1
|
Luo Q, Li X, Xie K. Plakophilin 1 in carcinogenesis. Mol Carcinog 2024; 63:1855-1865. [PMID: 38888207 DOI: 10.1002/mc.23779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/11/2024] [Accepted: 06/06/2024] [Indexed: 06/20/2024]
Abstract
Plakophilin 1 (PKP1) belongs to the desmosome family as an anchoring junction protein in cellular junctions. It localizes at the interface of the cell membrane and cytoplasm. Although PKP1 is a non-transmembrane protein, it may become associated with the cell membrane via transmembrane proteins such as desmocollins and desmogleins. Homozygous deletion of PKP1 results in ectodermal dysplasia-skin fragility syndrome (EDSF) and complete knockout of PKP1 in mice produces comparable symptoms to EDSF in humans, although mice do not survive more than 24 h. PKP1 is not limited to expression in desmosomal structures, but is rather widely expressed in cytoplasm and nucleus, where it assumes important cellular functions. This review will summarize distinct roles of PKP1 in the cell membrane, cytoplasm, and nucleus with an overview of relevant studies on its function in diverse types of cancer.
Collapse
Affiliation(s)
- Qiang Luo
- Center for Pancreatic Cancer Research, The South China University of Technology School of Medicine, Guangzhou, Guangdong, China
| | - Xiaojia Li
- Center for Pancreatic Cancer Research, The South China University of Technology School of Medicine, Guangzhou, Guangdong, China
| | - Keping Xie
- Center for Pancreatic Cancer Research, The South China University of Technology School of Medicine, Guangzhou, Guangdong, China
- The Second Affiliated Hospital and Guangzhou First People's Hospital, South China University of Technology School of Medicine, Guangzhou, Guangdong, China
- The South China University of Technology Comprehensive Cancer Center, Guangzhou, Guangdong, China
| |
Collapse
|
2
|
Zhang Y, Chen J, Tian J, Zhou Y, Liu Y. Role and function of plakophilin 3 in cancer progression and skin disease. Cancer Sci 2024; 115:17-23. [PMID: 38048779 PMCID: PMC10823275 DOI: 10.1111/cas.16019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 10/30/2023] [Accepted: 11/06/2023] [Indexed: 12/06/2023] Open
Abstract
Plakophilin 3 (PKP3), a component of desmosome, is aberrantly expressed in many kinds of human diseases, especially in cancers. Through direct interaction, PKP3 binds with a series of desmosomal proteins, such as desmoglein, desmocollin, plakoglobin, and desmoplakin, to initiate desmosome aggregation, then promotes its stability. As PKP3 is mostly expressed in the skin, loss of PKP3 promotes the development of several skin diseases, such as paraneoplastic pemphigus, pemphigus vulgaris, and hypertrophic scar. Moreover, accumulated clinical data indicate that PKP3 dysregulates in diverse cancers, including breast, ovarian, colon, and lung cancers. Numerous lines of evidence have shown that PKP3 plays important roles in multiple cellular processes during cancer progression, including metastasis, invasion, tumor formation, autophagy, and proliferation. This review examines the diverse functions of PKP3 in regulating tumor formation and development in various types of cancers and summarizes its detailed mechanisms in the occurrence of skin diseases.
Collapse
Affiliation(s)
- Yefei Zhang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, Institute of Cancer, Department of Biochemistry, College of Life ScienceNanjing Normal UniversityNanjingChina
| | - Jiahui Chen
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, Institute of Cancer, Department of Biochemistry, College of Life ScienceNanjing Normal UniversityNanjingChina
| | - Jia Tian
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, Institute of Cancer, Department of Biochemistry, College of Life ScienceNanjing Normal UniversityNanjingChina
| | - Yehui Zhou
- Department of General SurgeryThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Yan Liu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, Institute of Cancer, Department of Biochemistry, College of Life ScienceNanjing Normal UniversityNanjingChina
| |
Collapse
|
3
|
Dai M, Su Y, Wu Z. Downregulated expression of plakophilin-2 gene in patients with colon adenocarcinoma predicts an unfavorable prognosis and immune infiltrate. J Gene Med 2024; 26:e3592. [PMID: 37726168 DOI: 10.1002/jgm.3592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 08/21/2023] [Accepted: 08/24/2023] [Indexed: 09/21/2023] Open
Abstract
BACKGROUND Plakophilin 2 gene (PKP2) has been revealed to be differentially expressed in various cancer types and is correlated with prognosis. However, the role of PKP2 in colon adenocarcinoma remains indistinct. METHODS Differences in transcriptional expression of PKP2 between colon adenocarcinoma tissues and normal adjacent tissues were acquired from the publicly available dataset-the Cancer Genome Atlas. A receiver operating curve (ROC) was constructed to differentiate colon adenocarcinoma tissues from adjacent normal tissues. The Kaplan-Meier plot method was performed to evaluate the effect of PKP2 on survival. The correlation between mRNA expression of PKP2 and immune infiltrating was determined by the Tumor Immune Estimation Resource and Tumor-Immune System Interaction databases. RESULTS The expression of PKP2 in colon adenocarcinoma tissues was significantly downregulated compared with corresponding adjacent normal tissues. Decreased PKP2 mRNA expression was associated with lymph node metastases and advanced pathological stage. The ROC curve analysis indicated that with a cutoff value of 6.034, the sensitivity and specificity for PKP2 differentiating the colon adenocarcinoma tissues from the adjacent normal tissues were 90.2 and 66.5% respectively. Kaplan-Meier plot survival analysis revealed that colon adenocarcinoma patients with low-PKP2 had a worse prognosis than those with high-PKP2 (68.2 vs. 101.4 months, p = 0.028). Correlation analysis showed that mRNA expression of PKP2 was correlative with immune infiltrates. CONCLUSIONS Downregulated PKP2 is significantly correlated with unfavorable immune infiltrating and survival in colon adenocarcinoma. This research indicates that PKP2 can be selected as a novel biomarker of potential immunotherapy targets and unfavorable prognosis in colon adenocarcinoma.
Collapse
Affiliation(s)
- Meng Dai
- Department of Critical Care Medicine, Huadong Hospital, Fudan University, Shanghai, China
| | - Yuantao Su
- Department of General Surgery, Huadong Hospital, Fudan University, Shanghai, China
| | - Zhixiong Wu
- Department of Critical Care Medicine, Huadong Hospital, Fudan University, Shanghai, China
| |
Collapse
|
4
|
Du Y, Hou S, Chen Z, Li W, Li X, Zhou W. Comprehensive Analysis Identifies PKP3 Overexpression in Pancreatic Cancer Related to Unfavorable Prognosis. Biomedicines 2023; 11:2472. [PMID: 37760912 PMCID: PMC10526039 DOI: 10.3390/biomedicines11092472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/04/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Plakophilin 3 (PKP3) affects cell signal transduction and cell adhesion and performs a crucial function in tumorigenesis. The current investigation evaluated the predictive significance and underlying processes of PKP3 within pancreatic cancer (PC) tissues. The assessment of differences in PKP3 expression was conducted through an analysis of RNA-seq data acquired from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. Additionally, clinical samples were collected to validate the findings. The predictive significance of PKP3 was investigated by analyzing survival data derived from TCGA and clinical specimens. PKP3's biological function was assessed via phenotypic experiments after the suppression of PKP3 expression within PC cells. Functional enrichment analysis, encompassing KEGG, GO, and GSEA, was employed to assess the underlying mechanism of PKP3. Immune infiltration analysis was conducted in the present investigation to determine the association between PKP3 and tumor-infiltrating immune cells (TICs). In PC tissues, PKP3 expression was abnormally upregulated and correlated with a negative prognosis in individuals with PC. PKP3 can promote the progression, migration, and invasive capacity of PC cells and is relevant to the regulation of the PI3K-Akt and MAPK signaling pathways. Immune infiltration analysis demonstrated that PKP3 impeded CD8+ T-cell infiltration and immune cytokine expression within the tumor microenvironment. The PKP3 protein was identified as a prospective independent predictive indicator and represents a viable approach for immunotherapy in the context of PC. PKP3 may impact prognosis by broadly inhibiting immune cell infiltration and promoting the activation of tumor-associated signaling pathways.
Collapse
Affiliation(s)
- Yan Du
- The Second School of Clinical Medicine, Lanzhou University, Lanzhou 730030, China
| | - Shuang Hou
- The Second School of Clinical Medicine, Lanzhou University, Lanzhou 730030, China
| | - Zhou Chen
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou 730030, China
| | - Wancheng Li
- The Second School of Clinical Medicine, Lanzhou University, Lanzhou 730030, China
| | - Xin Li
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou 730030, China
| | - Wence Zhou
- The Second School of Clinical Medicine, Lanzhou University, Lanzhou 730030, China
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou 730030, China
| |
Collapse
|
5
|
Müller L, Keil R, Hatzfeld M. Plakophilin 3 facilitates G1/S phase transition and enhances proliferation by capturing RB protein in the cytoplasm and promoting EGFR signaling. Cell Rep 2023; 42:112031. [PMID: 36689330 DOI: 10.1016/j.celrep.2023.112031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 10/26/2022] [Accepted: 01/10/2023] [Indexed: 01/23/2023] Open
Abstract
Plakophilin 3 (PKP3) is a component of desmosomes and is frequently overexpressed in cancer. Using keratinocytes either lacking or overexpressing PKP3, we identify a signaling axis from ERK to the retinoblastoma (RB) protein and the E2F1 transcription factor that is controlled by PKP3. RB and E2F1 are key components controlling G1/S transition in the cell cycle. We show that PKP3 stimulates the activity of ERK and its target RSK1. This inhibits expression of the transcription factor RUNX3, a positive regulator of the CDK inhibitor CDKN1A/p21, which is also downregulated by PKP3. Elevated CDKN1A prevents RB phosphorylation and E2F1 target gene expression, leading to delayed S phase entry and reduced proliferation in PKP3-depleted cells. Elevated PKP3 expression not only increases ERK activity but also captures phosphorylated RB (phospho-RB) in the cytoplasm to promote E2F1 activity and cell-cycle progression. These data identify a mechanism by which PKP3 promotes proliferation and acts as an oncogene.
