1
|
Brichant G, Laraki I, Henry L, Munaut C, Nisolle M. New Therapeutics in Endometriosis: A Review of Hormonal, Non-Hormonal, and Non-Coding RNA Treatments. Int J Mol Sci 2021; 22:10498. [PMID: 34638843 PMCID: PMC8508913 DOI: 10.3390/ijms221910498] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/23/2021] [Accepted: 09/23/2021] [Indexed: 12/14/2022] Open
Abstract
Endometriosis is defined as endometrial-like tissue outside the uterine cavity. It is a chronic inflammatory estrogen-dependent disease causing pain and infertility in about 10% of women of reproductive age. Treatment nowadays consists of medical and surgical therapies. Medical treatments are based on painkillers and hormonal treatments. To date, none of the medical treatments have been able to cure the disease and symptoms recur as soon as the medication is stopped. The development of new biomedical targets, aiming at the cellular and molecular mechanisms responsible for endometriosis, is needed. This article summarizes the most recent medications under investigation in endometriosis treatment with an emphasis on non-coding RNAs that are emerging as key players in several human diseases, including cancer and endometriosis.
Collapse
Affiliation(s)
- Geraldine Brichant
- Obstetrics and Gynecology Department, ULiege, 4000 Liège, Belgium; (I.L.); (L.H.); (M.N.)
| | - Ines Laraki
- Obstetrics and Gynecology Department, ULiege, 4000 Liège, Belgium; (I.L.); (L.H.); (M.N.)
| | - Laurie Henry
- Obstetrics and Gynecology Department, ULiege, 4000 Liège, Belgium; (I.L.); (L.H.); (M.N.)
| | - Carine Munaut
- Laboratory of Tumor and Development Biology, Giga-Cancer, ULiege, 4000 Liège, Belgium;
| | - Michelle Nisolle
- Obstetrics and Gynecology Department, ULiege, 4000 Liège, Belgium; (I.L.); (L.H.); (M.N.)
| |
Collapse
|
2
|
Multi-omics analysis reveals the interaction between the complement system and the coagulation cascade in the development of endometriosis. Sci Rep 2021; 11:11926. [PMID: 34099740 PMCID: PMC8185094 DOI: 10.1038/s41598-021-90112-x] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 04/16/2021] [Indexed: 02/05/2023] Open
Abstract
Endometriosis (EMS) is a disease that shows immune dysfunction and chronic inflammation characteristics, suggesting a role of complement system in its pathophysiology. To find out the hub genes and pathways involved in the pathogenesis of EMs, three raw microarray datasets were recruited from the Gene Expression Omnibus database (GEO). Then, a series of bioinformatics technologies including gene ontology (GO), Hallmark pathway enrichment, protein-protein interaction (PPI) network and gene co-expression correlation analysis were performed to identify hub genes. The hub genes were further verified by the Real-time quantitative polymerase chain reaction (RT-PCR) and Western Blot (WB). We identified 129 differentially expressed genes (DEGs) in EMs, of which 78 were up-regulated and 51 were down-regulated. Through GO functional enrichment analysis, we found that the DEGs are mainly enriched in cell adhesion, extracellular matrix remodeling, chemokine regulation, angiogenesis regulation, epithelial cell proliferation, et al. In Hallmark pathway enrichment analysis, coagulation pathway showed great significance and the terms in which included the central complement factors. Moreover, the genes were dominating in PPI network. Combined co-expression analysis with experimental verification, we found that the up-regulated expression of complement (C1S, C1QA, C1R, and C3) was positively related to tissue factor (TF) in EMs. In this study, we discovered the over expression complement and the positive correlation between complement and TF in EMs, which suggested that interaction of complement and coagulation system may play a role within the pathophysiology of EMS.
Collapse
|
3
|
Ma L, Wang G, Liu S, Bi F, Liu M, Wang G. Intramuscular Expression of Plasmid-Encoded FVII-Fc Immunoconjugate for Tumor Immunotherapy by Targeting Tumoral Blood Vessels and Cells. Front Oncol 2021; 11:638591. [PMID: 34109110 PMCID: PMC8181131 DOI: 10.3389/fonc.2021.638591] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 04/26/2021] [Indexed: 02/05/2023] Open
Abstract
Tissue factor (TF) has been confirmed to be specifically expressed by vascular endothelial cells (VECs) in solid tumors and certain types of malignant tumor cells. Coagulation factor VII (FVII) can specifically bind to TF with high affinity, so the FVII-TF interaction provides an ideal target for tumor therapy. Expression of proteins in skeletal muscles is a simple and economical avenue for continuous production of therapeutic molecules. However, it is difficult to treat solid tumors till now due to the limited number of therapeutic proteins produced by the intramuscular gene expression system. Herein, we strived to explore whether anti-tumor effects can be achieved via intramuscular delivery of a plasmid encoding a FVII-guided immunoconjugate (Icon) molecule by a previously established Pluronic L64/electropulse (L/E) technique. Our study exhibited several interesting outcomes. 1) The mouse light chain of FVII (mLFVII) molecule could guide red fluorescent protein (RFP) to accumulate predominantly at tumor sites in a TF-dependent manner. 2) Intramuscular expression of mLFVII-hFc (human IgG1 Fc) Icon could significantly inhibit the growth of both liver and lung cancers in nude mice, and the inhibition extent was proportional to the level of tumor-expressed TF. 3) The number of blood vessels and the amount of blood flow in tumors were significantly decreased in mLFVII-hFc Icon-treated mice. 4) This immunotherapy system did not display obvious side effects. Our study provided an efficient and economical system for tumor immunotherapy by targeting both blood vessels and tumor cells. It is also an open system for synergistic therapy by conveniently integrating other anticancer regimens.
Collapse
Affiliation(s)
- Liping Ma
- School of Bioscience and Technology, Chengdu Medical College, Chengdu, China.,National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
| | - Guanru Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
| | - Sijia Liu
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
| | - Feng Bi
- Department of Abdominal Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Ming Liu
- Department of Abdominal Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Gang Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
| |
Collapse
|
4
|
The Effect of Novel Medical Nonhormonal Treatments on the Angiogenesis of Endometriotic Lesions. Obstet Gynecol Surv 2021; 76:281-291. [PMID: 34032860 DOI: 10.1097/ogx.0000000000000888] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Importance Irrespective of the precise mechanisms leading to endometriosis, angiogenesis is essential for the establishment and long-term proliferation of the disease. As current surgical and medical management options for women with endometriosis have substantial drawbacks and limitations, novel agents are needed and molecules targeting the angiogenic cascade could serve as potential candidates. Objective Our aim was to review current data about the role of angiogenesis in the pathophysiology of endometriosis and summarize the novel antiangiogenic agents that could be potentially used in clinical management of patients with endometriosis. Evidence Acquisition Original research and review articles were retrieved through a computerized literature search. Results Loss of balance between angiogenic activators and suppressors triggers the nonphysiological angiogenesis observed in endometriotic lesions. Several proangiogenic mediators have been identified and most of them have demonstrated increased concentrations in the peritoneal fluid and/or serum of women with endometriosis. Among the antiangiogenic molecules, anti-vascular endothelial growth factor agents, dopamine agonists, romidepsin, and statins have shown the most promising results so far. Conclusions and Relevance Given the limitations of current treatments of endometriosis, there is a need for novel, more efficient agents. Antiangiogenic molecules could be used potentially in clinical management of women with endometriosis; however, their safety and efficiency should be carefully assessed prior to that. Further large prospective trials in humans are needed before any treatment is introduced into daily clinical practice.
Collapse
|
5
|
Gomez S, Tsung A, Hu Z. Current Targets and Bioconjugation Strategies in Photodynamic Diagnosis and Therapy of Cancer. Molecules 2020; 25:E4964. [PMID: 33121022 PMCID: PMC7662882 DOI: 10.3390/molecules25214964] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/18/2020] [Accepted: 10/25/2020] [Indexed: 02/07/2023] Open
Abstract
Photodynamic diagnosis (PDD) and therapy (PDT) are emerging, non/minimally invasive techniques for cancer diagnosis and treatment. Both techniques require a photosensitizer and light to visualize or destroy cancer cells. However, a limitation of conventional, non-targeted PDT is poor selectivity, causing side effects. The bioconjugation of a photosensitizer to a tumor-targeting molecule, such as an antibody or a ligand peptide, is a way to improve selectivity. The bioconjugation strategy can generate a tumor-targeting photosensitizer conjugate specific for cancer cells, or ideally, for multiple tumor compartments to improve selectivity and efficacy, such as cancer stem cells and tumor neovasculature within the tumor microenvironment. If successful, such targeted photosensitizer conjugates can also be used for specific visualization and detection of cancer cells and/or tumor angiogenesis (an early event in tumorigenesis) with the hope of an early diagnosis of cancer. The purpose of this review is to summarize some current promising target molecules, e.g., tissue factor (also known as CD142), and the currently used bioconjugation strategies in PDT and PDD, with a focus on newly developed protein photosensitizers. These are genetically engineered photosensitizers, with the possibility of generating a fusion protein photosensitizer by recombinant DNA technology for both PDT and PDD without the need of chemical conjugation. We believe that providing an overview of promising targets and bioconjugation strategies will aid in driving research in this field forward towards more effective, less toxic, and non- or minimally invasive treatment and diagnosis options for cancer patients.
Collapse
Affiliation(s)
- Salvador Gomez
- The James-Comprehensive Cancer Center, Division of Surgical Oncology Department of Surgery, College of Medicine, The Ohio State University, 460 W 12th Ave, Columbus, OH 43210, USA; (S.G.); (A.T.)
