1
|
Griffiths JI, Chi F, Farmaki E, Medina EF, Cosgrove PA, Karimi KL, Chen J, Grolmusz VK, Adler FR, Khan QJ, Nath A, Chang JT, Bild AH. Blocking cancer-fibroblast mutualism inhibits proliferation of endocrine therapy resistant breast cancer. Mol Syst Biol 2025:10.1038/s44320-025-00104-6. [PMID: 40341770 DOI: 10.1038/s44320-025-00104-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 03/24/2025] [Accepted: 04/10/2025] [Indexed: 05/11/2025] Open
Abstract
In early-stage estrogen receptor-positive (ER + ) breast cancer, resistance to endocrine therapy (ET) and CDK4/6 inhibitors (CDK4/6i) often involve a shift away from estrogen-driven proliferation. The nature and source of compensatory growth signals driving cancer proliferation remain unknown but represent direct therapeutic targets of resistant cells. By analyzing single-cell RNA-sequencing data from serial biopsies of patient tumors, we elucidated compensatory growth signaling pathways activated in ET + CDK4/6i-resistant cancer cells, along with the intercellular growth signal communications within the tumor microenvironment. In most patient tumors, resistant cancer cells increased ERBB growth pathway activity during treatment, only partially through ERBB receptor upregulation. Concurrently, fibroblasts within the tumor increased ERBB ligand communication with cancer cells, as they differentiated to a proliferative and mesenchymal phenotype in response to TGF β signals from cancer cells. In vitro model systems demonstrated molecularly how therapy induces a mutualistic cycle of crosstalk between cancer cells and fibroblasts, fostering a growth factor-rich tumor microenvironment circumventing estrogen reliance. We show that ERBB inhibition can break this cancer-fibroblasts mutualism, targeting an acquired sensitivity of resistant cancer cells.
Collapse
Affiliation(s)
- Jason I Griffiths
- Department of Medical Oncology & Therapeutics, City of Hope National Medical Center, 1500 East Duarte Road, Duarte, CA, 91010, USA.
- Department of Mathematics, University of Utah 155 South 1400 East, Salt Lake City, UT, 84112, USA.
| | - Feng Chi
- Department of Medical Oncology & Therapeutics, City of Hope National Medical Center, 1500 East Duarte Road, Duarte, CA, 91010, USA
| | - Elena Farmaki
- Department of Medical Oncology & Therapeutics, City of Hope National Medical Center, 1500 East Duarte Road, Duarte, CA, 91010, USA
| | - Eric F Medina
- Department of Medical Oncology & Therapeutics, City of Hope National Medical Center, 1500 East Duarte Road, Duarte, CA, 91010, USA
| | - Patrick A Cosgrove
- Department of Medical Oncology & Therapeutics, City of Hope National Medical Center, 1500 East Duarte Road, Duarte, CA, 91010, USA
| | - Kimya L Karimi
- Department of Medical Oncology & Therapeutics, City of Hope National Medical Center, 1500 East Duarte Road, Duarte, CA, 91010, USA
| | - Jinfeng Chen
- Department of Medical Oncology & Therapeutics, City of Hope National Medical Center, 1500 East Duarte Road, Duarte, CA, 91010, USA
| | - Vince K Grolmusz
- Department of Medical Oncology & Therapeutics, City of Hope National Medical Center, 1500 East Duarte Road, Duarte, CA, 91010, USA
| | - Frederick R Adler
- Department of Mathematics, University of Utah 155 South 1400 East, Salt Lake City, UT, 84112, USA
- School of Biological Sciences, University of Utah 257 South 1400 East, Salt Lake City, UT, 84112, USA
| | - Qamar J Khan
- Division of Medical Oncology, Department of Internal Medicine, The University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Aritro Nath
- Department of Medical Oncology & Therapeutics, City of Hope National Medical Center, 1500 East Duarte Road, Duarte, CA, 91010, USA
| | - Jeffrey T Chang
- Department of Integrative Biology and Pharmacology, School of Medicine, School of Biomedical Informatics, UT Health Science Center at Houston, Houston, TX, 77030, USA
| | - Andrea H Bild
- Department of Medical Oncology & Therapeutics, City of Hope National Medical Center, 1500 East Duarte Road, Duarte, CA, 91010, USA.
| |
Collapse
|
2
|
Yue Z, Shao K. Visualization of the Relationship Between Hyaluronic Acid and Wound Healing: A Bibliometric Analysis. Skin Res Technol 2025; 31:e70164. [PMID: 40321073 PMCID: PMC12050653 DOI: 10.1111/srt.70164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 02/19/2025] [Accepted: 02/27/2025] [Indexed: 05/08/2025]
Abstract
BACKGROUND Wound healing is a complex process with significant economic implications. Hyaluronic acid (HA), valued for its adaptability and biocompatibility, shows the potential to improve multiple facets of wound healing. Despite the expanding literature on the use of HA in wound care, a comprehensive analysis of its scholarly evolution is lacking. This study employs a bibliometric approach to objectively evaluate trends in scholarly publications regarding HA's role in promoting wound healing. METHODS We searched in the Web of Science Core Collection (WoSCC) for articles published from January 1, 2000 to March 31, 2024. We extracted relevant information about using HA to promote wound healing following a thorough screening process. Subsequently, a comprehensive analysis was undertaken on a total of 1886 publications. The analysis utilized GraphPad Prism 9, CiteSpace6.1.6, VOSviewer1.6.19, the Online Analysis Platform of Literature Metrology (http://bibliometric.com/), GeneMANIA (https://genemania.org/), and Metascape (https://metascape.org/gp/index.html#/main/step1). RESULTS We retrieved 2424 publications on hyaluronic acid (HA) and wound healing from the Web of Science Core Collection, covering the period from January 2000 to March 2024, and selected 1886 for analysis. The results show a significant increase in publications since 2016, reflecting a growing focus on this field. Currently, China's publication volume has surpassed the United States since 2017, indicating a significant rise in China's influence in this area. Using CiteSpace software for co-citation analysis, we identified eight main research clusters, including promoted wound healing, injured tissue, and advanced multi-targeted composite biomaterial. Key research areas involve the role and mechanisms of hyaluronic acid in tissue repair, particularly its applications in growth factor production and regenerative therapy. Analyzing keyword co-occurrence and burst data with VOSviewer, we identified research hotspots focused on biomaterials, such as nanoparticles and hydrogels, and their antibacterial properties. The keyword "CD44" showed a long burst period, while "antibacterial" had the highest burst intensity in 2022. We identified the top 21 genes extensively studied in hyaluronic acid and wound healing, including CD44, VEGF, and TGF-β. These genes are mainly involved in regulating cell migration, adhesion, proliferation, and cytokine activity. GO enrichment and KEGG pathway analyses indicate that these genes are associated with key signaling pathways, such as MAPK and EGFR, revealing the primary mechanisms hyaluronic acid promotes wound healing. CONCLUSION This pioneering study provides the first comprehensive bibliometric analysis of HA in wound healing. Covering the period from January 1, 2000 to March 31, 2024, it reveals a significant expansion in annual scholarly production. Current research emphasizes the development of HA-based biomaterials for enhancing wound healing.
Collapse
Affiliation(s)
- Zhang Yue
- Department of Clinical LaboratoryThe Affiliated Yancheng First Hospital of Xuzhou Medical UniversityThe First People's Hospital of YanchengYanchengJiangsuChina
| | - Keke Shao
- Molecular Medical Research CenterYancheng Clinical Medical College of Jiangsu UniversityYanchengJiangsuChina
| |
Collapse
|
3
|
Fullard N, Wordsworth J, Welsh C, Maltman V, Bascom C, Tasseff R, Isfort R, Costello L, Scanlan RL, Przyborski S, Shanley D. Cell Senescence-Independent Changes of Human Skin Fibroblasts with Age. Cells 2024; 13:659. [PMID: 38667274 PMCID: PMC11048776 DOI: 10.3390/cells13080659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/15/2024] [Accepted: 03/20/2024] [Indexed: 04/28/2024] Open
Abstract
Skin ageing is defined, in part, by collagen depletion and fragmentation that leads to a loss of mechanical tension. This is currently believed to reflect, in part, the accumulation of senescent cells. We compared the expression of genes and proteins for components of the extracellular matrix (ECM) as well as their regulators and found that in vitro senescent cells produced more matrix metalloproteinases (MMPs) than proliferating cells from adult and neonatal donors. This was consistent with previous reports of senescent cells contributing to increased matrix degradation with age; however, cells from adult donors proved significantly less capable of producing new collagen than neonatal or senescent cells, and they showed significantly lower myofibroblast activation as determined by the marker α-SMA. Functionally, adult cells also showed slower migration than neonatal cells. We concluded that the increased collagen degradation of aged fibroblasts might reflect senescence, the reduced collagen production likely reflects senescence-independent processes.
Collapse
Affiliation(s)
- Nicola Fullard
- Department of Biosciences, Durham University, Durham DH1 3LE, UK
| | - James Wordsworth
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE1 7RU, UK; (J.W.); (C.W.)
| | - Ciaran Welsh
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE1 7RU, UK; (J.W.); (C.W.)
| | - Victoria Maltman
- Department of Biosciences, Durham University, Durham DH1 3LE, UK
| | | | - Ryan Tasseff
- Proctor & Gamble, Cincinnati, OH 45201, USA (R.I.)
| | | | - Lydia Costello
- Department of Biosciences, Durham University, Durham DH1 3LE, UK
| | - Rebekah-Louise Scanlan
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE1 7RU, UK; (J.W.); (C.W.)
| | | | - Daryl Shanley
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE1 7RU, UK; (J.W.); (C.W.)
| |
Collapse
|
4
|
Sun J, Zhao H, Shen C, Li S, Zhang W, Ma J, Li Z, Zhang M, Yang J. Tideglusib promotes wound healing in aged skin by activating PI3K/Akt pathway. Stem Cell Res Ther 2022; 13:269. [PMID: 35729652 PMCID: PMC9210790 DOI: 10.1186/s13287-022-02949-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 06/12/2022] [Indexed: 11/17/2022] Open
Abstract
Background Aging disturbs the skin morphology and function, manifested as thinned epithelium and impaired wound healing. As a major type of skin cells, epidermal stem cells (EpiSCs) are inevitably affected by aging. The effect of age on EpiSCs and wound healing needs to be further explored. Methods Skin RNA-seq data of young (5 months) and old (30 months) CB6F1 mice were obtained from GEO Series GSE35322 with 10 in each age group. Differentially expressed genes were analyzed, and EpiSCs-related pathways were enriched by KEGG. The age-related changes of the screened PI3K/Akt pathway were validated by Western Blot and immunofluorescence of epidermis of SD rats (2, 17, and 23 months, n = 6). The expression of upstream protein EGFR was assessed by immunofluorescence in skin of mice (4, 13, and 23 months, n = 6) and human (respectively, 23, 28, 30 years old in the young group and 69, 73, 78 years old in the old group) skin. Inhibitors of EGFR were used to verify its effects on EpiSCs and wound healing. The small molecule drug Tideglusib was tested for its effects on signaling pathways of EpiSCs and wound healing of aged rats. Western Blot was used for the detection of signaling pathways in in vitro experiments. Cell migration assays were used to assess cell migration ability. Flow cytometry was used to detect changes in cell cycle and apoptosis levels. Sulforhodamine B assay and CCK-8 assay were used to evaluate cell proliferation and viability, respectively. Student’s t test and one-way analysis of variance (ANOVA) followed by the multiple comparisons Bonferroni test were used for statistical analysis. The 0.05 level of confidence was accepted as a significant difference. Results EpiSCs-related PI3K/Akt pathway was enriched by KEGG and verified by decreased phosphorylation of Akt (32.1 ± 13.8%, P < 0.01) and mTOR (38.9 ± 11.8%, P < 0.01) in aged epidermis of rats. Furthermore, the expression of PI3K/Akt-upstream EGFR decreased with age in the epidermis of mouse (27.6 ± 5.5%, P < 0.01) and human (25.8 ± 9.3%, P < 0.01). With EGFR blocked by Erlotinib, EpiSCs showed reduced phosphorylation of Akt (30.4 ± 10.6%, P < 0.01) and mTOR (39.8 ± 12.8%, P < 0.01), impaired proliferation and migration after incubated for 24 h and 36 h (P < 0.05), and higher levels of apoptosis (11.9 ± 1.7%, P < 0.05), and rats showed slower wound healing from d7 to d14 after wounding (P < 0.01). In addition to slower wound healing rates, aged rats also showed a decrease in the efficacy of EGF, partly due to the downregulated EGFR expression. By activating PI3K/Akt pathway, Tideglusib promoted the proliferation and migration of EpiSCs with apoptosis inhibited (P < 0.01) and accelerated wound healing in aged rats from d7 to d14 after wounding (P < 0.05). Notably, the combined use of Tideglusib and EGF could further enhance wound healing in aged rats. Conclusions The decreased expression of EGFR in epidermis with age resulted in decreased activity of the PI3K/Akt pathway and limited EGF efficacy. Tideglusib could assist wound healing in aged rats via activating PI3K/Akt pathway, which may be considered as an ingredient for medical and cosmetics use.