Collapse
Affiliation(s)
- Lisa Müller
- Charles Tanford Protein Research Center, Martin Luther University Halle, Institute of Molecular Medicine, Department for Pathobiochemistry, Kurt-Mothes-Str. 3A, 06120 Halle, Germany.
| | - René Keil
- Charles Tanford Protein Research Center, Martin Luther University Halle, Institute of Molecular Medicine, Department for Pathobiochemistry, Kurt-Mothes-Str. 3A, 06120 Halle, Germany
| | - Mechthild Hatzfeld
- Charles Tanford Protein Research Center, Martin Luther University Halle, Institute of Molecular Medicine, Department for Pathobiochemistry, Kurt-Mothes-Str. 3A, 06120 Halle, Germany.
| |
Collapse
|
6
|
Yang T, Jia L, Bian S, Chang X, Zhang Q, Tang Q, Zhu J, Yang Z, Feng Z. TROP2 Down-Regulated DSG2 to Promote Gastric Cancer Cell Invasion and Migration by EGFR/AKT and DSG2/PG/β-Catenin Pathways. Curr Cancer Drug Targets 2022; 22:691-702. [PMID: 35392784 DOI: 10.2174/1568009622666220407111013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 12/01/2021] [Accepted: 12/20/2021] [Indexed: 11/22/2022]
Abstract
AIMS Explore the specific mechanism of TROP2 in promoting cancer in gastric cancer, and provide a basis for the prevention and treatment of gastric cancer. Background Gastric cancer (GC) is the fourth most commonly found cancer and the second highest cause of cancer related death worldwide, TROP2 overexpression is closely related with many cancers including gastrointestinal tumors, DSG2 is an important protein in cell adhesion and its loss is related to cell migration. OBJECTIVE Explore the specific mechanism of TROP2 in promoting cancer in gastric cancer, and provide a basis for the prevention and treatment of gastric cancer. METHOD DSG2 was identified as an interacting protein of TROP2 in GC cells by co-immunoprecipitation and mass spectrometry. The regulated behavior of TROP2 on DSG2 expression was investigated with TROP2 over-expressure or knockdown. Cell-cell adhesion capacity medicated by DSG2 was evaluated by adhesion related assays. Electron microscope observation was utilized for accessing GC tumor desmosome assembly. Proteins in EGFR/AKT and DSG2/PG/β-catenin pathways were evaluated by western blotting. RESULT This study suggests that abundant expression of TROP2 in GC cells lessened DSG2 levels as well as desmosome adhesion, increased cell invasion, migration and promoted malignant progression through EGFR/AKT and DSG2/PG/β-catenin pathways. CONCLUSION TROP2 promotes gastric cancer cell invasion and migration by decreasing DSG2 expression through EGFR/AKT and DSG2/PG/β-catenin pathways.
Collapse
Affiliation(s)
- Tingting Yang
- Key Laboratory of Antibody Technique of National Health Commission, Nanjing Medical University, Nanjing 211166, China.,Department of Pathology, Nanjing Medical University, Nanjing 211166, China
| | - Lizhou Jia
- Key Laboratory of Antibody Technique of National Health Commission, Nanjing Medical University, Nanjing 211166, China
| | - Susu Bian
- Key Laboratory of Antibody Technique of National Health Commission, Nanjing Medical University, Nanjing 211166, China.,Department of Pathology, Nanjing Medical University, Nanjing 211166, China
| | - Xinxia Chang
- Key Laboratory of Antibody Technique of National Health Commission, Nanjing Medical University, Nanjing 211166, China
| | - Qian Zhang
- Key Laboratory of Antibody Technique of National Health Commission, Nanjing Medical University, Nanjing 211166, China
| | - Qi Tang
- Key Laboratory of Antibody Technique of National Health Commission, Nanjing Medical University, Nanjing 211166, China.,Department of Pathology, Nanjing Medical University, Nanjing 211166, China
| | - Jing Zhu
- Huadong Medical Institute of Biotechniques, Nanjing 210000, China
| | - Zhiping Yang
- Cancer Center, Bayannur Hospital, Bayannur, Inner Mongolia 015000, China
| | - Zhenqing Feng
- Key Laboratory of Antibody Technique of National Health Commission, Nanjing Medical University, Nanjing 211166, China.,Department of Pathology, Nanjing Medical University, Nanjing 211166, China.,Jiangsu Key Lab. of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, China
| |
Collapse
|
7
|
Identification of Novel Diagnostic Biomarkers in Prostate Adenocarcinoma Based on the Stromal-Immune Score and Analysis of the WGCNA and ceRNA Network. DISEASE MARKERS 2022; 2022:1909196. [PMID: 35075375 PMCID: PMC8783709 DOI: 10.1155/2022/1909196] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 12/06/2021] [Indexed: 12/24/2022]
Abstract
Prostate cancer is still a significant global health burden in the coming decade. Novel biomarkers for detection and prognosis are needed to improve the survival of distant and advanced stage prostate cancer patients. The tumor microenvironment is an important driving factor for tumor biological functions. To investigate RNA prognostic biomarkers for prostate cancer in the tumor microenvironment, we obtained relevant data from The Cancer Genome Atlas (TCGA) database. We used the bioinformatics tools Estimation of Stromal and Immune cells in Malignant Tumor tissues using Expression data (ESTIMATE) algorithm and weighted coexpression network analysis (WGCNA) to construct tumor microenvironment stromal-immune score-based competitive endogenous RNA (ceRNA) networks. Then, the Cox regression model was performed to screen RNAs associated with prostate cancer survival. The differentially expressed gene profile in tumor stroma was significantly enriched in microenvironment functions, like immune response, cancer-related pathways, and cell adhesion-related pathways. Based on these differentially expressed genes, we constructed three ceRNA networks with 152 RNAs associated with the prostate cancer tumor microenvironment. Cox regression analysis screened 31 RNAs as the potential prognostic biomarkers for prostate cancer. The most interesting 8 prognostic biomarkers for prostate cancer included lncRNA LINC01082, miRNA hsa-miR-133a-3p, and genes TTLL12, PTGDS, GAS6, CYP27A1, PKP3, and ZG16B. In this systematic study for ceRNA networks in the tumor environment, we screened out potential biomarkers to predict prognosis for prostate cancer. Our findings might apply a valuable tool to improve prostate cancer clinical management and the new target for mechanism study and therapy.
Collapse
|
8
|
Müller L, Hatzfeld M, Keil R. Desmosomes as Signaling Hubs in the Regulation of Cell Behavior. Front Cell Dev Biol 2021; 9:745670. [PMID: 34631720 PMCID: PMC8495202 DOI: 10.3389/fcell.2021.745670] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 08/31/2021] [Indexed: 12/19/2022] Open
Abstract
Desmosomes are intercellular junctions, which preserve tissue integrity during homeostatic and stress conditions. These functions rely on their unique structural properties, which enable them to respond to context-dependent signals and transmit them to change cell behavior. Desmosome composition and size vary depending on tissue specific expression and differentiation state. Their constituent proteins are highly regulated by posttranslational modifications that control their function in the desmosome itself and in addition regulate a multitude of desmosome-independent functions. This review will summarize our current knowledge how signaling pathways that control epithelial shape, polarity and function regulate desmosomes and how desmosomal proteins transduce these signals to modulate cell behavior.
Collapse
Affiliation(s)
- Lisa Müller
- Department for Pathobiochemistry, Institute of Molecular Medicine, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Mechthild Hatzfeld
- Department for Pathobiochemistry, Institute of Molecular Medicine, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - René Keil
- Department for Pathobiochemistry, Institute of Molecular Medicine, Martin Luther University Halle-Wittenberg, Halle, Germany
| |
Collapse
|
9
|
Schamschula E, Lahnsteiner A, Assenov Y, Hagmann W, Zaborsky N, Wiederstein M, Strobl A, Stanke F, Muley T, Plass C, Tümmler B, Risch A. Disease-related blood-based differential methylation in cystic fibrosis and its representation in lung cancer revealed a regulatory locus in PKP3 in lung epithelial cells. Epigenetics 2021; 17:837-860. [PMID: 34415821 PMCID: PMC9423854 DOI: 10.1080/15592294.2021.1959976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Cystic fibrosis (CF) is a monogenic disease, characterized by massive chronic lung inflammation. The observed variability in clinical phenotypes in monozygotic CF twins is likely associated with the extent of inflammation. This study sought to investigate inflammation-related aberrant DNA methylation in CF twins and to determine to what extent acquired methylation changes may be associated with lung cancer. Blood-based genome-wide DNA methylation analysis was performed to compare the DNA methylomes of monozygotic twins, from the European CF Twin and Sibling Study with various degrees of disease severity. Putatively inflammation-related and differentially methylated positions were selected from a large lung cancer case-control study and investigated in blood by targeted bisulphite next-generation-sequencing. An inflammation-related locus located in the Plakophilin-3 (PKP3) gene was functionally analysed regarding promoter and enhancer activity in presence and absence of methylation using luciferase reporter assays. We confirmed in a unique cohort that monozygotic twins, even if clinically discordant, have only minor differences in global DNA methylation patterns and blood cell composition. Further, we determined the most differentially methylated positions, a high proportion of which are blood cell-type-specific, whereas others may be acquired and thus have potential relevance in the context of inflammation as lung cancer risk factors. We identified a sequence in the gene body of PKP3 which is hypermethylated in blood from CF twins with severe phenotype and highly variably methylated in lung cancer patients and controls, independent of known clinical parameters, and showed that this region exhibits methylation-dependent promoter activity in lung epithelial cells.
