si-Guo Chen
- Institute of Mechanobiology & Medical Engineering, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Zhi-Qiang Yan
- Institute of Mechanobiology & Medical Engineering, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- * E-mail:
| | - Zong-Lai Jiang
- Institute of Mechanobiology & Medical Engineering, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
45
|
Forte A, Della Corte A, Grossi M, Bancone C, Provenzano R, Finicelli M, De Feo M, De Santo LS, Nappi G, Cotrufo M, Galderisi U, Cipollaro M. Early cell changes and TGFβ pathway alterations in the aortopathy associated with bicuspid aortic valve stenosis. Clin Sci (Lond) 2013; 124:97-108. [PMID: 22857993 DOI: 10.1042/cs20120324] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Previous studies on BAV (bicuspid aortic valve)-related aortopathy, whose aetiology is still debated, have focused mainly on severe dilatations. In the present study, we aimed to detect earlier signs of aortopathy. Specimens were collected from the 'concavity' (lesser curvature) and the 'convexity' (greater curvature) of mildly dilated AAs (ascending aortas; diameter ≤4 cm) with stenotic TAV (tricuspid aortic valve) or BAV and from donor normal aortas. Specimens were submitted to morphometry, immunohistochemistry and differential gene-expression analysis, focusing on SMC (smooth muscle cell) phenotype, remodelling, MF (myofibroblast) differentiation and TGFβ (transforming growth factor β) pathway. Smoothelin and myocardin mRNAs decreased in all the samples from patients, with the exception of those from BAV convexity, where a change in orientation of smoothelin-positive SMCs and an increase of α-SMA (α-smooth muscle actin) mRNA occurred. Dilated aortas from BAV and TAV patients showed both shared and distinct alterations concerning the TGFβ pathway, including an increased TGFβ and TGFβR2 (TGFβ receptor 2) expression in both groups and a decreased TGFβR1 expression in BAV samples only. Despite a decrease of the mRNA coding for the ED-A (extra domain-A) isoform of FN (fibronectin) in the BAV convexity, the onset of the expression of the corresponding protein in the media was observed in dilated aortas, whereas the normal media from donors was negative for this isoform. This discrepancy could be related to modifications in the intima, normally expressing ED-A FN and showing an altered structure in mild aortic dilatations in comparison with donor aorta. Our results suggest that changes in SMC phenotype and, likely, MF differentiation, occur early in the aortopathy associated with valve stenosis. The defective expression of TGFβR1 in BAV might be a constitutive feature, while other changes we reported could be influenced by haemodynamics.
Collapse
Affiliation(s)
- Amalia Forte
- Department of Experimental Medicine, Second University of Naples, Naples, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Fan J, Li X, Yan YW, Tian XH, Hou WJ, Tong H, Bai SL. Curcumin attenuates rat thoracic aortic aneurysm formation by inhibition of the c-Jun N-terminal kinase pathway and apoptosis. Nutrition 2012; 28:1068-74. [PMID: 22840386 DOI: 10.1016/j.nut.2012.02.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Revised: 01/12/2012] [Accepted: 02/05/2012] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Recent studies have suggested that c-Jun N-terminal kinase (JNK) plays an important role in the formation of abdominal aortic aneurysms, and that direct blockade of JNK by specific inhibitors can effectively prevent the progression of aortic aneurysms. A study has demonstrated that curcumin can suppress the development of experimental abdominal aortic aneurysms by inhibiting inflammation. We sought to investigate whether curcumin could inhibit JNK pathways and apoptosis in thoracic aortic aneurysms. METHODS We used a rat model of a CaCl₂-induced thoracic aortic aneurysm followed by daily oral gavage with curcumin 100 mg/kg or vehicle alone. After treatment for 4 wk, tissue specimens were obtained for histologic assessments, and tissue composition was evaluated using immunohistochemistry, western blotting, and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling. RESULTS Curcumin significantly suppressed the CaCl₂-induced expansion of the thoracic aortic diameter and the structural preservation of medial elastin fibers. Most importantly, curcumin treatment significantly inhibited the phosphorylation of JNK and c-Jun, accompanied by less cell apoptosis in thoracic aortic aneurysm tissues. Furthermore, the expression levels of caspase-3 and the Bax/Bcl-2 ratio were significantly decreased in the aortic walls of curcumin-treated rats. CONCLUSION The present study indicates that the beneficial effect of curcumin on degenerative aortic aneurysms is related to the inhibition of JNK and apoptosis in the walls of thoracic aortic aneurysms.