Collapse
Affiliation(s)
- Jiachen Sun
- Department of Burns and Plastic Surgery, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, 100048, China
| | - Hongqing Zhao
- Department of Burns and Plastic Surgery, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, 100048, China
| | - Chuan'an Shen
- Department of Burns and Plastic Surgery, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, 100048, China.
| | - Shiyi Li
- Department of Burns and Plastic Surgery, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, 100048, China
| | - Wen Zhang
- Department of Burns and Plastic Surgery, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, 100048, China
| | - Jinglong Ma
- Department of Burns and Plastic Surgery, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, 100048, China
| | - Zhisheng Li
- Department of Burns and Plastic Surgery, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, 100048, China
| | - Ming Zhang
- Department of Burns and Plastic Surgery, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, 100048, China
| | - Jianqiu Yang
- Department of Burns and Plastic Surgery, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, 100048, China
| |
Collapse
|
5
|
Bhatia E, Kumari D, Sharma S, Ahamad N, Banerjee R. Nanoparticle platforms for dermal antiaging technologies: Insights in cellular and molecular mechanisms. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2021; 14:e1746. [PMID: 34423571 DOI: 10.1002/wnan.1746] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 06/30/2021] [Accepted: 07/08/2021] [Indexed: 01/16/2023]
Abstract
Aging is a continuous process defined by a progressive functional decline in physiological parameters. Skin, being one of the most vulnerable organs, shows early signs of aging which are predominantly affected by intrinsic factors like hormone, gender, mood, enzymes, and genetic predisposition, and extrinsic factors like exposure to radiation, air pollution, and heat. Visible morphological and anatomical changes associated with skin aging occur due to underlying physiological aberrations governed by numerous complex interactions at cellular and subcellular levels. Nanoparticles are perceived as a powerful tool in the cosmeceutical industry both for augmenting the efficacy of existing agents and as a novel standalone therapy. Both organic and inorganic nanoparticles have been extensively investigated in antiaging applications. The use of nanoparticles helps to enhance the activity of antiaging molecules by selectively targeting cellular and molecular pathways. On the other hand, the nanoparticle platforms also gained increasing popularity as the skin protectant against extrinsic factors such as UV radiation and pollutants. This review comprehensively discusses skin aging and its mechanism by highlighting the impact on cellular, subcellular, and epigenetic elements. Importantly, the review elaborates on the examples of organic and inorganic nanoparticle-based formulations developed for antiaging application and provides mechanistic insights on how they modulate the mechanisms of skin aging. The clinical progress of nanoparticle antiaging technologies and factors that impact clinical translation are also explored. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Emerging Technologies.
Collapse
Affiliation(s)
- Eshant Bhatia
- Nanomedicine Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Durga Kumari
- Nanomedicine Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Shivam Sharma
- Nanomedicine Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Nadim Ahamad
- Nanomedicine Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Rinti Banerjee
- Nanomedicine Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| |
Collapse
|
6
|
Ding X, Kakanj P, Leptin M, Eming SA. Regulation of the Wound Healing Response during Aging. J Invest Dermatol 2021; 141:1063-1070. [DOI: 10.1016/j.jid.2020.11.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 10/30/2020] [Accepted: 11/16/2020] [Indexed: 12/20/2022]
|
7
|
Kleiser S, Nyström A. Interplay between Cell-Surface Receptors and Extracellular Matrix in Skin. Biomolecules 2020; 10:E1170. [PMID: 32796709 PMCID: PMC7465455 DOI: 10.3390/biom10081170] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/01/2020] [Accepted: 08/05/2020] [Indexed: 12/12/2022] Open
Abstract
Skin consists of the epidermis and dermis, which are connected by a specialized basement membrane-the epidermal basement membrane. Both the epidermal basement membrane and the underlying interstitial extracellular matrix (ECM) created by dermal fibroblasts contain distinct network-forming macromolecules. These matrices play various roles in order to maintain skin homeostasis and integrity. Within this complex interplay of cells and matrices, cell surface receptors play essential roles not only for inside-out and outside-in signaling, but also for establishing mechanical and biochemical properties of skin. Already minor modulations of this multifactorial cross-talk can lead to severe and systemic diseases. In this review, major epidermal and dermal cell surface receptors will be addressed with respect to their interactions with matrix components as well as their roles in fibrotic, inflammatory or tumorigenic skin diseases.
Collapse
Affiliation(s)
- Svenja Kleiser
- Department of Dermatology, Faculty of Medicine and Medical Center, University of Freiburg, Hauptstraße 7, 79104 Freiburg, Germany
- Faculty of Biology, University of Freiburg, Schänzlestraße 1, 79104 Freiburg, Germany
| | - Alexander Nyström
- Department of Dermatology, Faculty of Medicine and Medical Center, University of Freiburg, Hauptstraße 7, 79104 Freiburg, Germany
| |
Collapse
|
8
|
Zhan H, Peng B, Ma J, Lin K, Xu K, Lin J, Yong PJ, Leung PCK, Bedaiwy MA, Lin J. Epidermal growth factor promotes stromal cells migration and invasion via up-regulation of hyaluronate synthase 2 and hyaluronan in endometriosis. Fertil Steril 2020; 114:888-898. [PMID: 32762950 DOI: 10.1016/j.fertnstert.2020.05.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 05/02/2020] [Accepted: 05/05/2020] [Indexed: 12/16/2022]
Abstract
OBJECTIVE To investigate the role(s) of hyaluronan synthase 2 (HAS2) and hyaluronan in disease progression of endometriosis and epidermal growth factor (EGF)-induced motility changes of endometriotic cells. DESIGN A case-control experimental study and in vitro primary cell culture study. SETTING University hospital-affiliated research centers. PATIENTS A total of 21 women with stage I/II endometriosis, 33 women with stage III/IV endometriosis with endometrioma, and 32 women without endometriosis were included in our study. INTERVENTIONS Serum, eutopic endometrial tissues, and/or ectopic endometriotic tissues were collected. Primary eutopic endometrial stromal cells (EuESCs) and ectopic ovarian endometriotic stromal cells (OvESCs) were isolated and cultured from women with ovarian endometrioma, and then treated with or without EGF. MAIN OUTCOME MEASURES The concentrations of EGF and hyaluronan in serum were analyzed by enzyme-linked immunosorbent assay. The expressions and localizations of EGF receptor (EGFR), phosphorylated-(p)EGFR, HAS2, and hyaluronan receptor CD44 in tissues were examined by immunohistochemistry. The mRNA and protein levels of HAS2 in EuESCs and OvESCs were examined by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and western blot, respectively, and the concentrations of hyaluronan in conditioned medium were examined by enzyme-linked immunosorbent assay (ELISA). Cell motility was evaluated by transwell migration/invasion assays. RESULTS Serum EGF and hyaluronan concentrations were higher in women with stage III/IV endometriosis than in women with stage I/II or without endometriosis. EGFR, pEGFR, HAS2, and CD44 were immunolocalized in eutopic endometrium and ectopic endometriotic lesions, and the expressions of pEGFR and HAS2 were elevated in ectopic endometriotic lesions compared to eutopic endometrium. Treatment with EGF upregulated HAS2 and hyaluronan expression as well as cell migration and invasion in both EuESCs and OvESCs, and pharmaceutical blocking of EGFR abolished these effects. In addition, knockdown of HAS2 by small interfering RNA attenuated both basal and EGF-induced hyaluronan expression and cell motility changes. Notably, ERK1/2 and AKT signaling pathways were shown to be downstream of EGF in regulating HAS2 and hyaluronan expression as well as cell migration and invasion. CONCLUSION EGF increased the expression of endometriosis-associated hyaluronan and its synthase HAS2, both of which mediated EGF-induced stromal cell migration and invasion in women with endometriosis.
Collapse
Affiliation(s)
- Hong Zhan
- Department of Gynecology and Obstetrics, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Bo Peng
- Department of Obstetrics and Gynaecology, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Junyan Ma
- Department of Gynecology and Obstetrics, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Kaiqing Lin
- Department of Gynecology and Obstetrics, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Kaihong Xu
- Department of Gynecology and Obstetrics, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Jiabin Lin
- Department of Gynecology and Obstetrics, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Paul J Yong
- Department of Obstetrics and Gynaecology, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Peter C K Leung
- Department of Obstetrics and Gynaecology, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Mohamed A Bedaiwy
- Department of Obstetrics and Gynaecology, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Jun Lin
- Department of Gynecology and Obstetrics, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China.
| |
Collapse
|
9
|
Type I Collagen Suspension Induces Neocollagenesis and Myodifferentiation in Fibroblasts In Vitro. BIOMED RESEARCH INTERNATIONAL 2020; 2020:6093974. [PMID: 34368344 PMCID: PMC8337109 DOI: 10.1155/2020/6093974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 05/05/2020] [Accepted: 05/29/2020] [Indexed: 11/23/2022]
Abstract
The ability of a collagen-based matrix to support cell proliferation, migration, and infiltration has been reported; however, the direct effect of an aqueous collagen suspension on cell cultures has not been studied yet. In this work, the effects of a high-concentration aqueous suspension of a micronized type I equine collagen (EC-I) have been evaluated on a normal mouse fibroblast cell line. Immunofluorescence analysis showed the ability of EC-I to induce a significant increase of type I and III collagen levels, parallel with overexpression of crucial proteins in collagen biosynthesis, maturation, and secretion, prolyl 4-hydroxylase (P4H) and heat shock protein 47 (HSP47), as demonstrated by western blot experiments. The treatment led, also, to an increase of α-smooth muscle actin (α-SMA) expression, evaluated through western blot analysis, and cytoskeletal reorganization, as assessed by phalloidin staining. Moreover, scanning electron microscopy analysis highlighted the appearance of plasma membrane extensions and blebbing of extracellular vesicles. Altogether, these results strongly suggest that an aqueous collagen type I suspension is able to induce fibroblast myodifferentiation. Moreover, our findings also support in vitro models as a useful tool to evaluate the effects of a collagen suspension and understand the molecular signaling pathways possibly involved in the effects observed following collagen treatment in vivo.
Collapse
|
10
|
Rocha B, Cillero-Pastor B, Eijkel G, Calamia V, Fernandez-Puente P, Paine MRL, Ruiz-Romero C, Heeren RMA, Blanco FJ. Integrative Metabolic Pathway Analysis Reveals Novel Therapeutic Targets in Osteoarthritis. Mol Cell Proteomics 2020; 19:574-588. [PMID: 31980557 PMCID: PMC7124476 DOI: 10.1074/mcp.ra119.001821] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 01/08/2020] [Indexed: 01/15/2023] Open
Abstract
In osteoarthritis (OA), impairment of cartilage regeneration can be related to a defective chondrogenic differentiation of mesenchymal stromal cells (MSCs). Therefore, understanding the proteomic- and metabolomic-associated molecular events during the chondrogenesis of MSCs could provide alternative targets for therapeutic intervention. Here, a SILAC-based proteomic analysis identified 43 proteins related with metabolic pathways whose abundance was significantly altered during the chondrogenesis of OA human bone marrow MSCs (hBMSCs). Then, the level and distribution of metabolites was analyzed in these cells and healthy controls by matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI), leading to the recognition of characteristic metabolomic profiles at the early stages of differentiation. Finally, integrative pathway analysis showed that UDP-glucuronic acid synthesis and amino sugar metabolism were downregulated in OA hBMSCs during chondrogenesis compared with healthy cells. Alterations in these metabolic pathways may disturb the production of hyaluronic acid (HA) and other relevant cartilage extracellular matrix (ECM) components. This work provides a novel integrative insight into the molecular alterations of osteoarthritic MSCs and potential therapeutic targets for OA drug development through the enhancement of chondrogenesis.
