1
|
Bracamonte JH, Watkins L, Pat B, Dell’Italia LJ, Saucerman JJ, Holmes JW. Contributions of mechanical loading and hormonal changes to eccentric hypertrophy during volume overload: A Bayesian analysis using logic-based network models. PLoS Comput Biol 2025; 21:e1012390. [PMID: 40238825 PMCID: PMC12040246 DOI: 10.1371/journal.pcbi.1012390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 04/29/2025] [Accepted: 02/23/2025] [Indexed: 04/18/2025] Open
Abstract
Primary mitral regurgitation (MR) is a pathology that alters mechanical loading on the left ventricle, triggers an array of compensatory neurohormonal responses, and induces a distinctive ventricular remodeling response known as eccentric hypertrophy. Drug therapies may alleviate symptoms, but only mitral valve repair or replacement can provide significant recovery of cardiac function and dimensions. Questions remain about the optimal timing of surgery, with 20% of patients developing systolic dysfunction post-operatively despite being treated according to the current guidelines. Thus, better understanding of the hypertrophic process in the setting of ventricular volume overload (VO) is needed to improve and better personalize the management of MR. To address this knowledge gap, we employ a Bayesian approach to combine data from 70 studies on experimental volume overload in dogs and rats and use it to calibrate a logic-based network model of hypertrophic signaling in myocytes. The calibrated model predicts that growth in experimental VO is mostly driven by the neurohormonal response, with an initial increase in myocardial tissue stretch being compensated by subsequent remodeling fairly early in the time course of VO. This observation contrasts with a common perception that volume-overload hypertrophy is driven primarily by increased myocyte strain. The model reproduces many aspects of 43 studies not used in its calibration, including infusion of individual hypertrophic agonists alone or in combination with various drugs commonly employed to treat heart failure, as well as administration of some of those drugs in the setting of experimental volume overload. We believe this represents a promising approach to using the known structure of an intracellular signaling network to integrate information from multiple studies into quantitative predictions of the range of expected responses to potential interventions in the complex setting of cardiac hypertrophy driven by a combination of hormonal and mechanical factors.
Collapse
Affiliation(s)
- Johane H. Bracamonte
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Lionel Watkins
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, United States of America
| | - Betty Pat
- Birmingham Veterans Affairs Health Care System, Birmingham, Alabama, United States of America
- Division of Cardiovascular Disease, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Louis J. Dell’Italia
- Birmingham Veterans Affairs Health Care System, Birmingham, Alabama, United States of America
- Division of Cardiovascular Disease, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Jeffrey J. Saucerman
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, United States of America
| | - Jeffrey W. Holmes
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Division of Cardiovascular Disease, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Division of Cardiothoracic Surgery, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| |
Collapse
|
2
|
Maluleke TT, Manilall A, Shezi N, Baijnath S, Millen AME. Acute exposure to LPS induces cardiac dysfunction via the activation of the NLRP3 inflammasome. Sci Rep 2024; 14:24378. [PMID: 39420211 PMCID: PMC11487256 DOI: 10.1038/s41598-024-76066-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 10/10/2024] [Indexed: 10/19/2024] Open
Abstract
Systemic inflammation contributes to left ventricular (LV) dysfunction, however the role of the NLRP3 inflammasome in LV dysfunction in acute inflammatory conditions is unclear. This study investigated the role of the NLRP3 inflammasome in acute (24 h) cardiac structural and functional changes in vivo and in vitro in lipopolysaccharide (LPS)-induced inflammation. LPS-treated Sprague-Dawley (SD) rats showed increased LPS metabolite abundance in their LVs as measured by atmospheric pressure matrix-assisted laser desorption ionisation (AP-MALDI) mass spectrometry imaging (MSI). Echocardiography and histology showed that in LPS-exposed rats, LV internal diameter was decreased, with evidence of macrophage infiltration and oedema. However, there were no changes in LV wall thickness or collagen volume. Additionally, LPS-exposed rats exhibited impaired LV relaxation, potentially contributing to decreased stroke volume. While global systolic function was preserved, LPS exposure in SD rats resulted in impaired myocardial deformation assessed by speckle-tracking echocardiography. Exposure to LPS resulted in upregulation of the expression of components of the NLRP3 inflammasome in rodents. In vitro LPS exposure resulted in increased gene expression of NLRP3 and downstream cytokines IL-1β and IL-18, antioxidant SOD2, and elevated markers of pyroptosis (GSDMD) which were inhibited by treatment with a NLRP3 antagonist. However, LPS-induced increases in the gene expression of apoptosic markers (BAX/Bcl2) were not impacted by NLRP3 antagonism. These findings suggest that inflammation induced adverse cardiac structural and functional changes is, at least in part, mediated by the NLRP3 inflammasome in acute, high-grade inflammatory states. In addition, in vitro findings suggest that while the NLRP3 inflammasome mediates pyroptotic pathways, regulation of apoptosis that is independent of the inflammasome.
Collapse
Affiliation(s)
- Tshiamo T Maluleke
- Wits Integrated Molecular Physiology Research Initiative, School of Physiology, Faculty of Health Sciences, Wits Health Consortium (PTY) Ltd, University of The Witwatersrand, Johannesburg, South Africa
| | - Ashmeetha Manilall
- Wits Integrated Molecular Physiology Research Initiative, School of Physiology, Faculty of Health Sciences, Wits Health Consortium (PTY) Ltd, University of The Witwatersrand, Johannesburg, South Africa
| | - Nandi Shezi
- Wits Integrated Molecular Physiology Research Initiative, School of Physiology, Faculty of Health Sciences, Wits Health Consortium (PTY) Ltd, University of The Witwatersrand, Johannesburg, South Africa
| | - Sooraj Baijnath
- Wits Integrated Molecular Physiology Research Initiative, School of Physiology, Faculty of Health Sciences, Wits Health Consortium (PTY) Ltd, University of The Witwatersrand, Johannesburg, South Africa
| | - Aletta M E Millen
- Wits Integrated Molecular Physiology Research Initiative, School of Physiology, Faculty of Health Sciences, Wits Health Consortium (PTY) Ltd, University of The Witwatersrand, Johannesburg, South Africa.