- College of Medicine, The Ohio State University, 370 W 9th Ave, Columbus, OH 43210, USA
| | - Allan Tsung
- The James-Comprehensive Cancer Center, Division of Surgical Oncology Department of Surgery, College of Medicine, The Ohio State University, 460 W 12th Ave, Columbus, OH 43210, USA; (S.G.); (A.T.)
| | - Zhiwei Hu
- The James-Comprehensive Cancer Center, Division of Surgical Oncology Department of Surgery, College of Medicine, The Ohio State University, 460 W 12th Ave, Columbus, OH 43210, USA; (S.G.); (A.T.)
| |
Collapse
|
6
|
Hu Z. Tissue factor as a new target for CAR-NK cell immunotherapy of triple-negative breast cancer. Sci Rep 2020; 10:2815. [PMID: 32071339 PMCID: PMC7028910 DOI: 10.1038/s41598-020-59736-3] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 02/03/2020] [Indexed: 02/06/2023] Open
Abstract
Triple-negative breast cancer (TNBC), representing ~15% of globally diagnosed breast cancer, is typically an incurable malignancy due to the lack of targetable surface targets for development of effective therapy. To address the unmet need for TNBC treatment, we recently determined that tissue factor (TF) is a useful surface target in 50–85% of patients with TNBC and developed a second-generation TF-targeting antibody-like immunoconjugate (called L-ICON) for preclinical treatment of TNBC. Using the chimeric antigen receptor (CAR) approach, here we develop and test TF-targeting CAR-engineered natural killer (TF-CAR-NK) cells that co-express CD16, the Fc receptor (FcγIII) to mediate antibody-dependent cellular toxicity (ADCC), for a preclinical assessment of immunotherapy of TNBC using TF-CAR-NK cell as single agent therapy and in combination with L-ICON. Our preclinical results demonstrate that TF-CAR-NK cells alone could kill TNBC cells and its efficacy was enhanced with L-ICON ADCC in vitro. Moreover, TF-CAR-NK cells were effective in vivo for the treatment of TNBC in cell line- and patient’s tumor-derived xenograft mouse models. Thus, this study established the proof of concept of targeting TF as a new target in CAR-NK immunotherapy for effective treatment of TNBC and may warrant further preclinical study and potentially future investigation in TNBC patients.
Collapse
Affiliation(s)
- Zhiwei Hu
- Department of Surgery, Division of Surgical Oncology, The Ohio State University Wexner Medical Center and The OSU James Comprehensive Cancer Center, Columbus, OH, 43210, USA.
| |
Collapse
|
7
|
Ding S, Lin Q, Zhu T, Li T, Zhu L, Wang J, Zhang X. Is there a correlation between inflammatory markers and coagulation parameters in women with advanced ovarian endometriosis? BMC WOMENS HEALTH 2019; 19:169. [PMID: 31888633 PMCID: PMC6937785 DOI: 10.1186/s12905-019-0860-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 11/29/2019] [Indexed: 12/13/2022]
Abstract
Background Endometriosis is defined as a chronic inflammatory disease. Recent studies have shown that increased coagulation parameters including fibrinogen and platelets are associated with endometriosis. The objective of this study was to determine the levels of inflammatory markers and coagulation parameters and their correlations in women with endometriomas compared to those with benign ovarian cysts or normal pelvic anatomy. Methods Between June 2015 and June 2017, a total of 548 women who underwent laparoscopic/laparotomic surgery for ovarian endometriomas (OMA group, n = 226), non-endometriosis benign ovarian cysts (Cyst group, n = 210) and tubal reanastomosis (Control group, n = 112) were recruited in this study. Inflammatory markers including c-reactive protein (CRP), neutrophil-to-lymphocyte ratio (NLR), platelet-to-lymphocyte ratio (PLR) and coagulation parameters including platelet count, thrombin time (TT), prothrombin time (PT), activated partial thromboplastin time, and plasma fibrinogen as well as CA-125 were determined. Results Compared with Cyst group and Control group, TT and PT in OMA group were significantly shorter and plasma fibrinogen levels were significantly higher (P < 0.05). Moreover, the levels of plasma fibrinogen were positively correlated with CRP, NLR and PLR (P < 0.05). In addition, the confidence intervals for the area under the curve (AUC) for CA-125 × fibrinogen were significantly higher than those for CA-125 (0.904–0.952 vs. 0.899–0.949) in the diagnosis of endometrioma. Conclusions These results indicate that women with endometriomas demonstrate a hypercoagulable status due to the inflammatory nature of endometriosis. The combined determination for CA-125 and fibrinogen demonstrate a higher area under the curve than the single detection of CA-125 in those with endometriomas compared to these with benign ovarian cysts. Trial registration This study was approved by the Human Ethics Committee of the Women’s Hospital, School of Medicine, Zhejiang University (No.20170174) and all women provided written informed consent.
Collapse
Affiliation(s)
- Shaojie Ding
- Department of Gynecology, Women's Hospital, School of Medicine, Zhejiang University, 1 Xueshi Road, Hangzhou, Zhejiang, 310006, People's Republic of China
| | - Qiao Lin
- Department of Gynecology, Women's Hospital, School of Medicine, Zhejiang University, 1 Xueshi Road, Hangzhou, Zhejiang, 310006, People's Republic of China
| | - Tianhong Zhu
- Department of Gynecology, Women's Hospital, School of Medicine, Zhejiang University, 1 Xueshi Road, Hangzhou, Zhejiang, 310006, People's Republic of China
| | - Tiantian Li
- Department of Gynecology, Women's Hospital, School of Medicine, Zhejiang University, 1 Xueshi Road, Hangzhou, Zhejiang, 310006, People's Republic of China
| | - Libo Zhu
- Department of Gynecology, Women's Hospital, School of Medicine, Zhejiang University, 1 Xueshi Road, Hangzhou, Zhejiang, 310006, People's Republic of China
| | - Jianzhang Wang
- Department of Gynecology, Women's Hospital, School of Medicine, Zhejiang University, 1 Xueshi Road, Hangzhou, Zhejiang, 310006, People's Republic of China
| | - Xinmei Zhang
- Department of Gynecology, Women's Hospital, School of Medicine, Zhejiang University, 1 Xueshi Road, Hangzhou, Zhejiang, 310006, People's Republic of China.
| |
Collapse
|
8
|
Kotlyar A, Taylor HS, D'Hooghe TM. Use of immunomodulators to treat endometriosis. Best Pract Res Clin Obstet Gynaecol 2019; 60:56-65. [DOI: 10.1016/j.bpobgyn.2019.06.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 06/17/2019] [Accepted: 06/24/2019] [Indexed: 12/12/2022]
|
9
|
Barra F, Grandi G, Tantari M, Scala C, Facchinetti F, Ferrero S. A comprehensive review of hormonal and biological therapies for endometriosis: latest developments. Expert Opin Biol Ther 2019; 19:343-360. [DOI: 10.1080/14712598.2019.1581761] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Fabio Barra
- Academic Unit of Obstetrics and Gynecology, Ospedale Policlinico San Martino, Genoa, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, Genoa, Italy
| | - Giovanni Grandi
- Department of Obstetrics, Gynecology and Pediatrics, Obstetrics and Gynecology Unit, Azienda Ospedaliero-Universitaria Policlinico, University of Modena and Reggio Emilia, Modena, Italy
| | - Matteo Tantari
- Academic Unit of Obstetrics and Gynecology, Ospedale Policlinico San Martino, Genoa, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, Genoa, Italy
| | - Carolina Scala
- Academic Unit of Obstetrics and Gynecology, Ospedale Policlinico San Martino, Genoa, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, Genoa, Italy
| | - Fabio Facchinetti
- Department of Obstetrics, Gynecology and Pediatrics, Obstetrics and Gynecology Unit, Azienda Ospedaliero-Universitaria Policlinico, University of Modena and Reggio Emilia, Modena, Italy
| | - Simone Ferrero
- Academic Unit of Obstetrics and Gynecology, Ospedale Policlinico San Martino, Genoa, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, Genoa, Italy
| |
Collapse
|
10
|
From pathogenesis to clinical practice: Emerging medical treatments for endometriosis. Best Pract Res Clin Obstet Gynaecol 2018; 51:92-101. [DOI: 10.1016/j.bpobgyn.2018.01.021] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Accepted: 01/23/2018] [Indexed: 12/12/2022]
|
11
|
Hu Z, Shen R, Campbell A, McMichael E, Yu L, Ramaswamy B, London CA, Xu T, Carson WE. Targeting Tissue Factor for Immunotherapy of Triple-Negative Breast Cancer Using a Second-Generation ICON. Cancer Immunol Res 2018; 6:671-684. [PMID: 29622581 PMCID: PMC5984705 DOI: 10.1158/2326-6066.cir-17-0343] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 01/17/2018] [Accepted: 03/27/2018] [Indexed: 11/16/2022]
Abstract
Triple-negative breast cancer (TNBC) is a leading cause of breast cancer death and is often associated with BRCA1 and BRCA2 mutation. Due to the lack of validated target molecules, no targeted therapy for TNBC is approved. Tissue factor (TF) is a common yet specific surface target receptor for cancer cells, tumor vascular endothelial cells, and cancer stem cells in several types of solid cancers, including breast cancer. Here, we report evidence supporting the idea that TF is a surface target in TNBC. We used in vitro cancer lines and in vivo tumor xenografts in mice, all with BRCA1 or BRCA2 mutations, derived from patients' tumors. We showed that TF is overexpressed on TNBC cells and tumor neovasculature in 50% to 85% of TNBC patients (n = 161) and in TNBC cell line-derived xenografts (CDX) and patient-derived xenografts (PDX) from mice, but was not detected in adjacent normal breast tissue. We then describe the development of a second-generation TF-targeting immunoconjugate (called L-ICON1, for lighter or light chain ICON) with improved efficacy and safety profiles compared with the original ICON. We showed that L-ICON1 kills TNBC cells in vitro via antibody-dependent cell-mediated cytotoxicity and can be used to treat human and murine TNBC CDX as well as PDX in vivo in orthotopic mouse models. Thus, TF could be a useful target for the development of immunotherapeutics for TNBC patients, with or without BRCA1 and BRCA2 mutations. Cancer Immunol Res; 6(6); 671-84. ©2018 AACR.