Collapse
Affiliation(s)
- Beatriz Rocha
- Grupo de Investigación de Reumatología (GIR), Unidad de Proteómica, INIBIC - Complejo Hospitalario Universitario de A Coruña, SERGAS, Universidad de A Coruña, A Coruña, Spain
| | - Berta Cillero-Pastor
- The Maastricht Multimodal Molecular Imaging Institute (M4I), Division of Imaging Mass Spectrometry, Maastricht University, The Netherlands
| | - Gert Eijkel
- The Maastricht Multimodal Molecular Imaging Institute (M4I), Division of Imaging Mass Spectrometry, Maastricht University, The Netherlands
| | - Valentina Calamia
- Grupo de Investigación de Reumatología (GIR), Unidad de Proteómica, INIBIC - Complejo Hospitalario Universitario de A Coruña, SERGAS, Universidad de A Coruña, A Coruña, Spain.
| | - Patricia Fernandez-Puente
- Grupo de Investigación de Reumatología, INIBIC-Complejo Hospitalario Universitario de A Coruña, SERGAS, Agrupación CICA-INIBIC, Universidad de A Coruña, A Coruña, Spain
| | - Martin R L Paine
- The Maastricht Multimodal Molecular Imaging Institute (M4I), Division of Imaging Mass Spectrometry, Maastricht University, The Netherlands
| | - Cristina Ruiz-Romero
- Grupo de Investigación de Reumatología (GIR), Unidad de Proteómica, INIBIC - Complejo Hospitalario Universitario de A Coruña, SERGAS, Universidad de A Coruña, A Coruña, Spain
| | - Ron M A Heeren
- The Maastricht Multimodal Molecular Imaging Institute (M4I), Division of Imaging Mass Spectrometry, Maastricht University, The Netherlands
| | - Francisco J Blanco
- Grupo de Investigación de Reumatología, INIBIC-Complejo Hospitalario Universitario de A Coruña, SERGAS, Departamento de Medicina Universidad de A Coruña, A Coruña, Spain.
| |
Collapse
|
11
|
Blair MJ, Jones JD, Woessner AE, Quinn KP. Skin Structure-Function Relationships and the Wound Healing Response to Intrinsic Aging. Adv Wound Care (New Rochelle) 2020; 9:127-143. [PMID: 31993254 DOI: 10.1089/wound.2019.1021] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 08/09/2019] [Indexed: 02/06/2023] Open
Abstract
Significance: Chronic wounds, such as diabetic foot ulcers, venous stasis ulcers, and pressure ulcers affect millions of Americans each year, and disproportionately afflict our increasingly older population. Older individuals are predisposed to wound infection, repeated trauma, and the development of chronic wounds. However, a complete understanding of how the attributes of aging skin affect the wound healing process has remained elusive. Recent Advances: A variety of studies have demonstrated that the dermal matrix becomes thinner, increasingly crosslinked, and fragmented with advanced age. These structural changes, as well as an increase in cell senescence, result in altered collagen fiber remodeling and increased stiffness. Studies combining mechanical testing with advanced imaging techniques are providing new insights into the relationships between these age-related changes. Emerging research into the mechanobiology of aging and the wound healing process indicate that the altered mechanical environment of aged skin may have a significant effect on age-related delays in healing. Critical Issues: The interpretation and synthesis of clinical studies is confounded by the effects of common comorbidities that also contribute to the development of chronic wounds. A lack of quantitative biomarkers of wound healing and age-related changes makes understanding structure-function relationships during the wound healing process challenging. Future Directions: Additional work is needed to establish quantitative and mechanistic relationships among age-related changes in the skin microstructure, mechanical function, and the cellular responses to wound healing.
Collapse
Affiliation(s)
- Michael J. Blair
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, Arkansas
| | - Jake D. Jones
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, Arkansas
| | - Alan E. Woessner
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, Arkansas
| | - Kyle P. Quinn
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, Arkansas
| |
Collapse
|
12
|
Wang Y, Mack JA, Maytin EV. CD44 inhibits α-SMA gene expression via a novel G-actin/MRTF-mediated pathway that intersects with TGFβR/p38MAPK signaling in murine skin fibroblasts. J Biol Chem 2019; 294:12779-12794. [PMID: 31285260 DOI: 10.1074/jbc.ra119.007834] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 06/25/2019] [Indexed: 01/10/2023] Open
Abstract
Well-regulated differentiation of fibroblasts into myofibroblasts (MF) is critical for skin wound healing. Neoexpression of α-smooth muscle actin (α-SMA), an established marker for MF differentiation, is driven by TGFβ receptor (TGFβR)-mediated signaling. Hyaluronan (HA) and its receptor CD44 may also participate in this process. To further understand this process, primary mouse skin fibroblasts were isolated and treated in vitro with recombinant TGF-β1 (rTGF-β1) to induce α-SMA expression. CD44 expression was also increased. Paradoxically, CD44 knockdown by RNA interference (RNAi) led to increased α-SMA expression and α-SMA-containing stress fibers. Removal of extracellular HA or inhibition of HA synthesis had no effect on α-SMA levels, suggesting a dispensable role for HA. Exploration of mechanisms linking CD44 knockdown to α-SMA induction, using RNAi and chemical inhibitors, revealed a requirement for noncanonical TGFβR signaling through p38MAPK. Decreased monomeric G-actin but increased filamentous F-actin following CD44 RNAi suggested a possible role for myocardin-related transcription factor (MRTF), a known regulator of α-SMA transcription and itself regulated by G-actin binding. CD44 RNAi promoted nuclear accumulation of MRTF and the binding to its transcriptional cofactor SRF. MRTF knockdown abrogated the increased α-SMA expression caused by CD44 RNAi, suggesting that MRTF is required for CD44-mediated regulation of α-SMA. Finally, chemical inhibition of p38MAPK reversed nuclear MRTF accumulation after rTGF-β1 addition or CD44 RNAi, revealing a central involvement of p38MAPK in both cases. We concluded that CD44 regulates α-SMA gene expression through cooperation between two intersecting signaling pathways, one mediated by G-actin/MRTF and the other via TGFβR/p38MAPK.
Collapse
Affiliation(s)
- Yan Wang
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195
| | - Judith A Mack
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195.,Department of Dermatology, Dermatology and Plastic Surgery Institute, Cleveland Clinic, Cleveland, Ohio 44195
| | - Edward V Maytin
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195 .,Department of Dermatology, Dermatology and Plastic Surgery Institute, Cleveland Clinic, Cleveland, Ohio 44195
| |
Collapse
|
13
|
Pratsinis H, Mavrogonatou E, Kletsas D. Scarless wound healing: From development to senescence. Adv Drug Deliv Rev 2019; 146:325-343. [PMID: 29654790 DOI: 10.1016/j.addr.2018.04.011] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 03/29/2018] [Accepted: 04/09/2018] [Indexed: 12/21/2022]
Abstract
An essential element of tissue homeostasis is the response to injuries, cutaneous wound healing being the most studied example. In the adults, wound healing aims at quickly restoring the barrier function of the skin, leading however to scar, a dysfunctional fibrotic tissue. On the other hand, in fetuses a scarless tissue regeneration takes place. During ageing, the wound healing capacity declines; however, in the absence of comorbidities a higher quality in tissue repair is observed. Senescent cells have been found to accumulate in chronic unhealed wounds, but more recent reports indicate that their transient presence may be beneficial for tissue repair. In this review data on skin wound healing and scarring are presented, covering the whole spectrum from early embryonic development to adulthood, and furthermore until ageing of the organism.
Collapse
|
14
|
|
15
|
Huang D, Meran S, Nie SP, Midgley A, Wang J, Cui SW, Xie M, Phillips GO, Phillips AO. Cordyceps sinensis : Anti-fibrotic and inflammatory effects of a cultured polysaccharide extract. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.bcdf.2017.07.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
16
|
Qin H, Zhang G, Zhang L. GSK126 (EZH2 inhibitor) interferes with ultraviolet A radiation-induced photoaging of human skin fibroblast cells. Exp Ther Med 2018; 15:3439-3448. [PMID: 29545866 DOI: 10.3892/etm.2018.5863] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 03/24/2017] [Indexed: 12/31/2022] Open
Abstract
Polycomb group genes (PcG) encode chromatin modification proteins that are involved in the epigenetic regulation of cell differentiation, proliferation and the aging processes. The key subunit of the PcG complex, enhancer of zeste 2 polycomb repressive complex 2 subunit (EZH2), has a central role in a variety of mechanisms, such as the formation of chromatin structure, gene expression regulation and DNA damage. In the present study, ultraviolet A (UVA) was used to radiate human dermal fibroblasts in order to construct a photo-aged cell model. Subsequently, the cell viability assay, Hoechst staining, apoptosis detection using flow cytometry, senescence-associated β-galactosidase (SA-β-gal) staining and erythrocyte exclusion experiments were performed. GSK126, a histone methylation enzyme inhibitor of EZH2, was used as an experimental factor. Results suggested that GSK126 downregulated the mRNA expression levels of EZH2 and upregulated the mRNA expression levels of BMI-1. Notably, GSK126 affected the transcription of various photoaging-related genes and thus protected against photoaging induced by UVA radiation.
Collapse
Affiliation(s)
- Haiyan Qin
- Department of Plastic Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Guang Zhang
- Department of Plastic Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Lianbo Zhang
- Department of Plastic Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| |
Collapse
|
17
|
The pericellular hyaluronan of articular chondrocytes. Matrix Biol 2018; 78-79:32-46. [PMID: 29425696 DOI: 10.1016/j.matbio.2018.02.005] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 02/02/2018] [Accepted: 02/03/2018] [Indexed: 02/01/2023]
Abstract
The story of hyaluronan in articular cartilage, pericellular hyaluronan in particular, essentially is also the story of aggrecan. Without properly tethered aggrecan, the load bearing function of cartilage is compromised. The anchorage of aggrecan to the cell surface only occurs due to the binding of aggrecan to hyaluronan-with hyaluronan tethered either to a hyaluronan synthase or by multivalent binding to CD44. In this review, details of hyaluronan synthesis are discussed including how HAS2 production of hyaluronan is necessary for normal chondrocyte development and matrix assembly, how an abundance or deficit of pericellular hyaluronan alters chondrocyte metabolism, and whether hyaluronan size matters or changes with aging or disease. The biomechanical role and matrix assembly function of hyaluronan in addition to the functions of hyaluronidases are discussed. The turnover of hyaluronan is considered including mechanisms by which its turnover, at least in part, is mediated by endocytosis by chondrocytes and regulated by aggrecan degradation. Differences between turnover and clearance of newly synthesized hyaluronan and aggrecan versus the half-life of hyaluronan remaining within the inter-territorial matrix of cartilage are discussed. The release of neutral pH-acting hyaluronidase activity remains one unanswered question concerning the loss of cartilage hyaluronan in osteoarthritis. Signaling events driven by changes in hyaluronan-chondrocyte interactions may involve a chaperone function of CD44 with other receptors/cofactors as well as the changes in hyaluronan production functioning as a metabolic rheostat.
Collapse
|
18
|
Polycomb group proteins: Novel molecules associated with ultraviolet A-induced photoaging of human skin. Exp Ther Med 2017; 14:2554-2562. [PMID: 28962194 PMCID: PMC5609303 DOI: 10.3892/etm.2017.4807] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 04/13/2017] [Indexed: 12/21/2022] Open
Abstract
Epigenetic repressor polycomb group (PcG) proteins are thought to serve a role in a number of cellular processes, including carcinogenesis, senescence, apoptosis and DNA repair. In the present study, long-wave ultraviolet A (UVA) was used to irradiate human skin fibroblasts (HSFs) and embryonic skin fibroblasts (ESFs) in order to simulate photoaging of the skin. The results of cell proliferation, apoptosis, hyaluronic acid (HA) content and reverse transcription-quantitative polymerase chain reaction assays revealed that the expression levels of genes encoding key PcG proteins (BMI-1 and EZH2) were altered. In addition, the expression levels of these genes were associated with the expression of enzymes that regulate HA synthesis. Furthermore, the expression levels of PcG proteins differed between HSFs and ESFs, suggesting that PcG proteins serve a role in altering HA synthesis during the UVA-induced fibroblast aging process. This signaling pathway may represent a novel molecular mechanism regulating the photoaging of the skin. The findings of the present study provide important insights into the underlying mechanisms of photoaging of the human skin. Further studies are required to clarify the molecular mechanisms underling skin aging and to identify targets for the clinical treatment of photoaging.