| |
Collapse
|
3
|
Honetschlägerová Z, Sadowski J, Kompanowska-Jezierska E, Maxová H, Táborský M, Kujal P, Červenka L. Impaired renal autoregulation and pressure-natriuresis: any role in the development of heart failure in normotensive and angiotensin II-dependent hypertensive rats? Hypertens Res 2023; 46:2340-2355. [PMID: 37592042 PMCID: PMC10550820 DOI: 10.1038/s41440-023-01401-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 06/30/2023] [Accepted: 07/28/2023] [Indexed: 08/19/2023]
Abstract
The aim of the present study was to assess the autoregulatory capacity of renal blood flow (RBF) and of the pressure-natriuresis characteristics in the early phase of heart failure (HF) in rats, normotensive and with angiotensin II (ANG II)-dependent hypertension. Ren-2 transgenic rats (TGR) were employed as a model of ANG II-dependent hypertension. HF was induced by creating the aorto-caval fistula (ACF). One week after ACF creation or sham-operation, the animals were prepared for studies evaluating in vivo RBF autoregulatory capacity and the pressure-natriuresis characteristics after stepwise changes in renal arterial pressure (RAP) induced by aortic clamping. In ACF TGR the basal mean arterial pressure, RBF, urine flow (UF), and absolute sodium excretion (UNaV) were all significantly lower tha n in sham-operated TGR. In the latter, reductions in renal arterial pressure (RAP) significantly decreased RBF whereas in ACF TGR they did not change. Stepwise reductions in RAP resulted in marked decreases in UF and UNaV in sham-operated as well as in ACF TGR, however, these decreases were significantly greater in the former. Our data show that compared with sham-operated TGR, ACF TGR displayed well-maintained RBF autoregulatory capacity and improved slope of the pressure-natriuresis relationship. Thus, even though in the very early HF stage renal dysfunction was demonstrable, in the HF model of ANG II-dependent hypertensive rat such dysfunction and the subsequent HF decompensation cannot be simply ascribed to impaired renal autoregulation and pressure-natriuresis relationship.
Collapse
Affiliation(s)
- Zuzana Honetschlägerová
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic.
| | - Janusz Sadowski
- Department of Renal and Body Fluid Physiology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Elzbieta Kompanowska-Jezierska
- Department of Renal and Body Fluid Physiology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Hana Maxová
- Department of Pathophysiology, 2nd Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Miloš Táborský
- Department of Internal Medicine I, Cardiology, University Hospital Olomouc and Palacký University, Olomouc, Czech Republic
| | - Petr Kujal
- Department of Pathology, 3rd Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Luděk Červenka
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
- Department of Internal Medicine I, Cardiology, University Hospital Olomouc and Palacký University, Olomouc, Czech Republic
| |
Collapse
|
4
|
Oliver-Gelabert A, García-Mendívil L, Vallejo-Gil JM, Fresneda-Roldán PC, Andelová K, Fañanás-Mastral J, Vázquez-Sancho M, Matamala-Adell M, Sorribas-Berjón F, Ballester-Cuenca C, Tribulova N, Ordovás L, Raúl Diez E, Pueyo E. Automatic Quantification of Cardiomyocyte Dimensions and Connexin 43 Lateralization in Fluorescence Images. Biomolecules 2020; 10:E1334. [PMID: 32957719 PMCID: PMC7565961 DOI: 10.3390/biom10091334] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/12/2020] [Accepted: 09/15/2020] [Indexed: 02/06/2023] Open
Abstract
Cardiomyocytes' geometry and connexin 43 (CX43) amount and distribution are structural features that play a pivotal role in electrical conduction. Their quantitative assessment is of high interest in the study of arrhythmias, but it is usually hampered by the lack of automatic tools. In this work, we propose a software algorithm (Myocyte Automatic Retrieval and Tissue Analyzer, MARTA) to automatically detect myocytes from fluorescent microscopy images of cardiac tissue, measure their morphological features and evaluate the expression of CX43 and its degree of lateralization. The proposed software is based on the generation of cell masks, contouring of individual cells, enclosing of cells in minimum area rectangles and splitting of these rectangles into end-to-end and middle compartments to estimate CX43 lateral-to-total ratio. Application to human ventricular tissue images shows that mean differences between automatic and manual methods in terms of cardiomyocyte length and width are below 4 μm. The percentage of lateral CX43 also agrees between automatic and manual evaluation, with the interquartile range approximately covering from 3% to 30% in both cases. MARTA is not limited by fiber orientation and has an optimized speed by using contour filtering, which makes it run hundreds of times faster than a trained expert. Developed for CX43 studies in the left ventricle, MARTA is a flexible tool applicable to morphometric and lateralization studies of other markers in any heart chamber or even skeletal muscle. This open-access software is available online.
Collapse
Affiliation(s)
- Antoni Oliver-Gelabert
- Biomedical Signal Interpretation and Computational Simulation (BSICoS), Institute of Engineering Research (I3A), University of Zaragoza & Instituto de Investigación Sanitaria (IIS), 50018 Zaragoza, Spain; (A.O.-G.); (L.G.-M.); (L.O.)
| | - Laura García-Mendívil
- Biomedical Signal Interpretation and Computational Simulation (BSICoS), Institute of Engineering Research (I3A), University of Zaragoza & Instituto de Investigación Sanitaria (IIS), 50018 Zaragoza, Spain; (A.O.-G.); (L.G.-M.); (L.O.)
| | - José María Vallejo-Gil
- Department of Cardiovascular Surgery, University Hospital Miguel Servet, 50018 Zaragoza, Spain; (J.M.V.-G.); (P.C.F.-R.); (J.F.-M.); (M.V.-S.); (M.M.-A.); (F.S.-B.); (C.B.-C.)
| | - Pedro Carlos Fresneda-Roldán
- Department of Cardiovascular Surgery, University Hospital Miguel Servet, 50018 Zaragoza, Spain; (J.M.V.-G.); (P.C.F.-R.); (J.F.-M.); (M.V.-S.); (M.M.-A.); (F.S.-B.); (C.B.-C.)
| | - Katarína Andelová
- Centre of Experimental Medicine, SAS, 84104 Bratislava, Slovakia; (K.A.); (N.T.)
| | - Javier Fañanás-Mastral
- Department of Cardiovascular Surgery, University Hospital Miguel Servet, 50018 Zaragoza, Spain; (J.M.V.-G.); (P.C.F.-R.); (J.F.-M.); (M.V.-S.); (M.M.-A.); (F.S.-B.); (C.B.-C.)