Collapse
Affiliation(s)
| | | | - Yassen Assenov
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Wolfgang Hagmann
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Nadja Zaborsky
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Salzburg Cancer Research Institute - Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR), Paracelsus Medical University, Salzburg, Austria.,Cancer Cluster Salzburg, Salzburg, Austria
| | | | - Anna Strobl
- Department of Biosciences, University of Salzburg, Salzburg, Austria
| | - Frauke Stanke
- Clinical Research Group, Clinic for Pediatric Pneumology, Allergology and NeonatologyClinic for Pediatric Pneumology, Allergology and Neonatology, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research, Hannover Medical School, Hannover, Germany
| | - Thomas Muley
- Translational Research Unit, Thoraxklinik Heidelberg, University of Heidelberg, Germany.,Translational Lung Research Center Heidelberg (TLRC-H), Member of the German Center for Lung Research (DZL), Heidelberg, Germany
| | - Christoph Plass
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Translational Lung Research Center Heidelberg (TLRC-H), Member of the German Center for Lung Research (DZL), Heidelberg, Germany
| | - Burkhard Tümmler
- Clinical Research Group, Clinic for Pediatric Pneumology, Allergology and NeonatologyClinic for Pediatric Pneumology, Allergology and Neonatology, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research, Hannover Medical School, Hannover, Germany
| | - Angela Risch
- Department of Biosciences, University of Salzburg, Salzburg, Austria.,Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Cancer Cluster Salzburg, Salzburg, Austria.,Translational Lung Research Center Heidelberg (TLRC-H), Member of the German Center for Lung Research (DZL), Heidelberg, Germany
| |
Collapse
|
10
|
Williams SG, Aw Yeang HX, Mitchell C, Caramia F, Byrne DJ, Fox SB, Haupt S, Schittenhelm RB, Neeson PJ, Haupt Y, Keam SP. Immune molecular profiling of a multiresistant primary prostate cancer with a neuroendocrine-like phenotype: a case report. BMC Urol 2020; 20:171. [PMID: 33115461 PMCID: PMC7592533 DOI: 10.1186/s12894-020-00738-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 10/06/2020] [Indexed: 02/06/2023] Open
Abstract
Background Understanding the drivers of recurrence in aggressive prostate cancer requires detailed molecular and genomic understanding in order to aid therapeutic interventions.
We provide here a case report of histological, transcriptional, proteomic, immunological, and genomic features in a longitudinal study of multiple biopsies from diagnosis, through treatment, and subsequent recurrence.
Case presentation Here we present a case study of a male in 70 s with high-grade clinically-localised acinar adenocarcinoma treated with definitive hormone therapy and radiotherapy. The patient progressed rapidly with rising PSA and succumbed without metastasis 52 months after diagnosis.
We identified the expression of canonical histological markers of neuroendocrine PC (NEPC) including synaptophysin, neuron-specific enolase and thyroid transcription factor 1, as well as intact AR expression, in the recurrent disease only.
The resistant disease was also marked by an extremely low immune infiltrate, extensive genomic chromosomal aberrations, and overactivity in molecular hallmarks of NEPC disease including Aurora kinase and E2F, as well as novel alterations in the cMYB pathway. We also observed that responses to both primary treatments (high dose-rate brachytherapy and androgen deprivation therapies) were consistent with known optimal responses—ruling out treatment inefficacy as a factor in relapse.
Conclusions These data provide novel insights into a case of locally recurrent aggressive prostate cancer harbouring NEPC pathology, in the absence of detected metastasis.
Collapse
Affiliation(s)
- Scott G Williams
- Division of Radiation Oncology and Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne, Australia.,Tumor Suppression Laboratory, Peter MacCallum Cancer Centre, Melbourne, Australia.,Pathology Department, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Han Xian Aw Yeang
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
| | - Catherine Mitchell
- Pathology Department, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Franco Caramia
- Tumor Suppression Laboratory, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - David J Byrne
- Pathology Department, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Stephen B Fox
- Pathology Department, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Sue Haupt
- Tumor Suppression Laboratory, Peter MacCallum Cancer Centre, Melbourne, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
| | - Ralf B Schittenhelm
- Monash Proteomics & Metabolomics Facility, Monash University, Melbourne, Australia.,Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Australia
| | - Paul J Neeson
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
| | - Ygal Haupt
- Tumor Suppression Laboratory, Peter MacCallum Cancer Centre, Melbourne, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia.,Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Australia
| | - Simon P Keam
- Tumor Suppression Laboratory, Peter MacCallum Cancer Centre, Melbourne, Australia. .,Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Australia. .,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia.
| |
Collapse
|
11
|
Identification of Specific Tumor Markers in Vulvar Carcinoma Through Extensive Human Papillomavirus DNA Characterization Using Next Generation Sequencing Method. J Low Genit Tract Dis 2020; 24:53-60. [PMID: 31860576 DOI: 10.1097/lgt.0000000000000498] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES A subset of vulvar carcinomas (VC) are associated with human papillomavirus (HPV) DNA. This trait can be used to identify tumor markers for patient's follow-up. A large diversity of HPV prevalence in VC has been reported, but no data are available concerning the insertional HPV status in this tumor type. Therefore, we have used an innovative next generation sequencing (NGS)-based CaptHPV method able to provide an extensive characterization of HPV DNA in tumors. MATERIAL AND METHODS Tumor tissue specimens from 55 patients with VC were analyzed using p16 immunohistochemistry, in situ hybridization, polymerase chain reaction, and CaptHPV-NGS assays. RESULTS Our analyses showed that 8 (14.5%) of 55 cases were associated with HPV 16 DNA. No other HPV genotypes were identified. The HPV genome was in a free episomal state only in one case and both episomal and integrated into the tumor cell genome in 7. There was a single insertion in 5 cases and multiple sites, scattered at different chromosomal loci in two. ISH data suggest that some of these might reflect tumor heterogeneity. Viral integration targeted cellular genes among which were TP63, CCDC148, LOC100133091, PKP1, and POLA2. Viral integration at the PKP1 locus was associated with partial gene deletion, and no PKP1 protein was detected in tumor tissue. CONCLUSIONS Using the NGS-based innovative capture-HPV approach, we established a cartography of HPV 16 DNA in 8 VC cases and identified novel genes targeted by integration that may be used as specific tumor markers. In addition, we established a rationale strategy for optimal characterization of HPV status in VC.
Collapse
|
12
|
|
13
|
Valenzuela-Iglesias A, Burks HE, Arnette CR, Yalamanchili A, Nekrasova O, Godsel LM, Green KJ. Desmoglein 1 Regulates Invadopodia by Suppressing EGFR/Erk Signaling in an Erbin-Dependent Manner. Mol Cancer Res 2019; 17:1195-1206. [PMID: 30655320 PMCID: PMC6581214 DOI: 10.1158/1541-7786.mcr-18-0048] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 12/07/2018] [Accepted: 01/08/2019] [Indexed: 12/14/2022]
Abstract
Loss of the desmosomal cell-cell adhesion molecule, Desmoglein 1 (Dsg1), has been reported as an indicator of poor prognosis in head and neck squamous cell carcinomas (HNSCC) overexpressing epidermal growth factor receptor (EGFR). It has been well established that EGFR signaling promotes the formation of invadopodia, actin-based protrusions formed by cancer cells to facilitate invasion and metastasis, by activating pathways leading to actin polymerization and ultimately matrix degradation. We previously showed that Dsg1 downregulates EGFR/Erk signaling by interacting with the ErbB2-binding protein Erbin (ErbB2 Interacting Protein) to promote keratinocyte differentiation. Here, we provide evidence that restoring Dsg1 expression in cells derived from HNSCC suppresses invasion by decreasing the number of invadopodia and matrix degradation. Moreover, Dsg1 requires Erbin to downregulate EGFR/Erk signaling and to fully suppress invadopodia formation. Our findings indicate a novel role for Dsg1 in the regulation of invadopodia signaling and provide potential new targets for development of therapies to prevent invadopodia formation and therefore cancer invasion and metastasis. IMPLICATIONS: Our work exposes a new pathway by which a desmosomal cadherin called Dsg1, which is lost early in head and neck cancer progression, suppresses cancer cell invadopodia formation by scaffolding ErbB2 Interacting Protein and consequent attenuation of EGF/Erk signaling.