Collapse
|
19
|
Sasaki N, Itakura Y, Toyoda M. Sialylation regulates myofibroblast differentiation of human skin fibroblasts. Stem Cell Res Ther 2017; 8:81. [PMID: 28420408 PMCID: PMC5395757 DOI: 10.1186/s13287-017-0534-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 02/26/2017] [Accepted: 03/11/2017] [Indexed: 12/21/2022] Open
Abstract
Background Fibroblasts are key players in maintaining skin homeostasis and in orchestrating physiological tissue repair and skin regeneration. Dysfunctions in fibroblasts that occur with aging and the senescent process lead to the delayed healing observed in elderly people. The molecular mechanisms leading to fibroblast dysfunction during aging and the senescent process have not yet been clarified. Previously, changes in patterns of glycosylation were observed in fibroblasts in aging and the senescent process, but the effect of these changes on the function of fibroblasts has not been well documented. Here, we investigated whether changes in glycosylation during the process to senescence may have functional effects on fibroblasts. Methods The changes in cell surface glycans on skin fibroblasts during the process to senescence were examined in early-passage (EP) and late-passage (LP) skin fibroblasts by fluorescence-activated cell sorting analysis using lectins. The contributors to the changes in cell surface glycans were examined by real-time polymerase chain reaction or Western blot analysis. The effects of changes in glycosylation on proliferation, migration, induction of cellular senescence, and myofibroblast differentiation induced by transforming growth factor (TGF)-β1 stimulation were examined in EP fibroblasts. The changes in glycosylation were performed by GalNAc-α-O-benzyl or sialidase treatment. Results A decrease in sialylation of glycoproteins and an increase in sialidase NEU1 were observed in LP fibroblasts. The reduction of sialylation did not have any effect on proliferation, migration, or induction of cellular senescence. On the other hand, myofibroblast differentiation was inhibited by the reduction of sialylation, indicating that sialylation is important for myofibroblast differentiation. The localization of CD44 in lipid rafts, which is required for myofibroblast differentiation, was inhibited by the reduction of sialylation. Furthermore, reduced myofibroblast differentiation in LP fibroblasts was restored by a sialidase inhibitor. Conclusions Desialylation of CD44 with increased sialidase during the process to senescence reduced the localization of CD44 in lipid rafts after TGF-β1 stimulation, leading to the inhibition of myofibroblast differentiation. Thus, regulation of sialylation may be an attractive strategy for the prevention and regenerative therapy of age-related skin diseases, cosmetic skin alterations, and chronic wounds caused by delayed healing in elderly people. Electronic supplementary material The online version of this article (doi:10.1186/s13287-017-0534-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Norihiko Sasaki
- Research Team for Geriatric Medicine (Vascular Medicine), Tokyo Metropolitan Institute of Gerontology, Sakaecho 35-2, Itabashi-ku, Tokyo, 173-0015, Japan
| | - Yoko Itakura
- Research Team for Geriatric Medicine (Vascular Medicine), Tokyo Metropolitan Institute of Gerontology, Sakaecho 35-2, Itabashi-ku, Tokyo, 173-0015, Japan
| | - Masashi Toyoda
- Research Team for Geriatric Medicine (Vascular Medicine), Tokyo Metropolitan Institute of Gerontology, Sakaecho 35-2, Itabashi-ku, Tokyo, 173-0015, Japan.
| |
Collapse
|
20
|
Ghatak S, Markwald RR, Hascall VC, Dowling W, Lottes RG, Baatz JE, Beeson G, Beeson CC, Perrella MA, Thannickal VJ, Misra S. Transforming growth factor β1 (TGFβ1) regulates CD44V6 expression and activity through extracellular signal-regulated kinase (ERK)-induced EGR1 in pulmonary fibrogenic fibroblasts. J Biol Chem 2017; 292:10465-10489. [PMID: 28389562 DOI: 10.1074/jbc.m116.752451] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Revised: 04/06/2017] [Indexed: 01/06/2023] Open
Abstract
The appearance of myofibroblasts is generally thought to be the underlying cause of the fibrotic changes that underlie idiopathic pulmonary fibrosis. However, the cellular/molecular mechanisms that account for the fibroblast-myofibroblast differentiation/activation in idiopathic pulmonary fibrosis remain poorly understood. We investigated the functional role of hyaluronan receptor CD44V6 (CD44 containing variable exon 6 (v6)) for differentiation of lung fibroblast to myofibroblast phenotype. Increased hyaluronan synthesis and CD44 expression have been detected in numerous fibrotic organs. Previously, we found that the TGFβ1/CD44V6 pathway is important in lung myofibroblast collagen-1 and α-smooth-muscle actin synthesis. Because increased EGR1 (early growth response-1) expression has been shown to appear very early and nearly coincident with the expression of CD44V6 found after TGFβ1 treatment, we investigated the mechanism(s) of regulation of CD44V6 expression in lung fibroblasts by TGFβ1. TGFβ1-mediated CD44V6 up-regulation was initiated through EGR1 via ERK-regulated transcriptional activation. We showed that TGFβ1-induced CD44V6 expression is through EGR1-mediated AP-1 (activator protein-1) activity and that the EGR1- and AP-1-binding sites in the CD44v6 promoter account for its responsiveness to TGFβ1 in lung fibroblasts. We also identified a positive-feedback loop in which ERK/EGR1 signaling promotes CD44V6 splicing and found that CD44V6 then sustains ERK signaling, which is important for AP-1 activity in lung fibroblasts. Furthermore, we identified that HAS2-produced hyaluronan is required for CD44V6 and TGFβRI co-localization and subsequent CD44V6/ERK1/EGR1 signaling. These results demonstrate a novel positive-feedback loop that links the myofibroblast phenotype to TGFβ1-stimulated CD44V6/ERK/EGR1 signaling.
Collapse
Affiliation(s)
- Shibnath Ghatak
- From the Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, South Carolina 29425,
| | - Roger R Markwald
- From the Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Vincent C Hascall
- the Department of Biomedical Engineering, Cleveland Clinic, Cleveland, Ohio 44195
| | - William Dowling
- From the Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, South Carolina 29425.,the College of Charleston, Charleston, South Carolina 29424
| | | | | | - Gyada Beeson
- Drug Discovery and Biomedical sciences, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Craig C Beeson
- Drug Discovery and Biomedical sciences, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Mark A Perrella
- the Division of Pulmonary and Critical Care Medicine, Department of Medicine, and the Department of Pediatric Newborn Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, and
| | - Victor J Thannickal
- the Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, Alabama 35294-0006
| | - Suniti Misra
- From the Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, South Carolina 29425,
| |
Collapse
|
21
|
Marthandan S, Baumgart M, Priebe S, Groth M, Schaer J, Kaether C, Guthke R, Cellerino A, Platzer M, Diekmann S, Hemmerich P. Conserved Senescence Associated Genes and Pathways in Primary Human Fibroblasts Detected by RNA-Seq. PLoS One 2016; 11:e0154531. [PMID: 27140416 PMCID: PMC4854426 DOI: 10.1371/journal.pone.0154531] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 04/14/2016] [Indexed: 12/15/2022] Open
Abstract
Cellular senescence correlates with changes in the transcriptome. To obtain a complete view on senescence-associated transcription networks and pathways, we assessed by deep RNA sequencing the transcriptomes of five of the most commonly used laboratory strains of human fibroblasts during their transition into senescence. In a number of cases, we verified the RNA-seq data by real-time PCR. By determining cellular protein levels we observed that the age-related expression of most but not all genes is regulated at the transcriptional level. We found that 78% of the age-affected differentially expressed genes were commonly regulated in the same direction (either up- or down-regulated) in all five fibroblast strains, indicating a strong conservation of age-associated changes in the transcriptome. KEGG pathway analyses confirmed up-regulation of the senescence-associated secretory phenotype and down-regulation of DNA synthesis/repair and most cell cycle pathways common in all five cell strains. Newly identified senescence-induced pathways include up-regulation of endocytotic/phagocytic pathways and down-regulation of the mRNA metabolism and the mRNA splicing pathways. Our results provide an unprecedented comprehensive and deep view into the individual and common transcriptome and pathway changes during the transition into of senescence of five human fibroblast cell strains.
Collapse
Affiliation(s)
- S. Marthandan
- Leibniz-Institute on Aging—Fritz Lipmann Institute e.V. (FLI), Jena, Germany
- * E-mail:
| | - M. Baumgart
- Leibniz-Institute on Aging—Fritz Lipmann Institute e.V. (FLI), Jena, Germany
| | - S. Priebe
- Leibniz Institute for Natural Product Research and Infection Biology—Hans-Knöll-Institute e.V. (HKI), Jena, Germany
| | - M. Groth
- Leibniz-Institute on Aging—Fritz Lipmann Institute e.V. (FLI), Jena, Germany
| | - J. Schaer
- Leibniz Institute for Natural Product Research and Infection Biology—Hans-Knöll-Institute e.V. (HKI), Jena, Germany
| | - C. Kaether
- Leibniz-Institute on Aging—Fritz Lipmann Institute e.V. (FLI), Jena, Germany
| | - R. Guthke
- Leibniz Institute for Natural Product Research and Infection Biology—Hans-Knöll-Institute e.V. (HKI), Jena, Germany
| | - A. Cellerino
- Leibniz-Institute on Aging—Fritz Lipmann Institute e.V. (FLI), Jena, Germany
- Laboratory of NeuroBiology, Scuola Normale Superiore, Pisa, Italy
| | - M. Platzer
- Leibniz-Institute on Aging—Fritz Lipmann Institute e.V. (FLI), Jena, Germany
| | - S. Diekmann
- Leibniz-Institute on Aging—Fritz Lipmann Institute e.V. (FLI), Jena, Germany
| | - P. Hemmerich
- Leibniz-Institute on Aging—Fritz Lipmann Institute e.V. (FLI), Jena, Germany
| |
Collapse
|
22
|
Martin J, Midgley A, Meran S, Woods E, Bowen T, Phillips AO, Steadman R. Tumor Necrosis Factor-stimulated Gene 6 (TSG-6)-mediated Interactions with the Inter-α-inhibitor Heavy Chain 5 Facilitate Tumor Growth Factor β1 (TGFβ1)-dependent Fibroblast to Myofibroblast Differentiation. J Biol Chem 2016; 291:13789-801. [PMID: 27143355 DOI: 10.1074/jbc.m115.670521] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Indexed: 11/06/2022] Open
Abstract
Fibroblasts are central to wound healing and fibrosis through TGFβ1-triggered differentiation into contractile, α-smooth muscle actin (α-SMA)-positive myofibroblasts. This is mediated by accumulation of a pericellular matrix of hyaluronan (HA) and the HA-dependent co-localization of CD44 with the epidermal growth factor receptor (EGFR). Interactions of HA with hyaladherins, such as inter-α-inhibitor (IαI) and tumor necrosis factor-stimulated gene-6 (TSG-6), are also essential for differentiation. This study investigated the mechanisms involved. TSG-6 and α-SMA had different kinetics of induction by TGFβ1, with TSG-6 peaking before α-SMA Si CD44 or EGFR inhibition prevented differentiation but had no effect on TSG-6 expression. TSG-6 was essential for differentiation, and mAb A38 (preventing IαI heavy chain (HC) transfer), HA-oligosaccharides, cobalt, or Si bikunin prevented TSG-6 activity, preventing differentiation. A38 also prevented the EGFR/CD44 association. This suggested that TSG-6/IαI HC interaction was necessary for the effect of TSG-6 and that HC stabilization of HA initiated the CD44/EGFR association. The newly described HC5 was shown to be the principal HC expressed, and its cell surface expression was prevented by siRNA inhibition of TSG-6 or bikunin. HC5 was released by hyaluronidase treatment, confirming its association with cell surface HA. Finally, HC5 knockdown by siRNA confirmed its role in myofibroblast differentiation. The current study describes a novel mechanism linking the TSG-6 transfer of the newly described HC5 to the HA-dependent control of cell phenotype. The interaction of HC5 with cell surface HA was essential for TGFβ1-dependent differentiation of fibroblasts to myofibroblasts, highlighting its importance as a novel potential therapeutic target.
Collapse
Affiliation(s)
- John Martin
- From the Department of Nephrology, Institute of Molecular and Experimental Medicine, Cardiff University School of Medicine and Cardiff Institute of Tissue Engineering and Repair, Heath Park, Cardiff CF14 4XN, United Kingdom
| | - Adam Midgley
- From the Department of Nephrology, Institute of Molecular and Experimental Medicine, Cardiff University School of Medicine and Cardiff Institute of Tissue Engineering and Repair, Heath Park, Cardiff CF14 4XN, United Kingdom
| | - Soma Meran
- From the Department of Nephrology, Institute of Molecular and Experimental Medicine, Cardiff University School of Medicine and Cardiff Institute of Tissue Engineering and Repair, Heath Park, Cardiff CF14 4XN, United Kingdom
| | - Emma Woods
- From the Department of Nephrology, Institute of Molecular and Experimental Medicine, Cardiff University School of Medicine and Cardiff Institute of Tissue Engineering and Repair, Heath Park, Cardiff CF14 4XN, United Kingdom
| | - Timothy Bowen
- From the Department of Nephrology, Institute of Molecular and Experimental Medicine, Cardiff University School of Medicine and Cardiff Institute of Tissue Engineering and Repair, Heath Park, Cardiff CF14 4XN, United Kingdom
| | - Aled O Phillips
- From the Department of Nephrology, Institute of Molecular and Experimental Medicine, Cardiff University School of Medicine and Cardiff Institute of Tissue Engineering and Repair, Heath Park, Cardiff CF14 4XN, United Kingdom
| | - Robert Steadman
- From the Department of Nephrology, Institute of Molecular and Experimental Medicine, Cardiff University School of Medicine and Cardiff Institute of Tissue Engineering and Repair, Heath Park, Cardiff CF14 4XN, United Kingdom
| |
Collapse
|
23
|
Hyaluronan synthase 2 regulates fibroblast senescence in pulmonary fibrosis. Matrix Biol 2016; 55:35-48. [PMID: 26987798 DOI: 10.1016/j.matbio.2016.03.004] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 03/11/2016] [Accepted: 03/12/2016] [Indexed: 12/11/2022]
Abstract
Dysregulated repair of lung injury often results in lung fibrosis characterized by unremitting deposition of matrix components including glycosaminoglycan hyaluronan (HA). HA is mainly produced by hyaluronan synthases (HAS) in mesenchymal cells. We previously demonstrated that over-expression of HAS2 in mesenchymal cells in mice regulates the invasiveness of fibroblasts and promotes severe lung fibrosis. The mechanisms that control the resolution of lung fibrosis are unknown. We propose that a critical step in resolving fibrosis is the induction of senescence in fibrotic fibroblasts and hyaluronan synthase 2 may regulate this process. We found that fibrotic fibroblasts developed the characteristics of replicative senescence in culture and that HAS2 expression was dramatically down-regulated. Furthermore, down-regulation of HAS2 initiated and regulated fibroblast senescence through a p27-CDK2-SKP2 pathway. Deletion of HAS2 in mouse mesenchymal cells increased the cellular senescence of fibroblasts in bleomycin-induced mouse lung fibrosis in vivo. These data suggest that HAS2 may be a critical regulator of the fate of pulmonary fibrosis and we propose a model where over-expression of HAS2 promotes an invasive phenotype resulting in severe fibrosis and down-regulation of HAS2 promotes resolution. Targeting HAS2 to induce fibroblast senescence could be an attractive approach to resolve tissue fibrosis.