| | - Manuel Vázquez-Sancho
- Department of Cardiovascular Surgery, University Hospital Miguel Servet, 50018 Zaragoza, Spain; (J.M.V.-G.); (P.C.F.-R.); (J.F.-M.); (M.V.-S.); (M.M.-A.); (F.S.-B.); (C.B.-C.)
| | - Marta Matamala-Adell
- Department of Cardiovascular Surgery, University Hospital Miguel Servet, 50018 Zaragoza, Spain; (J.M.V.-G.); (P.C.F.-R.); (J.F.-M.); (M.V.-S.); (M.M.-A.); (F.S.-B.); (C.B.-C.)
| | - Fernando Sorribas-Berjón
- Department of Cardiovascular Surgery, University Hospital Miguel Servet, 50018 Zaragoza, Spain; (J.M.V.-G.); (P.C.F.-R.); (J.F.-M.); (M.V.-S.); (M.M.-A.); (F.S.-B.); (C.B.-C.)
| | - Carlos Ballester-Cuenca
- Department of Cardiovascular Surgery, University Hospital Miguel Servet, 50018 Zaragoza, Spain; (J.M.V.-G.); (P.C.F.-R.); (J.F.-M.); (M.V.-S.); (M.M.-A.); (F.S.-B.); (C.B.-C.)
| | - Narcisa Tribulova
- Centre of Experimental Medicine, SAS, 84104 Bratislava, Slovakia; (K.A.); (N.T.)
| | - Laura Ordovás
- Biomedical Signal Interpretation and Computational Simulation (BSICoS), Institute of Engineering Research (I3A), University of Zaragoza & Instituto de Investigación Sanitaria (IIS), 50018 Zaragoza, Spain; (A.O.-G.); (L.G.-M.); (L.O.)
- Aragon Agency for Research and Development (ARAID), 50018 Zaragoza, Spain
| | - Emiliano Raúl Diez
- Institute of Experimental Medicine and Biology of Cuyo (IMBECU), CONICET, 855 5500 Mendoza, Argentina
| | - Esther Pueyo
- Biomedical Signal Interpretation and Computational Simulation (BSICoS), Institute of Engineering Research (I3A), University of Zaragoza & Instituto de Investigación Sanitaria (IIS), 50018 Zaragoza, Spain; (A.O.-G.); (L.G.-M.); (L.O.)
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 50018 Zaragoza, Spain
| |
Collapse
|
5
|
Liparulo A, Esposito R, Santonocito D, Muñoz-Ramírez A, Spaziano G, Bruno F, Xiao J, Puglia C, Filosa R, Berrino L, D'Agostino B. Formulation and Characterization of Solid Lipid Nanoparticles Loading RF22-c, a Potent and Selective 5-LO Inhibitor, in a Monocrotaline-Induced Model of Pulmonary Hypertension. Front Pharmacol 2020; 11:83. [PMID: 32180715 PMCID: PMC7059131 DOI: 10.3389/fphar.2020.00083] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 01/27/2020] [Indexed: 02/05/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is a rare but fatal disease characterized by persistent elevated blood pressure in the pulmonary circulation, due to increased resistance to blood flow, through the lungs. Advances in the understanding of the pathobiology of PAH clarify the role of leukotrienes (LTs) that appear to be an exciting new target for disease intervention. Over the years, our group has long investigated this field, detecting the 1,2-benzoquinone RF-22c as the most powerful and selective competitive inhibitor of the enzyme 5-lipoxygenase (5-LO). With the aim to improve the bioavailability of RF-22c and to confirm the role of 5-LO as therapeutic strategy for PAH treatment, we developed a solid lipid nanoparticle (SLN) loaded with drug. Therefore, in monocrotaline (MCT) rat model of PAH, the role of 5-LO has been investigated through the formulation of RF-22c-SLN. The rats were randomly grouped into control group, MCT group, and MCT + RF22-c group. After 21 days, all the animals were sacrificed to perform functional and histological evaluations. RF22-c-SLN treatment was able to significantly reduce the mean pulmonary arterial pressure (mPAP) and precapillary resistance (R-pre) compared to the MCT group. The MCT induced rise in medial wall thickness of pulmonary arterioles, and the cardiomyocytes width were significantly attenuated by RF22-c-SLN formulation upon treatment. The results showed that the selective inhibition of 5-LO improved hemodynamic parameters as well as vascular and cardiac remodeling by preventing induced pulmonary hypertension. The improved sustained release properties and targeting abilities achieved with the innovative nanotechnological approach may be therapeutically beneficial for PAH patients as a consequence of the increase of pharmacological effects and of the possible reduction and/or optimization of the drug frequency of administration.