Collapse
Affiliation(s)
| | - Hope E Burks
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Christopher R Arnette
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Amulya Yalamanchili
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Oxana Nekrasova
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Lisa M Godsel
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Kathleen J Green
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois.
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago and Evanston, IL
| |
Collapse
|
14
|
Qian H, Yuan D, Bao J, Liu F, Zhang W, Yang X, Han G, Huang J, Sheng H, Yu H. Increased expression of plakophilin 3 is associated with poor prognosis in ovarian cancer. Medicine (Baltimore) 2019; 98:e14608. [PMID: 30855445 PMCID: PMC6417525 DOI: 10.1097/md.0000000000014608] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Considering the essential role of plakophilin 3 (PKP3) in the maintenance cell-cell adhesion, dysregulation of PKP3 is involved in human diseases. This study aimed to explore the clinical significance of PKP3 in ovarian cancer. Immunohistochemistry was performed to examine the PKP3 expression in 157 cancer specimens from primary ovarian cancer patients. PKP3 was expressed in both the cytoplasm and nucleus. Eighty-one (51.6%) out of 157 ovarian cancer tissues showed PKP3 expression, while absent expression was observed in normal ovarian tissues. High PKP3 expression was associated with lymph node metastasis (LNM, P = .004) and advanced International Federation of Gynecology and Obstetrics (FIGO) stage (P = .013). Patients with high PKP3 expression had shorter overall survival (OS) than those with low PKP3 expression (60.2 months vs 74.2 months, P = .021). However, no association between PKP3 expression and progression-free survival (PFS) was observed (P = .790). Cox regression analysis indicated that PKP3 expression was an independently predictive factor for the OS of patient with ovarian cancer (adjusted HR = 1.601, 95%CI: 1.014-2.528, P = .043), especially those with FIGO stages III and IV disease (adjusted HR = 1.607, 95%CI: 1.006-2.567, P = .047). The gene expression profiling interactive analysis (GEPIA) databases also showed that PKP3 was upregulated in ovarian cancer (P < .001) and patients with high PKP3 expression had shorter OS (P = .004). In conclusion, our findings suggest that PKP3 is upregulated in ovarian cancer and is likely involved in the progression of ovarian cancer. PKP3 might therefore serve as a prognostic biomarker for patients with ovarian cancer.
Collapse
Affiliation(s)
- Hua Qian
- Department of Obstetrics and Gynecology
| | | | | | | | | | | | - Gaohua Han
- Department of Oncology, Taizhou People's Hospital, Taizhou, Jiangsu
| | - Junxing Huang
- Department of Oncology, Taizhou People's Hospital, Taizhou, Jiangsu
| | - Haihui Sheng
- Shanghai Engineering Center for Molecular Medicine, National Engineering Center for Biochip at Shanghai, Shanghai, China
| | | |
Collapse
|
15
|
Wang HZ, Wang F, Chen PF, Zhang M, Yu MX, Wang HL, Zhao Q, Liu J. Coexpression network analysis identified that plakophilin 1 is associated with the metastasis in human melanoma. Biomed Pharmacother 2019; 111:1234-1242. [PMID: 30841437 DOI: 10.1016/j.biopha.2018.12.135] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 12/25/2018] [Accepted: 12/30/2018] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND AND AIMS Malignant melanoma is a fatal cancer with high metastatic characteristics. Approximately 80% of skin cancer deaths are caused by metastatic melanoma. It has been established that the metastatic ability of melanoma is regulated by an intricate gene interconnection network. Thus, the aim of this study was to identify and validate hub genes associated with metastatic melanoma and to further illustrate its potential mechanisms. METHODS The method of weighted gene coexpression network analysis (WGCNA) was applied to explore potential regulatory targets and investigate the relationship between the key module and hub genes associated with the metastasis ability of melanoma. RESULTS In the turquoise module, 26 hub genes were initially selected, and 6 of them were identified as "real" hub genes with high connectivity in the protein-protein interaction network. In terms of validation, PKP1 had the highest correlation with metastasis among all the "real" hub genes. Data obtained from the GEPIA database and the Gene Expression Omnibus database showed a lower expression of PKP1 in melanoma tissues compared to normal skin tissues. The results also showed that PKP1 was downregulated in metastatic melanomas (n = 367) compared with primary melanomas (n = 103) in The Cancer Genome Atlas (TCGA) database (n = 470). Furthermore, an ROC curve showed that PKP1 expression had good power in the diagnostics of both primary melanoma (p = 5.30e-06, AUC = 0.8) and metastatic melanoma (p = 1.13e-10, AUC = 0.925). We also found that PKP1 could distinguish low- and high-grade of metastatic melanomas and was associated with inflammatory melanoma. Moreover, in a tumor-bearing mouse model, melanoma tissues also showed lower mRNA expression of PKP1 than the adjacent normal skin. Finally, Gene Set Enrichment Analysis indicated that the calcium signaling was significantly enriched in metastatic melanoma with highly expressed PKP1. CONCLUSIONS PKP1 was identified as a new potential tumor suppressor in human melanoma, likely through regulating calcium signaling pathways.
Collapse
Affiliation(s)
- Hai-Zhou Wang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China; Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, 430071, China
| | - Fan Wang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China; Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, 430071, China
| | - Peng-Fei Chen
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China; Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, 430071, China
| | - Meng Zhang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China; Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, 430071, China
| | - Ming-Xia Yu
- Department of Clinical Laboratory, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, China
| | - Hong-Ling Wang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China; Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, 430071, China
| | - Qiu Zhao
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China; Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, 430071, China
| | - Jing Liu
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China; Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, 430071, China.
| |
Collapse
|
16
|
Lim V, Zhu H, Diao S, Hu L, Hu J. PKP3 interactions with MAPK-JNK-ERK1/2-mTOR pathway regulates autophagy and invasion in ovarian cancer. Biochem Biophys Res Commun 2018; 508:646-653. [PMID: 30527804 DOI: 10.1016/j.bbrc.2018.11.163] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 11/26/2018] [Indexed: 12/15/2022]
Abstract
Armadillo-related proteins function in both signal transduction and cell adhesion, it also plays a central role in tumorigenesis. Plakophilin 3 (PKP3) is a member of the armadillo protein family. PKP3 has demonstrated a role in melanoma, breast cancer, gastric cancer, and other kind of cancers; however its role in ovarian cancer was not fully understood. In this study we explored the function and mechanisms of PKP3 in ovarian cancer. An elevated level of PKP3 was found in ovarian cancer tissues compared with normal tissues. PKP3 also modulate cellular proliferation and invasion in ovarian cancer. The ability of cellular proliferation, formation, and invasion was significantly decreased after the silencing of PKP3 in SKOV3 cells. While an over-expression of PKP3 in A2780 cells up-regulates the ability of cellular proliferation, formation, and invasion. As for the mechanism of PKP3, mTOR pathway was activated to regulate autophagy according to the interaction of PKP3 with the upstream of MAPK pathway. The result of this study support PKP3 as the oncogene candidate and a potential target for the treatment of ovarian cancer.
Collapse
Affiliation(s)
- Vincent Lim
- Department of Obstetrics and Gynecology, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Hongtao Zhu
- Department of Obstetrics and Gynecology, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Shuai Diao
- Department of Obstetrics and Gynecology, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Lina Hu
- Department of Obstetrics and Gynecology, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China.
| | - Jianguo Hu
- Department of Obstetrics and Gynecology, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
17
|
Hejmej A, Bilinska B. The effects of flutamide on cell-cell junctions in the testis, epididymis, and prostate. Reprod Toxicol 2018; 81:1-16. [PMID: 29958919 DOI: 10.1016/j.reprotox.2018.06.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 06/15/2018] [Accepted: 06/20/2018] [Indexed: 12/12/2022]
Abstract
In this review, we summarize recent findings on the effect of the anti-androgen flutamide on cell-cell junctions in the male reproductive system. We outline developmental aspects of flutamide action on the testis, epididymis, and prostate, and describe changes in junction protein expression and organization of junctional complexes in the adult boar following prenatal and postnatal exposure. We also discuss findings on the mechanisms by which flutamide induces alterations in cell-cell junctions in reproductive tissues of adult males, with special emphasis on cytoplasmic effects. Based on the results from in vivo and in vitro studies in the rat, we propose that flutamide affects the expression of junction proteins and junction complex structure not only by inhibiting androgen receptor activity, but equally important by modulating protein kinase-dependent signaling in testicular cells. Additionally, results from studies on prostate cancer cell lines point to a role for the cellular molecular outfit in response to flutamide.