Collapse
Affiliation(s)
- Zhiwei Hu
- Department of Surgery Division of Surgical Oncology, The Ohio State University Wexner Medical Center and The OSU James Comprehensive Cancer Center, Columbus, Ohio.
| | - Rulong Shen
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Amanda Campbell
- Biomedical Sciences Graduate Program, The Ohio State University, Columbus, Ohio
| | - Elizabeth McMichael
- Biomedical Sciences Graduate Program, The Ohio State University, Columbus, Ohio
| | - Lianbo Yu
- Center for Biostatistics, The Ohio State University, Columbus, Ohio
| | - Bhuvaneswari Ramaswamy
- Department of Medical Oncology, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Cheryl A London
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio
| | - Tian Xu
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut
| | - William E Carson
- Department of Surgery Division of Surgical Oncology, The Ohio State University Wexner Medical Center and The OSU James Comprehensive Cancer Center, Columbus, Ohio
| |
Collapse
|
12
|
Bruner-Tran KL, Mokshagundam S, Herington JL, Ding T, Osteen KG. Rodent Models of Experimental Endometriosis: Identifying Mechanisms of Disease and Therapeutic Targets. CURRENT WOMEN'S HEALTH REVIEWS 2018; 14:173-188. [PMID: 29861705 PMCID: PMC5925870 DOI: 10.2174/1573404813666170921162041] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 08/03/2017] [Accepted: 08/10/2017] [Indexed: 12/13/2022]
Abstract
BACKGROUND Although it has been more than a century since endometriosis was initially described in the literature, understanding the etiology and natural history of the disease has been challenging. However, the broad utility of murine and rat models of experimental endometriosis has enabled the elucidation of a number of potentially targetable processes which may otherwise promote this disease. OBJECTIVE To review a variety of studies utilizing rodent models of endometriosis to illustrate their utility in examining mechanisms associated with development and progression of this disease. RESULTS Use of rodent models of endometriosis has provided a much broader understanding of the risk factors for the initial development of endometriosis, the cellular pathology of the disease and the identification of potential therapeutic targets. CONCLUSION Although there are limitations with any animal model, the variety of experimental endometriosis models that have been developed has enabled investigation into numerous aspects of this disease. Thanks to these models, our under-standing of the early processes of disease development, the role of steroid responsiveness, inflammatory processes and the peritoneal environment has been advanced. More recent models have begun to shed light on how epigenetic alterations con-tribute to the molecular basis of this disease as well as the multiple comorbidities which plague many patients. Continued de-velopments of animal models which aid in unraveling the mechanisms of endometriosis development provide the best oppor-tunity to identify therapeutic strategies to prevent or regress this enigmatic disease.
Collapse
Affiliation(s)
- Kaylon L. Bruner-Tran
- Department of Obstetrics and Gynecology, Women’s Reproductive Health Research Center, Nashville, TN37232, USA
| | - Shilpa Mokshagundam
- Department of Obstetrics and Gynecology, Women’s Reproductive Health Research Center, Nashville, TN37232, USA
| | - Jennifer L. Herington
- Division of Neonatology, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN37232, USA
| | - Tianbing Ding
- Department of Obstetrics and Gynecology, Women’s Reproductive Health Research Center, Nashville, TN37232, USA
| | - Kevin G. Osteen
- Department of Obstetrics and Gynecology, Women’s Reproductive Health Research Center, Nashville, TN37232, USA
- VA Tennessee Valley Healthcare System, NashvilleTN37212, USA
| |
Collapse
|
13
|
Barra F, Scala C, Mais V, Guerriero S, Ferrero S. Investigational drugs for the treatment of endometriosis, an update on recent developments. Expert Opin Investig Drugs 2018; 27:445-458. [PMID: 29708812 DOI: 10.1080/13543784.2018.1471135] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Endometriosis is a hormone-dependent benign chronic disease that requires a chronic medical therapy. Although currently available drugs are efficacious in treating endometriosis-related pain, some women experience partial or no improvement. Moreover, the recurrence of symptoms is expected after discontinuation of the therapies. Currently, new drugs are under intense clinical investigation for the treatment of endometriosis. AREAS COVERED This review aims to offer the reader a complete and updated overview on new investigational drugs and early molecular targets for the treatment of endometriosis. The authors describe the pre-clinical and clinical development of these agents. EXPERT OPINION Among the drugs under investigation, late clinical trials on gonadotropin-releasing hormone antagonists (GnRH-ant) showed the most promising results for the treatment of endometriosis. Aromatase inhibitors (AIs) are efficacious in treating endometriosis related pain symptoms but they cause significant adverse effects that limit their long-term use. New targets have been identified to produce drugs for the treatment of endometriosis, but the majority of these new compounds have only been investigated in laboratory studies or early clinical trials. Thus, further clinical research is required in order to elucidate their efficacy and safety in human.
Collapse
Affiliation(s)
- Fabio Barra
- a Academic Unit of Obstetrics and Gynecology , Ospedale Policlinico San Martino , Genoa , Italy
- b Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI) , University of Genoa , Genoa , Italy
| | - Carolina Scala
- a Academic Unit of Obstetrics and Gynecology , Ospedale Policlinico San Martino , Genoa , Italy
- b Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI) , University of Genoa , Genoa , Italy
| | - Valerio Mais
- c Department of Obstetrics and Gynecology , University of Cagliari, Policlinico Universitario Duilio Casula, Monserrato , Cagliari , Italy
| | - Stefano Guerriero
- c Department of Obstetrics and Gynecology , University of Cagliari, Policlinico Universitario Duilio Casula, Monserrato , Cagliari , Italy
| | - Simone Ferrero
- a Academic Unit of Obstetrics and Gynecology , Ospedale Policlinico San Martino , Genoa , Italy
- b Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI) , University of Genoa , Genoa , Italy
| |
Collapse
|
14
|
Hu Z. Therapeutic Antibody-Like Immunoconjugates against Tissue Factor with the Potential to Treat Angiogenesis-Dependent as Well as Macrophage-Associated Human Diseases. Antibodies (Basel) 2018; 7:8. [PMID: 31105982 PMCID: PMC6519474 DOI: 10.3390/antib7010008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 01/18/2018] [Indexed: 12/17/2022] Open
Abstract
Accumulating evidence suggests that tissue factor (TF) is selectively expressed in pathological angiogenesis-dependent as well as macrophage-associated human diseases. Pathological angiogenesis, the formation of neovasculature, is involved in many clinically significant human diseases, notably cancer, age-related macular degeneration (AMD), endometriosis and rheumatoid arthritis (RA). Macrophage is involved in the progression of a variety of human diseases, such as atherosclerosis and viral infections (human immunodeficiency virus, HIV and Ebola). It is well documented that TF is selectively expressed on angiogenic vascular endothelial cells (VECs) in these pathological angiogenesis-dependent human diseases and on disease-associated macrophages. Under physiology condition, TF is not expressed by quiescent VECs and monocytes but is solely restricted on some cells (such as pericytes) that are located outside of blood circulation and the inner layer of blood vessel walls. Here, we summarize TF expression on angiogenic VECs, macrophages and other diseased cell types in these human diseases. In cancer, for example, the cancer cells also overexpress TF in solid cancers and leukemia. Moreover, our group recently reported that TF is also expressed by cancer-initiating stem cells (CSCs) and can serve as a novel oncotarget for eradication of CSCs without drug resistance. Furthermore, we review and discuss two generations of TF-targeting therapeutic antibody-like immunoconjugates (ICON and L-ICON1) and antibody-drug conjugates that are currently being tested in preclinical and clinical studies for the treatment of some of these human diseases. If efficacy and safety are proven in current and future clinical trials, TF-targeting immunoconjugates may provide novel therapeutic approaches with potential to broadly impact the treatment regimen of these significant angiogenesis-dependent, as well as macrophage-associated, human diseases.
Collapse
Affiliation(s)
- Zhiwei Hu
- Department of Surgery Division of Surgical Oncology, The James Comprehensive Cancer Center, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| |
Collapse
|
15
|
Hufnagel D, Goetz TG, Hu Z, Nyachieo A, D'Hooghe T, Fazleabas A, Duleba A, Krikun G, Taylor HS, Lockwood CJ. Icon immunoconjugate treatment results in regression of red lesions in a non-human primate (Papio anubis) model of endometriosis. Reprod Biol 2018; 18:109-114. [PMID: 29422377 DOI: 10.1016/j.repbio.2018.01.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 01/20/2018] [Accepted: 01/26/2018] [Indexed: 12/24/2022]
Abstract
Endometriosis is a common condition in reproductive-aged women characterized by ectopic endometrial lesions of varied appearance, including red, white, blue, black or powder burn coloration, which contribute to chronic pain and infertility. The immunoconjugate molecule (Icon) targets Tissue Factor, a transmembrane receptor for Factor VII/VIIa that is aberrantly expressed in the endothelium supporting ectopic endometrial tissue. Icon has been shown to cause regression of endometriosis in a murine model of disease but prior to this study had not been tested in non-human primates. This study evaluated Icon as a novel treatment for endometriosis in non-human primates (Papio anubis) using an adenoviral vector (AdIcon) delivery system. Female baboons (n = 15) underwent surgical induction of endometriosis. After laparoscopic confirmation of endometriosis lesions 6-weeks post-surgery, the treatment group (n = 7) received weekly intraperitoneal injections of viral particles carrying the sequence for Icon, resulting in expression of the protein, while the control group (n = 8) received no treatment. Icon preferentially reduced the number and volume of red vascularized lesions. Icon may present a novel treatment for endometriosis by degrading red vascularized lesions, likely by targeting tissue factor aberrantly expressed in the lesion vasculature.