Collapse
Affiliation(s)
- Angela Liparulo
- Department of Experimental Medicine, Section of Pharmacology “L. Donatelli,” University of Campania “L. Vanvitelli,”Naples, Italy
| | - Renata Esposito
- Department of Experimental Medicine, Section of Pharmacology “L. Donatelli,” University of Campania “L. Vanvitelli,”Naples, Italy
| | | | - Alejandra Muñoz-Ramírez
- Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago, Casilla, Correo, Chile
- Institute of Food Safety and Nutrition, Jinan University, Guangzhou, China
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies, University of Campania “L. Vanvitelli,”Naples, Italy
| | - Giuseppe Spaziano
- Department of Experimental Medicine, Section of Pharmacology “L. Donatelli,” University of Campania “L. Vanvitelli,”Naples, Italy
| | - Ferdinando Bruno
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies, University of Campania “L. Vanvitelli,”Naples, Italy
| | - Jianbo Xiao
- Institute of Food Safety and Nutrition, Jinan University, Guangzhou, China
| | - Carmelo Puglia
- Department of Drug Sciences, University of Catania, Catania, Italy
| | - Rosanna Filosa
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies, University of Campania “L. Vanvitelli,”Naples, Italy
- Consorzio Sannio Tech-AMP Biotec, Apollosa, Italy
| | - Liberato Berrino
- Department of Experimental Medicine, Section of Pharmacology “L. Donatelli,” University of Campania “L. Vanvitelli,”Naples, Italy
| | - Bruno D'Agostino
- Department of Experimental Medicine, Section of Pharmacology “L. Donatelli,” University of Campania “L. Vanvitelli,”Naples, Italy
| |
Collapse
|
6
|
Tang Z, Yang C, Zuo B, Zhang Y, Wu G, Wang Y, Wang Z. Taxifolin protects rat against myocardial ischemia/reperfusion injury by modulating the mitochondrial apoptosis pathway. PeerJ 2019; 7:e6383. [PMID: 30723634 PMCID: PMC6360081 DOI: 10.7717/peerj.6383] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 01/03/2019] [Indexed: 12/21/2022] Open
Abstract
Background Taxifolin (TAX), is an active flavonoid, that plays an underlying protective role on the cardiovascular system. This study aimed to evaluate its effect and potential mechanisms on myocardial ischemia/reperfusion (I/R) injury. Methods Healthy rat heart was subjected to I/R using the Langendorff apparatus. Hemodynamic parameters, including heart rate, left ventricular developed pressure (LVDP), maximum/minimum rate of the left ventricular pressure rise (+dp/dtmax and −dp/dtmin) and rate pressure product (RPP) were recorded during the perfusion. Histopathological examination of left ventricular was measured by hematoxylin-eosin (H&E) staining. Creatine kinase-MB (CK-MB) and lactate dehydrogenase (LDH) activities in the effluent perfusion, and the levels of malondialdehyde (MDA), superoxide dismutase (SOD), and glutathione peroxidase (GSH-PX) in the tissue were assayed. Apoptosis related proteins, such as B-cell lymphoma-2 (Bcl-2), Bcl2-associated X (Bax), and cytochrome c (Cyt-c) were also assayed by ELISA. Western blot was employed to determine apoptosis-executive proteins, including caspase 3 and 9. Transferase-mediated dUTP-X nick end labeling assay was performed to evaluate the effect TAX on myocardial apoptosis. Results Taxifolin significantly improved the ventricular functional recovery, as evident by the increase in LVDP, +dp/dtmax, −dp/dtmin and RPP, the levels of SOD, GSH-PX were also increased, but those of LDH, CK-MB, and MDA were decreased. Furthermore, TAX up-regulated the Bcl-2 protein level but down-regulated the levels of Bax, Cyt-c, caspase 3 and 9 protein, thereby inhibits the myocardial apoptosis. Discussion Taxifolin treatment remarkably improved the cardiac function, regulated oxidative stress and attenuated apoptosis. Hence, TAX has a cardioprotective effect against I/R injury by modulating mitochondrial apoptosis pathway.
Collapse
Affiliation(s)
- Zhenqiu Tang
- Key Laboratory of Chinese Materia Medica, Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang, China
| | - Chunjuan Yang
- College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, China.,Beijing Shunyue Technology Co., Ltd., Beijing, China
| | - Baoyan Zuo
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning, China
| | - Yanan Zhang
- Key Laboratory of Chinese Materia Medica, Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang, China
| | - Gaosong Wu
- Key Laboratory of Chinese Materia Medica, Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang, China
| | - Yudi Wang
- Key Laboratory of Chinese Materia Medica, Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang, China
| | - Zhibin Wang
- Key Laboratory of Chinese Materia Medica, Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang, China
| |
Collapse
|
7
|
Patel K, Tiwari N, Aronow WS, Spevack D. Can the echocardiographic LV mass equation reliably demonstrate stable LV mass following acute change in LV load? ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:3. [PMID: 30788350 DOI: 10.21037/atm.2018.11.47] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Background Limited data are available on performance of the left ventricular (LV) mass equation when there is a dynamic change to LV load. We aimed to test this equation in the immediate post-operative period following aortic valve replacement (AVR) for aortic regurgitation (AR) to see if it would reliably demonstrate stable LV mass before and after surgery. Since LV mass would be unlikely to change in the immediate postoperative period, we hypothesized that a decrease in LV diameter postoperatively would be accompanied by concomitant increases in LV wall thickness as predicted by the LV mass equation. Methods We reviewed echocardiograms of adult patients with AR who underwent AVR from 2007-2017 at Montefiore Medical Center (n=28). Three independent readers performed septal wall thickness (SWT), posterior wall thickness (PWT) and left ventricular internal diameter (LVID) measurements on pre-operative and post-operative echocardiograms. LV masses were calculated using the American Society of Echocardiography (ASE) equation. Results Post-operatively, LVID decreased from 5.7±1.2 to 4.9±1.0 cm, P<0.001. SWT was noted to increase from 1.08±0.20 to 1.18±0.27 cm, P=0.03, but PWT was unchanged, 1.11±0.21 to 1.16±0.27 cm, P=0.21. Accordingly, the LV mass equation calculated a decrease in LV mass from 266±126 to 232±99 gm, P=0.01. A control group of coronary artery bypass grafting alone (n=14) did not demonstrate any significant change in SWT, LVID, PWT and LV mass measurements. Similar findings were found for all three readers. Conclusions Following aortic valve replacement for regurgitation, the LV mass equation calculated a reduction in LV mass in the immediate postoperative period. Since an immediate change in LV mass after AVR is unlikely, we feel that these results highlight an important limitation of the mass equation, when used with acutely changing loading conditions.