Collapse
Affiliation(s)
- Anna Hejmej
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland
| | - Barbara Bilinska
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland.
| |
Collapse
|
18
|
Affiliation(s)
- Nicole A. Najor
- Department of Biology, University of Detroit Mercy, Detroit, Michigan 48221
| |
Collapse
|
19
|
Cai F, Zhu Q, Miao Y, Shen S, Su X, Shi Y. Desmoglein-2 is overexpressed in non-small cell lung cancer tissues and its knockdown suppresses NSCLC growth by regulation of p27 and CDK2. J Cancer Res Clin Oncol 2017; 143:59-69. [PMID: 27629878 DOI: 10.1007/s00432-016-2250-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Accepted: 08/31/2016] [Indexed: 10/21/2022]
Abstract
PURPOSE Desmoglein-2 (Dsg2) is a cell adhesion protein of the cadherin superfamily. Altered Dsg2 expression is associated with tumorigenesis. This study determined Dsg2 expression in non-small cell lung cancer (NSCLC) tissue specimens for association with clinicopathological and survival data and then assessed the effect of Dsg2 knockdown on regulation of NSCLC cell malignant behaviors in vitro and in nude mouse xenografts. METHODS qRT-PCR and Western blot were used to detect Dsg2 expression in 28 paired NSCLC and normal tissue samples. Immunohistochemistry was used to detect Dsg2 expression in 70 cases of paraffin-embedded NSCLC tissues. NSCLC A549, H1703, and H1299 cells were cultured with Dsg2 knockdown performed using Dsg2 siRNA. Cell viability, cell cycle, apoptosis, and colony formation were assessed. siRNA-transfected A549 cells were also used to generate tumor xenografts in nude mice. RESULTS Both Dsg2 mRNA and protein were highly expressed in NSCLC tissues and associated with NSCLC size, but not with overall survival of patients. Moreover, knockdown of Dsg2 expression reduced NSCLC cell proliferation and arrested them at the G1 phase of the cell cycle, but did not significantly affect NSCLC cell apoptosis. Dsg2 knockdown downregulated cyclin-dependent kinase 2 expression and upregulated p27 expression. Nude mouse xenograft assays showed that Dsg2 knockdown inhibited NSCLC xenograft growth in vivo. CONCLUSION This study revealed the importance of Dsg2 in suppression of NSCLC development and progression. Further studies will explore whether restoration of Dsg2 expression is a novel strategy in control of NSCLC.
Collapse
Affiliation(s)
- Feng Cai
- Department of Respiratory Medicine, Jinling Hospital, Medical School of Nanjing University, 305 East Zhongshan Road, Nanjing, 210002, Jiangsu, China
| | - Qingqing Zhu
- Department of Respiratory Medicine, Jinling Hospital, Medical School of Nanjing University, 305 East Zhongshan Road, Nanjing, 210002, Jiangsu, China
| | - Yingying Miao
- Department of Respiratory Medicine, Jinling Hospital, Medical School of Nanjing University, 305 East Zhongshan Road, Nanjing, 210002, Jiangsu, China
| | - Simei Shen
- Department of Respiratory Medicine, Jinling Hospital, Medical School of Nanjing University, 305 East Zhongshan Road, Nanjing, 210002, Jiangsu, China
| | - Xin Su
- Department of Respiratory Medicine, Jinling Hospital, Medical School of Nanjing University, 305 East Zhongshan Road, Nanjing, 210002, Jiangsu, China.
| | - Yi Shi
- Department of Respiratory Medicine, Jinling Hospital, Medical School of Nanjing University, 305 East Zhongshan Road, Nanjing, 210002, Jiangsu, China.
| |
Collapse
|
20
|
Zhou L, Pradhan-Sundd T, Poddar M, Singh S, Kikuchi A, Stolz DB, Shou W, Li Z, Nejak-Bowen KN, Monga SP. Mice with Hepatic Loss of the Desmosomal Protein γ-Catenin Are Prone to Cholestatic Injury and Chemical Carcinogenesis. THE AMERICAN JOURNAL OF PATHOLOGY 2015; 185:3274-89. [PMID: 26485505 DOI: 10.1016/j.ajpath.2015.08.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 07/22/2015] [Accepted: 08/10/2015] [Indexed: 12/11/2022]
Abstract
γ-Catenin, an important component of desmosomes, may also participate in Wnt signaling. Herein, we dissect the role of γ-catenin in liver by generating conditional γ-catenin knockout (KO) mice and assessing their phenotype after bile duct ligation (BDL) and diethylnitrosamine-induced chemical carcinogenesis. At baseline, KO and wild-type littermates showed comparable serum biochemistry, liver histology, and global gene expression. β-Catenin protein was modestly increased without any change in Wnt signaling. Desmosomes were maintained in KO, and despite no noticeable changes in gene expression, differential detergent fractionation revealed quantitative and qualitative changes in desmosomal cadherins, plaque proteins, and β-catenin. Enhanced association of β-catenin to desmoglein-2 and plakophilin-3 was observed in KO. When subjected to BDL, wild-type littermates showed specific changes in desmosomal protein expression. In KO, BDL deteriorated baseline compensatory changes, which manifested as enhanced injury and fibrosis. KO also showed enhanced tumorigenesis to diethylnitrosamine treatment because of Wnt activation, as also verified in vitro. γ-Catenin overexpression in hepatoma cells increased its binding to T-cell factor 4 at the expense of β-catenin-T-cell factor 4 association, induced unique target genes, affected Wnt targets, and reduced cell proliferation and viability. Thus, γ-catenin loss in liver is basally well tolerated. However, after insults like BDL, these compensations at desmosomes fail, and KO show enhanced injury. Also, γ-catenin negatively regulates tumor growth by affecting Wnt signaling.
Collapse
Affiliation(s)
- Lili Zhou
- Department of General Surgery, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, China; Department of Pathology, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania
| | | | - Minakshi Poddar
- Department of Pathology, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania
| | - Sucha Singh
- Department of Pathology, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania
| | - Alex Kikuchi
- Department of Pathology, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania
| | - Donna B Stolz
- Department of Cell Biology, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania
| | - Weinian Shou
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Zongfang Li
- Department of General Surgery, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Kari N Nejak-Bowen
- Department of Pathology, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania
| | - Satdarshan P Monga
- Department of Pathology, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania; Department of Medicine, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania.
| |
Collapse
|
21
|
Yang C, Fischer-Kešo R, Schlechter T, Ströbel P, Marx A, Hofmann I. Plakophilin 1-deficient cells upregulate SPOCK1: implications for prostate cancer progression. Tumour Biol 2015; 36:9567-77. [DOI: 10.1007/s13277-015-3628-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 05/31/2015] [Indexed: 12/19/2022] Open
|
22
|
Abstract
Desmosomes are cell-cell junctions that mediate adhesion and couple the intermediate filament cytoskeleton to sites of cell-cell contact. This architectural arrangement integrates adhesion and cytoskeletal elements of adjacent cells. The importance of this robust adhesion system is evident in numerous human diseases, both inherited and acquired, which occur when desmosome function is compromised. This review focuses on autoimmune and infectious diseases that impair desmosome function. In addition, we discuss emerging evidence that desmosomal genes are often misregulated in cancer. The emphasis of our discussion is placed on the way in which human diseases can inform our understanding of basic desmosome biology and in turn, the means by which fundamental advances in the cell biology of desmosomes might lead to new treatments for acquired diseases of the desmosome.
Collapse
|
23
|
Broussard JA, Getsios S, Green KJ. Desmosome regulation and signaling in disease. Cell Tissue Res 2015; 360:501-12. [PMID: 25693896 DOI: 10.1007/s00441-015-2136-5] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 01/21/2015] [Indexed: 01/10/2023]
Abstract
Desmosomes are cell-cell adhesive organelles with a well-known role in forming strong intercellular adhesion during embryogenesis and in adult tissues subject to mechanical stress, such as the heart and skin. More recently, desmosome components have also emerged as cell signaling regulators. Loss of expression or interference with the function of desmosome molecules results in diseases of the heart and skin and contributes to cancer progression. However, the underlying molecular mechanisms that result in inherited and acquired disorders remain poorly understood. To address this question, researchers are directing their studies towards determining the functions that occur inside and outside of the junctions and the extent to which functions are adhesion-dependent or independent. This review focuses on recent discoveries that provide insights into the role of desmosomes and desmosome components in cell signaling and disease; wherever possible, we address molecular functions within and outside of the adhesive structure.
Collapse
Affiliation(s)
- Joshua A Broussard
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | | | | |
Collapse
|
24
|
Brown L, Wan H. Desmoglein 3: a help or a hindrance in cancer progression? Cancers (Basel) 2015; 7:266-86. [PMID: 25629808 PMCID: PMC4381258 DOI: 10.3390/cancers7010266] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 01/09/2015] [Accepted: 01/16/2015] [Indexed: 02/07/2023] Open
Abstract
Desmoglein 3 is one of seven desmosomal cadherins that mediate cell-cell adhesion in desmosomes. Desmosomes are the intercellular junctional complexes that anchor the intermediate filaments of adjacent cells and confer strong cell adhesion thus are essential in the maintenance of tissue architecture and structural integrity. Like adherens junctions, desmosomes function as tumour suppressors and are down regulated in the process of epithelial-mesenchymal transition and in tumour cell invasion and metastasis. However, recently several studies have shown that various desmosomal components, including desmoglein 3, are up-regulated in cancer with increased levels of expression correlating with the clinical stage of malignancy, implicating their potentiality to serve as a diagnostic and prognostic marker. Furthermore, in vitro studies have demonstrated that overexpression of desmoglein 3 in cancer cell lines activates several signal pathways that have an impact on cell morphology, adhesion and locomotion. These additional signalling roles of desmoglein 3 may not be associated to its adhesive function in desmosomes but rather function outside of the junctions, acting as a key regulator in the control of actin based cellular processes. This review will discuss recent advances which support the role of desmoglein 3 in cancer progression.