Collapse
Affiliation(s)
- Demetra Hufnagel
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, CT, United States
| | - Teddy G Goetz
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, CT, United States
| | - Zhiwei Hu
- Department of Surgery, The Ohio State University College of Medicine, Columbus, OH, United States
| | - Atunga Nyachieo
- Department of Reproductive Health and Non-Communicable Diseases, Institute of Primate Research, Nairobi, Kenya
| | - Thomas D'Hooghe
- Department of Development and Regeneration, Group Biomedical Sciences, KU Leuven (University of Leuven), Campus Gasthuisberg, Leuven, Belgium
| | - Asgerally Fazleabas
- Department of Obstetrics, Gynecology, and Reproductive Biology, Michigan State University, Grand Rapids, MI, United States
| | - Antoni Duleba
- Department of Reproductive Medicine, University of California San Diego, San Diego, CA, United States
| | - Graciela Krikun
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, CT, United States.
| | - Hugh S Taylor
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, CT, United States
| | - Charles J Lockwood
- Department of Obstetrics and Gynecology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| |
Collapse
|
16
|
Laschke MW, Menger MD. Basic mechanisms of vascularization in endometriosis and their clinical implications. Hum Reprod Update 2018; 24:207-224. [PMID: 29377994 DOI: 10.1093/humupd/dmy001] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 12/19/2017] [Accepted: 01/01/2018] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Vascularization is a major hallmark in the pathogenesis of endometriosis. An increasing number of studies suggests that multiple mechanisms contribute to the vascularization of endometriotic lesions, including angiogenesis, vasculogenesis and inosculation. OBJECTIVE AND RATIONALE In this review, we provide an overview of the basic mechanisms of vascularization in endometriosis and give special emphasis on their future clinical implications in the diagnosis and therapy of the disease. SEARCH METHODS Literature searches were performed in PubMed for English articles with the key words 'endometriosis', 'endometriotic lesions', 'angiogenesis', 'vascularization', 'vasculogenesis', 'endothelial progenitor cells' and 'inosculation'. The searches included both animal and human studies. No restriction was set for the publication date. OUTCOMES The engraftment of endometriotic lesions is typically associated with angiogenesis, i.e. the formation of new blood vessels from pre-existing ones. This angiogenic process underlies the complex regulation by angiogenic growth factors and hormones, which activate intracellular pathways and associated signaling molecules. In addition, circulating endothelial progenitor cells (EPCs) are mobilized from the bone marrow and recruited into endometriotic lesions, where they are incorporated into the endothelium of newly developing microvessels, referred to as vasculogenesis. Finally, preformed microvessels in shed endometrial fragments inosculate with the surrounding host microvasculature, resulting in a rapid blood supply to the ectopic tissue. These vascularization modes offer different possibilities for the establishment of novel diagnostic and therapeutic approaches. Angiogenic growth factors and EPCs may serve as biomarkers for the diagnosis and classification of endometriosis. Blood vessel formation and mature microvessels in endometriotic lesions may be targeted by means of anti-angiogenic compounds and vascular-disrupting agents. WIDER IMPLICATIONS The establishment of vascularization-based approaches in the management of endometriosis still represents a major challenge. For diagnostic purposes, reliable angiogenic and vasculogenic biomarker panels exhibiting a high sensitivity and specificity must be identified. For therapeutic purposes, novel compounds selectively targeting the vascularization of endometriotic lesions without inducing severe side effects are required. Recent progress in the field of endometriosis research indicates that these goals may be achieved in the near future.
Collapse
Affiliation(s)
- Matthias W Laschke
- Institute for Clinical & Experimental Surgery, Saarland University, 66421 Homburg/Saar, Germany
| | - Michael D Menger
- Institute for Clinical & Experimental Surgery, Saarland University, 66421 Homburg/Saar, Germany
| |
Collapse
|
17
|
Stocks MM, Crispens MA, Ding T, Mokshagundam S, Bruner-Tran KL, Osteen KG. Therapeutically Targeting the Inflammasome Product in a Chimeric Model of Endometriosis-Related Surgical Adhesions. Reprod Sci 2017; 24:1121-1128. [PMID: 28322132 DOI: 10.1177/1933719117698584] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Development of adhesions commonly occurs in association with surgery for endometriosis. Even in the absence of surgery, women with endometriosis appear to be at an enhanced risk of developing adhesions. In the current study, we utilized a chimeric mouse model of experimental endometriosis in order to examine the role of inflammasome activation in the development of postsurgical adhesions. Mice were randomized to receive peritoneal injections of human endometrial tissue fragments or endometrial tissue conditioned media (CM) from women with or without endometriosis 16 hours after ovariectomy and placement of an estradiol-releasing silastic capsule. A subset of mice receiving CM was also treated with interleukin (IL) 1 receptor antagonist (IL-1ra). Our studies demonstrate that peritoneal injection of endometrial tissue fragments near the time of surgery resulted in extensive adhesive disease regardless of tissue origin. However, adhesion scores were significantly higher in mice receiving CM from tissues acquired from patients with endometriosis compared to control tissue CM ( P = .0001). Cytokine bead array analysis of endometrial CM revealed enhanced expression of IL-1β from patients with endometriosis compared to controls ( P < .01). Finally, the ability of human tissue CM to promote adhesive disease was dramatically reduced in mice cotreated with IL-1ra ( P < .0001). Our data implicate enhanced expression of IL-1β in women with endometriosis as a potential causal factor in their increased susceptibility of developing postsurgical adhesions. Thus, targeting inflammasome activation may be an effective strategy for the prevention of surgical adhesions in patients with endometriosis.
Collapse
Affiliation(s)
- Meredith M Stocks
- 1 Department of Obstetrics and Gynecology, Women's Reproductive Health Research Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Marta A Crispens
- 1 Department of Obstetrics and Gynecology, Women's Reproductive Health Research Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Tianbing Ding
- 1 Department of Obstetrics and Gynecology, Women's Reproductive Health Research Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Shilpa Mokshagundam
- 1 Department of Obstetrics and Gynecology, Women's Reproductive Health Research Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Kaylon L Bruner-Tran
- 1 Department of Obstetrics and Gynecology, Women's Reproductive Health Research Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Kevin G Osteen
- 1 Department of Obstetrics and Gynecology, Women's Reproductive Health Research Center, Vanderbilt University Medical Center, Nashville, TN, USA.,2 Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, USA.,3 VA Tennessee Valley Healthcare System, Nashville, TN, USA
| |
Collapse
|
18
|
Bedaiwy MA, Alfaraj S, Yong P, Casper R. New developments in the medical treatment of endometriosis. Fertil Steril 2017; 107:555-565. [PMID: 28139238 DOI: 10.1016/j.fertnstert.2016.12.025] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 12/21/2016] [Accepted: 12/21/2016] [Indexed: 12/24/2022]
Abstract
Endometriosis affects 1 in 10 women of reproductive-age. The current treatments are surgical and hormonal but have limitations, including the risk of recurrence, side effects, contraceptive action for women who desire pregnancy, and cost. New treatments include gonadotropin-releasing hormone analogues, selective progesterone (or estrogen) receptor modulators, aromatase inhibitors, immunomodulators, and antiangiogenic agents. Further research is needed into central sensitization, local neurogenesis, and the genetics of endometriosis to identify additional treatment targets. A wider range of medical options allows for the possibility of precision health and a more personalized treatment approach for women with endometriosis.
Collapse
Affiliation(s)
- Mohamed A Bedaiwy
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics & Gynecology, University of British Columbia, Vancouver, British Columbia.
| | - Sukinah Alfaraj
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics & Gynecology, University of British Columbia, Vancouver, British Columbia
| | - Paul Yong
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics & Gynecology, University of British Columbia, Vancouver, British Columbia
| | - Robert Casper
- Department of Obstetrics and Gynecology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
19
|
Swier N, Versteeg HH. Reciprocal links between venous thromboembolism, coagulation factors and ovarian cancer progression. Thromb Res 2016; 150:8-18. [PMID: 27988375 DOI: 10.1016/j.thromres.2016.12.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 11/23/2016] [Accepted: 12/03/2016] [Indexed: 02/06/2023]
Abstract
Ovarian cancer is the most lethal gynecological malignancy, which is due to late presentation. Treating advanced stage ovarian cancer is difficult, and tumor recurrence and chemoresistance frequently occur. In addition, early detection remains a major challenge as there are no early warning signs and no appropriate biomarkers. To reduce mortality rates of ovarian cancer patients, novel drug targets and biomarkers are needed. We postulate that hemostatic keyplayers are of importance when combatting ovarian cancer. The majority of ovarian cancer patients have abnormal hemostatic blood serum marker levels, which indicate an activated coagulation system. This makes patients more prone to experiencing venous thromboembolism (VTE), and the occurrence of VTE in ovarian cancer patients adversely affects survival. Coagulation activation also promotes tumor progression as it influences tumor biology at several stages and the decreased survival rates associated with ovarian cancer-associated thrombosis are more likely due to cancer metastasis rather than to fatal thromboembolic events. In this review, we will discuss; (1) Population studies that address the bidirectional relationship between VTE and ovarian cancer, and the most important risk factors involved; (2) The mechanisms of coagulation factors and platelets that are critically involved in the development of VTE, and the progression of ovarian cancer; (3) Roles and future directions of coagulation factors in ovarian cancer therapy, and in diagnosis and prognosis of ovarian cancer as biomarkers.
Collapse
Affiliation(s)
- Nathalie Swier
- Department of Internal Medicine, Thrombosis and Hemostasis Division, Leiden University Medical Center, Albinusdreef 2, 2333, ZA, Leiden, The Netherlands
| | - Henri H Versteeg
- Department of Internal Medicine, Thrombosis and Hemostasis Division, Leiden University Medical Center, Albinusdreef 2, 2333, ZA, Leiden, The Netherlands.
| |
Collapse
|
20
|
Hu Z, Cheng J, Xu J, Ruf W, Lockwood CJ. Tissue factor is an angiogenic-specific receptor for factor VII-targeted immunotherapy and photodynamic therapy. Angiogenesis 2016; 20:85-96. [PMID: 27807692 PMCID: PMC5306358 DOI: 10.1007/s10456-016-9530-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 10/25/2016] [Indexed: 02/03/2023]
Abstract
Identification of target molecules specific for angiogenic vascular endothelial cells (VEC), the inner layer of pathological neovasculature, is critical for discovery and development of neovascular-targeting therapy for angiogenesis-dependent human diseases, notably cancer, macular degeneration and endometriosis, in which vascular endothelial growth factor (VEGF) plays a central pathophysiological role. Using VEGF-stimulated vascular endothelial cells (VECs) isolated from microvessels, venous and arterial blood vessels as in vitro angiogenic models and unstimulated VECs as a quiescent VEC model, we examined the expression of tissue factor (TF), a membrane-bound receptor on the angiogenic VEC models compared with quiescent VEC controls. We found that TF is specifically expressed on angiogenic VECs in a time-dependent manner in microvessels, venous and arterial vessels. TF-targeted therapeutic agents, including factor VII (fVII)-IgG1 Fc and fVII-conjugated photosensitizer, can selectively bind angiogenic VECs, but not the quiescent VECs. Moreover, fVII-targeted photodynamic therapy can selectively and completely eradicate angiogenic VECs. We conclude that TF is an angiogenic-specific receptor and the target molecule for fVII-targeted therapeutics. This study supports clinical trials of TF-targeted therapeutics for the treatment of angiogenesis-dependent diseases such as cancer, macular degeneration and endometriosis.