Collapse
Affiliation(s)
- Kavisha Patel
- Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, NY, USA
| | - Nidhish Tiwari
- Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, NY, USA
| | - Wilbert S Aronow
- Westchester Medical Center, New York Medical College, Valhalla, NY, USA
| | - Daniel Spevack
- Westchester Medical Center, New York Medical College, Valhalla, NY, USA
| |
Collapse
|
8
|
Childers RC, Sunyecz I, West TA, Cismowski MJ, Lucchesi PA, Gooch KJ. Role of the cytoskeleton in the development of a hypofibrotic cardiac fibroblast phenotype in volume overload heart failure. Am J Physiol Heart Circ Physiol 2018; 316:H596-H608. [PMID: 30575422 DOI: 10.1152/ajpheart.00095.2018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hemodynamic load regulates cardiac remodeling. In contrast to pressure overload (increased afterload), hearts subjected to volume overload (VO; preload) undergo a distinct pattern of eccentric remodeling, chamber dilation, and decreased extracellular matrix content. Critical profibrotic roles of cardiac fibroblasts (CFs) in postinfarct remodeling and in response to pressure overload have been well established. Little is known about the CF phenotype in response to VO. The present study characterized the phenotype of primary cultures of CFs isolated from hearts subjected to 4 wk of VO induced by an aortocaval fistula. Compared with CFs isolated from sham hearts, VO CFs displayed a "hypofibrotic" phenotype, characterized by a ~50% decrease in the profibrotic phenotypic markers α-smooth muscle actin, connective tissue growth factor, and collagen type I, despite increased levels of profibrotic transforming growth factor-β1 and an intact canonical transforming growth factor-β signaling pathway. Actin filament dynamics were characterized, which regulate the CF phenotype in response to biomechanical signals. Actin polymerization was determined by the relative amounts of G-actin monomers versus F-actin. Compared with sham CFs, VO CFs displayed ~78% less F-actin and an increased G-actin-to-F-actin ratio (G/F ratio). In sham CFs, treatment with the Rho kinase inhibitor Y-27632 to increase the G/F ratio resulted in recapitulation of the hypofibrotic CF phenotype observed in VO CFs. Conversely, treatment of VO CFs with jasplakinolide to decrease the G/F ratio restored a more profibrotic response (>2.5-fold increase in α-smooth muscle actin, connective tissue growth factor, and collagen type I). NEW & NOTEWORTHY The present study is the first to describe a "hypofibrotic" phenotype of cardiac fibroblasts isolated from a volume overload model. Our results suggest that biomechanical regulation of actin microfilament stability and assembly is a critical mediator of cardiac fibroblast phenotypic modulation.
Collapse
Affiliation(s)
- Rachel C Childers
- Department of Biomedical Engineering, The Ohio State University , Columbus, Ohio.,The Center for Cardiovascular Research, The Research Institute at Nationwide Children's Hospital , Columbus, Ohio.,The Dorothy M. Davis Heart & Lung Research Institute, The Ohio State University , Columbus, Ohio
| | - Ian Sunyecz
- Department of Biomedical Engineering, The Ohio State University , Columbus, Ohio.,The Center for Cardiovascular Research, The Research Institute at Nationwide Children's Hospital , Columbus, Ohio
| | - T Aaron West
- The Center for Cardiovascular Research, The Research Institute at Nationwide Children's Hospital , Columbus, Ohio
| | - Mary J Cismowski
- The Center for Cardiovascular Research, The Research Institute at Nationwide Children's Hospital , Columbus, Ohio
| | - Pamela A Lucchesi
- The Center for Cardiovascular Research, The Research Institute at Nationwide Children's Hospital , Columbus, Ohio.,Department of Pediatrics, The Ohio State University , Columbus, Ohio
| | - Keith J Gooch
- Department of Biomedical Engineering, The Ohio State University , Columbus, Ohio.,The Dorothy M. Davis Heart & Lung Research Institute, The Ohio State University , Columbus, Ohio
| |
Collapse
|
9
|
Zhu C, Rodda AE, Truong VX, Shi Y, Zhou K, Haynes JM, Wang B, Cook WD, Forsythe JS. Increased Cardiomyocyte Alignment and Intracellular Calcium Transients Using Micropatterned and Drug-Releasing Poly(Glycerol Sebacate) Elastomers. ACS Biomater Sci Eng 2018; 4:2494-2504. [PMID: 33435113 DOI: 10.1021/acsbiomaterials.8b00084] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Myocardial tissue engineering is a promising therapy for myocardial infarction recovery. The success of myocardial tissue engineering is likely to rely on the combination of cardiomyocytes, prosurvival regulatory signals, and a flexible biomaterial structure that can deliver them. In this study, poly(glycerol sebacate) (PGS), which exhibits stable elasticity under repeated tensile loading, was engineered to provide physical features that aligned cardiomyocytes in a similar manner to that seen in native cardiac tissue. In addition, a small molecule mimetic of brain derived neurotrophic factor (BDNF) was polymerized into the PGS to achieve a continuous and steady release. Micropatterning of PGS elastomers increased cell alignment, calcium transient homogeneity, and cell connectivity. The intensity of the calcium transients in cardiomyocytes was enhanced when cultured on PGS which released a small molecule BDNF mimetic. This study demonstrates that robust micropatterned elastomer films are a potential candidate for the delivery of functional cardiomyocytes and factors to the injured or dysfunctional myocardium, as well as providing novel in vitro platforms to study cardiomyocyte physiology.
Collapse
Affiliation(s)
- Chenghao Zhu
- Department of Materials Science and Engineering, Monash Institute of Medical Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Andrew E Rodda
- Department of Materials Science and Engineering, Monash Institute of Medical Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Vinh X Truong
- Department of Materials Science and Engineering, Monash Institute of Medical Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Yue Shi
- Department of Materials Science and Engineering, Monash Institute of Medical Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Kun Zhou
- Department of Materials Science and Engineering, Monash Institute of Medical Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - John M Haynes
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Bing Wang
- Centre of Cardiovascular Research and Education in Therapeutics, School of Public Health and Preventive Medicine, Monash University, The Alfred Centre, 99 Commercial Road, Melbourne, Victoria 3004, Australia
| | - Wayne D Cook
- Department of Materials Science and Engineering, Monash Institute of Medical Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - John S Forsythe
- Department of Materials Science and Engineering, Monash Institute of Medical Engineering, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
10
|
Abstract
The risks associated with hypertension emerge through a series of complex interactions. Myocardial ischemia is the major contributor to this risk. The mechanisms driving ischemia reflect many of the key factors in hypertension, including endothelial and neurohumoral factors, fibrosis, and hemodynamics. Left ventricular hypertrophy and fibrosis are of fundamental importance and together with hemodynamics provide an optimal template for myocardial ischemia. Understanding the pathophysiology has aided a more rational management approach but challenges remain which, if surmounted, will have an impact on the morbidity and mortality caused by myocardial ischemia in patients with hypertension.