Collapse
Affiliation(s)
- Louise Brown
- Queen Mary University of London, Barts and the London School of Medicine and Dentistry, Center for Clinical and Diagnostic Oral Sciences, Institute of Dentistry, Blizard Building, London E1 2AT, UK.
| | - Hong Wan
- Queen Mary University of London, Barts and the London School of Medicine and Dentistry, Center for Clinical and Diagnostic Oral Sciences, Institute of Dentistry, Blizard Building, London E1 2AT, UK.
| |
Collapse
|
25
|
Neuber S, Jäger S, Meyer M, Wischmann V, Koch PJ, Moll R, Schmidt A. c-Src mediated tyrosine phosphorylation of plakophilin 3 as a new mechanism to control desmosome composition in cells exposed to oxidative stress. Cell Tissue Res 2014; 359:799-816. [PMID: 25501895 DOI: 10.1007/s00441-014-2063-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 11/10/2014] [Indexed: 12/12/2022]
Abstract
Plakophilins (PKP1 to PKP3) are essential for the structure and function of desmosomal junctions as demonstrated by the severe skin defects observed as a result of loss-of-function mutations in mice and men. PKPs play additional roles in cell signaling processes, such as those controlling the cellular stress response and cell proliferation. A key post-translational process controlling PKP function is phosphorylation. We have discovered that reactive oxygen species (ROS) trigger the c-Src kinase-mediated tyrosine (Tyr)-195 phosphorylation of PKP3. This modification is associated with a change in the subcellular distribution of the protein. Specifically, PKP3 bearing phospho-Tyr-195 is released from the desmosomes, suggesting that phospho-Tyr-195 is relevant for the control of desmosome disassembly and function, at least in cells exposed to ROS. Tyr-195 phosphorylation is transient under normal physiological conditions and seems to be strictly regulated, as the activation of particular growth factor receptors results in a modification at this site only when tyrosine phosphatases are inactivated by pervanadate. We have identified Tyr-195 of PKP3 as a phosphorylation target of epidermal growth factor receptor signaling. Interestingly, this PKP3 phosphorylation also occurs in certain poorly differentiated adenocarcinomas of the prostate, suggesting a possible role in tumor progression. Our study thus identifies a new mechanism controlling PKP3 and hence desmosome function in epithelial cells.
Collapse
Affiliation(s)
- Steffen Neuber
- Institute of Pathology, Philipps University of Marburg, Baldingerstrasse, 35033, Marburg, Germany
| | | | | | | | | | | | | |
Collapse
|
26
|
Fischer-Kešo R, Breuninger S, Hofmann S, Henn M, Röhrig T, Ströbel P, Stoecklin G, Hofmann I. Plakophilins 1 and 3 bind to FXR1 and thereby influence the mRNA stability of desmosomal proteins. Mol Cell Biol 2014; 34:4244-56. [PMID: 25225333 PMCID: PMC4248750 DOI: 10.1128/mcb.00766-14] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 06/28/2014] [Accepted: 09/11/2014] [Indexed: 12/21/2022] Open
Abstract
Plakophilins 1 and 3 (PKP1/3) are members of the arm repeat family of catenin proteins and serve as structural components of desmosomes, which are important for cell-cell-adhesion. In addition, PKP1/3 occur as soluble proteins outside desmosomes, yet their role in the cytoplasm is not known. We found that cytoplasmic PKP1/3 coprecipitated with the RNA-binding proteins FXR1, G3BP, PABPC1, and UPF1, and these PKP1/3 complexes also comprised desmoplakin and PKP2 mRNAs. Moreover, we showed that the interaction of PKP1/3 with G3BP, PABPC1, and UPF1 but not with FXR1 was RNase sensitive. To address the cytoplasmic function of PKP1/3, we performed gain-and-loss-of-function studies. Both PKP1 and PKP3 knockdown cell lines showed reduced protein and mRNA levels for desmoplakin and PKP2. Whereas global rates of translation were unaffected, desmoplakin and PKP2 mRNA were destabilized. Furthermore, binding of PKP1/3 to FXR1 was RNA independent, and both PKP3 and FXR1 stabilized PKP2 mRNA. Our results demonstrate that cytoplasmic PKP1/3 are components of mRNA ribonucleoprotein particles and act as posttranscriptional regulators of gene expression.
Collapse
Affiliation(s)
- Regina Fischer-Kešo
- Division of Vascular Oncology and Metastasis, German Cancer Research Center, DKFZ-ZMBH Alliance, Heidelberg, Germany Department of Vascular Biology and Tumor Angiogenesis, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Sonja Breuninger
- Division of Vascular Oncology and Metastasis, German Cancer Research Center, DKFZ-ZMBH Alliance, Heidelberg, Germany Department of Vascular Biology and Tumor Angiogenesis, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Sarah Hofmann
- Helmholtz Junior Research Group, Posttranscriptional Control of Gene Expression, German Cancer Research Center, DKFZ-ZMBH Alliance, Heidelberg, Germany Center for Molecular Biology at the Heidelberg University, Heidelberg, Germany
| | - Manuela Henn
- Department of Vascular Biology and Tumor Angiogenesis, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Theresa Röhrig
- Division of Vascular Oncology and Metastasis, German Cancer Research Center, DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Philipp Ströbel
- Institute of Pathology, University Medical Center Göttingen, University Göttingen, Göttingen, Germany
| | - Georg Stoecklin
- Helmholtz Junior Research Group, Posttranscriptional Control of Gene Expression, German Cancer Research Center, DKFZ-ZMBH Alliance, Heidelberg, Germany Center for Molecular Biology at the Heidelberg University, Heidelberg, Germany
| | - Ilse Hofmann
- Division of Vascular Oncology and Metastasis, German Cancer Research Center, DKFZ-ZMBH Alliance, Heidelberg, Germany Department of Vascular Biology and Tumor Angiogenesis, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
27
|
Munoz WA, Lee M, Miller RK, Ahmed Z, Ji H, Link TM, Lee GR, Kloc M, Ladbury JE, McCrea PD. Plakophilin-3 catenin associates with the ETV1/ER81 transcription factor to positively modulate gene activity. PLoS One 2014; 9:e86784. [PMID: 24475179 PMCID: PMC3903613 DOI: 10.1371/journal.pone.0086784] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Accepted: 12/13/2013] [Indexed: 12/31/2022] Open
Abstract
Members of the plakophilin-catenin sub-family (Pkp-1, -2, and -3) facilitate the linkage of desmosome junctional components to each other (e.g. desmosomal cadherins to desmoplakin) and the intermediate-filament cytoskeleton. Pkps also contribute to desmosomal stabilization and the trafficking of its components. The functions of Pkps outside of the desmosome are less well studied, despite evidence suggesting their roles in mRNA regulation, small-GTPase modulation (e.g. mid-body scission) during cell division, and cell survival following DNA damage. Pkp-catenins are further believed to have roles in the nucleus given their nuclear localization in some contexts and the known nuclear roles of structurally related catenins, such as beta-catenin and p120-catenin. Further, Pkp-catenin activities in the nuclear compartment have become of increased interest with the identification of interactions between Pkp2-catenin and RNA Pol III and Pkp1 with single-stranded DNA. Consistent with earlier reports suggesting possible nuclear roles in development, we previously demonstrated prominent nuclear localization of Pkp3 in Xenopus naïve ectoderm (“animal cap”) cells and recently resolved a similar localization in mouse embryonic stem cells. Here, we report the association and positive functional interaction of Pkp3 with a transcription factor, Ets variant gene 1 (ETV1), which has critical roles in neural development and prominent roles in human genetic disease. Our results are the first to report the interaction of a sequence-specific transcription factor with any Pkp. Using Xenopus laevis embryos and mammalian cells, we provide evidence for the Pkp3:ETV1 complex on both biochemical and functional levels.
Collapse
Affiliation(s)
- William A. Munoz
- Department of Biochemistry and Molecular Biology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, United States of America
- Program in Genes & Development, The University of Texas Graduate School of Biomedical Science - Houston, Texas, United States of America
| | - Moonsup Lee
- Department of Biochemistry and Molecular Biology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, United States of America
- Program in Genes & Development, The University of Texas Graduate School of Biomedical Science - Houston, Texas, United States of America
| | - Rachel K. Miller
- Department of Biochemistry and Molecular Biology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Zamal Ahmed
- Department of Biochemistry and Molecular Biology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, United States of America
- Center for Biomolecular Structure and Function, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Hong Ji
- Department of Biochemistry and Molecular Biology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Todd M. Link
- Department of Biochemistry and Molecular Biology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, United States of America
- Center for Biomolecular Structure and Function, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Gilbert R. Lee
- Department of Biochemistry and Molecular Biology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, United States of America
- Center for Biomolecular Structure and Function, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Malgorzata Kloc
- Department of Biochemistry and Molecular Biology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, United States of America
- Department of Surgery, Houston Methodist, Houston Methodist Research Institute, Houston, Texas, United States of America
| | - John E. Ladbury
- Department of Biochemistry and Molecular Biology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, United States of America
- Program in Genes & Development, The University of Texas Graduate School of Biomedical Science - Houston, Texas, United States of America
- Center for Biomolecular Structure and Function, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Pierre D. McCrea
- Department of Biochemistry and Molecular Biology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, United States of America
- Program in Genes & Development, The University of Texas Graduate School of Biomedical Science - Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
28
|
An alternative promoter of the human plakophilin-3 gene controls the expression of the new isoform PKP3b. Cell Tissue Res 2013; 355:143-62. [DOI: 10.1007/s00441-013-1736-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Accepted: 09/13/2013] [Indexed: 01/24/2023]
|
29
|
Al-Jassar C, Bikker H, Overduin M, Chidgey M. Mechanistic basis of desmosome-targeted diseases. J Mol Biol 2013; 425:4006-22. [PMID: 23911551 PMCID: PMC3807649 DOI: 10.1016/j.jmb.2013.07.035] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 07/23/2013] [Accepted: 07/24/2013] [Indexed: 11/21/2022]
Abstract
Desmosomes are dynamic junctions between cells that maintain the structural integrity of skin and heart tissues by withstanding shear forces. Mutations in component genes cause life-threatening conditions including arrhythmogenic right ventricular cardiomyopathy, and desmosomal proteins are targeted by pathogenic autoantibodies in skin blistering diseases such as pemphigus. Here, we review a set of newly discovered pathogenic alterations and discuss the structural repercussions of debilitating mutations on desmosomal proteins. The architectures of native desmosomal assemblies have been visualized by cryo-electron microscopy and cryo-electron tomography, and the network of protein domain interactions is becoming apparent. Plakophilin and desmoplakin mutations have been discovered to alter binding interfaces, structures, and stabilities of folded domains that have been resolved by X-ray crystallography and NMR spectroscopy. The flexibility within desmoplakin has been revealed by small-angle X-ray scattering and fluorescence assays, explaining how mechanical stresses are accommodated. These studies have shown that the structural and functional consequences of desmosomal mutations can now begin to be understood at multiple levels of spatial and temporal resolution. This review discusses the recent structural insights and raises the possibility of using modeling for mechanism-based diagnosis of how deleterious mutations alter the integrity of solid tissues.