Collapse
Affiliation(s)
- Zhiwei Hu
- Department of Surgery Division of Surgical Oncology, The James Comprehensive Cancer Center (OSUCCC), The Ohio State University College of Medicine, Columbus, OH, 43210, USA.
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, CT, 06520, USA.
| | - Jijun Cheng
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, CT, 06520, USA
- Department of Genetics, Yale University, New Haven, CT, USA
| | - Jie Xu
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, CT, 06520, USA
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Wolfram Ruf
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Charles J Lockwood
- Department of Obstetrics and Gynecology, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA
| |
Collapse
|
21
|
Guo SW, Ding D, Liu X. Anti-platelet therapy is efficacious in treating endometriosis induced in mouse. Reprod Biomed Online 2016; 33:484-499. [DOI: 10.1016/j.rbmo.2016.07.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 07/02/2016] [Accepted: 07/05/2016] [Indexed: 02/07/2023]
|
22
|
Attar R, Attar E. Experimental Treatments of Endometriosis. WOMENS HEALTH 2016; 11:653-64. [DOI: 10.2217/whe.15.51] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Rukset Attar
- Yeditepe University Medical School, İnönü Man., Kayişdaği Cad., 26 Ağustos Yerleşimi, 34755 Ataşehir/İstanbul, Turkey
| | - Erkut Attar
- Istanbul University Istanbul Medical School, Topkapi Mh., Millet Caddesi, Çapa, 34093 Fatih/İstanbul, Turkey
| |
Collapse
|
23
|
Schatz F, Guzeloglu-Kayisli O, Arlier S, Kayisli UA, Lockwood CJ. The role of decidual cells in uterine hemostasis, menstruation, inflammation, adverse pregnancy outcomes and abnormal uterine bleeding. Hum Reprod Update 2016; 22:497-515. [PMID: 26912000 DOI: 10.1093/humupd/dmw004] [Citation(s) in RCA: 150] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 02/01/2016] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Human pregnancy requires robust hemostasis to prevent hemorrhage during extravillous trophoblast (EVT) invasion of the decidualized endometrium, modification of spiral arteries and post-partum processes. However, decidual hemorrhage (abruption) can occur throughout pregnancy from poorly transformed spiral arteries, causing fetal death or spontaneous preterm birth (PTB), or it can promote the aberrant placentation observed in intrauterine growth restriction (IUGR) and pre-eclampsia; all leading causes of perinatal or maternal morbidity and mortality. In non-fertile cycles, the decidua undergoes controlled menstrual bleeding. Abnormal uterine bleeding (AUB) accompanying progestin-only, long-acting, reversible contraception (pLARC) accounts for most discontinuations of these safe and highly effective agents, thereby contributing to unwanted pregnancies and abortion. The aim of this study was to investigate the role of decidual cells in uterine hemostasis, menstruation, inflammation, adverse pregnancy outcomes and abnormal uterine bleeding. METHODS We conducted a critical review of the literature arising from PubMed searches up to December 2015, regarding in situ and in vitro expression and regulation of several specific proteins involved in uterine hemostasis in decidua and cycling endometrium. In addition, we discussed clinical and molecular mechanisms associated with pLARC-induced AUB and pregnancy complications with abruptions, chorioamnionitis or pre-eclampsia. RESULTS Progestin-induced decidualization of estradiol-primed human endometrial stromal cells (HESCs) increases in vivo and in vitro expression of tissue factor (TF) and type-1 plasminogen activator inhibitor (PAI-1) while inhibiting plasminogen activators (PAs), matrix metalloproteinases (MMPs), and the vasoconstrictor, endothelin-1 (ET-1). These changes in decidual cell-derived regulators of hemostasis, fibrinolysis, extracellular matrix (ECM) turnover, and vascular tone prevent hemorrhage during EVT invasion and vascular remodeling. In non-fertile cycles, progesterone withdrawal reduces TF and PAI-1 while increasing PA, MMPs and ET-1, causing menstrual-associated bleeding, fibrinolysis, ECM degradation and ischemia. First trimester decidual hemorrhage elicits later adverse outcomes including pregnancy loss, pre-eclampsia, abruption, IUGR and PTB. Decidual hemorrhage generates excess thrombin that binds to decidual cell-expressed protease-activated receptors (PARs) to induce chemokines promoting shallow placentation; such bleeding later in pregnancy generates thrombin to down-regulate decidual cell progesterone receptors and up-regulate cytokines and MMPs linked to PTB. Endometria of pLARC users display ischemia-induced excess vasculogenesis and progestin inhibition of spiral artery vascular smooth muscle cell proliferation and migration leading to dilated fragile vessels prone to bleeding. Moreover, aberrant TF-derived thrombin signaling also contributes to the pathogenesis of endometriosis via induction of angiogenesis, inflammation and cell survival. CONCLUSION Perivascular decidualized HESCs promote endometrial hemostasis during placentation yet facilitate menstruation through progestational regulation of hemostatic, proteolytic, and vasoactive proteins. Pathological endometrial hemorrhage elicits excess local thrombin generation, which contributes to pLARC associated AUB, endometriosis and adverse pregnancy outcomes through several biochemical mechanisms.
Collapse
Affiliation(s)
- Frederick Schatz
- Department of Obstetrics and Gynecology, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Ozlem Guzeloglu-Kayisli
- Department of Obstetrics and Gynecology, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Sefa Arlier
- Department of Obstetrics and Gynecology, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Umit A Kayisli
- Department of Obstetrics and Gynecology, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Charles J Lockwood
- Department of Obstetrics and Gynecology, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| |
Collapse
|
24
|
Guo SW, Du Y, Liu X. Endometriosis-Derived Stromal Cells Secrete Thrombin and Thromboxane A2, Inducing Platelet Activation. Reprod Sci 2016; 23:1044-52. [PMID: 26902428 DOI: 10.1177/1933719116630428] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Platelets have been recently revealed to play important roles in the development of endometriosis. However, it is unclear whether endometriotic lesions can secrete any platelet inducers outside the menstruation window. Hence, this study was undertaken to see whether endometriosis-derived stromal cells secrete platelet activators and cause platelet activation. We employed in vitro experimentation using primary ectopic endometrial stromal cells (EESCs) and platelets from healthy male volunteers and evaluated the extent of platelet aggregation by aggregometer and the platelet activation rate by flow cytometry using supernatants harvested from EESCs of different cell densities. We also measured the concentration of thromboxane B2 (TXB2), a metabolite of thromboxane A2 (TXA2), and thrombin activity in supernatants harvested from EESCs of different densities and evaluated the extent of platelet aggregation after treatment of EESCs with hirudin, Ozagrel, and apyrase. Finally, the concentration of TXB2, thrombin, and transforming growth factor β1 (TGF-β1) in platelets cocultured with different densities of EESCs is measured by enzyme-linked immunosorbent assay. We found that EESCs secrete thrombin and TXA2 and induce platelet activation and aggregation in a density-dependent fashion. Treatment of platelets with EESCs resulted in increased concentration of TXB2, thrombin, and TGF-β1 in a density-dependent manner. Treatment of EESCs with hirudin and Ozagrel, but not apyrase, resulted in significant suppression of platelet aggregation. Thus, given recently reported effects of activated platelets on the cell behaviors of EESCs and endometriotic lesions in general, our findings establish that endometriotic lesions and platelets engage active cross-talks in the development of endometriosis, highlighting the importance of lesion microenvironment in endometriosis.
Collapse
Affiliation(s)
- Sun-Wei Guo
- Shanghai Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Shanghai, China
| | - Yanbo Du
- Shanghai Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China Shanghai First Maternity and Infant Hospital, Tongji University, Shanghai, China
| | - Xishi Liu
- Shanghai Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Shanghai, China
| |
Collapse
|
25
|
Leone Roberti Maggiore U, Ferrero S. An overview of early drug development for endometriosis. Expert Opin Investig Drugs 2015; 25:227-47. [DOI: 10.1517/13543784.2016.1126579] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
26
|
Koizume S, Miyagi Y. Tissue Factor-Factor VII Complex As a Key Regulator of Ovarian Cancer Phenotypes. BIOMARKERS IN CANCER 2015; 7:1-13. [PMID: 26396550 PMCID: PMC4562604 DOI: 10.4137/bic.s29318] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 08/05/2015] [Accepted: 08/07/2015] [Indexed: 02/07/2023]
Abstract
Tissue factor (TF) is an integral membrane protein widely expressed in normal human cells. Blood coagulation factor VII (fVII) is a key enzyme in the extrinsic coagulation cascade that is predominantly secreted by hepatocytes and released into the bloodstream. The TF–fVII complex is aberrantly expressed on the surface of cancer cells, including ovarian cancer cells. This procoagulant complex can initiate intracellular signaling mechanisms, resulting in malignant phenotypes. Cancer tissues are chronically exposed to hypoxia. TF and fVII can be induced in response to hypoxia in ovarian cancer cells at the gene expression level, leading to the autonomous production of the TF–fVII complex. Here, we discuss the roles of the TF–fVII complex in the induction of malignant phenotypes in ovarian cancer cells. The hypoxic nature of ovarian cancer tissues and the roles of TF expression in endometriosis are discussed. Arguments will be extended to potential strategies to treat ovarian cancers based on our current knowledge of TF–fVII function.