Collapse
Affiliation(s)
- Tony Stanton
- Nambour Hospital, School of Medicine, University of Queensland, Medical Suites, Level 2, Nambour, Queensland 4556, Australia
| | | |
Collapse
|
11
|
Bening C, Hamouda K, Leyh R. Sex differences in volume overload in skinned fibers. BMC Cardiovasc Disord 2016; 16:197. [PMID: 27737639 PMCID: PMC5064933 DOI: 10.1186/s12872-016-0370-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 09/28/2016] [Indexed: 11/17/2022] Open
Abstract
Background The impact of sex on cardiac morphology and function in chronic volume overload has been described in detail. However, the relation between sex and contractile properties at the actin-myosin level has not been well defined. Therefore, we evaluated the influence of sex on the contractile capacities of patients with chronic volume overload. Methods In 36 patients (18 males, 65 ± 9 years; 18 females, 65 ± 13 years) scheduled for elective mitral valve surgery due to severe mitral regurgitation (MR) with preserved left ventricular function, right auricle samples were obtained prior to extracorporal circulation. The fibers were prepared and skinned and exposed to a gradual increase in the calcium concentration (from pCa of 6.5–4.0) for calcium-induced force-developing measurements. Calcium sensitivity was also measured and recorded. Results The pCa-force relationship of the fibers obtained from males and females was significantly different, with the force values of the female fibers greater than those of male fibers at maximum calcium concentrations (pCa of 4.0: 3.6 ± 0.3 mN versus 3.2 ± 0.4 mN, p 0.02) and pCa of 4.5 2.6 ± 0.6 versus 2.0 ± 0.5, p 0.002). In contrast, the force values of female fibers were lower at mean calcium concentrations compared to those of male fibers (at 5.5 and pCa of 6.0: 1.0 ± 0.3 mN versus 1.2 ± 0.5 mN, p 0.04; 0.61 ± 0.05 versus 0.88 ± 0.09, p 0.04). Calcium sensitivity was observed at pCa of 5.0 in females and pCa of 4.5 in males. Conclusion This study demonstrated that female fibers from patients exposed to chronic volume overload developed higher force values at a given calcium concentration compared to fibers from male patients. We assume that female patients might tap the full force potential, which is required when exposed to the highest calcium concentrations in our experimental cycle. The calcium sensitivity among genders was significantly different, with the results suggesting that males have higher calcium sensitivity and might compensate for lower force values at maximal calcium concentrations by a higher affinity for calcium. Hence, female patients with MR seem to work more “energy efficient”.
Collapse
Affiliation(s)
- C Bening
- Department of Thoracic, Cardiac and Thoracic Vascular Surgery, Medical Centre of the University Hospital Würzburg, Oberdürrbacherstrasse 6, 97080, Würzburg, Germany. .,Department of Cardiothoracic and Vascular Surgery, University Hospital Mainz, Mainz, Germany.
| | - K Hamouda
- Department of Thoracic, Cardiac and Thoracic Vascular Surgery, Medical Centre of the University Hospital Würzburg, Oberdürrbacherstrasse 6, 97080, Würzburg, Germany
| | - R Leyh
- Department of Thoracic, Cardiac and Thoracic Vascular Surgery, Medical Centre of the University Hospital Würzburg, Oberdürrbacherstrasse 6, 97080, Würzburg, Germany
| |
Collapse
|
12
|
Brower GL, Levick SP, Janicki JS. Differential Effects of Prevention and Reversal Treatment with Lisinopril on Left Ventricular Remodelling in a Rat Model of Heart Failure. Heart Lung Circ 2015; 24:919-24. [PMID: 25837018 PMCID: PMC4564313 DOI: 10.1016/j.hlc.2015.02.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 02/23/2015] [Accepted: 02/24/2015] [Indexed: 11/23/2022]
Abstract
BACKGROUND Angiotensin converting enzyme (ACE) inhibitors such as lisinopril, represent the front line pharmacological treatment for heart failure, which is characterised by marked left ventricular (LV) dilatation and hypertrophy. This study sought to determine whether initiating treatment with ACE inhibitors at different stages in the remodelling process would alter the efficacy of treatment. METHODS To this end, LV size and function were determined in the aortocaval (AV) fistula model of volume overload-induced heart failure. Sprague-Dawley rats were assigned to sham, untreated AV fistula (21 weeks), AV fistula treated with lisinopril (21 weeks), or AV fistula treated with lisinopril from six to 21 weeks post-fistula groups. RESULTS Administration of lisinopril for the entire 21-week period prevented LV dilatation, attenuated myocardial hypertrophy and prevented changes in myocardial compliance and contractility, whereas delaying initiation of treatment until six weeks post-fistula attenuated LV dilatation and hypertrophy, however, the delayed onset of treatment had no beneficial effect on ventricular compliance or systolic function. CONCLUSIONS The results demonstrate differential effects that can occur with ACE inhibitors depending on the stage during the remodelling process at which treatment is administered.
Collapse
Affiliation(s)
- Gregory L Brower
- Cell Biology and Anatomy, School of Medicine, University of South Carolina, Columbia, SC 29208, USA
| | - Scott P Levick
- Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Joseph S Janicki
- Cell Biology and Anatomy, School of Medicine, University of South Carolina, Columbia, SC 29208, USA.
| |
Collapse
|
13
|
Trpm4 gene invalidation leads to cardiac hypertrophy and electrophysiological alterations. PLoS One 2014; 9:e115256. [PMID: 25531103 PMCID: PMC4274076 DOI: 10.1371/journal.pone.0115256] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 11/20/2014] [Indexed: 12/14/2022] Open
Abstract
RATIONALE TRPM4 is a non-selective Ca2+-activated cation channel expressed in the heart, particularly in the atria or conduction tissue. Mutations in the Trpm4 gene were recently associated with several human conduction disorders such as Brugada syndrome. TRPM4 channel has also been implicated at the ventricular level, in inotropism or in arrhythmia genesis due to stresses such as ß-adrenergic stimulation, ischemia-reperfusion, and hypoxia re-oxygenation. However, the physiological role of the TRPM4 channel in the healthy heart remains unclear. OBJECTIVES We aimed to investigate the role of the TRPM4 channel on whole cardiac function with a Trpm4 gene knock-out mouse (Trpm4-/-) model. METHODS AND RESULTS Morpho-functional analysis revealed left ventricular (LV) eccentric hypertrophy in Trpm4-/- mice, with an increase in both wall thickness and chamber size in the adult mouse (aged 32 weeks) when compared to Trpm4+/+ littermate controls. Immunofluorescence on frozen heart cryosections and qPCR analysis showed no fibrosis or cellular hypertrophy. Instead, cardiomyocytes in Trpm4-/- mice were smaller than Trpm4+/+with a higher density. Immunofluorescent labeling for phospho-histone H3, a mitosis marker, showed that the number of mitotic myocytes was increased 3-fold in the Trpm4-/-neonatal stage, suggesting hyperplasia. Adult Trpm4-/- mice presented multilevel conduction blocks, as attested by PR and QRS lengthening in surface ECGs and confirmed by intracardiac exploration. Trpm4-/-mice also exhibited Luciani-Wenckebach atrioventricular blocks, which were reduced following atropine infusion, suggesting paroxysmal parasympathetic overdrive. In addition, Trpm4-/- mice exhibited shorter action potentials in atrial cells. This shortening was unrelated to modifications of the voltage-gated Ca2+ or K+ currents involved in the repolarizing phase. CONCLUSIONS TRPM4 has pleiotropic roles in the heart, including the regulation of conduction and cellular electrical activity which impact heart development.