Collapse
|
24
|
Simpson RML, Hong X, Wong MM, Karamariti E, Bhaloo SI, Warren D, Kong W, Hu Y, Xu Q. Hyaluronan Is Crucial for Stem Cell Differentiation into Smooth Muscle Lineage. Stem Cells 2016; 34:1225-38. [PMID: 26867148 PMCID: PMC4864761 DOI: 10.1002/stem.2328] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 11/09/2015] [Accepted: 12/09/2015] [Indexed: 01/16/2023]
Abstract
Deciphering the extracellular signals that regulate SMC differentiation from stem cells is vital to further our understanding of the pathogenesis of vascular disease and for development of cell-based therapies and tissue engineering. Hyaluronan (HA) has emerged as an important component of the stem cell niche, however its role during stem cell differentiation is a complicated and inadequately defined process. This study aimed to investigate the role of HA in embryonic stem cell (ESC) differentiation toward a SMC lineage. ESCs were seeded on collagen-IV in differentiation medium to generate ESC-derived SMCs (esSMCs). Differentiation coincided with increased HA synthase (HAS) 2 expression, accumulation of extracellular HA and its assembly into pericellular matrices. Inhibition of HA synthesis by 4-methylumbelliferone (4MU), removal of the HA coat by hyaluronidase (HYAL) or HAS2 knockdown led to abrogation of SMC gene expression. HA activates ERK1/2 and suppresses EGFR signaling pathways via its principle receptor, CD44. EGFR inactivation coincided with increased binding to CD44, which was further augmented by addition of high molecular weight (HMW)-HA either exogenously or via HAS2 overexpression through adenoviral gene transfer. HMW-HA-stimulated esSMCs displayed a functional role in vascular tissue engineering ex vivo, vasculogenesis in a matrigel plug model and SMC accumulation in neointimal lesions of vein grafts in mice. These findings demonstrate that HAS2-induced HA synthesis and organization drives ESC-SMC differentiation. Thus, remodeling of the HA microenvironment is a critical step in directing stem cell differentiation toward a vascular lineage, highlighting HA as a potential target for treatment of vascular diseases. Stem Cells 2016;34:1225-1238.
Collapse
Affiliation(s)
- Russell M L Simpson
- Cardiovascular Division, BHF Centre for Vascular Regeneration, King's College London, London, United Kingdom
| | - Xuechong Hong
- Cardiovascular Division, BHF Centre for Vascular Regeneration, King's College London, London, United Kingdom
| | - Mei Mei Wong
- Cardiovascular Division, BHF Centre for Vascular Regeneration, King's College London, London, United Kingdom
| | - Eirini Karamariti
- Cardiovascular Division, BHF Centre for Vascular Regeneration, King's College London, London, United Kingdom
| | - Shirin Issa Bhaloo
- Cardiovascular Division, BHF Centre for Vascular Regeneration, King's College London, London, United Kingdom
| | - Derek Warren
- Cardiovascular Division, BHF Centre for Vascular Regeneration, King's College London, London, United Kingdom
| | - Wei Kong
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University, Beijing, China
| | - Yanhua Hu
- Cardiovascular Division, BHF Centre for Vascular Regeneration, King's College London, London, United Kingdom
| | - Qingbo Xu
- Cardiovascular Division, BHF Centre for Vascular Regeneration, King's College London, London, United Kingdom
| |
Collapse
|
25
|
Tracy LE, Minasian RA, Caterson E. Extracellular Matrix and Dermal Fibroblast Function in the Healing Wound. Adv Wound Care (New Rochelle) 2016; 5:119-136. [PMID: 26989578 DOI: 10.1089/wound.2014.0561] [Citation(s) in RCA: 609] [Impact Index Per Article: 67.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Significance: Fibroblasts play a critical role in normal wound healing. Various extracellular matrix (ECM) components, including collagens, fibrin, fibronectin, proteoglycans, glycosaminoglycans, and matricellular proteins, can be considered potent protagonists of fibroblast survival, migration, and metabolism. Recent Advances: Advances in tissue culture, tissue engineering, and ex vivo models have made the examination and precise measurements of ECM components in wound healing possible. Likewise, the development of specific transgenic animal models has created the opportunity to characterize the role of various ECM molecules in healing wounds. In addition, the recent characterization of new ECM molecules, including matricellular proteins, dermatopontin, and FACIT collagens (Fibril-Associated Collagens with Interrupted Triple helices), further demonstrates our cursory knowledge of the ECM in coordinated wound healing. Critical Issues: The manipulation and augmentation of ECM components in the healing wound is emerging in patient care, as demonstrated by the use of acellular dermal matrices, tissue scaffolds, and wound dressings or topical products bearing ECM proteins such as collagen, hyaluronan (HA), or elastin. Once thought of as neutral structural proteins, these molecules are now known to directly influence many aspects of cellular wound healing. Future Directions: The role that ECM molecules, such as CCN2, osteopontin, and secreted protein, acidic and rich in cysteine, play in signaling homing of fibroblast progenitor cells to sites of injury invites future research as we continue investigating the heterotopic origin of certain populations of fibroblasts in a healing wound. Likewise, research into differently sized fragments of the same polymeric ECM molecule is warranted as we learn that fragments of molecules such as HA and tenascin-C can have opposing effects on dermal fibroblasts.
Collapse
Affiliation(s)
- Lauren E. Tracy
- Division of Plastic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Raquel A. Minasian
- Division of Plastic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - E.J. Caterson
- Division of Plastic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
26
|
Fujiwara T, Duscher D, Rustad KC, Kosaraju R, Rodrigues M, Whittam AJ, Januszyk M, Maan ZN, Gurtner GC. Extracellular superoxide dismutase deficiency impairs wound healing in advanced age by reducing neovascularization and fibroblast function. Exp Dermatol 2016; 25:206-11. [PMID: 26663425 DOI: 10.1111/exd.12909] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/01/2015] [Indexed: 12/21/2022]
Abstract
Advanced age is characterized by impairments in wound healing, and evidence is accumulating that this may be due in part to a concomitant increase in oxidative stress. Extended exposure to reactive oxygen species (ROS) is thought to lead to cellular dysfunction and organismal death via the destructive oxidation of intra-cellular proteins, lipids and nucleic acids. Extracellular superoxide dismutase (ecSOD/SOD3) is a prime antioxidant enzyme in the extracellular space that eliminates ROS. Here, we demonstrate that reduced SOD3 levels contribute to healing impairments in aged mice. These impairments include delayed wound closure, reduced neovascularization, impaired fibroblast proliferation and increased neutrophil recruitment. We further establish that SOD3 KO and aged fibroblasts both display reduced production of TGF-β1, leading to decreased differentiation of fibroblasts into myofibroblasts. Taken together, these results suggest that wound healing impairments in ageing are associated with increased levels of ROS, decreased SOD3 expression and impaired extracellular oxidative stress regulation. Our results identify SOD3 as a possible target to correct age-related cellular dysfunction in wound healing.
Collapse
Affiliation(s)
- Toshihiro Fujiwara
- Division of Plastic Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Dominik Duscher
- Division of Plastic Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Kristine C Rustad
- Division of Plastic Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Revanth Kosaraju
- Division of Plastic Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Melanie Rodrigues
- Division of Plastic Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Alexander J Whittam
- Division of Plastic Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Michael Januszyk
- Division of Plastic Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Zeshaan N Maan
- Division of Plastic Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Geoffrey C Gurtner
- Division of Plastic Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
27
|
Kretschmer I, Freudenberger T, Twarock S, Yamaguchi Y, Grandoch M, Fischer JW. Esophageal Squamous Cell Carcinoma Cells Modulate Chemokine Expression and Hyaluronan Synthesis in Fibroblasts. J Biol Chem 2015; 291:4091-106. [PMID: 26699196 DOI: 10.1074/jbc.m115.708909] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Indexed: 01/13/2023] Open
Abstract
The aim of this study was to characterize the interaction of KYSE-410, an esophageal squamous cell carcinoma cell line, and fibroblasts with respect to the extracellular matrix component hyaluronan (HA) and chemokine expression. KYSE-410 cells induced the mRNA expression of HA synthase 2 (Has2) in normal skin fibroblasts (SF) only in direct co-cultures. Parallel to Has2 mRNA, Has2 antisense RNA (Has2os2) was up-regulated in co-cultures. Knockdown of LEF1, a downstream target of Wnt signaling, abrogated Has2 and Has2os2 induction. After knockdown of Has2 in SF, significantly less α-smooth muscle actin expression was detected in co-cultures. Moreover, it was investigated whether the phenotype of KYSE-410 was affected in co-culture with SF and whether Has2 knockdown in SF had an impact on KYSE-410 cells in co-culture. However, no effects on epithelial-mesenchymal transition markers, proliferation, and migration were detected. In addition to Has2 mRNA, the chemokine CCL5 was up-regulated and CCL11 was down-regulated in SF in co-culture. Furthermore, co-cultures of KYSE-410 cells and cancer-associated fibroblasts (CAF) were investigated. Similar to SF, Has2 and Ccl5 were up-regulated and Ccl11 was down-regulated in CAF in co-culture. Importantly and in contrast to SF, inhibiting HA synthesis by 4-methylumbelliferone abrogated the effect of co-culture on Ccl5 in CAF. Moreover, HA was found to promote adhesion of CD4(+) but not CD8(+) cells to xenogaft tumor tissues. In conclusion, direct co-culture of esophageal squamous cell carcinoma and fibroblasts induced stromal HA synthesis via Wnt/LEF1 and altered the chemokine profile of stromal fibroblasts, which in turn may affect the tumor immune response.
Collapse
Affiliation(s)
- Inga Kretschmer
- From the Institut für Pharmakologie und Klinische Pharmakologie, Universitätsklinikum der Heinrich-Heine-Universität, Moorenstrasse 5, 40225 Düsseldorf, Germany and
| | - Till Freudenberger
- From the Institut für Pharmakologie und Klinische Pharmakologie, Universitätsklinikum der Heinrich-Heine-Universität, Moorenstrasse 5, 40225 Düsseldorf, Germany and
| | - Sören Twarock
- From the Institut für Pharmakologie und Klinische Pharmakologie, Universitätsklinikum der Heinrich-Heine-Universität, Moorenstrasse 5, 40225 Düsseldorf, Germany and
| | - Yu Yamaguchi
- the Human Genetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037
| | - Maria Grandoch
- From the Institut für Pharmakologie und Klinische Pharmakologie, Universitätsklinikum der Heinrich-Heine-Universität, Moorenstrasse 5, 40225 Düsseldorf, Germany and
| | - Jens W Fischer
- From the Institut für Pharmakologie und Klinische Pharmakologie, Universitätsklinikum der Heinrich-Heine-Universität, Moorenstrasse 5, 40225 Düsseldorf, Germany and
| |
Collapse
|
28
|
Shepard HM. Breaching the Castle Walls: Hyaluronan Depletion as a Therapeutic Approach to Cancer Therapy. Front Oncol 2015; 5:192. [PMID: 26380222 PMCID: PMC4551830 DOI: 10.3389/fonc.2015.00192] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 08/10/2015] [Indexed: 12/18/2022] Open
Abstract
Hyaluronan (HA) has many functions in the extracellular milieu of normal and diseased tissues. Disease-associated HA accumulation has been shown to predict a worsened prognosis in cancer patients, with tumors having a high-extracellular HA content (HA-high) being more aggressive than their HA-low counterparts. HA-high tumor aggressiveness is derived from the specialized biomechanical and molecular properties of the HA-based assembly of HA binding proteins and the growth-promoting factors that accumulate in it. Biophysical characteristics of an HA-high tumor microenvironment include high tumor interstitial pressure, compression of tumor vasculature, and resulting tumor hypoxia. Within the tumor cell membrane, HA receptors, primarily CD44 and RHAMM, anchor the HA-high extracellular network. HA-CD44 association on the tumor cell surface enhances receptor tyrosine kinase activity to drive tumor progression and treatment resistance. Together, malignant cells in this HA-high matrix may evolve dependency on it for growth. This yields the hypothesis that depleting HA in HA-high tumors may be associated with a therapeutic benefit. A pegylated form of recombinant human hyaluronidase PH20 (PEGPH20) has been deployed as a potential cancer therapeutic in HA-high tumors. PEGPH20 can collapse this matrix by degrading the HA-assembled tumor extracellular framework, leading to tumor growth inhibition, preferentially in HA-high tumors. Enzymatic depletion of HA by PEGPH20 results in re-expansion of the tumor vasculature, reduction in tumor hypoxia, and increased penetration of therapeutic molecules into the tumor. Finally, HA-depletion results in reduced signaling via CD44/RHAMM. Taken together, HA-depletion strategies accomplish their antitumor effects by multiple mechanisms that include targeting both biophysical and molecular signaling pathways. Ongoing clinical trials are examining the potential of PEGPH20 in combination with partner therapeutics in several cancers.