Collapse
Affiliation(s)
- Shiro Koizume
- Molecular Pathology and Genetics Division, Kanagawa Cancer Center, Yokohama, Japan
| | - Yohei Miyagi
- Molecular Pathology and Genetics Division, Kanagawa Cancer Center, Yokohama, Japan
| |
Collapse
|
27
|
Abstract
PURPOSE OF REVIEW Current medical treatments for endometriosis-associated pain, including oral contraceptives, progestins and GnRH agonists, are partially effective and have significant side-effects. The purpose of this review is to present new hormonal and nonhormonal treatment for endometriosis. RECENT FINDINGS At present, the ideal drug that can prevent, inhibit or stop development of endometriosis, reduce associated pain or infertility and allow conception does not exist. New drugs in development for endometriosis modulate GnRH, estrogen and/or progesterone receptors, or target endometriosis-associated inflammation, angiogenesis, adhesion and/or tissue invasion. Most have been tested in rodents, and have been evaluated in more relevant animal models like nonhuman primates (baboons), but only a few, that is GnRH antagonists, have been tested in human randomized controlled trials. Important safety and efficacy issues remain a concern, as steroid receptors, inflammation, adhesion, angiogenesis and tissue invasion are key factors in physiological events like ovulation, menstruation and embryo implantation. SUMMARY New drugs for the medical treatment of endometriosis targeting both hormonal (GnRH, estrogen and progesterone receptors) and nonhormonal pathways (inflammation, angiogenesis, adhesions, tissue invasion) are promising, but their efficacy and safety need to be established in randomized human trials before they can be used in clinical practice.
Collapse
|
28
|
Wu Q, Ding D, Liu X, Guo SW. Evidence for a Hypercoagulable State in Women With Ovarian Endometriomas. Reprod Sci 2015; 22:1107-14. [DOI: 10.1177/1933719115572478] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Qinjiao Wu
- Shanghai Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Ding Ding
- Shanghai Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Xishi Liu
- Shanghai Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Shanghai, China
| | - Sun-Wei Guo
- Shanghai Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Shanghai, China
| |
Collapse
|
29
|
Wang Y, Lin M, Weng H, Wang X, Yang L, Liu F. ENMD-1068, a protease-activated receptor 2 antagonist, inhibits the development of endometriosis in a mouse model. Am J Obstet Gynecol 2014; 210:531.e1-8. [PMID: 24495669 DOI: 10.1016/j.ajog.2014.01.040] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 12/11/2013] [Accepted: 01/28/2014] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Protease-activated receptor 2 plays an important role in the pathogenesis of endometriosis. We studied the effect of ENMD-1068, a protease-activated receptor 2 antagonist, on the development of endometriosis in a noninvasive fluorescent mouse model. STUDY DESIGN A red fluorescent protein-expressing xenograft model of human endometriosis was created in nude mice. After endometriosis induction, the mice were injected intraperitoneally with either 25 mg/kg or 50 mg/kg ENMD-1068 or with 200 μL of the vehicle control daily for 5 days. The endometriotic lesions that developed in the mice were then counted, measured, and collected. The lesions were assessed for the production of interleukin 6 and monocyte chemotactic protein-1 by enzyme-linked immunosorbent assays and evaluated for the activation of nuclear factor-κB and the expression of vascular endothelial growth factor by immunohistochemical analyses. Cell proliferation and apoptosis were assessed by immunohistochemistry for Ki-67 and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling, respectively. RESULTS ENMD-1068 dose-dependently inhibited the development of endometriotic lesions (P < .05) without apparent toxicity to various organs of the treated mice. Consistently, ENMD-1068 dose-dependently inhibited the expression of interleukin 6 and nuclear factor-κB (P < .05) and cell proliferation (P < .05) in the lesions, as well as increased the percentage of apoptotic cells (P < .05). ENMD-1068 reduced the levels of monocyte chemotactic protein-1 and vascular endothelial growth factor in the lesions (P < .05), but not in a dose-dependent manner. CONCLUSION Our study suggests that ENMD-1068 is effective in suppressing the growth of endometriosis, which might be attributed to the drug's antiangiogenic and antiinflammatory activities.
Collapse
Affiliation(s)
- Yifeng Wang
- Department of Obstetrics and Gynecology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Min Lin
- Department of Obstetrics and Gynecology, Guangzhou Panyu Central Hospital, Guangzhou, China
| | - Huinan Weng
- Department of Reproductive Center, GuangDong Women And Children Hospital, Guangzhou, China
| | - Xuefeng Wang
- Department of Obstetrics and Gynecology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Li Yang
- Department of Obstetrics and Gynecology, Guangzhou Panyu Central Hospital, Guangzhou, China
| | - Fenghua Liu
- Department of Reproductive Center, GuangDong Women And Children Hospital, Guangzhou, China.
| |
Collapse
|
30
|
Li X, Liu X, Guo SW. Histone deacetylase inhibitors as therapeutics for endometriosis. ACTA ACUST UNITED AC 2014. [DOI: 10.1586/eog.12.52] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
31
|
Ghosh S, Chatterjee S. Molecular blockade of angiogenic factors: A new therapeutic tool for the treatment of abnormal uterine bleeding. J Midlife Health 2013; 4:66-7. [PMID: 23833542 PMCID: PMC3702074 DOI: 10.4103/0976-7800.109647] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
|
32
|
Sokalska A, Anderson M, Villanueva J, Ortega I, Bruner-Tran KL, Osteen KG, Duleba AJ. Effects of simvastatin on retinoic acid system in primary human endometrial stromal cells and in a chimeric model of human endometriosis. J Clin Endocrinol Metab 2013; 98:E463-71. [PMID: 23337719 PMCID: PMC3590479 DOI: 10.1210/jc.2012-3402] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
CONTEXT Retinoic acid (RA) may promote survival or apoptosis of cells, depending on the levels of binding proteins: apoptosis-inducing cellular RA binding protein 2 (CRABP2), and cell survival-promoting fatty acid binding protein 5 (FABP5). Increased cellular uptake of retinol and altered actions of RA related to reduced expression of CRABP2 may contribute to the development of endometriosis. Recently statins have been shown to inhibit growth of human endometrial stromal (HES) cells and to reduce the number and size of endometriotic implants in experimental models of this disorder. OBJECTIVE The objective of the study was to determine whether effects of simvastatin on HES cells and experimental endometriotic implants are related to the modulation of the RA system. METHODS Effects of simvastatin and RA on proliferation and apoptosis of HES cells were evaluated. Expression of stimulated by RA 6 (STRA6), CRABP2, and FABP5 was determined by real-time PCR and Western blotting. Effects of simvastatin were also evaluated in a nude mouse model of human endometriosis. RESULTS Simvastatin potentiated an inhibitory effect of RA on growth of HES cells. In HES cells, simvastatin induced expression of STRA6 and CRABP2 but not FABP5. Similarly, simvastatin treatment of nude mice bearing human endometrial xenografts led to an increased expression of CRABP2 and STRA6 proteins in ectopic lesions. CONCLUSIONS Simvastatin interacts with the RA system, inducing the expression of the key protein regulating the uptake of retinol (STRA6) and the expression of apoptosis-promoting CRABP2. These effects may contribute to cooperative apoptosis-inducing effects of simvastatin and RA and support the examination of these compounds in the treatment of endometriosis.
Collapse
Affiliation(s)
- Anna Sokalska
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, University of California, Davis, Sacramento, California 95817, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Alkatout I, Maass N, Jonat W, Mundhenke C, Schem C. Rolle der Angiogenese und ihrer Inhibitoren in der Gynäkologie. GYNAKOLOGE 2012. [DOI: 10.1007/s00129-012-3091-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
34
|
Laschke M, Menger M. Anti-angiogenic treatment strategies for the therapy of endometriosis. Hum Reprod Update 2012; 18:682-702. [DOI: 10.1093/humupd/dms026] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
|
35
|
Herington JL, Glore DR, Lucas JA, Osteen KG, Bruner-Tran KL. Dietary fish oil supplementation inhibits formation of endometriosis-associated adhesions in a chimeric mouse model. Fertil Steril 2012; 99:543-50. [PMID: 23103017 DOI: 10.1016/j.fertnstert.2012.10.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Revised: 10/01/2012] [Accepted: 10/02/2012] [Indexed: 12/27/2022]
Abstract
OBJECTIVE To examine whether dietary fish oil supplementation reduces development of spontaneous endometriosis-associated adhesions using an established model. DESIGN Laboratory-based study. SETTING Medical center research laboratory. PATIENT(S)/ANIMAL(S): Disease-free women of reproductive age and nude mice. INTERVENTION(S) Women were not provided any intervention. Mice were randomized to receive fish oil supplementation or control diet. MAIN OUTCOME MEASURE(S) Experimental endometriosis was established in mice via injection of human endometrial tissue within 16 hours of ovariectomy. Mice were provided standard or menhaden fish oil-supplemented diets for ≥ 2 weeks before initiation of experimental endometriosis and until killing them 1 week later. At necropsy, mice were examined for the presence and extent of adhesions and endometriotic-like lesions. Tissues were excised and morphologically characterized. RESULT(S) Adhesions/lesions were reduced in mice provided with dietary fish oil compared with control animals. Leukocytes were more numerous within the adhesions/lesions of the mice maintained on the standard diet compared with animals provided with fish oil. As indicated by staining intensity, collagen deposition was greater at adhesion sites within control mice compared with fish oil-supplemented animals. CONCLUSION(S) Wound-healing associated with surgery created an inflammatory peritoneal microenvironment that promoted the development of both experimental endometriosis and adhesions in a murine model. Targeting excessive inflammation with fish oil may be an effective adjuvant therapy to reduce the development of postsurgical adhesions related to endometriosis.