Collapse
|
14
|
Lushnikova EL, Nepomnyashchikh LM, Klinnikova MG, Molodykh OP, Yuzhik EI, Nepomnyashchikh RD, Pichigin VI. Proliferative activity of cadriomyocytes in chronic hypercholesterolemia. Bull Exp Biol Med 2014; 156:578-83. [PMID: 24771452 DOI: 10.1007/s10517-014-2399-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Indexed: 11/25/2022]
Abstract
We studied proliferative activity of cardiomyocytes (using proliferation marker Ki-67) and compared it with their total number in the heart under conditions of experimental chronic hypercholesterolemia and its combination with hypothyroidism. It was found that Ki-67-positive cells are primarily located in the subepicardial layer near the heart base in both intact and experimental animals. Replicative cardiomyocyte pool in intact rats constituted 1.67 ± 0.33‰ of the total cardiomyocyte population; after 68-day atherogenic diet with exogenous cholesterol alone, the replicative cardiomyocyte pool decreased by 16 % (to 1.40 ± 0.24‰). Treatment with mercazolil against the background of exogenous cholesterol increased this parameter by 40 % (to 2.33 ± 0.88‰). Changes in replicative activity of cardiomyocytes correlated with their total number in the heart and organ weight. We conclude that replicative cardiomyocyte pool primarily includes non-terminally differentiated cardiomyocytes (small mononuclear cardiomyocytes) and their proliferation maintains the total number of cardiomyocytes in the heart under conditions of cytopathic influences and provides the basis for physiological and reparative regeneration of the myocardium.
Collapse
Affiliation(s)
- E L Lushnikova
- Research Institute of Regional Pathology and Pathomorphology, Siberian Division of the Russian Academy of Medical Sciences, Novosibirsk, Russia,
| | | | | | | | | | | | | |
Collapse
|
15
|
Stewart JA, Gardner JD, Brower GL, Janicki JS. Temporal changes in integrin-mediated cardiomyocyte adhesion secondary to chronic cardiac volume overload in rats. Am J Physiol Heart Circ Physiol 2013; 306:H101-8. [PMID: 24163072 DOI: 10.1152/ajpheart.00541.2013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Previous studies have established integrins as cell surface receptors that mediate cardiomyocyte-extracellular matrix (ECM) attachments. This study sought to determine the contributions of the myocardial β1- and β3-integrin subunits to ventricular dilatation and coronary flow regulation using a blood-perfused isolated heart preparation. Furthermore, cardiomyocyte adhesion to collagen types I and IV, fibronectin, and laminin with and without a β1-integrin subunit neutralizing antibody was assessed during the course of remodeling secondary to a sustained cardiac volume overload, including the onset of heart failure. Isolated cardiomyocytes were obtained during the initial, compensated, and decompensated phases of remodeling resulting from an aortocaval fistula created in 8-wk-old male Sprague-Dawley rats. Blocking the β1-integrin subunit in isolated normal hearts produced ventricular dilatation, whereas this was not the case when the β3-subunit was blocked. Substantial reductions in cardiomyocyte adhesion coincided with the previously documented development of ventricular dilatation and decreased contractility postfistula, with the β1-integrin contribution to adhesion ranging from 28% to 73% over the course of remodeling being essentially substrate independent. In contrast, both integrin subunits were found to be involved in regulating coronary vascular resistance. It is concluded that marked reductions in integrin-mediated cardiomyocyte adhesion to the ECM play a significant role in the progression of adverse myocardial remodeling that leads to heart failure. Furthermore, although both the β1- and β3-integrin subunits were involved in regulating coronary vascular resistance, only inhibition of β1-integrin-mediated adhesion resulted in ventricular dilatation of the normal heart.
Collapse
Affiliation(s)
- James A Stewart
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, South Carolina
| | | | | | | |
Collapse
|
16
|
Østergaard KH, Baandrup UT, Wang T, Bertelsen MF, Andersen JB, Smerup M, Nyengaard JR. Left ventricular morphology of the giraffe heart examined by stereological methods. Anat Rec (Hoboken) 2013; 296:611-21. [PMID: 23420662 DOI: 10.1002/ar.22672] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Accepted: 01/07/2013] [Indexed: 11/10/2022]
Abstract
The giraffe heart has a relative mass similar to other mammals, but generates twice the blood pressure to overcome the gravitational challenge of perfusing the cerebral circulation. To provide insight as to how the giraffe left ventricle (LV) is structurally adapted to tackle such a high afterload, we performed a quantitative structural study of the LV myocardium in young and adult giraffe hearts. Tissue samples were collected from young and adult giraffe LV. Design-based stereology was used to obtain unbiased estimates of numbers and sizes of cardiomyocytes, nuclei and capillaries. The numerical density of myocyte nuclei was 120 × 10(3) mm(-3) in the adult and 504 × 10(3) mm(-3) in the young LV. The total number (N) of myocyte nuclei was 1.3 × 10(11) in the adult LV and 4.9 × 10(10) in the young LV. In the adult LV the volume per myocyte was 39.5 × 10(3) µm(3) and the number of nuclei per myocyte was 4.2. The numerical density of myocytes was 24.1 × 10(6) cm(-3) and the capillary volume fraction of the adult giraffe ventricle was 0.054. The significantly higher total number of myocyte nuclei in the adult LV, the high density of myocyte nuclei in the LV, and the number of nuclei per myocyte (which was unusually high compared to other mammalian, including human data), all suggest the presence of myocyte proliferation during growth of the animal to increase wall thickness and normalize LV wall tension as the neck lengthens and the need for higher blood pressure ensues.