Collapse
|
29
|
Aya KL, Stern R. Hyaluronan in wound healing: rediscovering a major player. Wound Repair Regen 2015; 22:579-93. [PMID: 25039417 DOI: 10.1111/wrr.12214] [Citation(s) in RCA: 211] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 07/11/2014] [Indexed: 12/12/2022]
Abstract
Wound healing involves a series of carefully modulated steps, from initial injury and blood clot to the final reconstituted tissue or scar. A dynamic reciprocity exists throughout between the wound, blood elements, extracellular matrix, and cells that participate in healing. Multiple cytokines and signal transduction pathways regulate these reactions. A major component throughout most of the process is hyaluronan, a straight-chain carbohydrate extracellular matrix polymer. Hyaluronan occurs in multiple forms, chain length being the only distinguishing characteristic between them. Levels of hyaluronan in its high-molecular-weight form are prominent in the earliest stages of wound repair. Progressively more fragmented forms occur in a manner not previously appreciated. We outline here steps in the wound healing cascade in which hyaluronan participates, as well as providing a review of its metabolism. Although described by necessity in a series of quantum steps, the healing process is constituted by a smooth continuum of overlapping reactions. The prevalence of hyaluronan in the wound (initially termed "hexosamine-containing mucopolysaccharide"), particularly in its early stages, was pointed out over half a century ago by the Harvard surgeon J. Engelbert Dunphy. It appears we are now returning to where we started.
Collapse
Affiliation(s)
- Kessiena L Aya
- Department of Basic Biomedical Sciences, Touro College of Osteopathic Medicine, New York, New York
| | | |
Collapse
|
30
|
Smith PC, Cáceres M, Martínez C, Oyarzún A, Martínez J. Gingival wound healing: an essential response disturbed by aging? J Dent Res 2015; 94:395-402. [PMID: 25527254 PMCID: PMC4814024 DOI: 10.1177/0022034514563750] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Gingival wound healing comprises a series of sequential responses that allow the closure of breaches in the masticatory mucosa. This process is of critical importance to prevent the invasion of microbes or other agents into tissues, avoiding the establishment of a chronic infection. Wound healing may also play an important role during cell and tissue reaction to long-term injury, as it may occur during inflammatory responses and cancer. Recent experimental data have shown that gingival wound healing is severely affected by the aging process. These defects may alter distinct phases of the wound-healing process, including epithelial migration, granulation tissue formation, and tissue remodeling. The cellular and molecular defects that may explain these deficiencies include several biological responses such as an increased inflammatory response, altered integrin signaling, reduced growth factor activity, decreased cell proliferation, diminished angiogenesis, reduced collagen synthesis, augmented collagen remodeling, and deterioration of the proliferative and differentiation potential of stem cells. In this review, we explore the cellular and molecular basis of these defects and their possible clinical implications.
Collapse
Affiliation(s)
- P C Smith
- School of Dentistry, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - M Cáceres
- Molecular and Cell Biology Program, Faculty of Medicine, University of Chile, Santiago, Chile
| | - C Martínez
- School of Dentistry, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - A Oyarzún
- Faculty of Dentistry, Universidad Finis Terrae, Santiago, Chile
| | - J Martínez
- Laboratory of Cell Biology, Institute of Nutrition and Food Technology (INTA), University of Chile, Santiago, Chile
| |
Collapse
|
31
|
Midgley AC, Duggal L, Jenkins R, Hascall V, Steadman R, Phillips AO, Meran S. Hyaluronan regulates bone morphogenetic protein-7-dependent prevention and reversal of myofibroblast phenotype. J Biol Chem 2015; 290:11218-34. [PMID: 25716319 PMCID: PMC4416830 DOI: 10.1074/jbc.m114.625939] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Indexed: 12/16/2022] Open
Abstract
Hyaluronan (HA) promotes transforming growth factor (TGF)-β1-driven myofibroblast phenotype. However, HA can also have disease-limiting activity. Bone morphogenetic protein-7 (BMP7) is an antifibrotic cytokine that antagonizes TGF-β1, and isolated studies have demonstrated that HA can both mediate and modulate BMP7 responses. In this study, we investigated whether BMP7 can modulate HA in a manner that leads to prevention/reversal of TGF-β1-driven myofibroblast differentiation in human lung fibroblasts. Results demonstrated that BMP7 prevented and reversed TGF-β1-driven myofibroblast differentiation through a novel mechanism. BMP7 promoted the dissolution and internalization of cell-surface HA into cytoplasmic endosomes. Endosomal HA co-localized with the HA-degrading enzymes, hyaluronidase-1 and hyaluronidase-2 (Hyal2). Moreover, BMP7 showed differential regulation of CD44 standard and variant isoform expression, when compared with TGF-β1. In particular, BMP7 increased membrane expression of CD44v7/8. Inhibiting CD44v7/8 as well as blocking Hyal2 and the Na+/H+ exchanger-1 at the cell-surface prevented BMP7-driven HA internalization and BMP7-mediated prevention/reversal of myofibroblast phenotype. In summary, a novel mechanism of TGF-β1 antagonism by BMP7 is shown and identifies alteration in HA as critical in mediating BMP7 responses. In addition, we identify Hyal2 and CD44v7/8 as new potential targets for manipulation in prevention and reversal of fibrotic pathology.
Collapse
Affiliation(s)
- Adam C Midgley
- From the Institute of Nephrology, Institute of Molecular and Experimental Medicine, School of Medicine, Cardiff University, Cardiff CF14 4XN, Wales, United Kingdom and
| | - Lucy Duggal
- From the Institute of Nephrology, Institute of Molecular and Experimental Medicine, School of Medicine, Cardiff University, Cardiff CF14 4XN, Wales, United Kingdom and
| | - Robert Jenkins
- From the Institute of Nephrology, Institute of Molecular and Experimental Medicine, School of Medicine, Cardiff University, Cardiff CF14 4XN, Wales, United Kingdom and
| | - Vincent Hascall
- the Lerner Research Institute, Department of Biomedical Engineering, Cleveland Clinic, Cleveland, Ohio 44195
| | - Robert Steadman
- From the Institute of Nephrology, Institute of Molecular and Experimental Medicine, School of Medicine, Cardiff University, Cardiff CF14 4XN, Wales, United Kingdom and
| | - Aled O Phillips
- From the Institute of Nephrology, Institute of Molecular and Experimental Medicine, School of Medicine, Cardiff University, Cardiff CF14 4XN, Wales, United Kingdom and
| | - Soma Meran
- From the Institute of Nephrology, Institute of Molecular and Experimental Medicine, School of Medicine, Cardiff University, Cardiff CF14 4XN, Wales, United Kingdom and
| |
Collapse
|
32
|
Röck K, Tigges J, Sass S, Schütze A, Florea AM, Fender AC, Theis FJ, Krutmann J, Boege F, Fritsche E, Reifenberger G, Fischer JW. miR-23a-3p Causes Cellular Senescence by Targeting Hyaluronan Synthase 2: Possible Implication for Skin Aging. J Invest Dermatol 2015; 135:369-377. [DOI: 10.1038/jid.2014.422] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 08/27/2014] [Accepted: 08/29/2014] [Indexed: 12/13/2022]
|
33
|
Cáceres M, Oyarzun A, Smith PC. Defective Wound-healing in Aging Gingival Tissue. J Dent Res 2014; 93:691-7. [PMID: 24776985 DOI: 10.1177/0022034514533126] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 04/04/2014] [Indexed: 11/17/2022] Open
Abstract
Aging may negatively affect gingival wound-healing. However, little is known about the mechanisms underlying this phenomenon. The present study examined the cellular responses associated with gingival wound-healing in aging. Primary cultures of human gingival fibroblasts were obtained from healthy young and aged donors for the analysis of cell proliferation, cell invasion, myofibroblastic differentiation, and collagen gel remodeling. Serum from young and old rats was used to stimulate cell migration. Gingival repair was evaluated in Sprague-Dawley rats of different ages. Data were analyzed by the Mann-Whitney and Kruskal-Wallis tests, with a p value of .05. Fibroblasts from aged donors showed a significant decrease in cell proliferation, migration, Rac activation, and collagen remodeling when compared with young fibroblasts. Serum from young rats induced higher cell migration when compared with serum from old rats. After TGF-beta1 stimulation, both young and old fibroblasts demonstrated increased levels of alpha-SMA. However, alpha-SMA was incorporated into actin stress fibers in young but not in old fibroblasts. After 7 days of repair, a significant delay in gingival wound-healing was observed in old rats. The present study suggests that cell migration, myofibroblastic differentiation, collagen gel remodeling, and proliferation are decreased in aged fibroblasts. In addition, altered cell migration in wound-healing may be attributable not only to cellular defects but also to changes in serum factors associated with the senescence process.
Collapse
Affiliation(s)
- M Cáceres
- Molecular and Cell Biology Program, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - A Oyarzun
- Faculty of Dentistry, Universidad Finis Terrae, Santiago, Chile
| | - P C Smith
- School of Dentistry, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
34
|
Rienks M, Papageorgiou AP, Frangogiannis NG, Heymans S. Myocardial extracellular matrix: an ever-changing and diverse entity. Circ Res 2014; 114:872-88. [PMID: 24577967 DOI: 10.1161/circresaha.114.302533] [Citation(s) in RCA: 259] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The cardiac extracellular matrix (ECM) is a complex architectural network consisting of structural and nonstructural proteins, creating strength and plasticity. The nonstructural compartment of the ECM houses a variety of proteins, which are vital for ECM plasticity, and can be divided into 3 major groups: glycoproteins, proteoglycans, and glycosaminoglycans. The common denominator for these groups is glycosylation, which refers to the decoration of proteins or lipids with sugars. This review will discuss the fundamental role of the matrix in cardiac development, homeostasis, and remodeling, from a glycobiology point of view. Glycoproteins (eg, thrombospondins, secreted protein acidic and rich in cysteine, tenascins), proteoglycans (eg, versican, syndecans, biglycan), and glycosaminoglycans (eg, hyaluronan, heparan sulfate) are upregulated on cardiac injury and regulate key processes in the remodeling myocardium such as inflammation, fibrosis, and angiogenesis. Albeit some parallels can be made regarding the processes these proteins are involved in, their specific functions are extremely diverse. In fact, under varying conditions, individual proteins can even have opposing functions, making spatiotemporal contribution of these proteins in the rearrangement of multifaceted ECM very hard to grasp. Alterations of protein characteristics by the addition of sugars may explain the immense, yet tightly regulated, variability of the remodeling cardiac matrix. Understanding the role of glycosylation in altering the ultimate function of glycoproteins, proteoglycans, and glycosaminoglycans in the myocardium may lead to the development of new biochemical structures or compounds with great therapeutic potential for patients with heart disease.
Collapse
Affiliation(s)
- Marieke Rienks
- From Maastricht University Medical Centre, Maastricht, The Netherlands
| | | | | | | |
Collapse
|
35
|
Gunin AG, Petrov VV, Golubtzova NN, Vasilieva OV, Kornilova NK. Age-related changes in angiogenesis in human dermis. Exp Gerontol 2014; 55:143-51. [PMID: 24768823 DOI: 10.1016/j.exger.2014.04.010] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 03/14/2014] [Accepted: 04/14/2014] [Indexed: 12/12/2022]
Abstract
Present research is aimed to examine the number of dermal blood vessels, vascular endothelial growth factor (VEGF), delta-like ligand 4(Dll4) and Jagged-1 (Jag-1) in dermal blood vessels of human from 20weeks of pregnancy to 85years old. Numbers and proliferative activity of dermal fibroblast-like cells were also examined. Blood vessels were viewed with immunohistochemical staining for von Willebrand factor or CD31. VEGF, Dll4, Jag-1, and proliferating cell nuclear antigen (PCNA) were detected immunohistochemically. Results showed that the numbers of fibroblast-like cells, PCNA positive fibroblast-like cells, von Willebrand factor positive or CD31 positive blood vessels in dermis are dramatically decreased with age. The intensity of immunohistochemical staining for VEGF or Jag-1 in blood vessels of dermis is increased from antenatal to deep old period. The degree of immunohistochemical staining of dermal blood vessels for Dll4 has gone up from 20-40weeks of pregnancy to early life period (0-20years), and further decreased below antenatal values. Age-related decrease in the number of dermal blood vessels is suggested to be due to an impairment of VEGF signaling and to be mediated by Dll4 and Jag-1. It may be supposed that diminishing in blood supply of dermis occurring with age is a cause of a decrease in the number and proliferative pool of dermal fibroblasts.