Collapse
Affiliation(s)
- Jennifer L Herington
- Women's Reproductive Health Research Center, Department of Obstetrics and Gynecology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | | | | | | | | |
Collapse
|
36
|
Lin M, Weng H, Wang X, Zhou B, Yu P, Wang Y. The role of tissue factor and protease-activated receptor 2 in endometriosis. Am J Reprod Immunol 2012; 68:251-7. [PMID: 22672593 DOI: 10.1111/j.1600-0897.2012.01152.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Accepted: 04/11/2012] [Indexed: 11/28/2022] Open
Affiliation(s)
- Min Lin
- Department of Obstetrics and Gynaecology; Third Affiliated Hospital of Guangzhou Medical College; Guangzhou; China
| | - Huinan Weng
- Department of Obstetrics and Gynaecology; Third Affiliated Hospital of Guangzhou Medical College; Guangzhou; China
| | - Xuefeng Wang
- Department of Obstetrics and Gynecology; Zhujiang Hospital, Southern Medical University; Guangzhou; China
| | - Bing Zhou
- Department of Obstetrics and Gynaecology; Third Affiliated Hospital of Guangzhou Medical College; Guangzhou; China
| | - Ping Yu
- Department of Obstetrics and Gynaecology; Third Affiliated Hospital of Guangzhou Medical College; Guangzhou; China
| | - Yifeng Wang
- Department of Obstetrics and Gynecology; Zhujiang Hospital, Southern Medical University; Guangzhou; China
| |
Collapse
|
37
|
Braundmeier A, Jackson K, Hastings J, Koehler J, Nowak R, Fazleabas A. Induction of endometriosis alters the peripheral and endometrial regulatory T cell population in the non-human primate. Hum Reprod 2012; 27:1712-22. [PMID: 22442246 DOI: 10.1093/humrep/des083] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Endometriosis is a gynecological condition that is characterized by extreme abdominal pain and also decreased fertility. Regulatory T cells (Tregs) have immunosuppressive activity critical for embryonic implantation and likewise the acceptance of tissue engraftment. Utilizing the induced non-human primate (Papio anubis) model of endometriosis, we hypothesize that endometriosis decreases the peripheral and endomet rial Treg profile, whereas ectopic lesions have increased Treg localization. METHODS Peripheral blood and endometrium were obtained throughout the menstrual cycle prior to and after induction of disease. Animals were randomly assigned to control (n = 7) or diseased (n = 16) treatment groups. Endometriosis was induced by i.p. injection of autologous menstrual tissue for 2 consecutive months during menses. Peripheral blood and endometrial tissue were collected at d9-11PO at 1, 3, 6, 9, 12 and 15 months post-induction of disease for fluorescence-activated cell sorting, quantitative RT-PCR and immunohistochemistry. Ectopic lesions were excised at 1 and 6 months post-inoculation and also harvested at necropsy (15 months) and processed for RNA of IHC. Identification of Tregs through analysis of FOXP3 expression was conducted utlilizing several methodologies. Differences were determined by non-parametric statistical analysis between all treatment groups and time points. RESULTS In control animals, the proportion of peripheral natural Tregs (nTregs) was reduced (P < 0.05) during the mid- and late secretory stages of the menstrual cycle compared with menses. The induction of disease decreased peripheral Treg expression at early time points (P < 0.05) and this remained low throughout the time course, compared with the pre-inoculatory level of an individual. FOXP3 gene expression and Treg populations were also decreased in the eutopic endometrium (P < 0.05) compared with control animals, whereas these parameters were increased in ectopic lesions (P < 0.05), compared with the eutopic endometrium. CONCLUSIONS Our data suggest that a reduction in peripheral Tregs may be a causative factor for endometriosis-associated infertility, while the increase in ectopic Treg expression may aid lesion development. Furthermore, endometriosis appears to disrupt Treg recruitment in both eutopic and ectopic endometrium.
Collapse
Affiliation(s)
- A Braundmeier
- Department of Animal Sciences, University of Illinois, Urbana, IL 61801, USA.
| | | | | | | | | | | |
Collapse
|
38
|
Krikun G. Endometriosis, angiogenesis and tissue factor. SCIENTIFICA 2012; 2012:306830. [PMID: 24278684 PMCID: PMC3820463 DOI: 10.6064/2012/306830] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Accepted: 07/04/2012] [Indexed: 05/13/2023]
Abstract
Tissue factor (TF), is a cellular receptor that binds the factor VII/VIIa to initiate the blood coagulation cascade. In addition to its role as the initiator of the hemostatic cascade, TF is known to be involved in angiogenesis via intracellular signaling that utilizes the protease activated receptor-2 (PAR-2). We now review the physiologic expression of TF in the endometrium and its altered expression in multiple cell types derived from eutopic and ectopic endometrium from women with endometriosis compared with normal endometrium. Our findings suggest that TF might be an ideal target for therapeutic intervention in endometriosis. We have employed a novel immunoconjugate molecule known as Icon and were able to eradicate endometrial lesions in a mouse model of endometriosis without affecting fertility. These findings have major implications for potential treatment in humans.
Collapse
Affiliation(s)
- Graciela Krikun
- Department of Obstetrics, Gynecology & Reproductive Sciences, Yale University, 333 Cedar Street, New Haven, CT 06510, USA
- *Graciela Krikun:
| |
Collapse
|
39
|
Broze GJ, Girard TJ. Tissue factor pathway inhibitor: structure-function. Front Biosci (Landmark Ed) 2012; 17:262-80. [PMID: 22201743 DOI: 10.2741/3926] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
TFPI is a multivalent, Kunitz-type proteinase inhibitor, which, due to alternative mRNA splicing, is transcribed in three isoforms: TFPIalpha, TFPIdelta, and glycosyl phosphatidyl inositol (GPI)-anchored TFPIbeta. The microvascular endothelium is thought to be the principal source of TFPI and TFPIalpha is the predominant isoform expressed in humans. TFPIalpha, apparently attached to the surface of the endothelium in an indirect GPI-anchor-dependent fashion, represents the greatest in vivo reservoir of TFPI. The Kunitz-2 domain of TFPI is responsible for factor Xa inhibition and the Kunitz-1 domain is responsible for factor Xa-dependent inhibition of the factor VIIa/tissue factor catalytic complex. The anticoagulant activity of TFPI in one-stage coagulation assays is due mainly to its inhibition of factor Xa through a process that is enhanced by protein S and dependent upon the Kunitz-3 and carboxyterminal domains of full-length TFPIalpha. Carboxyterminal truncated forms of TFPI as well as TFPIalpha in plasma, however, inhibit factor VIIa/tissue factor in two-stage assay systems. Studies in gene-disrupted mice demonstrate the physiological importance of TFPI.
Collapse
Affiliation(s)
- George J Broze
- Division of Hematology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | | |
Collapse
|
40
|
Abstract
PROBLEM Endometriosis is a very complex disease that profoundly affects the quality of life of many women. METHOD OF STUDY A review of the relationships between the female immune system and the occurrence and development of endometriosis. RESULTS Function and dysfunction of the female immune system plays important roles in the initiation and progression of the disease and its relation to infertility and cancer. CONCLUSIONS Owing to obvious associations between endometriosis and the immune system, future treatment strategies might be based on immunological concepts and methods.
Collapse
Affiliation(s)
- Matts Olovsson
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
41
|
Henriquez S, Calderon C, Quezada M, Oliva B, Bravo ML, Aranda E, Kato S, Cuello MA, Gutiérrez J, Quest AFG, Owen GI. Progesterone utilizes distinct membrane pools of tissue factor to increase coagulation and invasion and these effects are inhibited by TFPI. J Cell Physiol 2011; 226:3278-85. [PMID: 21344386 DOI: 10.1002/jcp.22689] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Tissue factor (TF) serving as the receptor for coagulation factor VII (FVII) initiates the extrinsic coagulation pathway. We previously demonstrated that progesterone increases TF, coagulation and invasion in breast cancer cell lines. Herein, we investigated if tissue factor pathway inhibitor (TFPI) could down-regulate progesterone-increased TF activity in these cells. Classically, TFPI redistributes TF-FVII-FX-TFPI in an inactive quaternary complex to membrane associated lipid raft regions. Herein, we demonstrate that TF increased by progesterone is localized to the heavy membrane fraction, despite progesterone-increased coagulation originating almost exclusively from lipid raft domains, where TF levels are extremely low. The progesterone increase in coagulation is not a rapid effect, but is progesterone receptor (PR) dependent and requires protein synthesis. Although a partial relocalization of TF occurs, TFPI does not require the redistribution to lipid rafts to inhibit coagulation or invasion. Inhibition by TFPI and anti-TF antibodies in lipid raft membrane fractions confirmed the dependence on TF for progesterone-mediated coagulation. Through the use of pathway inhibitors, we further demonstrate that the TF up-regulated by progesterone is not coupled to the progesterone increase in TF-mediated coagulation. However, the progesterone up-regulated TF protein may be involved in progesterone-mediated breast cancer cell invasion, which TFPI also inhibits.
Collapse
Affiliation(s)
- Soledad Henriquez
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Alameda 340, Santiago, Chile
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Capobianco A, Monno A, Cottone L, Venneri MA, Biziato D, Di Puppo F, Ferrari S, De Palma M, Manfredi AA, Rovere-Querini P. Proangiogenic Tie2(+) macrophages infiltrate human and murine endometriotic lesions and dictate their growth in a mouse model of the disease. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 179:2651-9. [PMID: 21924227 PMCID: PMC3204092 DOI: 10.1016/j.ajpath.2011.07.029] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Revised: 06/15/2011] [Accepted: 07/13/2011] [Indexed: 11/19/2022]
Abstract
Endometriosis affects women of reproductive age, causing infertility and pain. Although immune cells are recruited in endometriotic lesions, their role is unclear. Tie2-expressing macrophages (TEMs) have nonredundant functions in promoting angiogenesis and growth of experimental tumors. Here we show that human TEMs infiltrate areas surrounding newly formed endometriotic blood vessels. We set up an ad hoc mouse model in which TEMs, and not Tie2-expressing endothelial cells, are targeted. We transplanted in wild-type recipients bone marrow cells expressing a suicide gene (Herpes simplex virus type 1 thymidine kinase) under the Tie2 promoter/enhancer. TEMs infiltrated endometriotic lesions. TEM depletion by ganciclovir administration arrested the growth of established lesions, without toxicity. Lesion architecture was disrupted, with: i) loss of glandular organization, ii) reduced neovascularization, and iii) activation of caspase 3 in CD31(+) endothelial cells. Thus, TEMs are important for maintaining the viability of newly formed vessels and represent a potential therapeutic target in endometriosis.