Collapse
Affiliation(s)
- Kristine H Østergaard
- Center for Clinical Research, Vendsyssel Hospital and Aalborg University, Aalborg, Denmark.
| | | | | | | | | | | | | |
Collapse
|
17
|
Janicki JS, Spinale FG, Levick SP. Gender differences in non-ischemic myocardial remodeling: are they due to estrogen modulation of cardiac mast cells and/or membrane type 1 matrix metalloproteinase. Pflugers Arch 2013; 465:687-97. [PMID: 23417570 DOI: 10.1007/s00424-013-1229-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 01/14/2013] [Accepted: 01/28/2013] [Indexed: 10/27/2022]
Abstract
This review is focused on gender differences in cardiac remodeling secondary to sustained increases in cardiac volume (VO) and generated pressure (PO). Estrogen has been shown to favorably alter the course of VO-induced remodeling. That is, the VO-induced increased extracellular matrix proteolytic activity and mast cell degranulation responsible for the adverse cardiac remodeling in males and ovariectomized rodents do not occur in intact premenopausal females. While less is known regarding the mechanisms responsible for female cardioprotection in PO-induced stress, gender differences in remodeling have been reported indicating the ability of premenopausal females to adequately compensate. In view of the fact that, in male mice with PO, mast cells have been shown to play a role in the adverse remodeling suggests favorable estrogen modification of mast cell phenotype may also be responsible for cardioprotection in females with PO. Thus, while evidence is accumulating regarding premenopausal females being cardioprotected, there remains the need for in-depth studies to identify critical downstream molecular targets that are under the regulation of estrogen and relevant to cardiac remodeling. Such studies would result in the development of therapy which provides cardioprotection while avoiding the adverse effects of systemic estrogen delivery.
Collapse
Affiliation(s)
- Joseph S Janicki
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC 29208, USA.
| | | | | |
Collapse
|
18
|
Abstract
This review discusses cardiac consequences of pressure overload. In response to elevated pressure, the ventricular hypertrophy compensates for the increased wall stress. However, the ventricular hypertrophy involves numerous structural adaptations that may lead to ventricular dysfunction and, eventually, heart failure. Particular emphasis is placed on molecular mechanisms that govern the development of hypertrophy and that may lead to maladaptive structural changes resulting in adverse cardiac events.
Collapse
|
19
|
McLarty JL, Meléndez GC, Levick SP, Bennett S, Sabo-Attwood T, Brower GL, Janicki JS. Estrogenic modulation of inflammation-related genes in male rats following volume overload. Physiol Genomics 2012; 44:362-73. [PMID: 22274565 DOI: 10.1152/physiolgenomics.00146.2011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Our laboratory has previously reported significant increases of the proinflammatory cytokine TNF-α in male hearts secondary to sustained volume overload. These elevated levels of TNF-α are accompanied by left ventricular (LV) dilatation and cardiac dysfunction. In contrast, estrogen has been shown to protect against this adverse cardiac remodeling in both female and male rats. The purpose of this study was to determine whether estrogen has an effect on inflammation-related genes that contribute to this estrogen-mediated cardioprotection. Myocardial volume overload was induced by aortocaval fistula in 8 wk old male Sprague-Dawley rats (n = 30), and genes of interest were identified using an inflammatory PCR array in Sham, Fistula, and Fistula + Estrogen-treated (0.02 mg/kg per day beginning 2 wk prior to fistula) groups. A total of 55 inflammatory genes were modified (≥2-fold change) at 3 days postfistula. The number of inflammatory gene was reduced to 21 genes by estrogen treatment, whereas 13 genes were comparably modulated in both fistula groups. The most notable were TNF-α, which was downregulated by estrogen, and the TNF-α receptors, which were differentially regulated by estrogen. Specific genes related to arachidonic acid metabolism were downregulated by estrogen, including cyclooxygenase-1 and -2. Finally, gene expression for the β1-integrin cell adhesion subunit was significantly upregulated in the LV of estrogen-treated animals. Protein levels reflected the changes observed at the gene level. These data suggest that estrogen provides its cardioprotective effects, at least in part, via genomic modulation of numerous inflammation-related genes.
Collapse
Affiliation(s)
- Jennifer L McLarty
- Cell Biology and Anatomy, University of South Carolina-School of Medicine, Columbia, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Hwee DT, Gomes AV, Bodine SC. Cardiac proteasome activity in muscle ring finger-1 null mice at rest and following synthetic glucocorticoid treatment. Am J Physiol Endocrinol Metab 2011; 301:E967-77. [PMID: 21828340 PMCID: PMC3214003 DOI: 10.1152/ajpendo.00165.2011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Muscle ring finger-1 (MuRF1) is a muscle-specific E3 ubiquitin ligase that has been implicated in the regulation of cardiac mass through its control of the ubiquitin proteasome system. While it has been suggested that MuRF1 is required for cardiac atrophy, a resting cardiac phenotype has not been reported in mice with a null deletion [knockout (KO)] of MuRF1. Here, we report that MuRF1 KO mice have significantly larger hearts than age-matched wild-type (WT) littermates at ≥ 6 mo of age and that loss of cardiac mass can occur in the absence of MuRF1. The objective of this study was to determine whether changes in proteasome activity were responsible for the cardiac phenotypes observed in MuRF1 KO mice. Cardiac function, architecture, and proteasome activity were analyzed at rest and following 28 days of dexamethasone (Dex) treatment in 6-mo-old WT and MuRF1 KO mice. Echocardiography demonstrated normal cardiac function in the enlarged hearts in MURF1 KO mice. At rest, heart mass and cardiomyocyte diameter were significantly greater in MuRF1 KO than in WT mice. The increase in cardiac size in MuRF1 KO mice was related to a decrease in proteasome activity and an increase in Akt signaling relative to WT mice. Dex treatment induced a significant loss of cardiac mass in MuRF1 KO, but not WT, mice. Furthermore, Dex treatment resulted in an increase in proteasome activity in KO, but a decrease in WT, mice. In contrast, Akt/mammalian target of rapamycin signaling decreased in MuRF1 KO mice and increased in WT mice in response to Dex treatment. These findings demonstrate that MuRF1 plays an important role in regulating cardiac size through alterations in protein turnover and that MuRF1 is not required to induce cardiac atrophy.
Collapse
Affiliation(s)
- Darren T Hwee
- 2Molecular, Cellular, and Integrative Physiology Graduate Group, University of California, Davis, Davis, California, USA
| | | | | |
Collapse
|