Collapse
Affiliation(s)
- Caezar Al-Jassar
- School of Cancer Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | | | | | | |
Collapse
|
30
|
Plakophilin-associated RNA-binding proteins in prostate cancer and their implications in tumor progression and metastasis. Virchows Arch 2013; 463:379-90. [PMID: 23881279 DOI: 10.1007/s00428-013-1452-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 07/01/2013] [Accepted: 07/08/2013] [Indexed: 01/04/2023]
Abstract
Both plakophilins (PKP) 1 and 3 play a role in the progression of prostate cancer. The RNA-binding proteins (RBPs) GAP-SH3-binding protein (G3BP), fragile-X-related protein 1 (FXR1), poly(A)-binding protein, cytoplasmic 1 (PABPC1), and up-frameshift factor 1 (UPF1) are associated with PKP3. All these RBPs have an impact on RNA metabolism. Until recently, the PKP-associated RBPs have not been analyzed in prostate cancer. In the current study, we showed by affinity purification that the PKP3-associated RBPs were also binding partners of PKP1. We examined the expression of PKP1/3-associated RBPs and PKP1/3 in prostate cell lines, tumor-free prostate, and 136 prostatic adenocarcinomas by immunofluorescence and immunoblot. All four RBPs G3BP, FXR1, UPF1, and PABPC1 were expressed in the glandular epithelium of the normal prostate. PKP1 and FXR1 were strongly reduced in tumor tissues with Gleason score >7 and diminished expression of PKP1 and FXR1 also appeared to be associated with a metastatic phenotype. Additionally, the predominant nuclear localization of UPF1 in normal glandular cells and low grade tumors was switched to a more cytoplasmic pattern in carcinomas with Gleason score >7. Our findings suggest that PKP1 and FXR1 may have a tumor-suppressive function and are downregulated in more aggressive tumors. Collectively, PKP1/3-associated RBPs FXR1 and UPF1 may have a functional role in prostate cancer progression and metastasis and highlight the potential importance of posttranscriptional regulation of gene expression and nonsense-mediated decay in cancer.
Collapse
|
31
|
Gómez-Morales M, Cámara-Pulido M, Miranda-León MT, Sánchez-Palencia A, Boyero L, Gómez-Capilla JA, Fárez-Vidal ME. Differential immunohistochemical localization of desmosomal plaque-related proteins in non-small-cell lung cancer. Histopathology 2013; 63:103-13. [DOI: 10.1111/his.12126] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Accepted: 03/06/2013] [Indexed: 01/01/2023]
Affiliation(s)
| | - Miguel Cámara-Pulido
- Department of Pathology; School of Medicine; University of Granada; Granada; Spain
| | - María Teresa Miranda-León
- Department of Statistics and Operative Research; School of Medicine; University of Granada; Granada; Spain
| | - Abel Sánchez-Palencia
- Department of Thoracic Surgery; Virgen de las Nieves University Hospital; Granada; Spain
| | - Laura Boyero
- Department of Biochemistry and Molecular Biology; School of Medicine; University of Granada; Granada; Spain
| | - José Antonio Gómez-Capilla
- Department of Biochemistry and Molecular Biology; School of Medicine; University of Granada; Granada; Spain
| | - María Esther Fárez-Vidal
- Department of Biochemistry and Molecular Biology; School of Medicine; University of Granada; Granada; Spain
| |
Collapse
|
32
|
The desmosomal armadillo protein plakoglobin regulates prostate cancer cell adhesion and motility through vitronectin-dependent Src signaling. PLoS One 2012; 7:e42132. [PMID: 22860065 PMCID: PMC3408445 DOI: 10.1371/journal.pone.0042132] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2012] [Accepted: 07/03/2012] [Indexed: 02/02/2023] Open
Abstract
Plakoglobin (PG) is an armadillo protein that associates with both classic and desmosomal cadherins, but is primarily concentrated in mature desmosomes in epithelia. While reduced levels of PG have been reported in localized and hormone refractory prostate tumors, the functional significance of these changes is unknown. Here we report that PG expression is reduced in samples of a prostate tumor tissue array and inversely correlated with advancing tumor potential in 7 PCa cell lines. Ectopically expressed PG enhanced intercellular adhesive strength, and attenuated the motility and invasion of aggressive cell lines, whereas silencing PG in less tumorigenic cells had the opposite effect. PG also regulated cell-substrate adhesion and motility through extracellular matrix (ECM)-dependent inhibition of Src kinase, suggesting that PG’s effects were not due solely to increased intercellular adhesion. PG silencing resulted in elevated levels of the ECM protein vitronectin (VN), and exposing PG-expressing cells to VN induced Src activity. Furthermore, increased VN levels and Src activation correlated with diminished expression of PG in patient tissues. Thus, PG may inhibit Src by keeping VN low. Our results suggest that loss of intercellular adhesion due to reduced PG expression might be exacerbated by activation of Src through a PG-dependent mechanism. Furthermore, PG down-regulation during PCa progression could contribute to the known VN-dependent promotion of PCa invasion and metastasis, demonstrating a novel functional interaction between desmosomal cell-cell adhesion and cell-substrate adhesion signaling axes in prostate cancer.
Collapse
|
33
|
Bieback K, Hecker A, Schlechter T, Hofmann I, Brousos N, Redmer T, Besser D, Klüter H, Müller AM, Becker M. Replicative aging and differentiation potential of human adipose tissue-derived mesenchymal stromal cells expanded in pooled human or fetal bovine serum. Cytotherapy 2012; 14:570-83. [DOI: 10.3109/14653249.2011.652809] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
34
|
Munoz WA, Kloc M, Cho K, Lee M, Hofmann I, Sater A, Vleminckx K, McCrea PD. Plakophilin-3 is required for late embryonic amphibian development, exhibiting roles in ectodermal and neural tissues. PLoS One 2012; 7:e34342. [PMID: 22496792 PMCID: PMC3320641 DOI: 10.1371/journal.pone.0034342] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Accepted: 02/27/2012] [Indexed: 12/31/2022] Open
Abstract
The p120-catenin family has undergone a significant expansion during the evolution of vertebrates, resulting in varied functions that have yet to be discerned or fully characterized. Likewise, members of the plakophilins, a related catenin subfamily, are found throughout the cell with little known about their functions outside the desmosomal plaque. While the plakophilin-3 (Pkp3) knockout mouse resulted in skin defects, we find larger, including lethal effects following its depletion in Xenopus. Pkp3, unlike some other characterized catenins in amphibians, does not have significant maternal deposits of mRNA. However, during embryogenesis, two Pkp3 protein products whose temporal expression is partially complimentary become expressed. Only the smaller of these products is found in adult Xenopus tissues, with an expression pattern exhibiting distinctions as well as overlaps with those observed in mammalian studies. We determined that Xenopus Pkp3 depletion causes a skin fragility phenotype in keeping with the mouse knockout, but more novel, Xenopus tailbud embryos are hyposensitive to touch even in embryos lacking outward discernable phenotypes, and we additionally resolved disruptions in certain peripheral neural structures, altered establishment and migration of neural crest, and defects in ectodermal multiciliated cells. The use of two distinct morpholinos, as well as rescue approaches, indicated the specificity of these effects. Our results point to the requirement of Pkp3 in amphibian embryogenesis, with functional roles in a number of tissue types.