Collapse
Affiliation(s)
- Andrei G Gunin
- Department of Obstetrics and Gynecology, Medical School Chuvash State University, Cheboksary, Russia.
| | - Vadim V Petrov
- Department of Obstetrics and Gynecology, Medical School Chuvash State University, Cheboksary, Russia
| | - Natalia N Golubtzova
- Department of Obstetrics and Gynecology, Medical School Chuvash State University, Cheboksary, Russia
| | - Olga V Vasilieva
- Department of Obstetrics and Gynecology, Medical School Chuvash State University, Cheboksary, Russia
| | - Natalia K Kornilova
- Department of Obstetrics and Gynecology, Medical School Chuvash State University, Cheboksary, Russia
| |
Collapse
|
36
|
Midgley AC, Bowen T, Phillips AO, Steadman R. MicroRNA-7 inhibition rescues age-associated loss of epidermal growth factor receptor and hyaluronan-dependent differentiation in fibroblasts. Aging Cell 2014; 13:235-44. [PMID: 24134702 PMCID: PMC4331777 DOI: 10.1111/acel.12167] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/21/2013] [Indexed: 01/21/2023] Open
Abstract
Age-related defects in fibroblast differentiation were previously shown to be associated with impaired hyaluronan synthase 2 (HAS2) and epidermal growth factor receptor (EGFR) function, with both required for normal fibroblast functionality. In fibroblasts, transforming growth factor-beta 1 (TGF-β1)-dependent phenotypic activation uses two distinct but co-operating pathways that involve TGF-β receptor (TGF-βR)/Smad2 activation and HA-mediated CD44-EGFR co-localization and signalling through extracellular signal-regulated kinase 1/2 (ERK1/2). The HA-mediated CD44-EGFR pathway was found to be compromised with in vitro aging, through loss of EGFR expression and a reduced movement of CD44 throughout the cellular membrane. Here, we also investigate the involvement of microRNAs (miRNAs) in age-related loss of differentiation, through investigation of miRNA-7 (miR-7) regulation of the HA-mediated EGFR-signalling pathway. The transcription of miR-7 was found to be upregulated in aged cells. In young cells, age-related loss of differentiation could be mimicked through transfection of pre-miR-7, and in aged cells, could be reversed through transfection of locked nucleic acids (LNA) targeting miR-7. Additionally, miR-7 was found to be involved in the regulation of CD44 membrane motility, which was downregulated in instances of miR-7 upregulation, and partially restorable through either miR-7 inhibition or HAS2 overexpression. The altered dynamics of CD44 in the cell membrane demonstrated a further action of miR-7 in regulating the HA-dependent CD44/EGFR pathway. We explain this novel mechanism of age-associated functional consequence due to miR-7 upregulation and demonstrate that it is reversible; highlighting miR-7 as a potential target for restoring the healing capabilities in chronic wounds in the elderly.
Collapse
Affiliation(s)
- Adam C. Midgley
- Institute of Nephrology; Institute of Molecular & Experimental Medicine; School of Medicine and Cardiff Institute of Tissue Engineering & Repair; University of Cardiff; Heath Park Cardiff CF14 4XN UK
| | - Timothy Bowen
- Institute of Nephrology; Institute of Molecular & Experimental Medicine; School of Medicine and Cardiff Institute of Tissue Engineering & Repair; University of Cardiff; Heath Park Cardiff CF14 4XN UK
| | - Aled O. Phillips
- Institute of Nephrology; Institute of Molecular & Experimental Medicine; School of Medicine and Cardiff Institute of Tissue Engineering & Repair; University of Cardiff; Heath Park Cardiff CF14 4XN UK
| | - Robert Steadman
- Institute of Nephrology; Institute of Molecular & Experimental Medicine; School of Medicine and Cardiff Institute of Tissue Engineering & Repair; University of Cardiff; Heath Park Cardiff CF14 4XN UK
| |
Collapse
|
37
|
Vigetti D, Viola M, Karousou E, De Luca G, Passi A. Metabolic control of hyaluronan synthases. Matrix Biol 2013; 35:8-13. [PMID: 24134926 DOI: 10.1016/j.matbio.2013.10.002] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Revised: 10/07/2013] [Accepted: 10/07/2013] [Indexed: 12/16/2022]
Abstract
Hyaluronan (HA) is a glycosaminoglycan composed by repeating units of D-glucuronic acid (GlcUA) and N-acetylglucosamine (GlcNAc) that is ubiquitously present in the extracellular matrix (ECM) where it has a critical role in the physiology and pathology of several mammalian tissues. HA represents a perfect environment in which cells can migrate and proliferate. Moreover, several receptors can interact with HA at cellular level triggering multiple signal transduction responses. The control of the HA synthesis is therefore critical in ECM assembly and cell biology; in this review we address the metabolic regulation of HA synthesis. In contrast with other glycosaminoglycans, which are synthesized in the Golgi apparatus, HA is produced at the plasma membrane by HA synthases (HAS1-3), which use cytoplasmic UDP-glucuronic acid and UDP-N-acetylglucosamine as substrates. UDP-GlcUA and UDP-hexosamine availability is critical for the synthesis of GAGs, which is an energy consuming process. AMP activated protein kinase (AMPK), which is considered a sensor of the energy status of the cell and is activated by low ATP:AMP ratio, leads to the inhibition of HA secretion by HAS2 phosphorylation at threonine 110. However, the most general sensor of cellular nutritional status is the hexosamine biosynthetic pathway that brings to the formation of UDP-GlcNAc and intracellular protein glycosylation by O-linked attachment of the monosaccharide β-N-acetylglucosamine (O-GlcNAcylation) to specific aminoacid residues. Such highly dynamic and ubiquitous protein modification affects serine 221 residue of HAS2 that lead to a dramatic stabilization of the enzyme in the membranes.
Collapse
Affiliation(s)
- Davide Vigetti
- Dipartimento di Scienze Chirurgiche e Morfologiche, Università degli Studi dell'Insubria, via J.H. Dunant 5, 21100 Varese, Italy
| | - Manuela Viola
- Dipartimento di Scienze Chirurgiche e Morfologiche, Università degli Studi dell'Insubria, via J.H. Dunant 5, 21100 Varese, Italy
| | - Evgenia Karousou
- Dipartimento di Scienze Chirurgiche e Morfologiche, Università degli Studi dell'Insubria, via J.H. Dunant 5, 21100 Varese, Italy
| | - Giancarlo De Luca
- Dipartimento di Scienze Chirurgiche e Morfologiche, Università degli Studi dell'Insubria, via J.H. Dunant 5, 21100 Varese, Italy
| | - Alberto Passi
- Dipartimento di Scienze Chirurgiche e Morfologiche, Università degli Studi dell'Insubria, via J.H. Dunant 5, 21100 Varese, Italy.
| |
Collapse
|
38
|
Heldin P, Basu K, Olofsson B, Porsch H, Kozlova I, Kahata K. Deregulation of hyaluronan synthesis, degradation and binding promotes breast cancer. J Biochem 2013; 154:395-408. [PMID: 24092768 DOI: 10.1093/jb/mvt085] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Clinical and experimental data indicate that hyaluronan accumulates in breast cancer compared with normal breast epithelium, which correlates to poor prognosis. In this review, we discuss the expression of genes encoding enzymes that synthesize or degrade hyaluronan, i.e. hyaluronan synthases and hyaluronidases or bind hyaluronan, i.e. CD44 and receptor for hyaluronan-mediated motility (RHAMM, also designated as HMMR or CD168), in relation to breast cancer progression. Hyaluronan and hyaluronan receptors have multi-faceted roles in signalling events in breast cancer. A better understanding of the molecular mechanisms underlying these signalling pathways is highly warranted and may lead to improvement of cancer treatment.
Collapse
Affiliation(s)
- Paraskevi Heldin
- Ludwig Institute for Cancer Research, Science for Life Laboratory, Uppsala University, Biomedical Center, Box 595, SE-75124 Uppsala, Sweden
| | | | | | | | | | | |
Collapse
|
39
|
Chang ALS, Wong JW, Endo JO, Norman RA. Geriatric Dermatology Review: Major Changes in Skin Function in Older Patients and Their Contribution to Common Clinical Challenges. J Am Med Dir Assoc 2013; 14:724-30. [DOI: 10.1016/j.jamda.2013.02.014] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Revised: 02/20/2013] [Accepted: 02/22/2013] [Indexed: 11/26/2022]
|
40
|
Midgley AC, Rogers M, Hallett MB, Clayton A, Bowen T, Phillips AO, Steadman R. Transforming growth factor-β1 (TGF-β1)-stimulated fibroblast to myofibroblast differentiation is mediated by hyaluronan (HA)-facilitated epidermal growth factor receptor (EGFR) and CD44 co-localization in lipid rafts. J Biol Chem 2013; 288:14824-38. [PMID: 23589287 DOI: 10.1074/jbc.m113.451336] [Citation(s) in RCA: 223] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Fibroblast to myofibroblast differentiation drives effective wound healing and is largely regulated by the cytokine transforming growth factor-β1 (TGF-β1). Myofibroblasts express α-smooth muscle actin and are present in granulation tissue, where they are responsible for wound contraction. Our previous studies show that fibroblast differentiation in response to TGF-β1 is dependent on and mediated by the linear polysaccharide hyaluronan (HA). Both the HA receptor, CD44, and the epidermal growth factor receptor (EGFR) are involved in this differentiation response. The aim of this study was to understand the mechanisms linking HA-, CD44-, and EGFR-regulated TGF-β1-dependent differentiation. CD44 and EGFR co-localization within membrane-bound lipid rafts was necessary for differentiation, and this triggered downstream mitogen-activated protein kinase (MAPK/ERK) and Ca(2+)/calmodulin kinase II (CaMKII) activation. We also found that ERK phosphorylation was upstream of CaMKII phosphorylation, that ERK activation was necessary for CaMKII signaling, and that both kinases were essential for differentiation. In addition, HA synthase-2 (HAS2) siRNA attenuated both ERK and CaMKII signaling and sequestration of CD44 into lipid rafts, preventing differentiation. In summary, the data suggest that HAS2-dependent production of HA facilitates TGF-β1-dependent fibroblast differentiation through promoting CD44 interaction with EGFR held within membrane-bound lipid rafts. This induces MAPK/ERK, followed by CaMKII activation, leading to differentiation. This pathway is synergistic with the classical TGF-β1-dependent SMAD-signaling pathway and may provide a novel opportunity for intervention in wound healing.
Collapse
Affiliation(s)
- Adam C Midgley
- Institute of Nephrology, School of Medicine and Cardiff Institute of Tissue Engineering and Repair, University of Cardiff, Heath Park, Cardiff CF14 4XN, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
41
|
Interleukin-1β induces hyaluronan and CD44-dependent cell protrusions that facilitate fibroblast-monocyte binding. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 182:2223-40. [PMID: 23583650 DOI: 10.1016/j.ajpath.2013.02.038] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Revised: 02/05/2013] [Accepted: 02/11/2013] [Indexed: 11/21/2022]
Abstract
Persistent inflammation is a well-known determinant of progressive tissue fibrosis; however, the mechanisms underlying this process remain unclear. There is growing evidence indicating a role of the cytokine IL-1β in profibrotic responses. We previously demonstrated that fibroblasts stimulated with IL-1β increased their generation of the polysaccharide hyaluronan (HA) and increased their expression of the HA synthase enzyme (HAS-2). The aim of this study was to determine the significance of IL-1β-induced changes in HA and HAS-2 generation. In this study, we found that stimulation of fibroblasts with IL-1β results in the relocalization of HA associated with the cell to the outer cell membrane, where it forms HAS2- and CD44-dependent cell membrane protrusions. CD44 is concentrated within the membrane protrusions, where it co-localizes with the intracellular adhesion molecule 1. Furthermore, we have identified that these cell protrusions enhance IL-1β-dependent fibroblast-monocyte binding through MAPK/ERK signaling. Although previous data have indicated the importance of the HA-binding protein TSG-6 in maintaining the transforming growth factor β1-dependent HA coat, TSG-6 was not essential for the formation of the IL-1β-dependent HA protrusions, thus identifying it as a key difference between IL-1β- and transforming growth factor β1-dependent HA matrices. In summary, these data suggest that IL-1β-dependent HA generation plays a role in fibroblast immune activation, leading to sequestration of monocytes within inflamed tissue and providing a possible mechanism for perpetual inflammation.
Collapse
|
42
|
Postnatal development, maturation and aging in the mouse cochlea and their effects on hair cell regeneration. Hear Res 2012; 297:68-83. [PMID: 23164734 DOI: 10.1016/j.heares.2012.11.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Revised: 10/22/2012] [Accepted: 11/07/2012] [Indexed: 12/23/2022]
Abstract
The organ of Corti in the mammalian inner ear is comprised of mechanosensory hair cells (HCs) and nonsensory supporting cells (SCs), both of which are believed to be terminally post-mitotic beyond late embryonic ages. Consequently, regeneration of HCs and SCs does not occur naturally in the adult mammalian cochlea, though recent evidence suggests that these cells may not be completely or irreversibly quiescent at earlier postnatal ages. Furthermore, regenerative processes can be induced by genetic and pharmacological manipulations, but, more and more reports suggest that regenerative potential declines as the organ of Corti continues to age. In numerous mammalian systems, such effects of aging on regenerative potential are well established. However, in the cochlea, the problem of regeneration has not been traditionally viewed as one of aging. This is an important consideration as current models are unable to elicit widespread regeneration or full recovery of function at adult ages yet regenerative therapies will need to be developed specifically for adult populations. Still, the advent of gene targeting and other genetic manipulations has established mice as critically important models for the study of cochlear development and HC regeneration and suggests that auditory HC regeneration in adult mammals may indeed be possible. Thus, this review will focus on the pursuit of regeneration in the postnatal and adult mouse cochlea and highlight processes that occur during postnatal development, maturation, and aging that could contribute to an age-related decline in regenerative potential. Second, we will draw upon the wealth of knowledge pertaining to age related senescence in tissues outside of the ear to synthesize new insights and potentially guide future research aimed at promoting HC regeneration in the adult cochlea.