Collapse
Affiliation(s)
- Jun Fan
- Department of Tissue Engineering, College of Basic Medicine, China Medical University, Shenyang, China
| | | | | | | | | | | | | |
Collapse
|
47
|
Stather P, Wild J, Sylvius N, Choke E, Sayers R, Bown M. MicroRNAs associated with the pathways involved in the pathogenesis of abdominal aortic aneurysms. Artery Res 2012. [DOI: 10.1016/j.artres.2012.09.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
48
|
Blunder S, Messner B, Aschacher T, Zeller I, Türkcan A, Wiedemann D, Andreas M, Blüschke G, Laufer G, Schachner T, Bernhard D. Characteristics of TAV- and BAV-associated thoracic aortic aneurysms--smooth muscle cell biology, expression profiling, and histological analyses. Atherosclerosis 2011; 220:355-61. [PMID: 22178424 DOI: 10.1016/j.atherosclerosis.2011.11.035] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Revised: 10/18/2011] [Accepted: 11/22/2011] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Past studies on the pathogenesis of thoracic aortic aneurysms have, by concentrating on histological and total tissue analyses, revealed several disease-relevant processes. Despite these studies, there is still a significant lack in the understanding of aneurysmal cell biology today. Hence, it was the goal of this study to assess differences between aneurysmal and healthy aortic smooth muscle cells (SMCs) on a broad - screening-like - basis, allowing us to formulate new hypotheses on the role of SMCs in thoracic aneurysm formation. METHODS AND RESULTS After histological characterization of a total of 16 samples from healthy aortas and thoracic aortic aneurysms (TAA) of patients with bicuspid (BAV) and tricuspid (TAV) aortic valves, we isolated aortic SMCs and subjected them to cell biological and gene expression analyses. The data obtained indicate that aneurysmal SMCs exert reduced proliferation and migration rates compared to controls. BAV TAA SMCs have significantly shorter telomeres, whereas TAV TAA SMCs showed a reduced metabolic activity. In BAV TAA SMCs osteopontin (OPN) expression was significantly elevated, and TAV TAA SMCs showed decreased expression of tissue inhibitor of metalloproteinase 3 (TIMP3). CONCLUSION Our study provides evidence that TAA-associated aortic wall disintegration in BAV and TAV TAAs shows similarities, but also significant differences. BAV and TAV TAAs differ with regard to medial elastic fiber mass and the occurrence of fibroblasts, SMC telomere length, metabolism, and gene expression. This study may form the basis for future in-depth analyses on the relevance of these findings in the pathophysiology of BAV and TAV TAAs.
Collapse
Affiliation(s)
- Stefan Blunder
- Cardiac Surgery Research Laboratory, Surgical Research Laboratories, Department of Surgery, Medical University of Vienna, Vienna, Austria
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Theruvath TP, Jones JA, Ikonomidis JS. Matrix metalloproteinases and descending aortic aneurysms: parity, disparity, and switch. J Card Surg 2011; 27:81-90. [PMID: 21958052 DOI: 10.1111/j.1540-8191.2011.01315.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Central to the pathologic changes in developing aortic aneurysms are alterations in the abundance and activity of proteases, of which the most important for aneurysm production comprise the matrix metalloproteinase (MMP) family. In this review, literature demonstrating the role of MMPs in the development of aortic aneurysms is presented, with emphasis on the parity and disparity between the thoracic and abdominal aorta. Furthermore, the role of embryologic cellular origins and evidence of phenotypic switch will be addressed in terms of how this process alters MMP production during aneurysm development.
Collapse
Affiliation(s)
- Tom P Theruvath
- Division of Cardiothoracic Surgery, Department of Surgery, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | | | | |
Collapse
|
50
|
Boon RA, Seeger T, Heydt S, Fischer A, Hergenreider E, Horrevoets AJG, Vinciguerra M, Rosenthal N, Sciacca S, Pilato M, van Heijningen P, Essers J, Brandes RP, Zeiher AM, Dimmeler S. MicroRNA-29 in aortic dilation: implications for aneurysm formation. Circ Res 2011; 109:1115-9. [PMID: 21903938 DOI: 10.1161/circresaha.111.255737] [Citation(s) in RCA: 279] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RATIONALE Aging represents a major risk factor for coronary artery disease and aortic aneurysm formation. MicroRNAs (miRs) have emerged as key regulators of biological processes, but their role in age-associated vascular pathologies is unknown. OBJECTIVE We aim to identify miRs in the vasculature that are regulated by age and play a role in age-induced vascular pathologies. METHODS AND RESULTS Expression profiling of aortic tissue of young versus old mice identified several age-associated miRs. Among the significantly regulated miRs, the increased expression of miR-29 family members was associated with a profound downregulation of numerous extracellular matrix (ECM) components in aortas of aged mice, suggesting that this miR family contributes to ECM loss, thereby sensitizing the aorta for aneurysm formation. Indeed, miR-29 expression was significantly induced in 2 experimental models for aortic dilation: angiotensin II-treated aged mice and genetically induced aneurysms in Fibulin-4(R/R) mice. More importantly, miR-29b levels were profoundly increased in biopsies of human thoracic aneurysms, obtained from patients with either bicuspid (n=79) or tricuspid aortic valves (n=30). Finally, LNA-modified antisense oligonucleotide-mediated silencing of miR-29 induced ECM expression and inhibited angiotensin II-induced dilation of the aorta in mice. CONCLUSION In conclusion, miR-29-mediated downregulation of ECM proteins may sensitize the aorta to the formation of aneurysms in advanced age. Inhibition of miR-29 in vivo abrogates aortic dilation in mice, suggesting that miR-29 may represent a novel molecular target to augment matrix synthesis and maintain vascular wall structural integrity.
Collapse
Affiliation(s)
- Reinier A Boon
- Institute for Cardiovascular Regeneration, Centre for Molecular Medicine, Goethe University, Theodor Stern-Kai 7, 60590 Frankfurt, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|