Collapse
Affiliation(s)
- William A. Munoz
- Department of Biochemistry and Molecular Biology, University of Texas M.D. Anderson Cancer Center, Houston, Texas, United States of America
- Program in Genes and Development, University of Texas Graduate School of Biomedical Science, Houston, Texas, United States of America
| | - Malgorzata Kloc
- Department of Biochemistry and Molecular Biology, University of Texas M.D. Anderson Cancer Center, Houston, Texas, United States of America
- Department of Surgery, The Methodist Hospital Research Institute, Houston, Texas, United States of America
| | - Kyucheol Cho
- Department of Biochemistry and Molecular Biology, University of Texas M.D. Anderson Cancer Center, Houston, Texas, United States of America
- Program in Genes and Development, University of Texas Graduate School of Biomedical Science, Houston, Texas, United States of America
| | - Moonsup Lee
- Department of Biochemistry and Molecular Biology, University of Texas M.D. Anderson Cancer Center, Houston, Texas, United States of America
- Program in Genes and Development, University of Texas Graduate School of Biomedical Science, Houston, Texas, United States of America
| | - Ilse Hofmann
- Joint Research Division Vascular Biology of the Medical Faculty Mannheim, University of Heidelberg- DKFZ, Mannheim, Germany
| | - Amy Sater
- Biology and Biochemistry Department, University of Houston, Houston, Texas, United States of America
| | - Kris Vleminckx
- Department for Molecular Biomedical Research, Flanders Institute for Biotechnology VIB, Ghent, Belgium
| | - Pierre D. McCrea
- Department of Biochemistry and Molecular Biology, University of Texas M.D. Anderson Cancer Center, Houston, Texas, United States of America
- Program in Genes and Development, University of Texas Graduate School of Biomedical Science, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
35
|
Kaz AM, Luo Y, Dzieciatkowski S, Chak A, Willis JE, Upton MP, Leidner RS, Grady WM. Aberrantly methylated PKP1 in the progression of Barrett's esophagus to esophageal adenocarcinoma. Genes Chromosomes Cancer 2012; 51:384-93. [PMID: 22170739 PMCID: PMC3292431 DOI: 10.1002/gcc.21923] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Revised: 10/04/2011] [Accepted: 11/16/2011] [Indexed: 11/07/2022] Open
Abstract
The aberrant DNA methylation of tumor suppressor genes occurs frequently in Barrett's esophagus (BE) and esophageal adenocarcinoma (EAC) and likely affects the initiation and progression of BE to EAC. In the present study, we discovered PKP1 as a novel methylated gene in EAC and then investigated the role of loss of PKP1, a constituent of the desmosome complex found in stratified epithelial layers, on the behavior of Barrett's esophagus and esophageal adenocarcinoma cells. By using primary esophageal tissue samples we determined that PKP1 was rarely methylated in normal squamous esophagus (5/55; 9.1%) and BE (5/39; 12.8%) and more frequently methylated in Barrett's esophagus with high-grade dysplasia (HGD) or EAC (20/60; 33.3%; P < 0.05). Furthermore, PKP1 levels were decreased in BE and HGD/EAC cases compared to normal squamous esophagus cases. Knockdown of PKP1 in the BE cell lines CP-A and CP-D (both normally express PKP1) resulted in increased cell motility. Thus, PKP1 loss secondary to promoter methylation, as well as other mechanisms, may promote the progression of BE to EAC in a subset of patients via decreased desmosome assembly and increased cell motility.
Collapse
Affiliation(s)
- Andrew M Kaz
- Division of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Knights AJ, Funnell APW, Crossley M, Pearson RCM. Holding Tight: Cell Junctions and Cancer Spread. TRENDS IN CANCER RESEARCH 2012; 8:61-69. [PMID: 23450077 PMCID: PMC3582402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Cell junctions are sites of intercellular adhesion that maintain the integrity of epithelial tissue and regulate signalling between cells. These adhesive junctions are comprised of protein complexes that serve to establish an intercellular cytoskeletal network for anchoring cells, in addition to regulating cell polarity, molecular transport and communication. The expression of cell adhesion molecules is tightly controlled and their downregulation is essential for epithelial-mesenchymal transition (EMT), a process that facilitates the generation of morphologically and functionally diverse cell types during embryogenesis. The characteristics of EMT are a loss of cell adhesion and increased cellular mobility. Hence, in addition to its normal role in development, dysregulated EMT has been linked to cancer progression and metastasis, the process whereby primary tumors migrate to invasive secondary sites in the body. This paper will review the current understanding of cell junctions and their role in cancer, with reference to the abnormal regulation of junction protein genes. The potential use of cell junction molecules as diagnostic and prognostic markers will also be discussed, as well as possible therapies for adhesive dysregulation.
Collapse
Affiliation(s)
| | | | | | - Richard C. M. Pearson
- Corresponding author: School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, 2052, Australia, Tel: +61 2 9385 8586, Fax: +61 2 9385 1483,
| |
Collapse
|
37
|
Brooke MA, Nitoiu D, Kelsell DP. Cell-cell connectivity: desmosomes and disease. J Pathol 2011; 226:158-71. [PMID: 21989576 DOI: 10.1002/path.3027] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Revised: 10/03/2011] [Accepted: 10/03/2011] [Indexed: 01/12/2023]
Abstract
Cell-cell connectivity is an absolute requirement for the correct functioning of cells, tissues and entire organisms. At the level of the individual cell, direct cell-cell adherence and communication is mediated by the intercellular junction complexes: desmosomes, adherens, tight and gap junctions. A broad spectrum of inherited, infectious and auto-immune diseases can affect the proper function of intercellular junctions and result in either diseases affecting specific individual tissues or widespread syndromic conditions. A particularly diverse group of diseases result from direct or indirect disruption of desmosomes--a consequence of their importance in tissue integrity, their extensive distribution, complex structure, and the wide variety of functions their components accomplish. As a consequence, disruption of desmosomal assembly, structure or integrity disrupts not only their intercellular adhesive function but also their functions in cell communication and regulation, leading to such diverse pathologies as cardiomyopathy, epidermal and mucosal blistering, palmoplantar keratoderma, woolly hair, keratosis, epidermolysis bullosa, ectodermal dysplasia and alopecia. Here, as well as describing the importance of the other intercellular junctions, we focus primarily on the desmosome, its structure and its role in disease. We will examine the various pathologies that result from impairment of desmosome function and thereby demonstrate the importance of desmosomes to tissues and to the organism as a whole.
Collapse
Affiliation(s)
- Matthew A Brooke
- Centre for Cutaneous Research, Blizard Institute, Barts and the London School of Medicine and Dentistry, London, UK
| | | | | |
Collapse
|
38
|
Demirag GG, Sullu Y, Yucel I. Expression of Plakophilins (PKP1, PKP2, and PKP3) in breast cancers. Med Oncol 2011; 29:1518-22. [PMID: 21947748 DOI: 10.1007/s12032-011-0071-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Accepted: 09/13/2011] [Indexed: 11/27/2022]
Abstract
UNLABELLED Plakophilins (PKP) are desmosomal plague proteins, which belong to the p120ctn subfamily of armadillo repeat containing proteins. We aimed to analyze the role of plakophilins in breast cancer and its clinical progress. We have performed immunohistochemical study of the PKP1,2,3 in breast carcinoma. The study included 108 patients with breast cancer and 26 age- and sex-matched healthy controls. We investigated the associations between staining intensity and some clinicopathologic features like tumor size, axillary node status, stage, lymphovascular invasion, perineural invasion, grade, hormone receptor status, and c-erb B2. The mean age of patients was 46 years (22-78). In breast cancer, compared with normal tissue, PKP1 and PKP2 expressions were indifferent (P > 0.05), but PKP3 expression was significantly increased in breast cancer (P = 0.0014). Although PKP1 and PKP2 expression levels were not correlated with clinicopathological parameters, increased PKP3 expression was positively correlated with node positivity and grade (P = 0.000, P = 0.000). CONCLUSION Overexpressed PKP3 is likely to be an essential contributor to a growth-promoting pathway and to aggressive features of breast cancer.
Collapse
Affiliation(s)
- Guzin Gonullu Demirag
- Department of Medical Oncology, Faculty of Medicine, Ondokuz Mayıs University, Kurupelit, Samsun 55139, Turkey.
| | | | | |
Collapse
|
39
|
Metastasis Update: Human Prostate Carcinoma Invasion via Tubulogenesis. Prostate Cancer 2011; 2011:249290. [PMID: 21949592 PMCID: PMC3177701 DOI: 10.1155/2011/249290] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Accepted: 04/25/2011] [Indexed: 01/08/2023] Open
Abstract
This paper proposes that human prostate carcinoma primarily invades as a cohesive cell collective through a mechanism similar to embryonic tubulogenesis, instead of the popular epithelial-mesenchymal transformation (EMT) model. Evidence supporting a tubulogenesis model is presented, along with suggestions for additional research. Additionally, observations documenting cell adhesion molecule changes in tissue and stromal components are reviewed, allowing for comparisons between the current branching morphogenesis models and the tubulogenesis model. Finally, the implications of this model on prevailing views of therapeutic and diagnostic strategies for aggressive prostatic disease are considered.
Collapse
|
40
|
Abstract
Adherens junctions, which are intercellular adhesive complexes that are crucial for maintaining epithelial homeostasis, are downregulated in many cancers to promote tumour progression. However, the role of desmosomes - adhesion complexes that are related to adherens junctions - in carcinogenesis has remained elusive. Recent studies using mouse genetic approaches have uncovered a role for desmosomes in tumour suppression, demonstrating that desmosome downregulation occurs before that of adherens junctions to drive tumour development and early invasion, suggesting a two-step model of adhesion dysfunction in cancer progression.
Collapse
Affiliation(s)
- Rachel L Dusek
- Department of Radiation Oncology and Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | |
Collapse
|