Collapse
|
43
|
Chen L, Neville RD, Michael DR, Martin J, Luo DD, Thomas DW, Phillips AO, Bowen T. Identification and analysis of the human hyaluronan synthase 1 gene promoter reveals Smad3- and Sp3-mediated transcriptional induction. Matrix Biol 2012; 31:373-9. [PMID: 23123404 DOI: 10.1016/j.matbio.2012.10.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Revised: 10/22/2012] [Accepted: 10/23/2012] [Indexed: 11/27/2022]
Abstract
The ubiquitous mammalian extracellular matrix glycosaminoglycan hyaluronan (HA) plays a pivotal role in the regulation of cell phenotype in fibrosis and scarring. Transforming growth factor-beta 1 (TGF-β1) and interleukin-1 beta (IL-1β) up-regulate hyaluronan synthase (HAS) 1 and HAS2 in dermal fibroblasts and renal proximal tubular epithelial cells, and subsequent HA synthesis regulates cell phenotype. In the present study, we investigated the mechanism of HAS1 transcriptional up-regulation in response to these cytokines. We used 5'-rapid amplification of cDNA ends analysis to identify the 5' end of HAS1 transcripts, resulting in an increase of 26 nucleotides to the HAS1 exon 1 sequence of reference sequence NM_001523. Constitutive luciferase activity of upstream DNA sequences was shown in luciferase reporter assays, but our reporter vector signals were refractory to the addition of TGF-β1 and IL-1β. Using siRNAs to knockdown transcription factor mRNAs, we showed that TGF-β1 up-regulation of HAS1 transcription was mediated via Smad3 but not Smad2, while HAS1 induction by IL-1β was Sp3, not Sp1, dependent.
Collapse
Affiliation(s)
- Long Chen
- Section of Nephrology, Matrix Biology Research Group, Institute of Molecular and Experimental Medicine, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Porsch H, Bernert B, Mehić M, Theocharis AD, Heldin CH, Heldin P. Efficient TGFβ-induced epithelial-mesenchymal transition depends on hyaluronan synthase HAS2. Oncogene 2012; 32:4355-65. [PMID: 23108409 PMCID: PMC3778714 DOI: 10.1038/onc.2012.475] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Revised: 08/17/2012] [Accepted: 08/29/2012] [Indexed: 11/09/2022]
Abstract
Epithelial-mesenchymal transition (EMT) is a developmental program, which can be adopted by cancer cells to increase their migration and ability to form metastases. Transforming growth factor β (TGFβ) is a well-studied inducer of EMT. We demonstrate that TGFβ potently stimulates hyaluronan synthesis via upregulation of hyaluronan synthase 2 (HAS2) in NMuMG mammary epithelial cells. This stimulatory effect requires the kinase active type I TGFβ receptor and is dependent on Smad signaling and activation of the p38 mitogen-activated protein kinase. Knockdown of HAS2 inhibited the TGFβ-induced EMT by about 50%, as determined by the phase contrast microscopy and immunostaining using the EMT marker ZO-1. Furthermore, real-time PCR analysis of the EMT markers fibronectin, Snail1 and Zeb1 revealed decreased expressions upon HAS2 suppression, using specific small interfering RNA (siRNA) for HAS2. Removal of the extracellular hyaluronan by Streptomyces hyaluronidase or inhibiting the binding to its cell surface receptor CD44 by blocking antibodies, did not inhibit TGFβ-induced EMT. Interestingly, HAS2 suppression completely abolished the TGFβ-induced cell migration, whereas CD44 knockdown did not. These observations suggest that TGFβ-dependent HAS2 expression, but not extracellular hyaluronan, has an important regulatory role in TGFβ-induced EMT.
Collapse
Affiliation(s)
- H Porsch
- Ludwig Institute for Cancer Research, Science for life Laboratory, Biomedical Center, Uppsala University, Uppsala, Sweden
| | | | | | | | | | | |
Collapse
|
45
|
Tolg C, Hamilton SR, Zalinska E, McCulloch L, Amin R, Akentieva N, Winnik F, Savani R, Bagli DJ, Luyt LG, Cowman MK, McCarthy JB, Turley EA. A RHAMM mimetic peptide blocks hyaluronan signaling and reduces inflammation and fibrogenesis in excisional skin wounds. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 181:1250-70. [PMID: 22889846 DOI: 10.1016/j.ajpath.2012.06.036] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Revised: 06/14/2012] [Accepted: 06/27/2012] [Indexed: 10/28/2022]
Abstract
Hyaluronan is activated by fragmentation and controls inflammation and fibroplasia during wound repair and diseases (eg, cancer). Hyaluronan-binding peptides were identified that modify fibrogenesis during skin wound repair. Peptides were selected from 7- to 15mer phage display libraries by panning with hyaluronan-Sepharose beads and assayed for their ability to block fibroblast migration in response to hyaluronan oligosaccharides (10 kDa). A 15mer peptide (P15-1), with homology to receptor for hyaluronan mediated motility (RHAMM) hyaluronan binding sequences, was the most effective inhibitor. P15-1 bound to 10-kDa hyaluronan with an affinity of K(d) = 10(-7) and appeared to specifically mimic RHAMM since it significantly reduced binding of hyaluronan oligosaccharides to recombinant RHAMM but not to recombinant CD44 or TLR2,4, and altered wound repair in wild-type but not RHAMM(-/-) mice. One topical application of P15-1 to full-thickness excisional rat wounds significantly reduced wound macrophage number, fibroblast number, and blood vessel density compared to scrambled, negative control peptides. Wound collagen 1, transforming growth factor β-1, and α-smooth muscle actin were reduced, whereas tenascin C was increased, suggesting that P15-1 promoted a form of scarless healing. Signaling/microarray analyses showed that P15-1 blocks RHAMM-regulated focal adhesion kinase pathways in fibroblasts. These results identify a new class of reagents that attenuate proinflammatory, fibrotic repair by blocking hyaluronan oligosaccharide signaling.
Collapse
Affiliation(s)
- Cornelia Tolg
- Cancer Research Laboratory Program, Lawson Health Research Institute and London Regional Cancer Program, London Health Sciences Center, London, Ontario, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Dekker P, Gunn D, McBryan T, Dirks RW, van Heemst D, Lim FL, Jochemsen AG, Verlaan-de Vries M, Nagel J, Adams PD, Tanke HJ, Westendorp RG, Maier AB. Microarray-based identification of age-dependent differences in gene expression of human dermal fibroblasts. Mech Ageing Dev 2012; 133:498-507. [DOI: 10.1016/j.mad.2012.06.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Revised: 02/07/2012] [Accepted: 06/10/2012] [Indexed: 10/28/2022]
|
47
|
Li J, Gorski DJ, Anemaet W, Velasco J, Takeuchi J, Sandy JD, Plaas A. Hyaluronan injection in murine osteoarthritis prevents TGFbeta 1-induced synovial neovascularization and fibrosis and maintains articular cartilage integrity by a CD44-dependent mechanism. Arthritis Res Ther 2012; 14:R151. [PMID: 22721434 PMCID: PMC3446537 DOI: 10.1186/ar3887] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Revised: 05/22/2012] [Accepted: 06/21/2012] [Indexed: 12/12/2022] Open
Abstract
Introduction The mechanism by which intra-articular injection of hyaluronan (HA) ameliorates joint pathology is unknown. Animal studies have shown that HA can reduce synovial activation, periarticular fibrosis and cartilage erosion; however, its specific effects on the different cell types involved remain unclear. We have used the TTR (TGFbeta1 injection and Treadmill Running) model of murine osteoarthritis (OA), which exhibits many OA-like changes, including synovial activation, to examine in vivo tissue-specific effects of intra-articular HA. Methods The kinetics of clearance of fluorotagged HA from joints was examined with whole-body imaging. Naïve and treated knee joints were examined macroscopically for cartilage erosion, meniscal damage and fibrosis. Quantitative histopathology was done with Safranin O for cartilage and with Hematoxylin & Eosin for synovium. Gene expression in joint tissues for Acan, Col1a1, Col2a1, Col3a1, Col5a1, Col10a1, Adamts5 and Mmp13 was done by quantitative PCR. The abundance and distribution of aggrecan, collagen types I, II, III, V and X, ADAMTS5 and MMP13 were examined by immunohistochemistry. Results Injected HA showed a half-life of less than 2 h in the murine knee joint. At the tissue level, HA protected against neovascularization and fibrosis of the meniscus/synovium and maintained articular cartilage integrity in wild-type but not in Cd44 knockout mice. HA injection enhanced the expression of chondrogenic genes and proteins and blocked that of fibrogenic/degradative genes and proteins in cartilage/subchondral bone, whereas it blocked activation of both groups in meniscus/synovium. In all locations it reduced the expression/protein for Mmp13 and blocked Adamts5 expression but not its protein abundance in the synovial lining. Conclusions The injection of HA, 24 h after TGFbeta1 injection, inhibited the cascade of OA-like joint changes seen after treadmill use in the TTR model of OA. In terms of mechanism, tissue protection by HA injection was abrogated by Cd44 ablation, suggesting that interaction of the injected HA with CD44 is central to its protective effects on joint tissue remodeling and degeneration in OA progression.
Collapse
Affiliation(s)
- Jun Li
- Department of Internal Medicine (Rheumatology), Rush University Medical Center, 1611 West Harrison Street Suite 510, Chicago, IL 60612, USA
| | | | | | | | | | | | | |
Collapse
|
48
|
Röck K, Meusch M, Fuchs N, Tigges J, Zipper P, Fritsche E, Krutmann J, Homey B, Reifenberger J, Fischer JW. Estradiol protects dermal hyaluronan/versican matrix during photoaging by release of epidermal growth factor from keratinocytes. J Biol Chem 2012; 287:20056-69. [PMID: 22493503 DOI: 10.1074/jbc.m112.353151] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Hyaluronan (HA) and versican are key components of the dermis and are responsive to ultraviolet (UV)B-induced remodeling. The aim of this study was to explore the molecular mechanisms mediating the effects of estrogen (E(2)) on HA-rich extracellular matrix during photoaging. Hairless skh-1 mice were irradiated with UVB (three times, 1 minimal erythema dose (80 mJ/cm(2)), weekly) for 10 weeks, and endogenous sex hormone production was abrogated by ovariectomy. Subcutaneous substitution of E(2) by means of controlled-release pellets caused a strong increase in the dermal HA content in both irradiated and nonirradiated skin. The increase in dermal HA correlated with induction of HA synthase HAS3 by E(2). Expression of splice variant 2 of the HA-binding proteoglycan versican was also increased by E(2). In search of candidate mediators of these effects, it was found that E(2) strongly induced the expression of epidermal growth factor (EGF) in UVB-irradiated epidermis in vivo and in keratinocytes in vitro. EGF in turn up-regulated the expression of HAS3 and versican V2 in dermal fibroblasts. HAS3 knockdown by shRNA caused inhibition of fibroblast proliferation. Furthermore, HAS3 and versican V2 induction by E(2) correlated positively with proliferation in vivo. In addition, the accumulation of inflammatory macrophages, expression of inducible cyclooxygenase 2, as well as proinflammatory monocyte chemotactic protein 1 were decreased in response to E(2) in the dermis. Collectively, these data suggest that E(2) treatment increases the amount of dermal HA and versican V2 via paracrine release of EGF, which may be implicated in the pro-proliferative and anti-inflammatory effects of E(2) during photoaging.
Collapse
Affiliation(s)
- Katharina Röck
- Institut für Pharmakologie and Klinische Pharmakologie, Universitätsklinikum Düsseldorf, Heinrich-Heine-Universität Düsseldorf, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Vedrenne N, Coulomb B, Danigo A, Bonté F, Desmoulière A. The complex dialogue between (myo)fibroblasts and the extracellular matrix during skin repair processes and ageing. ACTA ACUST UNITED AC 2012; 60:20-7. [DOI: 10.1016/j.patbio.2011.10.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2011] [Accepted: 09/16/2011] [Indexed: 01/31/2023]
|
50
|
Gunin G, Kornilova NK, Petrov VV, Vasilyeva OV. Age changes in the number and proliferation of fibroblasts in the human skin. ADVANCES IN GERONTOLOGY 2012. [DOI: 10.1134/s2079057011040059] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|