Collapse
Affiliation(s)
- Annalisa Capobianco
- Autoimmunity and Vascular Inflammation Unit, San Raffaele Scientific Institute, Milan, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Taylor HS, Osteen KG, Bruner-Tran KL, Lockwood CJ, Krikun G, Sokalska A, Duleba AJ. Novel therapies targeting endometriosis. Reprod Sci 2011; 18:814-823. [PMID: 21693775 PMCID: PMC4046304 DOI: 10.1177/1933719111410713] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Endometriosis is an often painful disorder in which the endometrial glands and stroma grow outside the uterus. The disease affects women's quality of life and is a common cause of infertility. In this review, we describe promising new developments in the field based on in vitro assays and rodent models, each of which has the potential to be beneficial in the treatment of this disease. We will specifically describe the role of anti-inflammatory drugs, selective estrogen, or progesterone modulators, statins, antiangiogenic agents, and the potential for targeting stem cells as likely methods to hone in and eliminate endometriosis. The most promising of these potential therapies are currently slated for further testing in both rodent and nonhuman primate trials.
Collapse
Affiliation(s)
- Hugh S Taylor
- Department of Obstetrics and Gynecology and Reproductive Sciences, Yale University, 333 Cedar Street, New Haven, CT 06520, USA.
| | | | | | | | | | | | | |
Collapse
|
44
|
Cocco E, Varughese J, Buza N, Bellone S, Lin KY, Bellone M, Todeschini P, Silasi DA, Azodi M, Schwartz PE, Rutherford TJ, Carrara L, Tassi R, Pecorelli S, Lockwood CJ, Santin AD. Tissue factor expression in ovarian cancer: implications for immunotherapy with hI-con1, a factor VII-IgGF(c) chimeric protein targeting tissue factor. Clin Exp Metastasis 2011; 28:689-700. [PMID: 21725665 DOI: 10.1007/s10585-011-9401-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Accepted: 06/16/2011] [Indexed: 12/16/2022]
Abstract
We evaluated the expression of tissue factor (TF) in ovarian cancer (EOC) and the potential of hI-con1, an antibody-like molecule targeting TF, as a novel form of therapy against chemotherapy-resistant ovarian disease. We studied the expression of TF in 88 EOC by immunohistochemistry (IHC) and real-time-PCR (qRT-PCR) and the levels of membrane-bound-complement-regulatory-proteins CD46, CD55 and CD59 in primary EOC cell lines by flow-cytometry. Sensitivity to hI-con1-dependent-cell-mediated-cytotoxicity (IDCC), complement-dependent-cell-cytotoxicity and inhibition of IDCC by γ-immunoglobulin were evaluated in 5-h (51)chromium-release-assays. Cytoplasmic and/or membrane TF expression was observed in 24 out of 25 (96%) of the EOC samples tested by IHC, but not in normal ovarian-tissue. EOC with clear cell histology significantly overexpress TF when compared to serous, endometrioid, or undifferentiated tumors by qRT-PCR. With a single exception, all primary EOC that overexpressed TF demonstrated high levels of CD46, CD55 and CD59 and regardless of their histology or resistance to chemotherapy, were highly sensitive to IDCC. The effect of complement and physiologic doses of γ-immunoglobulin on IDCC in ovarian cancer cell lines overexpressing TF was tumor specific and related to the overexpression of CD59 on tumor cells. Small-interfering-RNA-mediated knockdown of CD59 expression in ovarian tumors significantly increased hI-con1-mediated cytotoxic activity in vitro. Finally, low doses of interleukin-2 further increased the cytotoxic effect induced by hI-con1 (P < 0.01). hI-con1 molecule induces strong cytotoxicity against primary chemotherapy-resistant ovarian cancer cell lines overexpressing TF and may represent a novel therapeutic agent for the treatment of ovarian tumors refractory to standard treatment modalities.
Collapse
Affiliation(s)
- Emiliano Cocco
- Department of Obstetrics, Gynecology & Reproductive Sciences, Yale University School of Medicine, New Haven, CT 06520-8063, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Duanmu J, Cheng J, Xu J, Booth CJ, Hu Z. Effective treatment of chemoresistant breast cancer in vitro and in vivo by a factor VII-targeted photodynamic therapy. Br J Cancer 2011; 104:1401-9. [PMID: 21427724 PMCID: PMC3101942 DOI: 10.1038/bjc.2011.88] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Background: The purpose of this study was to test a novel, dual tumour vascular endothelial cell (VEC)- and tumour cell-targeting factor VII-targeted Sn(IV) chlorin e6 photodynamic therapy (fVII-tPDT) by targeting a receptor tissue factor (TF) as an alternative treatment for chemoresistant breast cancer using a multidrug resistant (MDR) breast cancer line MCF-7/MDR. Methods: The TF expression by the MCF-7/MDR breast cancer cells and tumour VECs in MCF-7/MDR tumours from mice was determined separately by flow cytometry and immunohistochemistry using anti-human or anti-murine TF antibodies. The efficacy of fVII-tPDT was tested in vitro and in vivo and was compared with non-targeted PDT for treatment of chemoresistant breast cancer. The in vitro efficacy was determined by a non-clonogenic assay using crystal violet staining for monolayers, and apoptosis and necrosis were assayed to elucidate the underlying mechanisms. The in vivo efficacy of fVII-tPDT was determined in a nude mouse model of subcutaneous MCF-7/MDR tumour xenograft by measuring tumour volume. Results: To our knowledge, this is the first presentation showing that TF was expressed on tumour VECs in chemoresistant breast tumours from mice. The in vitro efficacy of fVII-tPDT was 12-fold stronger than that of ntPDT for MCF-7/MDR cancer cells, and the mechanism of action involved induction of apoptosis and necrosis. Moreover, fVII-tPDT was effective and safe for the treatment of chemoresistant breast tumours in the nude mouse model. Conclusions: We conclude that fVII-tPDT is effective and safe for the treatment of chemoresistant breast cancer, presumably by simultaneously targeting both the tumour neovasculature and chemoresistant cancer cells. Thus, this dual-targeting fVII-tPDT could also have therapeutic potential for the treatment of other chemoresistant cancers.
Collapse
Affiliation(s)
- J Duanmu
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, 310 Cedar Street, New Haven, CT 06520, USA
| | | | | | | | | |
Collapse
|
46
|
|
47
|
Gómez R, Abad A, Delgado F, Tamarit S, Simón C, Pellicer A. Effects of hyperprolactinemia treatment with the dopamine agonist quinagolide on endometriotic lesions in patients with endometriosis-associated hyperprolactinemia. Fertil Steril 2011; 95:882-8.e1. [DOI: 10.1016/j.fertnstert.2010.10.024] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2010] [Revised: 09/10/2010] [Accepted: 10/13/2010] [Indexed: 01/11/2023]
|
48
|
Abstract
In this review, the dual role of tissue factor (TF) in pregnancy is described. On the one hand, TF is required for embryonic and placental development in a successful pregnancy, and on the other hand, pathologic expression of TF can lead to serious pregnancy complications in humans and mice. Human studies show increased TF levels in plasma, amniotic fluid and and/or placentas of abnormal pregnancies affected by miscarriages, preterm birth, or pre-eclampsia. Interestingly, using two mouse models, we found that blood-borne TF plays a crucial role in the pathogenesis of pregnancy complications. TF on neutrophils and monocytes is a critical mediator in trophoblast injury and embryo damage in pregnancy loss induced by antiphospholipid antibodies and in the antibody-independent CBA/J × DBA/2 model of miscarriages. Blockade of TF or genetic diminution prevented pregnancy complications, suggesting that TF may be a good target for therapy in patients with recurrent miscarriages, pregnancy loss, and pre-eclampsia. In addition, statins, which downregulate TF, may constitute a good therapeutic option for women with pregnancy complications. Clinical trials should be conducted to confirm these observations in women.
Collapse
Affiliation(s)
- G Girardi
- Department of Biology, York College-CUNY, Jamaica, NY, USA.
| |
Collapse
|
49
|
Liu X, Nie J, Guo SW. Elevated immunoreactivity to tissue factor and its association with dysmenorrhea severity and the amount of menses in adenomyosis. Hum Reprod 2010; 26:337-45. [DOI: 10.1093/humrep/deq311] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
50
|
Hu Z, Li J. Natural killer cells are crucial for the efficacy of Icon (factor VII/human IgG1 Fc) immunotherapy in human tongue cancer. BMC Immunol 2010; 11:49. [PMID: 20939894 PMCID: PMC2965132 DOI: 10.1186/1471-2172-11-49] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2010] [Accepted: 10/12/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Icon is a novel, dual neovascular- and cancer cell-targeting immunotherapeutic agent and has shown efficacy in the treatment of cancer, wet form macular degeneration and endometriosis. However, its underlying mechanism remains to be investigated. The objective of this study is to elucidate the mechanism of Icon immunotherapy in cancer using a squamous carcinoma human tongue cancer line TCA8113 in vitro and in vivo in severe combined immunodeficiency (SCID) mice. RESULTS We showed that Icon, as a chimeric factor VII and human IgG1 Fc immunoconjugate, could separately induce murine natural killer (NK) cells and activate complement to kill TCA8113 cancer cells in vitro via antibody dependent cell-mediated cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC). However, Icon-NK ADCC had a significantly stronger effect than that of Icon-CDC. Moreover, Icon could completely eradicate established human tongue tumour xenografts in vivo in the CB-17 strain of SCID mice that have functional NK cells at a normal level, whereas it was less effective in SCID/Beige mice that do not have functional NK cells. CONCLUSIONS We conclude that NK cells are crucial for the efficacy of Icon immunotherapy in the treatment of cancer. The results also suggest that impaired NK level/activity could contribute to the resistance to therapeutic antibodies that are currently under investigation in preclinical and clinical studies.
Collapse
Affiliation(s)
- Zhiwei Hu
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University, New Haven, CT 06520, USA.
| | | |
Collapse
|